高三联考数学试题(理)
2023届河南省部分学校高三12月大联考数学(理)试题(解析版)
![2023届河南省部分学校高三12月大联考数学(理)试题(解析版)](https://img.taocdn.com/s3/m/4c56e4def71fb7360b4c2e3f5727a5e9856a27ec.png)
2023届河南省部分学校高三12月大联考数学(理)试题一、单选题1.已知集合{A x y ==,{}e x B y y a ==+(a ∈R ),若A B ⋂=∅,则a 的取值范围为( ) A .(],1-∞- B .(),1-∞- C .()3,+∞ D .[)3,+∞【答案】D【分析】分别求出集合A 和集合B ,再由A B ⋂=∅进行求解.【详解】由已知,集合A 即函数y = 由不等式2320x x +-≥,即2230x x --≤,解得13x -≤≤,∴{{}[]131,3A x y x x ===-≤≤=-,集合B 即函数e x y a =+的值域,因为指数函数e x y =的值域为()0,∞+,所以函数e x y a =+的值域为(),a +∞,∴{}()e ,xB y y a a ∞==+=+,∵A B ⋂=∅,∴a 的取值范围是[)3,+∞. 故选:D.2.已知复数z 满足(86i)512i z +=+,则z =( )A B .1310C .1714D .1513【答案】B【分析】先由复数的运算化简z ,再计算模长.【详解】()512i (86i)11266i 5633i (86i)(86i)10050z +-++===+-,1310z === 故选:B3.已知直线12:210,:220l x y l x my --=++=,若12l l ∥,则1l 与2l 之间的距离为( )A .1B .2C D 【答案】A【分析】根据直线平行求出m ,再由平行线间的距离公式求解即可. 【详解】因为12l l ∥,所以40m +=,解得4m =-,经检验符合题意;所以2:210l x y -=, 所以1l 与2l之间的距离1d ===, 故选:A4.我国古代历法从东汉的《四分历》开始,就有各节气初日晷影长度和太阳去极度的观测记录,漏刻、晷影成为古代历法的重要计算项目.唐代僧一行在编制《大衍历》时发明了求任何地方每日晷影长和去极度的计算方法——“九服晷影法”,建立了晷影长l 与太阳天顶距θ之间的对应数表(世界上最早的正切函数表).根据三角学知识知:晷影长l 等于表高h 与天顶距θ正切值的乘积,即tan l h θ=.若对同一表高进行两次测量,测得晷影长分别是表高的2倍和3倍,记对应的天顶距分别为1θ和2θ,则()12tan θθ-=( ) A .1- B .17-C .13D .1【答案】B【分析】根据已知条件得出12,tan tan θθ的值,利用两角差的正切公式可得结果. 【详解】由题意知12tan 2,tan 3θθ==,所以()121212tan tan 231tan 1tan tan 1237θθθθθθ---===-++⨯故选:B.5.已知12,F F 是平面内两个不同的定点,P 为平面内的动点,则“12PF PF -的值为定值m ,且12m F F <”是“点P 的轨迹是双曲线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【分析】直接利用双曲线的定义,直接判断,可得答案.【详解】“12PF PF -的值为定值m ,12m F F <”,若0m =,则P 点的轨迹不是双曲线,故充分性不成立;“点P 的轨迹是双曲线”,则必有12,F F 是平面内两个不同的定点,且满足1212PF PF m F F -=<,故必要性成立; 故选:B6.已知()sin 2tan 1f x x x =++,则曲线()y f x =在点ππ,44f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线方程为( ) A .26π0x y ++-= B .23π0x y -+-= C .426π0x y -+-= D .426π0x y -++=【答案】C【分析】根据导数几何意义可求得切线斜率π4f ⎛⎫' ⎪⎝⎭,结合π34f ⎛⎫= ⎪⎝⎭可求得切线方程. 【详解】()212cos 2cos f x x x'=+,2ππ12cos 2π42cos 4f ⎛⎫'∴=+= ⎪⎝⎭, 又πππsin tan 13424f ⎛⎫=++= ⎪⎝⎭,∴所求切线方程为:π324y x ⎛⎫-=- ⎪⎝⎭,即426π0x y -+-=.故选:C.7.已知双曲线2222:1(0,0)y x C a b a b-=>>,F 为C 的下焦点.O 为坐标原点,1l 是C 的斜率大于0的渐近线,过Fl 交1l 于点A ,交x 轴的正半轴于点B ,若||||OA OB =,则C 的离心率为( ) A .2 BCD【答案】C【分析】分别表示出A 、B 坐标,利用||||OA OB =求得3a b ,即可求出离心率.【详解】因为F 为双曲线2222:1(0,0)y x C a b a b-=>>的下焦点,不妨设()0,F c -,所以过Fy c =-,所以),0B .因为1l 是C 的斜率大于0的渐近线,所以可设1:al y x b=.由y x ca y x b⎧=-⎪⎪⎨⎪=⎪⎩联立解得:A .因为||||OA OB =,所以2223c +=,解得:3ab .所以离心率c e a ====. 故选:C8.函数π()sin()0,0,02f x A x A ωϕωϕ⎛⎫=+>><< ⎪⎝⎭的部分图象如图所示,将()f x 的图象向左平移π6个单位长度得到函数()g x 的图象,则()g x =( )A .2cos2xB π326x ⎛⎫- ⎪⎝⎭C π326x ⎛⎫+ ⎪⎝⎭D .π2sin 26x ⎛⎫+ ⎪⎝⎭【答案】A【分析】由函数周期可求出ω,又由特殊值5π()=012f 和(0)=1f ,可求得ϕ和A ,进而可得()f x 的解析式,再利用sin()y A x ωϕ=+的图象变换规律,求得()g x 的解析式.【详解】依题意有2π11π5π2π1212ω⎛⎫=⨯-= ⎪⎝⎭,得2ω=, 又5π5π()sin 2+=01212f A ϕ⎛⎫=⨯ ⎪⎝⎭,所以5π2+π2π,Z 12k k ϕ⨯=+∈,且π02ϕ<<,得π=6ϕ,又π(0)sin =16f A =,得=2A ,所以()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭,所以()πππ2sin 22cos 2666g x f x x x ⎡⎤⎛⎫⎛⎫=+=++= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.故选:A .9.已知12F F 、分别是椭圆2222:1(0)x yC a b a b+=>>的左、右焦点,椭圆C 过(2,0)A -和(0,1)B 两点,点P 在线段AB 上,则12PF PF ⋅的取值范围为( )A .11,5⎡⎫-+∞⎪⎢⎣⎭B .371,5⎡⎤⎢⎥⎣⎦C .[2,1]-D .11,15⎡⎤-⎢⎥⎣⎦【答案】D【分析】根据椭圆过点求出,a b ,再求出焦点坐标,利用数量积的坐标运算结合二次函数的最值求解. 【详解】因为椭圆2222:1(0)x y C a b a b+=>>过点(2,0)A -和(0,1)B ,所以224,1a b ==,可得223c a b - 所以1(3,0)F -,23)F ,设(,)P x y ,由题意直线AB 的方程为12xy +=-,即220x y , 因为点P 在线段AB 上,所以(,)P x y 满足20,01x y -≤≤≤≤,则222212(,),)3(22)3PF PF x y x y x y y y ⋅=--⋅-=+-=-+-224115815()55y y y =-+=--,[0,1]y ∈,当45y =时,12min 11()5PF PF ⋅=-,当0y =时,12max ()1PF PF ⋅=, 所以12PF PF ⋅的取值范围为11,15⎡⎤-⎢⎥⎣⎦.故选:D10.已知定义在(0,)+∞上的函数()f x 满足:①0,()0x f x ∀><;②对任意正数x ,y ,当x y <时,()()yf x xf y >恒成立.若(0.1)(sin0.1)sin0.1,,(tan0.1)tan0.110f a f b c f ===,则( ) A .a b c >> B .c a b >>C .b c a >>D .b a c >>【答案】A【分析】根据函数性质可知,()f x x在(0,)+∞上单调递减,又根据0,()0x f x ∀><,可构造函数()xf x ,且函数()xf x 为单调递减,又因为sin0.10.1tan0.1<<,即可得出a b c >>. 【详解】由题意可知,对任意正数x ,y ,当x y <时,()()yf x xf y >,即()()f x f y x y> 所以函数()f x x在(0,)+∞上单调递减,即导函数2()()0xf x f x x -<'在(0,)+∞恒成立; 可得()()xf x f x '<;构造函数()()g x xf x =,则()()()2()0g x f x xf x f x ''=+<<, 所以,()()g x xf x =在(0,)+∞上单调递减;设函数()sin ,(0,1)h x x x x =-∈,则()cos 10h x x '=-<,即()h x 在(0,1)为单调递减,所以(0.1)(0)0h h <=,即sin 0.10.1<; 设函数()tan ,(0,1)x x x x ϕ=-∈,则221()1tan 0cos x x xϕ'=-=-<, 即()ϕx 在(0,1)为单调递减,所以(0.1)(0)0ϕϕ=<,即0.1tan 0.1<; 综上可知,sin0.10.1tan0.1<<,(sin 0.1)(0.1)(tan 0.1)g g g >> 即(0.1)(sin 0.1)sin 0.10.1(0.1)(tan 0.1)tan 0.110f f f f =>> 即得a b c >>. 故选:A.11.在四面体ABCD 中,,AB AC AB BD ⊥⊥,异面直线AC 与BD 所成的角为30︒,二面角C AB D--为锐二面角,4,5,3AB AC BD ===,则四面体ABCD 的体积为( ) A .234153- B .3C .5D .10【答案】C【分析】根据题意,如图,将四面体放在长方体中,为三棱锥D ABC -,过点D 作DE BE ⊥于E ,则DE ⊥平面ABC ,结合二面角和异面直线所成的角的定义可得30DBE ︒∠=,求出DE ,利用三棱锥的体积公式计算即可.【详解】如图,在长方体中,4,5,3AB AC BD ===, 过点D 作DE BE ⊥于E ,则DE ⊥平面ABC , 所以DBE ∠为二面角C AB D --的所成角,为锐角,DBE ∠为异面直线AC 与BD 的所成角,所以30DBE ︒∠=,所以1322DE BD ==. 由题意知,该四面体ABCD 为三棱锥D ABC -, 由1102ABCSAC AB =⋅=, 所以该三棱锥D ABC -的体积为113105332D ABC ABCV SDE -=⋅=⨯⨯=. 故选:C.12.将曲线221:1(0)169x y C x +=≤和曲线222:1(0)49x y C x +=>合成曲线E .斜率为k 的直线l 与E 交于A ,B 两点,P 为线段AB 的中点,则下列判断错误的是( ) A .曲线E 所围成图形的面积小于36 B .曲线E 与其对称轴仅有两个交点 C .存在k ,使得点P 的轨迹总在某个椭圆上 D .存在k ,使得点P 的轨迹总在某条直线上 【答案】D【分析】画出曲线表示的图形,分析AB 选项;选项C ,分析当0k =时,设()()1122,,,A x y B x y ,且12x x <,()00,P x y ,然后根据题意分析点P 的轨迹总在某个椭圆上即可;选项D ,结合C 的部分条件,加上中点公式,以及差点法,若存在k ,使得点P 的轨迹总在某条直线上,则0000(R)y k x k -∈为常数,化简分析即可解决问题. 【详解】选项A :如图,曲线E 所围成图形在正方形PQGH 内部,由正方形PQGH 的面积为6636⨯=,所以曲线E 所围成图形的面积小于36,故A 正确; 由A 中图形可知,曲线E 关于x 轴对称,所以曲线E 与其对称轴仅有两个交点,故B 正确; 选项C :设()()1122,,,A x y B x y ,且12x x <,()00,P x y 1212022x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩, 当0k =时,12120,x x y y <<=221122221169149x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减的:22112202164x x x x -=⇒=- 所以222200200122222x x x x x x y y y y y -+⎧=-==-⎧⎪⇒⎨⎨=⎩⎪==⎩, 又2222149x y +=,所以()22220000114992y y x x -+=⇔+= 故存在0k =,使得点P 的轨迹总在某个椭圆上,C 正确选项D : 由()00,P x y ,1212022x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩,由题意若存在k ,使得点P 的轨迹总在某条直线上,则221122221169149x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相减得:2222121201649x x y y --+=即()()2212121201649y y y y x x --++=, 又12012122y y y y y k x x +=⎧⎪-⎨=⎪-⎩,所以()2201212201649ky x x x x --+=, 即()222101294162x x y k x x ⎛⎫- ⎪⎝⎭=-, 又1202x x x +=, 所以若存在k ,使得点P 的轨迹总在某条直线上, 则0000(R)y k x k -∈为常数,即()222112012941622x x x x k k x x ⎛⎫- ⎪+⎝⎭--()()()()2221012121212941622x x kk x x x x k x x k x x ⎛⎫- ⎪-+⎝⎭=--- ()()2222210121294162x x kk x x k x x ⎛⎫--- ⎪⎝⎭=- ()22020112994162kk x kk x k x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭=-为定值, 因为分子分母12,x x 次数不同,故若上式为定值,则22020*******kk x kk x ⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭恒成立,即00990416kk kk +=+=,无解,假设不成立, 所以不存在k ,使得点P 的轨迹总在某条直线上 所以选项D 不正确; 故选:D.二、填空题13.已知向量,a b 满足||3,||1,||2a b a b ==+=,则a b +与a b -的夹角为_______________. 【答案】π3【分析】根据平面向量夹角公式,结合平面向量数量积的运算性质进行求解即可. 【详解】()222||242431240a b a ba b a b a b a b +=⇒+=⇒++⋅=⇒++⋅=⇒⋅=,()2222312a b a b a b a b -=-=+-⋅=+-,设a b +与a b -的夹角为([0,π])θθ∈,()()22311cos 2242a b a b ab a b a bθ⋅-+--==⨯⋅-==+, 因为[0,π]θ∈, 所以π3θ=, 故答案为:π314.直线l 过点(2,1)且与圆22:(1)9C x y ++=相切,则直线l 的方程为______________. 【答案】2x =或43110x y +-=.【分析】先求出圆的圆心和半径,然后分直线l 的斜率不存在和存在两种情况求解即可. 【详解】由22(1)9x y ++=,得圆心为(1,0)C -,半径3r =,当直线l 的斜率不存在时,直线l 的方程为2x =,此时直线恰好与圆相切,符合题意, 当直线l 的斜率存在时,设直线l 的方程为1(2)y k x -=-,则3=,22(13)9(1)k k -=+,解得43k =-,所以直线l 的方程为41(2)3y x -=--,即43110x y +-=,综上,直线l 的方程为2x =或43110x y +-=, 故答案为:2x =或43110x y +-=.15.如图,直线x t =与抛物线2:2(0)C y px p =>交于A ,B 两点,D 为C 上异于A ,B 的一点,若AD BD ⊥,则点D 到直线x t =的距离与p 的比值为__________.【答案】2【分析】根据题意得到,A B 的坐标,设(002D x px ,由题意可得1AD BD k k ⋅=-,列出方程即可得到结果.【详解】因为直线x t =与抛物线2:2(0)C y px p =>交于A ,B 两点,不妨设((2,,2A t pt B t pt 且D 为C 上异于A ,B 的一点,由抛物线的对称性,不妨设(002D x px则00002222AD BD px pt px ptk k -+由AD BD ⊥000022221px pt px pt-+=-化简可得()()02021p x t x t -=--,因为0x t ≠,则02p t x =-即点D 到直线x t =的距离与p 的比值为02t x p-= 故答案为:216.若12,x x 是函数()()21e 12xf x ax a =-+∈R 的两个极值点,且212x x ≥,则实数a 的取值范围为_____________. 【答案】2,ln 2⎡⎫+∞⎪⎢⎣⎭【分析】根据极值点定义可将问题转化为y a =与()e xg x x=有两个不同交点12,x x ;利用导数可求得()g x 单调性,并由此得到()g x 的图象;采用数形结合的方式可确定1201x x <<<且e a >;假设212x x t ==,由()()12g x g x =可确定2ln 2t =,进而得到()1g x 的值,结合图象可确定a 的取值范围. 【详解】()e x f x ax '=-,12,x x 是()f x 的两个极值点,12,x x ∴是e 0x ax -=的两根,又当0x =时,方程不成立,y a ∴=与e xy x=有两个不同的交点;令()e x g x x =,则()()21e x x g x x -'=, ∴当()(),00,1x ∈-∞时,()0g x '<;当()1,x ∈+∞时,()0g x '>;()g x ∴在()(),0,0,1-∞上单调递减,在()1,+∞上单调递增,则()g x 图象如下图所示,由图象可知:1201x x <<<且e a >; 212x x ≥,212x x ∴≥; 当212x x =时,不妨令212x x t ==,则2e e 2ttt t =,即2e 2e t t =,2e 2t∴=,解得:2ln 2t =,∴当212x x =时,()()2ln 212e 22ln 2ln 2g x g x ===, ∴若212x x ≥,则2ln 2a ≥,即a 的取值范围为2,ln 2⎡⎫+∞⎪⎢⎣⎭. 故答案为:2,ln 2⎡⎫+∞⎪⎢⎣⎭. 【点睛】方法点睛:本题考查根据极值点求解参数范围问题,可将问题转化为已知函数零点(方程根)的个数求参数值(取值范围)的问题,解决此类问题的常用的方法有: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.三、解答题17.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且sin sin ()sin a A c C b c B -=-. (1)求A 的大小;(2)若ABC 为锐角三角形,求bc 的取值范围.【答案】(1)π3(2)1,22⎛⎫ ⎪⎝⎭【分析】(1)根据正弦定理可得到222a b c bc =+-,进而得到2cos 1A =,即可求出A 的大小; (2)根据三角形内角和为π,且ABC 为锐角三角形,从而可得出C 的取值范围,再将bc 转化为关于tan C 的函数即可求解.【详解】(1)由sin sin ()sin a A c C b c B -=-,则根据正弦定理有22()a c b c b -=-,即222a b c bc =+-, 又由余弦定理有2222cos a b c bc A =+-,得2cos 1A =, 所以在ABC 中,得π3A =;(2)由ABC 为锐角三角形,且π3A =,则有π022ππ032C C ⎧<<⎪⎪⎨⎪<-<⎪⎩,得ππ,62C ⎛⎫∈ ⎪⎝⎭,即tan C ⎫∈+∞⎪⎪⎝⎭,即(1tan C ∈,所以根据正弦定理有π1sin sin sin 111322,2sin sin sin tan 22C C Cb Bc C C C C ⎛⎫++ ⎪⎛⎫⎝⎭====+∈ ⎪⎝⎭. 18.已知直线12:20,:20()l x ay l ax y a a -+=+-=∈R ,若1l 与2l 的交点P 的轨迹为曲线C . (1)求曲线C 的方程;(2)若圆22:220E x y mx ny +--=的圆心在直线y =上,且与曲线C 相交所得公共弦MN的长为m ,n 的值. 【答案】(1)224(2)x y x +=≠(2)1,m n =1,m n =-=【分析】(1)由12,l l 判断出点P 的轨迹为以AB 为直径的圆(除去点(2,0)B ),进而求其方程; (2)由圆E 的圆心的位置得m ,n 的关系,两个圆方程相减得MN 的方程,由弦长求m ,n . 【详解】(1)当0,2y x ==-故直线1:20l x ay -+=过定点(2,0)A -,直线2:l (2)0a x y -+=,当2,0x y ==,故其过定点(2,0)B , 又110a a ⨯-⨯=,所以12l l ⊥,所以点P 的轨迹为以AB 为直径的圆, 当0a =时,两直线交点为()2,0A -,但交点P 无法与点B 重合, 故需除去点()2,0B其圆心为原点O ,半径为2r =,所以曲线C 的方程为224(2)x y x +=≠; (2)由(1)知,曲线C 的方程为224(2)x y x +=≠,又圆22:220E x y mx ny +--=的圆心为(,)E m n 在直线y =上,所以n =,0m ≠,两圆方程作差得两个圆的公共弦MN 的方程为224mx ny +=,即20mx -=,因为两个圆的公共弦MN 的长为原点O 到直线MN 的距离为1||d m ==,所以=解得1m =或1m =-,所以1,m n =1,mn =-=19.在正项数列{}n a 中,11a =,2n ∀≥,12113232n n a a a a n --+++=-. (1)求{}n a 的通项公式;(2)若数列{}n b 满足11b a =,221b a =-,且21ln ln 2ln n n n b b b +++=,设数列{}n b 的前n 项和为n T ,证明:221n n n T T T ++⋅<.【答案】(1)21n a n =- (2)证明见解析【分析】(1)由12113232n n a a a a n --+++=-可得到12121n n a n a n ++=-,根据累乘法求通项的方法,即可求出{}n a 的通项公式;(2)由21ln ln 2ln n n n b b b +++=可知221n n n b b b ++⋅=,可判断数列{}n b 为等比数列,根据等比数列的前n项和公式求出n T ,2210n n n T T T ++⋅<-即可求证. 【详解】(1)解:已知1211,23232n n a a a a n n --+++=≥-①, 则212312a a a -=⇒=,且11211,323212n n n a a a aa n n -+-++++=--②, -②①,得1212n n n a a an +-=-,整理得121,221n na n n a n ++=≥-, ∴3253a a =,3475a a =,,212325n n a n a n ---=-12123n n a n a n --=-,, 由累乘法可得()`2212133n n a n a n n a -=-=⇒≥, 又11a =,23a =,符合上式, 所以数列{}n a 的通项公式为21n a n =-.(2)由(1)可知111b a ==,221312b a =-=-=,因为21ln ln 2ln n n n b b b +++=,所以221n n n b b b ++⋅=,则数列{}n b 是首项为1,公比为212b b =的等比数列, ∴()1122112n n n T -==--,()()()222121212121n n n n n n T T T ++++∴⋅---=⋅--()2222222221221n n n n n ++++=--+--+20n =-<,即221n n nT T T ++⋅<,得证.20.在边长为2的正方形ABCD 外作等边BCQ △(如图1),将BCQ △沿BC 折起到PBC 处,使得PD =E 为AB 的中点(如图2).(1)求证:平面PDE ⊥ 平面PCD ; (2)求二面角E PD A --的正弦值. 【答案】(1)答案见解析 7【分析】取BC 中点为O ,建立以O 为原点的空间直角坐标系.(1)设平面PDE 法向量为m ,平面PCD 法向量为n , 利用0m n ⋅=可证面面垂直.(2)求得平面P AD 的法向量t ,后用向量法可求得二面角E PD A --的余弦值,后可求得正弦值. 【详解】(1)因四边形ABCD 为正方形,则DC CB ⊥.又在三角形PCD 中,2PC CD ==,22PD =222PC CD PD +=, 则DC PC ⊥.又CB ⊂平面PCD ,PC ⊂平面PCD ,∩CBPC C =, 则DC ⊥平面PCD .取BC 中点为O ,AD 中点为F ,连接PO ,OF . 则//,,OF CD PO BC OF BC ⊥⊥.又PO ⊂平面PCD ,则DC PO ⊥, 得FO PO ⊥.故如图建立以O 为原点,以射线OB 方向为x 轴正方向,射线FO 方向为y 轴正方向, 射线OP 方向为z 轴正方向的空间直角坐标系.则()()()()()000120100100120,,,,,,,,,,,,,,O A B C D ----, (()003110,,,,P E -.得()()(103123113,,,,,,,,PC PD PE =--=---=--, 设平面PDE 法向量为()111,,m x y z =,则11111123030PD m x y z PE m x y z ⎧⋅=--=⎪⎨⋅=-=⎪⎩,取(123,,m =-.设PCD 法向量为()222,,x n y z =,则2222223030PD n x y z PC n x z ⎧⋅=---=⎪⎨⋅=--=⎪⎩,取()3,0,1n =-. 因330m n ⋅=-+=,则平面PDE ⊥ 平面PCD .(2)由(1)分析可知,平面PDE 法向量为()123,,m =-. 又()123,,PA =--,设平面P AD 的法向量()333,,t x y z =, 则333332230230PD t x y z PA n x y z ⎧⋅=---=⎪⎨⋅=--=⎪⎩,取()032,,t =-. 则434342714334227cos ,m t m t m t⋅====++⨯+⨯⋅,又由图可知二面角E PD A --平面角α为锐角,则427cos α=, 得二面角E PD A --的正弦值4271497sin α=-=.21.已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为1(1,0)F -,其左顶点为A ,上顶点为B ,且1F 到直线AB 的距离为7||7OB (O 为坐标原点).(1)求C 的方程;(2)若椭圆2222:(01)x y E a bλλλ+=>≠且,则称椭圆E 为椭圆C 的λ倍相似椭圆.已知椭圆E 是椭圆C的3倍相似椭圆,直线:l y kx m =+与椭圆C ,E 交于四点(依次为M ,N ,P ,Q ,如图),且2PQ NQ MQ +=,证明:点(,)T k m 在定曲线上. 【答案】(1)22143x y +=; (2)证明见解析.【分析】(1)由已知条件推导出2227(1)a b a +=-,221b a =-,由此能求出椭圆C 的方程. (2)分别联立直线与椭圆C 、椭圆E 的方程消元,可证明线段NP 、MQ 中点相同,然后结合2PQ NQ MQ +=可得3MQ PN =,由此可证明.【详解】(1)()(),0,0,A a B b -,∴直线AB 的方程为1x ya b+=-,即0bx ay ab -+=,1(1,0)F ∴-到直线AB 的距离为d ==, 2227(1)a b a ∴+=-,又221b a =-,解得2a =,b = ∴椭圆C 的方程为:22143x y +=.(2)椭圆C 的3倍相似椭圆E 的方程为221129x y +=, 设N ,P ,M ,Q 各点坐标依次为1(x ,1)y ,2(x ,2)y ,3(x ,3)y ,4(x ,4)y , 将y kx m =+代入椭圆C 方程,得:222(34)84120k x kmx m +++-=, ∴222221(8)4(34)(412)48(43)0km k m k m ∆=-+-=+->,(*)122834km x x k +=-+,212241234m x x k -=+,12x x ∴-, 将y kx m =+代入椭圆E 的方程得222(34)84360k x kmx m +++-=,342834km x x k ∴+=-+,234243634m x x k -=+,34x x -1234x x x x ∴+=+,∴线段NP ,MQ 中点相同,MN PQ ∴=,由2PQ NQ MQ +=可得NM PN =,3P MQ N ∴=,所以3412||3||x x x x -=-,∴3=化简得221294k m +=,满足(*)式,∴2244193m k -=,即点(,)k m 在定曲线2244193y x -=上.22.已知()2ln =++f x x x a x (a ∈R ).(1)讨论()f x 的单调性;(2)若1a =,函数()()1g x x f x =+-,1x ∀,2(0,)x ∈+∞,12x x ≠,()()122112x g x x g x x x λ->-恒成立,求实数λ的取值范围.【答案】(1)当0a ≥时,()f x 在区间()0,∞+上单调递增;当a<0时,()f x在区间⎛ ⎝⎭上单调递减,在区间⎫+∞⎪⎪⎝⎭上单调递增. (2)15,ln 222⎛⎤-∞+ ⎥⎝⎦【分析】(1)先求出()f x 的导数()22x x af x x'++=,根据a 的取值范围进行分类讨论即可;(2)当120x x >,时,()()122112x g x x g x x x λ->-⇔()()21212111g x g x x x x x λ->-,去绝对值后,构造函数求解即可.【详解】(1)由已知,()2ln =++f x x x a x (a ∈R )的定义域为()0,∞+,()2221a x x a f x x x x++'=++=,①当0a ≥时,0f x在区间()0,∞+上恒成立,()f x 在区间()0,∞+上单调递增;②当0a <时,令()0f x '=,则220x x a ++=,180a ∆=->,解得10x =<(舍),20x >,∴当x ⎛∈ ⎝⎭时,220x x a ++<,∴()0f x '<, ∴()f x在区间⎛ ⎝⎭上单调递减,当x ⎫∈+∞⎪⎪⎝⎭时,220x x a ++>,∴0f x ,∴()f x在区间⎫+∞⎪⎪⎝⎭上单调递增, 综上所述,当0a ≥时,()f x 在区间()0,∞+上单调递增;当a<0时,()f x在区间⎛ ⎝⎭上单调递减,在区间⎫+∞⎪⎪⎝⎭上单调递增. (2)当1a =时,()()221ln ln 1g x x x x x x x =+-++=--+,()0,x ∈+∞,1x ∀,2(0,)x ∈+∞,12x x ≠, ()()122112x g x x g x x x λ->-等价于()()1221121212x g x x g x x x x x x x λ-->, 即()()21212111g x g x x x x x λ->-, 令()()g x h x x=,()0,x ∈+∞,则()()212111h x h x x x λ->-恒成立 ()()()()2222212ln 1ln 2x x x x xg x g x x x x h x x x x ⎛⎫-----+ ⎪'---⎝⎭'===, 令()2ln 2F x x x =--,()0,x ∈+∞,则()21122x F x x x x-'=-=,令()0F x '=,解得x =x ⎛∈ ⎝⎭时,()0F x '>,()Fx 在区间⎛ ⎝⎭单调递增;当x ⎫∈+∞⎪⎪⎝⎭时,()0F x '<,()F x 在区间⎫+∞⎪⎪⎝⎭单调递减,∴当()0,x ∈+∞时,()Fx的最大值为1152ln 20222F =--=--<⎝⎭, ∴当()0,x ∈+∞时,()215ln 2ln 2022F x x x =--≤--<,即()22ln 20x x h x x --'=<,∴()()g x h x x=在区间()0,∞+上单调递减,不妨设12x x <,∴1x ∀,2(0,)x ∈+∞,有()()12h x h x >,又∵1y x=在区间()0,∞+上单调递减, 1x ∀,2(0,)x ∈+∞,且12x x <,有1211x x >, ∴()()212111h x h x x x λ->-等价于()()121211h x x x x h λ⎛⎫->- ⎪⎝⎭, ∴()()2121h x x x h x λλ->-,设()()G x h x xλ=-,()0,x ∈+∞,则1x ∀,2(0,)x ∈+∞,且12x x <,()()2121h x x x h x λλ->-等价于()()12G x G x >,即()G x 在(0,)+∞上单调递减,∴()()20G x h x xλ''=+≤,∴()2x h x λ'≤-,∴()222ln 2x x x F x xλ--≤-⋅=-, ∵当()0,x ∈+∞时,()F x的最大值为15ln 222F =--⎝⎭, ∴()F x -的最小值为15ln 222+,∴15ln 222λ≤+,综上所述,满足题意的实数λ的取值范围是15,ln 222⎛⎤-∞+ ⎥⎝⎦.【点睛】本题第(2)问解题的关键点有两个,一个是将()()122112x g x x g x x x λ->-等价转换为()()21212111g x g x x x x x λ->-,便于构造函数;另一个是通过构造函数()()g x h x x =,借助导数判断出函数()h x 的单调性去绝对值.。
江西省部分学校2024-2025学年高三上学期10月联考试题 数学含答案
![江西省部分学校2024-2025学年高三上学期10月联考试题 数学含答案](https://img.taocdn.com/s3/m/cb1abc0549d7c1c708a1284ac850ad02de8007b0.png)
高三数学试卷(答案在最后)注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:集合与常用逻辑用语,不等式,函数与导数,三角函数,解三角形.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}(){}U 0,1,2,3,4,5,1,3,5U A B A B =⋃=⋂=ð,则集合B =()A.{}1,3,5B.{}0,2,4 C.∅ D.{}0,1,2,3,4,52.225π5πsincos 1212-=()A.12B.2C.12-D.2-3.已知函数()f x 的定义域为R ,且()()()2f x y f x y f y +--=,则()0f =()A.0B.1C.2D.1-4.已知0,0x y >>,且121y x+=,则12x y +的最小值为()A.2B.4C.6D.85.设函数()()2ln 1sin 1f x x x =+++,则曲线()y f x =在点()0,1处的切线与两坐标轴所围成的三角形的面积为()A.12 B.13C.16D.236.把某种物体放在空气中,若该物体原来的温度是C θ' ,空气的温度是0C θ,则min t 后该物体的温度C θ 满足()400etθθθθ-'=+-.若0,θθ'不变,在12min,min t t 后该物体的温度分别为12C,C θθ,且12θθ>,则下列结论正确的是()A.12t t >B.12t t <C.若0θθ'>,则12t t >;若0θθ'<,则12t t <D.若0θθ'>,则12t t <;若0θθ'<,则12t t >7.已知log 1(,0n m m n >>且21,1),e m n m n ≠≠+=,则()A.e (1)1m n -+<B.e (1)1m n -+>C.e ||1m n -< D.e ||1m n ->8.在ABC 中,4,6,90AB BC ABC ∠=== ,点P 在ABC 内部,且90,2BPC AP ∠== ,记ABP ∠α=,则tan2α=()A.32B.23C.43D.34二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知命题2:,p x x x x ∃∈->R ;命题πππ:,π,cos sin 244q ααα⎛⎫⎛⎫⎛⎫∀∈-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A.p 是真命题B.p ⌝是真命题C.q 是真命题D.q ⌝是真命题10.已知函数()1cos f x x x ⎛⎫=+ ⎪⎝⎭,则()A.()f x 为偶函数B.()f x 的最大值为cos2C.()f x 在()1,2上单调递减D.()f x 在()1,20上有6个零点11.已知函数()3213f x x bx cx =++,下列结论正确的是()A.若0x x =是()f x 的极小值点,则()f x 在()0,x ∞-上单调递减B.若x b =是()f x 的极大值点,则0b <且0c <C.若3c =,且()f x 的极小值大于0,则b 的取值范围为(2,-D.若3c b =-,且()f x 在[]0,3上的值域为[]0,9,则b 的取值范围为[]3,0-三、填空题:本题共3小题,每小题5分,共15分.12.已知函数()()sin (0π)f x x ϕϕ=+< 的图象关于y 轴对称,则ϕ=__________.13.已知函数()2,0,,01x ax x f x xx x ⎧+<⎪=⎨-⎪+⎩的最小值为1-,则a =__________.14.已知函数()()sin 1f x x ϕ=++,若()()121f x f x -=,则12x x -的最小值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示.(1)求()f x 的解析式;(2)求()f x 在π,04⎡⎤-⎢⎥⎣⎦上的值域.16.(15分)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,且sin 1sin 1cos cos A B A B++=.(1)证明:A B =.(2)若D 是BC 的中点,求CAD ∠的最大值.17.(15分)已知函数()e xf x a x =-.(1)讨论()f x 的单调性;(2)若()()e 10,0,,x a x f x a x∞->∀∈+>-,求a 的取值范围.18.(17分)已知集合,A B 中的元素均为正整数,且,A B 满足:①对于任意,i j a a A ∈,若i j a a ≠,都有i j a a B ∈;②对于任意,m k b b B ∈,若m k b b <,都有kmb A b ∈.(1)已知集合{}1,2,4A =,求B ;(2)已知集合{}()2,4,8,8A t t =>,求t ;(3)若A 中有4个元素,证明:B 中恰有5个元素.19.(17分)已知函数()()ln f x x x a x =++.(1)若()f x 是增函数,求a 的取值范围.(2)若()f x 有极小值,且极小值为m ,证明:1m .(3)若()0f x ,求a 的取值范围.高三数学试卷参考答案1.B (){}U U,0,2,4A B B B ⋂==痧.2.B 225π5π5πsin cos cos 121262-=-=.3.A令0y =,则()00f =.4.D11112224448x y x xy y x y xy ⎛⎫⎛⎫+=++=+++= ⎪ ⎪⎝⎭⎝⎭ ,当且仅当14,121,xy xy y x⎧=⎪⎪⎨⎪+=⎪⎩即2,14x y =⎧⎪⎨=⎪⎩时,等号成立.5.A()22cos 1xf x x x =++',则()01f '=,即切线方程为1y x =+.令0x =,则1y =,令0y =,则1x =-,故该切线与两坐标轴所围成的三角形的面积为12.6.D 因为()1400e θθθθ-'=+-,所以004ln t θθθθ-=--'.若0θθ'>,则()04ln f θθθθθ-'=--是减函数,因为12θθ>,所以12t t <;若0θθ'<,则()04lnf θθθθθ-'=--是增函数,因为12θθ>,所以12t t >.7.B 因为log 1(,0n m m n >>且0,0)m n ≠≠,所以1m n >>或01m n <<<.若0m n <<<1,则2m n +<,与2e m n +=矛盾,所以e1,11,(1)1m n m n m n >>-+>-+>.8.C 由题意可得BCP ABP ∠∠α==.在BCP 中,sin 6sin BP BC αα==.在ABP 中,2222cos AP AB BP AB BP α=+-⋅,即2436sin 162α=+-⨯6sin 4cos αα⋅,化简得3cos24sin25αα+=,两边平方得229cos 216sin 2αα+24cos2sin225αα+=,则22229cos 216sin 224cos2sin225cos 2sin 2αααααα++=+,所以22916tan 224tan2251tan 2ααα++=+,解得4tan23α=.9.BC 因为0,0,2,0,x x x x x ⎧-=⎨<⎩ 所以0x x - ,又20x ,所以2,x x x p - 是假命题,p ⌝是真命题.由诱导公式可得πππ,π,cos sin 244ααα⎛⎫⎛⎫⎛⎫∀∈-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以q 是真命题,q ⌝是假命题.10.AC 因为()()11cos cos f x x x f x x x ⎛⎫⎛⎫-=--=+= ⎪ ⎪⎝⎭⎝⎭,所以()f x 为偶函数,A 正确.()f x 的最大值为1,B 错误.令函数()()1,g x x g x x =+在()1,2上单调递增,且当()1,2x ∈时,()g x 的值域为52,2⎛⎫ ⎪⎝⎭.因为函数cos y x =在52,2⎛⎫⎪⎝⎭上单调递减,所以()f x 在()1,2上单调递减,C 正确.当()1,20x ∈时,()g x 的值域为()2,20.05,6π20.057π<<,函数cos y x =在()2,20.05上有5个零点,所以()f x 在()1,20上有5个零点,D 错误.11.BCD由三次函数的图象可知,若0x 是()f x 的极小值点,则极大值点在0x 的左侧,()f x 在()0,x ∞-上不单调,A 错误.()22f x x bx c =++',若x b =是()f x 的极大值点,则()2220f b b b c =++=',所以()()()2223,233c b f x x bx b x b x b '=-=+-=+-.若()0,b f x =没有极值点.()0f x '=的解为123,x b x b =-=.因为x b =是()f x 的极大值点,所以3b b <-,即20,30,b c b <=-<B 正确.若3c =,则()()32221133,2333f x x bx x x x bx f x x bx ⎛⎫=++=++=++ ⎪⎝⎭'.因为()f x 的极小值大于0,所以()f x 只有一个零点,且()f x 的极大值点与极小值点均大于0,所以方程21303x bx ++=无实数根,且方程()2230f x x bx =++='的2个实数根均大于0,所以2122Δ40,Δ412020,b b b ⎧=-<⎪=->⎨⎪->⎩解得2b -<<,C 正确.若3c b =-,则()()()()32213,23,00,393f x x bx bx f x x bx b f f =+-=+-=='.令()0f x '=,若2Δ4120b b =+ ,即()()30,0,b f x f x '- 单调递增,符合题意.由2Δ4120b b =+>,解得3b <-或0b >,此时()0f x '=的2个解为12x b x b =-=-.当0b >时,120,0x x <>,所以()f x 在()20,x 上单调递减,即当(0x ∈,)2x 时,()0f x <,不符合题意.当3b <-时,103x <<,所以()f x 在[]0,3上的最大值为()1f x ,且()()139f x f >=,不符合题意.综上,若3c b =-,且()f x 在[]0,3上的值域为[]0,9,则b 的取值范围为[]3,0-,D 正确.12.π2因为函数()f x 的图象关于y 轴对称,所以ππ,2k k ϕ=+∈Z .又0πϕ< ,所以π2ϕ=.13.2当0x 时,11111x y x x =-=->-++.因为()f x 的最小值为1-,所以函数2y x ax =+在(),0∞-上取得最小值1-,则20,21,4a a ⎧-<⎪⎪⎨⎪-=-⎪⎩解得2a =.14.π3根据三角函数的周期性和对称性,不妨设12ππ0,,,022x x ϕϕ⎡⎤⎡⎤+∈+∈-⎢⎥⎢⎥⎣⎦⎣⎦.因为()()121f x f x -=,所以()()1212122sin sin 12cossin 22x x x xx x ϕϕϕ++-+-+==⋅,即121211sin2222cos 2x x x x ϕ-=++,所以12π26x x - ,即12π3x x - ,当且仅当12ππ,66x x ϕϕ+=+=-时,等号成立.15.解:(1)由图可得,2πππ2362T =-=,所以2ππT ω==.结合0ω>,解得2ω=,则()()sin 2f x x ϕ=+.由ππsin 2066f ϕ⎛⎫⎛⎫=⨯+=⎪ ⎪⎝⎭⎝⎭,结合图象可得π2π,3k k ϕ+=∈Z ,即π2π,3k k ϕ=-+∈Z .因为π2ϕ<,所以π3ϕ=-,所以()πsin 23f x x ⎛⎫=-⎪⎝⎭.(2)因为π,04x ⎡⎤∈-⎢⎥⎣⎦,所以π5ππ2,363x ⎡⎤-∈--⎢⎣⎦,所以()f x 在π,04⎡⎤-⎢⎥⎣⎦上的值域为11,2⎡⎤--⎢⎥⎣⎦.16.(1)证明:因为sin 1sin 1cos cos A B A B ++=,所以222222sin cos sin cos 2222,cos sin cos sin 2222A A B B A A B B⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=--则sincos sin cos 2222cos sincos sin 2222AA B BAA B B++=--.则sincos cos sin 02222A B A B -=,即sin 022A B ⎛⎫-= ⎪⎝⎭.因为(),0,πA B ∈,所以022A B-=,即A B =.(2)解:2222224cos 22AC AC AD AC AD CD CAD AC AD AC AD∠+-+-==⋅⋅223342822ACAD AC AD AC AD AD AC +==+=⋅ ,所以π6CAD ∠,当且仅当2AD AC =时,等号成立.故CAD ∠的最大值为π6.17.解:(1)()e 1xf x a =-'.当0a 时,()()0,f x f x '<是减函数.当0a >时,()y f x ='是增函数.令()0f x '=,解得ln x a =-.当(),ln x a ∞∈--时,()0f x '<;当()()ln ,,0x a f x ∞∈-+>'.所以()f x 在(),ln a ∞--上单调递减,在()ln ,a ∞-+上单调递增.综上,当0a 时,()f x 是减函数;当0a >时,()f x 在(),ln a ∞--上单调递减,在()ln ,a ∞-+上单调递增.(2)()e 1x f x a x ->-,即e 1e x xa x a x-->-.令函数()1g x x x =-,则()e e e x x xg a a a-=-,所以()()e x g a g x >.因为()g x 在()0,∞+上单调递增,所以e x a x >,即e xxa >.令函数()()0e x x h x x =>,则()1exxh x -='.当()0,1x ∈时,()0h x '>;当()()1,,0x h x ∞∈+'<.所以()h x 在()0,1上单调递增,在()1,∞+上单调递减,所以()11()1,()e eh x h a h x ==>=极大值极大值.故a 的取值范围为1,e∞⎛⎫+ ⎪⎝⎭.18.(1)解:由①可得2,4,8都是B 中的元素.下面证明B 中除2,4,8外没有其他元素:假设B 中还有其他元素,分两种情况:第一种情况,B 中最小的元素为1,显然81不是A 中的元素,不符合题意;第二种情况,B 中最小的元素为2,设B 中除2,4,8外的元素为()2k k b b >,因为2kb 是A 中的元素,所以k b 为4或8,而4,8也是B 中的元素,所以B 中除2,4,8外没有其他元素.综上,{}2,4,8B =.(2)解:由①可得,8,16,32,2,4,8t t t 都是B 中的元素.显然84,82,162t t t <<<,由(2)可得,422,,8816t t t 是A 中的元素,即,,248t t t是A 中的元素.因为842t t t t <<<,所以2,4,8842t t t===,解得16t =.(3)证明:设{}12341231,,,,A a a a a a a a a =<<<.由①可得,1224,a a a a 都是B 中的元素.显然1224a a a a <,由②可得,2412a a a a 是A 中的元素,即41a a 是A 中的元素.同理可得,科333412221112,,,,,a a a a a a a a a a a a 是A 中的元素.若11a =,则31344122a a a a a a a a =>,所以3112a aa a 不可能是A 中的元素,不符合题意.若12a ,则32311a a a a a <<,所以321211,a aa a a a ==,即23213121,a a a a a a ===.又因为44443211a a a a a a a <<<<,所以444123321,,a a a a a a a a a ===,即441a a =,所以{}2341111,,,A a a a a =,此时{}3456711111,,,,a a a a a B ⊆.假设B 中还有其他元素,且该元素为k ,若31k a<,由(2)可得71a A k ∈,而7411a a k>,与{}2341111,,,A a a a a =矛盾.若31k a>,因为31k A a ∈,所以131,1,2,3,4i k a i a ==,则31,1,2,3,4i k a i +==,即{}45671111,,,k a a a a ∈,所以B 中除3456711111,,,,a a a a a 外,没有其他元素.所以{}3456711111,,,,B a a a a a =,即B 中恰有5个元素.19.(1)解:()ln 2a f x x x=++'.令函数()ln 2a g x x x =++,则()2x a g x x-='.若0a >,则当()0,x a ∈时,()0g x '<,当(),x a ∞∈+时,()0g x '>,所以()g x 在()0,a 上单调递减,在(),a ∞+上单调递增,()min ()ln 3g x g a a ==+.因为()f x 是增函数,所以min ()0f x ' ,即min ()0g x ,解得31e a .若0a ,则()0g x '>在()0,∞+上恒成立,所以()g x 在()0,∞+上单调递增.因为函数ln 2y x =+与函数a y x=-的图象有1个交点,所以存在0x ,使得00ln 20a x x ++=,即当()00,x x ∈时,()0g x <,当()0,x x ∞∈+时,()0g x >,所以()f x 在()00,x 上单调递减,在()0,x ∞+上单调递增,与题设不符.综上,a 的取值范围为31,e ∞⎡⎫+⎪⎢⎣⎭.(2)证明:由(1)可得当31ea 时,()f x 是增函数,不存在极小值.当310ea <<时,()()min ()0,g x g a g x =<在()0,a 上单调递减,所以()f x 在()0,a 上不存在极小值点.因为()120g a =+>,所以()()11,1,0x a g x ∃∈=,所以()f x 在()1,a x 上单调递减,在()1,x ∞+上单调递增.()()()()1()ln 2350f x f x f a a a a a a a a =<=++<+⨯-=-<极小值.当0a 时,由()1可得()()0000()ln f x f x x x a x ==++极小值.因为000ln 2a x x x =--,所以()()200000000()ln 2ln ln f x x x x x x x x x ⎡=+--=-⎣极小值]0ln 1x +-.令函数()2(ln )ln 1h x x x x ⎡⎤=-+-⎣⎦,则()()ln ln 3h x x x =-+'.当()310,1,e x ∞⎛⎫∈⋃+ ⎪⎝⎭时,()0h x '<,当31,1e x ⎛⎫∈ ⎪⎝⎭时,()0h x '>,所以()h x 在()310,,1,e ∞⎛⎫+ ⎪⎝⎭上单调递减,在31,1e ⎛⎫ ⎪⎝⎭上单调递增.当310,e x ⎛⎫∈ ⎪⎝⎭时,2215ln 3,(ln )ln 1ln 024x x x x ⎛⎫<-+-=+-> ⎪⎝⎭,所以()2(ln )ln 10h x x x x ⎡⎤=-+-<⎣⎦.因为()()11h x h ==极大值,所以()1h x ,所以()1f x 极小值 ,当且仅当01,2x a ==-时,等号成立.综上,1m .(3)解:若333311120,330e e e e a f a a ⎛⎫⎛⎫>=-+=--< ⎪ ⎪⎝⎭⎝⎭,不符合题意.若0a ,要使得()0f x ,只需要()0f x 极小值 ,即()2000ln ln 10x x x ⎡⎤-+-⎣⎦,所以()200ln ln 10x x +- ,解得01515ln 22x --+ ,即0x .000ln 2a x x x =--,令函数()ln 2u x x x x =--,则()ln 3u x x =--'.当31,e x ∞⎛⎫∈+ ⎪⎝⎭时,()()0,u x u x '<单调递减.因为31e >,所以()u x 在⎡⎢⎢⎥⎣⎦上单调递减.又33e 22u u ⎛⎫⎛-++==- ⎪ ⎪ ⎪⎝⎭⎝⎭,所以()u x 在⎡⎢⎢⎥⎣⎦上的值域为3322⎡-+-⎢⎢⎥⎣⎦.故a 的取值范围为353522⎡+-+-⎢⎢⎥⎣⎦.。
吉林省扶余市第一中学2024年高三4月大联考数学试题理试题
![吉林省扶余市第一中学2024年高三4月大联考数学试题理试题](https://img.taocdn.com/s3/m/d03210080812a21614791711cc7931b765ce7bdd.png)
吉林省扶余市第一中学2024年高三4月大联考数学试题理试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知双曲线()222:10y C x b b-=>的一条渐近线方程为y =,1F ,2F 分别是双曲线C 的左、右焦点,点P在双曲线C 上,且13PF =,则2PF =( ) A .9B .5C .2或9D .1或52.已知平面向量,a b 满足||||a b =,且)b b -⊥,则,a b 所夹的锐角为( )A .6πB .4π C .3π D .03.若θ是第二象限角且sin θ =1213,则tan()4πθ+= A .177- B .717- C .177 D .7174.在区间[]3,3-上随机取一个数x ,使得301xx -≥-成立的概率为等差数列{}n a 的公差,且264a a +=-,若0n a >,则n 的最小值为( )A .8B .9C .10D .115.已知函数()f x 的定义域为()0,∞+,且()()2224m f m f f n n ⎛⎫⎪⎝⎭⋅=,当01x <<时,()0f x <.若()42f =,则函数()f x 在[]1,16上的最大值为( ) A .4B .6C .3D .86.半径为2的球O 内有一个内接正三棱柱,则正三棱柱的侧面积的最大值为( )A .B .C .D .7.记n 个两两无交集的区间的并集为n 阶区间如(][],12,3-∞为2阶区间,设函数()ln xf x x=,则不等式()30f f x ⎡⎤+⎦≤⎣的解集为( ) A .2阶区间B .3阶区间C .4阶区间D .5阶区间8.已知平面向量a ,b 满足()1,2a =-,()3,b t =-,且()a ab ⊥+,则b =( ) A .3B .10C .23D .59.设0.380.3log 0.2,log 4,4a b c ===,则( )A .c b a <<B .a b c <<C .a c b <<D .b a c <<10.某空间几何体的三视图如图所示(图中小正方形的边长为1),则这个几何体的体积是( )A .323B .643C .16D .3211.从抛物线24y x =上一点P (P 点在x 轴上方)引抛物线准线的垂线,垂足为M ,且||5PM =,设抛物线的焦点为F ,则直线MF 的斜率为( ) A .2-B .2C .43-D .4312.设()11i a bi +=+,其中a ,b 是实数,则2a bi +=( ) A .1B .2C .3D .5二、填空题:本题共4小题,每小题5分,共20分。
高三数学(理)联考试卷
![高三数学(理)联考试卷](https://img.taocdn.com/s3/m/d15b7661f6ec4afe04a1b0717fd5360cba1a8d9c.png)
2023届高三年级11月联考试题理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={(x ,y )|x -y =0},B ={(x ,y )|x -y 2=0},则A ∩B =A .{0,1}B .{(0,1)}C .{(0,0),(1,1)}D .∅2.若a >b >0>c ,则A .(a -b )c >0B .c a >cb C .a -b >a -cD .1a c +<1b c+3.已知等差数列{n a }的前n 项和为n S ,且n a >0,则6328S S a a -+=A .2B .32C .1D .124.已知α为第三象限角,且1cos23α=,则cos α=A.-3B.-3C.3D.35.已知数列{n a }是1a >0的无穷等比数列,则“{n a }为递增数列”是“k ∀≥2且k N *∈,k a >1a ”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.已知非零向量a ,b的夹角正切值为,且(a +3b )⊥(2a -b ),则ab=A .2B .23C .32D .17.已知△ABC 的角A ,B ,C 的对边分别为a ,b ,c ,且a :b :c =2:3:4,则△ABC的面积为A .21512a B .21512b C .212a D .212b 8.已知函数f (x )=x 3+bx 2+cx ,不等式()f x x<0的解集为((312,0)∪(0,()312),则不等式f (x )≤-27的解集为A .{x |x ≤-3或x =3}B .{x |x ≤3}C .{x |x ≥-3}D .{x |x ≥3或x =-3}9.若2a =3b =6c 且abc ≠0,则A .a c -a b=1B .b a -bc =1C .a c -b c=1D .a b -b c=110.已知函数f (x )=sin 3x πω⎛⎫⎪⎝⎭-(ω>0)的最小正周期为π,则A .f (2)<f (0)<f (-2)B .f (0)<f (-2)<f (2)C .f (-2)<f (0)<f (2)D .f (0)<f (2)<f (-2)11.对任意实数x ,定义[x]为不大于x 的最大整数,如[0.2]=0,[1.5]=1,[2]=2.已知函数f (x )=[x]·sin x π,则方程|f (x )|=3-50x在(0,+∞)上的实根个数为A .290B .292C .294D .29612.已知点P 在曲线y =-1x(x >0)上运动,过P 点作一条直线与曲线y =e x 交于点A ,与直线y )1x -交于点B ,则||PA |-|PB ||的最小值为A .1B +1C D 二、填空题:本题共4小题,每小题5分,共20分.13.在等比数列{n a }中,3a =2,5a =4,则11a =__________.14.在平行四边形ABCD 中,AE =AD λ ,AF=AB μ ,λμ>0,且E ,C ,F 三点共线,则λ+μ的最小值为__________.15.已知函数f (x )是定义在R 上的奇函数,满足f (2π+x )=f (2π-x ),f (2π)=3,且()sin f x x '+f (x )cosx >0在(0,2π)内恒成立(()f x '为f (x )的导函数),若不等式f (4π+x )sin (3π-x )≤a 恒成立,则实数a 的取值范围为__________.16.设-1=a 1≤a 2≤…≤a 7,其中a 1,a 3,a 5,a 7成公差为d 的等差数列,a 2,a 4,a 6成公比为3的等比数列,则d 的最小值为__________.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)在直角坐标系xOy 中,角α,β,γ(α,β,γ∈(0,2π))的顶点在原点,始边均与x 轴正半轴重合,角α的终边经过点A (-1,2),角β的终边经过点B (3,4).(Ⅰ)求tan (α-β)的值;(Ⅱ)若角γ的终边为∠AOB (锐角)的平分线,求2sin γ的值.18.(12分)已知数列{n a }的各项均不为0,其前n 项的乘积n T =12n -·1n a +.(Ⅰ)若{n a }为常数列,求这个常数;(Ⅱ)若1a =4,设n b =2log n a ,求数列{n b }的通项公式.19.(12分)如图所示,在平面四边形ABCD 中,∠ADC =2π,∠BCD =4π,5BC =CD ,AB,AD =3.(Ⅰ)求tan ∠BDC 的值;(Ⅱ)求BD .20.(12分)已知数列{n a }的前n 项和为n S ,1a =1,1n S +=4n a .(Ⅰ)证明:数列{12nn S -}为等差数列;(Ⅱ)求数列{n S }的前n 项和n T .21.(12分)已知函数f (x )=2x -1+x ae的最小值为1.(Ⅰ)求实数a 的值;(Ⅱ)若直线l :y =kx -1与曲线y =f (x )没有公共点,求实数k 的取值范围.22.(12分)已知函数f(x)=ln x+x(x-3).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若存在x1,x2,x3∈(0,+∞),且x1<x2<x3,使得f(x1)=f(x2)=f(x3),求证:2x1+x2>x3.。
2023届江西省重点中学盟校高三第一次联考数学(理)试题及参考答案
![2023届江西省重点中学盟校高三第一次联考数学(理)试题及参考答案](https://img.taocdn.com/s3/m/adbbf83978563c1ec5da50e2524de518964bd362.png)
2023届江西省重点中学盟校高三第一次联考数学(理)试题及参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的。
1.若集合{}1|4,|1A x x B x x⎧⎫=<=≥⎨⎬⎩⎭,则A B = ()A .(],1-∞B .(]0,1 C.(),0(1,4)-∞ D .()(],00,1-∞ 2.若复数z 是方程0222=+-x x 的一个根,则i z ⋅的虚部为()A .2B .i2C .iD .13.袋中装有四个大小完全相同的小球,分别写有“中、华、道、都”四个字,每次有放回地从中任取一个小球,直到写有“道”、“都”两个字的小球都被取到,则停止取球.现用随机模拟的方法估计取球停止时的概率,具体方法是:利用计算机产生0到3之间取整数值的随机数,用0,1,2,3分别代表“中、华、道、都”四个字,以每三个随机数为一组,表示取球三次的结果.现经随机模拟产生了以下18组随机数:232321230023231021122203012231130133231031123122103233由此可以估计,恰好取球三次就停止的概率为()A .518B .29C .16D .194.已知等差数列{}n a 的前n 项和n S ,若23141540a a a a +++=,则16S =()A .150B .160C .170D .与1a 和公差有关5.法国数学家加斯帕·蒙日被称为“画法几何创始人”、“微分几何之父”.他发现与椭圆相切的两条互相垂直的切线的交点的轨迹是以该椭圆中心为圆心的圆,这个圆称为该椭圆的蒙日圆.若椭圆Γ:()222210x y a b a b+=>>的蒙日圆为C :2223b y x =+,则椭圆Γ的离心率为()A .31B .21C .23D 6.执行如图所示的程序框图,为使输出的数据为31,则判断框中应填入的条件为()A .4i ≤B .5i ≤C .6i ≤D .7i ≤7.如图,△ABC 内接于圆O ,AB 为圆O 的直径,AB =5,BC =3,CD ⊥平面ABC ,E 为AD 的中点,且异面直线BE 与AC 所成角为60°,则点A 到平面BCE 的距离为()A.3218 B.778C.7214 D.3748.若正项递增等比数列{}n a 满足:()R a a a a ∈=-+-+λλ,0214332,则54a a λ+的最小值为()A.2B.2C.22 D.49.已知点P 在棱长为2的正方体表面上运动,AB 是该正方体外接球的一条直径,则PB P A ⋅的最小值为()A .-2B .-3C .-1D .010.长白飞瀑,高句丽遗迹,鹤舞向海,一眼望三国,伪满皇宫,松江雾凇,净月风光,查干冬渔,是著名的吉林八景,某人打算到吉林旅游,冬季来的概率是21,夏季来的概率是21,如果冬季来,则看不到长白飞瀑,鹤舞向海和净月风光,若夏季来,则看不到松江雾凇和查干冬捕,无论什么时候来,由于时间原因,只能在可去景点当中选择3处参观,则某人去了“一眼望三国”景点的概率为()A .209B .21C .2011D .5311.已知双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为1F ,2F ,A 为双曲线右支上一点,设12AF F α∠=,21AF F β∠=,若2tan 22tanαβ=,则双曲线的渐近线方程为()A .y =B .y =±C .3y x=±D .4y x=±12.定义在R 上的函数)(x f 与)(x g 的导函数分别为)(x f '和)(x g ',满足0)2()(=-'-'x g x f ,()()2f x g x --=-,且)2(-x g 为奇函数,则=∑=20231)(k k f ()A .4046-B .4045-C .4044- D.4043-二、填空题(本题共4小题,每小题5分,共20分.)13.设向量b a,满足,1,1,3,===b a b a π则=+b a 3_______.14.设6cos()(π+=x x f ,若)()(21x f x f =且021<x x ,则12x x -取值范围为________.15.已知函数,)(x x e e x f --=所有满足()01)(=-+n f m f 的点()n m ,中,有且只有一个在圆C 上,则圆C 的方程可以是__________.(写出一个满足条件的圆的方程即可)16.若)(1,12*N n n n n n a ∈⎪⎭⎫⎝⎛+++∈时,关于x 的不等式0log >-xaa x 恒成立,则正整数n 的取值集合为__________.(参考数据: 2.718,ln 20.693,ln3 1.099e ≈≈≈)三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.)17.在ABC ∆中,已知)C B A C B A sin sin sin 2sin sin sin 3222=-+.(1)求C ∠;(2)若D 是AB 边上的一点,且2,2==DA BD ,求ABC ∆面积的最大值.18.如图,在梯形ABCD 中,//AB DC ,AB DC AD 21==,现将ADC ∆沿AC 翻折成直二面角P AC B --.(Ⅰ)证明:CB PA ⊥;(Ⅱ)若,4=AB 二面角B PA C --余弦值为721,求异面直线PC 与AB 所成角的余弦值.19.中医药在抗击新冠肺炎疫情中,发挥了重要作用。
贵州省部分学校2025届高三上学期11月联考考试 数学试题(含解析)
![贵州省部分学校2025届高三上学期11月联考考试 数学试题(含解析)](https://img.taocdn.com/s3/m/1009bf147ed5360cba1aa8114431b90d6d85895c.png)
贵州省部分学校2025届高三上学期11月联考考试试题一、单选题(本大题共8小题)1.在等比数列{}n a 中,12a =,45678a a a a a =,则25a a +=()A.36B.32C.16D.122.若复数()2i 1i z a a =+-+是纯虚数,则实数a =()A.1B.1-C.1±D.03.已知直线1y kx =+与圆224x y +=相交于,M N 两点,若MN =,则k =()A.12B.1C.D.24.高二年级进行消防知识竞赛,统计所有参赛同学的成绩,成绩都在[50,100]内,估计所有参赛同学成绩的第75百分位数为()A.65B.75C.85D.955.记ABC V 的内角A ,B ,C 的对边分别是a ,b ,c ,已知3a =,2239b c c =++,ABC ∠的平分线交边AC 于点D ,且2BD =,则b =()A.B.C.6D.6.2024年春节档贺岁片《热辣滚烫》《飞驰人生2》《熊出没·逆转时空》异常火爆,甲、乙等5人去观看这三部电影,每人只观看其中一部,甲、乙不观看同一部电影,则选择观看的方法有()A.243种B.162种C.72种D.36种7.已知函数()()2log 41x f x x =+-x 的不等式()()22f x f x +>解集为()A.2,23⎛⎫- ⎪⎝⎭B.211,232⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ ,C.211,,2322纟轹琪--È琪棼滕D.111,,222纟轹琪--È琪棼滕8.已知抛物线2:2E y x =,圆()()2200:11,,M x y N x y -+=为圆M 外一点,过点N 作圆M 的两条切线1l ,2l ,直线1l 与抛物线E 交于点()()1122,,,A x y B x y ,直线2l 与抛物线E 交于点()()3344,,C x y D x y ,,若22001x y +=,则1234y y y y =()A.16B.8C.4D.1二、多选题(本大题共3小题)9.设离散型随机变量X 的分布列如表,若离散型随机变量Y 满足21Y X =-,则()X01234P0.10.4x0.20.2A.0.2x =B.()2E X =,() 1.8D X =C.()2E X =,() 1.4D X =D.()3E Y =,()7.2D Y =10.已知一元二次不等式20ax bx c ++>的解集为M ,则下列说法正确的是()A.不等式解集M =∅的充要条件为240a b ac <⎧⎨-≤⎩B.若111a b c a b c==,则关于x 的不等式21110a x b x c ++>的解集也为M C.若{}23M x x =-<<,则关于x 的不等式20cx bx a -+<的解集是1|3x x ⎧<-⎨⎩,或>D.若2b M x x a ⎧⎫=≠-⎨⎬⎩⎭,且a b <,则24a b c b a ++-的最小值为811.已知函数()f x ,()g x 的定义域均为R ,它们的导函数分别为',()g x ',且()()25f x g x +-=,()()43g x f x --=,若+2是偶函数,则下列正确的是().A.()20g '=B.4为函数()f x 的一个周期C.()1f x +是奇函数D.()25g =,则()202412024k f k ==∑三、填空题(本大题共3小题)12.集合A 满足{}1,3**15,,A x y x N y N x ⎧⎫⊆=∈∈⎨⎬⎩⎭,则集合A 的个数有个.13.已知函数()()3,02,0x x f x f x x ⎧>⎪=⎨+≤⎪⎩,则31log 16f ⎛⎫=⎪⎝⎭.14.已知M 是椭圆22110x y +=上一点,线段AB 是圆()22:64C x y +-=的一条动弦,且AB =则MA MB ⋅的最大值为.四、解答题(本大题共5小题)15.在ABC 中,角,,A B C所对的边分别为,,a b c ,已知sin cos a B A =,角A 的平分线交边BC 于点D ,且1AD =.(1)求角A 的大小;(2)若BC =,求ABC 的面积.16.如图,在四棱锥P ABCD -中,底面ABCD 为梯形,//,AB CD CD BC ⊥,24,,AB CD BD BP PCD === 为等边三角形.(1)证明:⊥BC 平面PCD .(2)若ABD △为等边三角形,求平面PBD 与平面PAD 夹角的余弦值.17.篮球运动深受青少年喜爱,2024《街头篮球》SFSA 全国超级联赛赛程正式公布,首站比赛将于4月13日正式打响,于6月30日结束,共进行13站比赛.(1)为了解喜爱篮球运动是否与性别有关,某统计部门在某地随机抽取了男性和女性各100名进行调查,得到22⨯列联表如下:喜爱篮球运动不喜爱篮球运动合计男性6040100女性2080100合计80120200依据小概率值0.001α=的独立性检验,能否认为喜爱篮球运动与性别有关?(2)某校篮球队的甲、乙、丙、丁四名球员进行传球训练,第1次由甲将球传出,每次传球时,传球者都等可能将球传给另外三个人中的任何一人,如此不停地传下去,且假定每次传球都能被接到.记甲第n 次触球的概率为n P ,则11P =.(i)证明:数列(ii)判断第24次与第25次触球者是甲的概率的大小.附:22()()()()()n ad bc a b c d a c b d χ-=++++.α0.10.050.010.0050.001x α2.7063.8416.6357.87910.82818.已知椭圆E :221164x y +=,椭圆上有四个动点A ,B ,C ,D ,//CD AB ,AD 与BC相交于P 点.如图所示.(1)当A ,B 恰好分别为椭圆的上顶点和右顶点时,试探究:直线AD 与BC 的斜率之积是否为定值?若为定值,请求出该定值;否则,请说明理由;(2)若点P 的坐标为()8,6,求直线AB 的斜率.19.已知函数()1e ln -=-xf x a x .(1)当1a =-时,求曲线()y f x =在()()1,1f 处的切线方程;(2)当0a >,若不等式()ln f x a a a ≥+恒成立,求a 的取值范围.参考答案1.【答案】A【详解】因为数列{}n a 为等比数列,所以45678a a a a a =化为31221311a q a q ⋅=⋅,解得1a q =,又因为12a =,所以2q =,所以112n nn a q a -=⋅=,所以4251143236a a a q a q +=⋅+⋅=+=.故选:A 2.【答案】B【详解】由()()22i 1i 11i z a a a a =+-+=-+-,根据题意可知210110a a a ⎧-=⇒=-⎨-≠⎩.故选:B 3.【答案】B【分析】先计算直线10kx y -+=到圆心O 的距离d ,然后根据勾股定理得到22144d MN +=,再代入条件即可解出2k ,从而得到k .【详解】如图所示:设坐标原点O 到直线10kx y -+=的距离为d ,则d =.设线段MN 的中点为P ,则MN OP ⊥,根据勾股定理,有22222144OMOP PMd MN ==+=+.由MN =22211144414d MN k =+=++,故21112k =+,解得21k =,故1k =.故选B.4.【答案】C【详解】因为2101a ⨯=,所以0.05a =.参赛成绩位于[50,80)内的频率为()100.010.0150.0350.6⨯++=,第75百分位数在[)80,90内,设为80y +,则0.030.15y =,解得y =5,即第75百分位数为85,故选:C.5.【答案】D【详解】因为3a =及2239b c c =++,可得222b a c ac =++,由余弦定理得2221cos 22a cb B ac +-==-,又由0πB <<,所以2π3B =,因为ABC ABD BCD S S S =+△△△,即11sin ()sin 22ac ABC BD a c ABD ∠=⋅+∠,解得6c =,由余弦定理得222263263cos633b π=+-⨯⨯⨯=,即b =故选:D.6.【答案】B【详解】先安排甲、乙两人,有23A 种方法,再安排其余3人,每人有3种安排方法,故共有23A 333162⨯⨯⨯=(种)方法.故选:B.7.【答案】C 【详解】因为()()()222241log 41log 41log 2log 2x xxxx f x x +=+-++-++()2log 22x x -=+由210x -≥可得1x ≤-或1x ≥,即函数()f x 的定义域为(][),11,-∞-+∞ ,因为()()()()22log 22log 22x x x x f x f x ---=+=+=,所以,函数()f x 为偶函数,任取1x 、[)21,x ∈+∞,且12x x >,则12222x x >≥,122x x +>,1224x x +>,令22x x u -=+,则()1212121212111122222222x x x xx x x x u u ⎛⎫⎛⎫⎛⎫-=+-+=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()12121212121222212222022x x x x x x x x x x x x +++---=--=>,即12u u >,所以,函数22x x u -=+在[)1,+∞上为增函数,又因为函数2log y u =在()0,∞+上为增函数,所以,函数()2log 22x xy -=+在[)1,+∞上为增函数,又因为函数y =[)1,+∞上为增函数,故函数()f x 在[)1,+∞上为增函数,由()()22f x f x +>可得()()22f x f x +>,可得221x x +>≥,解得2132x -<≤-或122x ≤<,因此,原不等式的解集为211,,2322纟轹琪--È琪棼滕.故选:C.8.【答案】C【详解】由题意()00,N x y ,且12,l l 都与抛物线有两个不同的交点,所以00x ≠,故设过点N 且与圆M 相切的切线方程为()00y y k x x -=-,即000kx y y kx -+-=,由题意得1=,整理得,()()220000022110x x k y x k y ---+-=(*),设直线12,l l 的斜率分别为12,k k ,则12,k k 是方程(*)的两个实根,故()()()20000121200000211,222y x y x k k k k x x x x x --+===---,由00202kx y y kx y x-+-=⎧⎨=⎩,得()200220k y y y kx -+-=,因为()()()()11223344,,,,A x y B x y C x y D x y ,,,,所以()()010*********22,y k x y k x y y y y k k --==,所以()()()22012000120100201234121244y k k x y x k k y k x y k x y y y y k k k k ⎡⎤-++--⎣⎦==()()220000000000220000214224442y x x y x y x x x x y x x x ⎡⎤--+⋅⎢⎥--⎣⎦==+=-.故选C.9.【答案】BD【详解】因为0.10.40.20.21x ++++=,所以0.1x =,A 选项错误;由()00.110.420.130.240.22E X =⨯+⨯+⨯+⨯+⨯=,故22222()(02)0.1(12)0.4(22)0.1(32)0.2(42)0.2 1.8D X =-⨯+-⨯+-⨯+-⨯+-⨯=,因此选项B 正确;又21Y X =-,所以,()2()13E Y E X =-=,()4()7.2D Y D X ==,故C 错D 对.故选:BD 10.【答案】AD【详解】解:选项A:不等式20ax bx c ++>解集M =∅,等价于一元二次函数2y ax bx c =++的图象没有在x 轴上方的部分,故等价于2040a b ac <⎧⎨-≤⎩,所以选项A 正确;选项B:取值1,2,3a b c ==-=-,1112,31,a b c ===-,此时能满足111a b c a b c==,而2230x x -->的解集为{|1x x <-,或}3x >,2230x x -++>的解集为{}|13x x -<<,故B 选项错误;选项C:因为一元二次不等式20ax bx c ++>的解集为{}23M x x =-<<,所以得到2-与3是20ax bx c ++=的根且a<0,故有2323b aca ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,解得60b a c a a =-⎧⎪=-⎨⎪<⎩,所以不等式20cx bx a -+<即为260ax ax a -++<,等价于不等式2610x x --<的解集1132M x x ⎧⎫=-<<⎨⎬⎩⎭,所以选项C 错误;选项D:因为2b M x x a ⎧⎫=≠-⎨⎬⎩⎭,所以240b ac ∆=-=,即24b c a=,令()0b a t t -=>,所以()()()222222222244b a b a a t a t a a ab b a at ta b a a b a at at++++++++++===--4448a t t a =++≥+=,当且仅当4a t t a =即3b a =取“=”,选项D 正确.故选:AD.11.【答案】ABD【详解】A 选项,+2为偶函数,故()()22g x g x -+=+,两边求导得,()()22g x g x --+='+',令0x =得()()22g g -'=',解得()20g '=,A 正确;B 选项,因为()()25f x g x +-=,()()22g x g x -+=+,所以()()25f x g x ++=①,因为()()43g x f x --=,所以()()223g x f x +--=②,则①②相减得,()()22f x f x +-=③,又()()242f x f x -+-=④,则③④相减得()()40f x f x --=,即()()4f x f x =-,故4为函数()f x 的一个周期,B 正确;C 选项,假如()1f x +为奇函数,则()()110f x f x -+++=,当1x =时,可得()()020f f +=,但()()22f x f x +-=,当2x =可得()()202f f +=,显然不满足要求,故()1f x +不是奇函数,C 错误;D 选项,因为()()25f x g x +-=,所以()()025f g +=,又()25g =,故()00f =,由B 选项得()()22f x f x +-=,故()()202f f +=,解得()22f =,且()()312f f +=,由B 选项知()f x 的一个周期为4,故()()400f f ==,所以()()()()12344f f f f +++=,则()()()()()20241506123450642024k f k f f f f =⎡⎤=+++=⨯=⎣⎦∑,D 正确.故选:ABD 12.【答案】3【详解】因为{}1,3**15,,A x y x N y N x ⎧⎫⊆=∈∈⎨⎬⎩⎭,即{}1,3{}1,3,5,15A ⊆,所以{}13,5A =,,{}1,3,15A =,{}1,3,5,15A =,即集合A 的个数有3个.故答案为:3.13.【答案】8116【分析】根据分段函数解析式结合自变量范围求解即可.【详解】331log log 1616=-Q ,233163<<,313log 216∴-<<-,381log 1633331118181log log 2log 22log 31616161616f f f f ⎛⎫⎛⎫⎛⎫⎛⎫∴=+=++===⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭故答案为:8116.14.【答案】70【详解】如图,设AB 中点为N ,由AB AN =⇒=CN =N 的轨迹为以()0,6为圆心,r =()()()()2222MA MB MN NA MN NB MN NA MN NA MN NA MN ⋅=+⋅+=+⋅-=-=- ,max max MN MC r =+,设),cos Mθθ,则MC ===,当且仅当2cos 3θ=-时,max MC ==所以max max MN MC r =+==()2maxmax272270MA MBMN⋅=-=-=故答案为:7015.【答案】(1)2π3(2)4【分析】(1)由两角和的正弦公式以及正弦定理可得tan A =,可得结果;(2)由三角形面积公式并利用ABD ACD ABC S S S +=△△△,可得b c bc +=,再由余弦定理即可求得5bc =,由三角形的面积公式可得结果.【详解】(1)因为sin cos a B A =,由正弦定理可得sin sin sin cos A B B A=sin 0B ≠,所以sin A A =,故tan A =2π3A =.(2)由题意可知ABD ACD ABC S S S +=△△△,即1π1π12πsin sin sin 232323c b bc +=,化简可得b c bc +=,在ABC 中,由余弦定理得()2222221cos 222b c bc a b c a A bc bc +--+-===-,从而()2220122bc bc bc --=-,解得5bc =或4bc =-(舍去),所以11sin 5sin120224ABC S bc A ==⨯⨯︒=△.16.【答案】(1)证明见解析(2)35【详解】(1)记E 为PD 的中点,连接,BE CE .因为PCD △为等边三角形,所以PD CE ⊥,因为BD BP =,所以PD BE ⊥,又,,BE CE E BE CE =⊂ 平面BCE ,所以PD ⊥平面BCE ,因为⊂BC 平面BCE ,所以PD BC ⊥,又,,,CD BC CD PD D CD PD ⊥=⊂ 平面PCD ,所以⊥BC 平面PCD .(2)以C 为原点,,CD CB 所在直线分别为,x y轴建立如图所示的空间直角坐标系,因为PCD △为等边三角形,2CD =,所以P 到底边CD的距离为因为ABD △为等边三角形,4AB =,所以D 到底边AB的距离为则(0,(2,0,0),(4,P B D A ,所以(2,(1,0,(2,BD PD DA =-== ,设平面PBD 的法向量为(,,)m x y z = ,则00m BD m PD ⎧⋅=⎪⎨⋅=⎪⎩,即200x x ⎧-=⎪⎨=⎪⎩,令1y =,则1x z ==,故)m = ,设平面PAD 的法向量为 =s s ,则00n DA n PD ⎧⋅=⎪⎨⋅=⎪⎩即200a a ⎧+=⎪⎨=⎪⎩,令1c =,则1a b ==-,故1,1)n =- ,因为3cos ,5m n m n m n ⋅〈〉== ,所以平面PBD 与平面PAD 夹角的余弦值为35.17.【答案】(1)能认为喜爱篮球运动与性别有关(2)(i)证明见解析;(ii)甲第25次触球者的概率大【详解】(1)假设0H :喜爱篮球运动与性别独立,即喜爱篮球运动与性别无关.根据列联表数据,经计算得220.001200(60802040)10010.828100*********x χ⨯⨯-⨯==>=⨯⨯⨯,依据小概率值0.001α=的独立性检验,我们推断0H 不成立,即能认为喜爱篮球运动与性别有关,此推断犯错误的概率不超过0.001.(2)(i)由题意,()11111101333n n n n P P P P ---=⋅+-⋅=-+,所以1111434n n P P -⎛⎫-=-- ⎪⎝⎭又113044P -=≠,所以14n P ⎧⎫-⎨⎬⎩⎭是以34为首项,13-为公比的等比数列.(ii)由(i)得,1311434n n P -⎛⎫=⋅-+ ⎪⎝⎭,所以232431114344P ⎛⎫=⋅-+< ⎪⎝⎭,242531114344P ⎛⎫=⋅-+> ⎪⎝⎭.故甲第25次触球者的概率大.18.【答案】(1)是定值,定值为14(2)13-【详解】(1)由题意知,4a =,2b =,所以(0,2)A ,()4,0B ,所以12AB k =-,设直线CD 的方程为()122y x t t =-+≠,设()11,D x y ,()22,C x y ,联立直线CD 与椭圆的方程22116412x y y x t ⎧+=⎪⎪⎨⎪=-+⎪⎩,整理得222280x tx t -+-=,由()2244280t t ∆=-->,解得t -<<2t ≠,则122x x t +=,21228x x t =-,所以()()12121212111222244AD BC x t x t y y k k x x x x x ⎛⎫⎛⎫-+--+ ⎪⎪-⎝⎭⎝⎭==--21212212111()2424x x t x x t x t x x x -+++-=-2221121121442222244t t x t t x t x x x x x x --+-+--==--21214122844t x t x --==--,故直线AD 与BC 的斜率之积是定值,且定值为14.(2)设()33,A x y ,()44,B x y ,(),D x y ,记PD DA λ= (0λ≠),得3386x x x y y y λλλλ-=-⎧⎨-=-⎩.所以338161x x y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩.又A ,D 均在椭圆上,所以22332233116486111164x y x y λλλλ⎧+=⎪⎪⎪⎨++⎛⎫⎛⎫⎪ ⎪ ⎪++⎝⎭⎝⎭⎪+=⎪⎩,化简得3331220x y λλλ++-=,因为CD AB ∥,所以PC CB λ= ,同理可得4431220x y λλλ++-=,即直线AB :31220x y λλλ++-=,所以AB 的斜率为13-.19.【答案】(1)210x y --=(2)(]0,1【详解】(1)当1a =-时,()1e ln x f x x -=+,则()11e x f x x-'=+,()01e 12f '∴=+=,又()01e ln11f =+=,()y f x ∴=在()()1,1f 处的切线方程为:()121y x -=-,即210x y --=.(2)方法一:令()()1ln e ln ln x g x f x a a a a x a a a -=--=---,则()0g x ≥恒成立,()g x 的定义域为()0,∞+,()1e x a g x x -'=-且0a >;令()()h x g x =',则()12e 0x a h x x -'=+>,()h x ∴在()0,∞+上单调递增,即()g x '在()0,∞+上单调递增,又()11e e 1011aa a g a a a '+=-=-+>++,11e 101a a g a a -+⎛⎫'=--< ⎪+⎝⎭,0,11a x a a ⎛⎫∴∃∈+ ⎪+⎝⎭,使得()00g x '=,且当()00,x x ∈时,()0g x '<;当()0,x x ∈+∞时,()0g x '>;()g x ∴在()00,x 上单调递减,在()0,x +∞上单调递增,()()0100min e ln ln x g x g x a x a a a -∴==---,由()00g x '=得:010e x a x -=,00ln 1ln x x a ∴+-=,010e x a x -=,()()000011110000000e e ln e e ln 1x x x x g x x x x x x x ----∴=---+-()012000e 12ln x x x x -=--,()012000e 12ln 0x x x x -∴--≥,即00012ln 0x x x --≥,令()12ln u x x x x=--,则()u x 在()0,∞+上单调递减,又()000012ln 0u x x x x =--≥,()10u =,001x ∴<≤,设()()1e 01x t x x x -=<≤,则()()11e 0x t x x -'=+>,()t x ∴在(]0,1上单调递增,()01t x ∴<≤,0100e 1x x -∴<≤,又010e x a x -=,a ∴的取值范围为(]0,1.方法二:由()ln f x a a a ≥+得:1e ln ln x a a a a x -≥++,()()()()ln 111e 1ln ln ln 1ln 1e ax x x ax a x ax ax ax +-⎡⎤-⎣⎦∴≥++=+=+⎡⎤⎡⎤⎣⎦⎣⎦,当()ln 10ax +≤时,()1e 0ln 1x x ax ->≥+在0a >,0x >时恒成立,0a ∴>;当()ln 10ax +>时,设()()1e 0x h x x x -=>,则()()()ln 1h x h ax ≥+,()()11e 0x h x x -'=+> ,()h x ∴在()0,∞+上单调递增,()ln 1x ax ∴≥+,即()1e 0x ax x -≤>,()1e 0x a x x-∴≤>,令()()1e 0x u x x x -=>,则()()121e x x u x x--'=,∴当()0,1x ∈时,()0u x '<;当()1,x ∈+∞时,()0u x '>;()u x ∴在()0,1上单调递减,在()1,+∞上单调递增,()()min 11u x u ∴==,1a ∴≤,又0a >,01a ∴<≤;综上所述:实数a 的取值范围为(]0,1.方法三:()f x 定义域为()0,∞+,()ln f x a a a ≥+恒成立,()11ln f a a a ∴=≥+必然成立;令()ln S a a a a =+,则()2ln S a a '=+,∴当()20,e a -∈时,()0S a '<;当()2e ,a -∈+∞时,()0S a '>;()S a ∴在()20,e -上单调递减,在()2e ,-+∞上单调递增,又()11S =,当10e a -<<时,()()1ln 0S a a a =+<,∴当01a <≤时,ln 1a a a +≤;下面证明:当01a <≤时,()ln f x a a a ≥+恒成立.ln 0a a ≤ ,()ln ln ln ln 1a x a a a a x a a x ∴++≤+=+,()11e ln ln e ln 1x x a x a a a a x --∴---≥-+,令()()1e ln 1x F x a x -=-+,则()1e x a F x x -'=-,令()()G x F x '=,则()12e0x a G x x -'=+>,()F x '∴在()0,∞+上单调递增,当1a =时,()11e x F x x-'=-,()10F '=,∴当()0,1x ∈时,()0F x '<;当()1,x ∈+∞时,()0F x '>;()F x ∴在()0,1上单调递减,在()1,+∞上单调递增,()()10F x F ∴≥=,1e ln ln 0x a x a a a -∴---≥恒成立,即()ln f x a a a ≥+恒成立;当01a <<时,()110F a '=->,()1e 10a F a -'=-<,()0,1x a ∴∃∈,使得()00F x '=,且当()00,x x ∈时,()0F x '<;当()0,x x ∈+∞时,()0F x '>;()F x ∴在()00,x 上单调递减,在()0,x +∞上单调递增,()()()0100e ln 1x F x F x a x -∴≥=-+,由()00F x '=得:010e x a x -=,00ln ln 1x a x =+-,()()000001ln 1ln a F x a a x a x a a a x x ⎛⎫∴=-+-=+-- ⎪⎝⎭,()0,1x a ∈ ,0012x x ∴+>,()()0001ln ln 1ln 0F x a x a a a a a a a a x ⎛⎫∴=+-->-=-> ⎪⎝⎭,()()00F x F x ∴≥>,1e ln ln 0x a x a a a -∴---≥恒成立,即()ln f x a a a ≥+恒成立;当1a >时,()()111ln ln f a a a a a =<+=+,显然不满足()ln f x a a a ≥+恒成立;综上所述:实数a 的取值范围为(]0,1.1.通过直接构造函数的方式,将问题转化为含参数函数的单调性的讨论和最值的求解问题,利用最值求得参数的取值范围;2.采用同构法,将问题转化为同一函数的不同函数值的大小关系的问题,从而通过求解函数的单调性得到自变量的大小关系;3.采用由特殊到一般的思路,通过特殊位置必然成立的思路得到a 的一个取值范围,再证明在此范围时不等式恒成立,并通过反例说明不在此范围时不等式不恒成立来得到最终范围.。
2024届陕西省渭南市富平县高三第一次(5月)联考数学试题理试题
![2024届陕西省渭南市富平县高三第一次(5月)联考数学试题理试题](https://img.taocdn.com/s3/m/8a6d74bf690203d8ce2f0066f5335a8102d26690.png)
2024届陕西省渭南市富平县高三第一次(5月)联考数学试题理试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.使得()13nx n N x x +⎛⎫+∈ ⎪⎝⎭的展开式中含有常数项的最小的n 为( )A .4B .5C .6D .72.已知3log 5a =,0.50.4b =,2log 5c =,则a ,b ,c 的大小关系为( ) A .c b a >>B .b c a >>C .a b c >>D .c a b >>3.在ABC 中,D 为BC 边上的中点,且||1,|2,120AB AC BAC ==∠=︒,则||=AD ( )A .32B .12C .34D .744.如图,在三棱柱111ABC A B C -中,底面为正三角形,侧棱垂直底面,148AB AA ==,.若E F ,分别是棱1BB CC,上的点,且1BE B E =,1114C F CC =,则异面直线1A E 与AF 所成角的余弦值为( )A .210B .2613C .1313D .13105.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:2222(1)(21)1236n n n n ++++++=)6.已知集合2{|1}M x x ==.N 为自然数集,则下列表示不正确的是( ) A .1M ∈B .{1,1}M =-C .M ∅⊆D .M N ⊆7.阿基米德(公元前287年—公元前212年)是古希腊伟大的哲学家、数学家和物理学家,他和高斯、牛顿并列被称为世界三大数学家.据说,他自己觉得最为满意的一个数学发现就是“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”.他特别喜欢这个结论,要求后人在他的墓碑上刻着一个圆柱容器里放了一个球,如图,该球顶天立地,四周碰边,表面积为54π的圆柱的底面直径与高都等于球的直径,则该球的体积为 ( )A .4πB .16πC .36πD .643π8.相传黄帝时代,在制定乐律时,用“三分损益”的方法得到不同的竹管,吹出不同的音调.如图的程序是与“三分损益”结合的计算过程,若输入的x 的值为1,输出的x 的值为( )A .64 B .32 C .8 D .169.已知数列满足,且,则数列的通项公式为( ) A .B .C .D .10.为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为100分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述不正确的是( )A .甲的数据分析素养优于乙B .乙的数据分析素养优于数学建模素养C .甲的六大素养整体水平优于乙D .甲的六大素养中数学运算最强11.某几何体的三视图如图所示,则该几何体的体积是( )A .53πB .43π C .223π+D .243π+12.如图所示点F 是抛物线28y x =的焦点,点A 、B 分别在抛物线28y x =及圆224120x y x +--=的实线部分上运动, 且AB 总是平行于x 轴, 则FAB ∆的周长的取值范围是( )A .(6,10)B .(8,12)C .[6,8]D .[8,12]二、填空题:本题共4小题,每小题5分,共20分。
(全国卷)高三数学第一次大联考试题理
![(全国卷)高三数学第一次大联考试题理](https://img.taocdn.com/s3/m/d82a6b13182e453610661ed9ad51f01dc281576f.png)
(全国卷)2020届高三数学第一次大联考试题 理考生注意:1.本试卷共150分,考试时间120分钟。
2.请将试卷答案填在试卷后面的答题卷上。
3.本试卷主要考试内容:集合与常用逻辑用语、函数与导数。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
{}{}223,,1A x x x N B x x =-<<∈=> ,则集合A∩B=A.{2}B.{-1,0,1)C.{-2,2}D.{-1,0,1,2}2.命题“∀x>0,x(x +1)>(x -1)2”的否定为;A.20,(1)(1)x x x x ∀>+≤-B.20,(1)(1)x x x x ∀≤+≤-C.20,(1)(1)x x x x ∃>+≤-D.20,(1)(1)x x x x ∃≤+≤- 3.21232x dx x -+=+⎰ A.2+ln2 B.3-ln2 C.6-ln2 D.6-ln44.设集合A 、B 是全集U 的两个子集,则“A B ⊆”是“U AB φ= ”的2,0()0x x f x x -⎧≤⎪=> ,若f(x 0)<2,则x 0的取值范围是A.(-∞,-1)B.(-1,0]C.(-1,+∞)D.(-∞,0)01021:1,log ;:,2x p x x q x R e x ∃>>∀∈>,则下列说法中正确的是 A.p∨q 是假命题 B.p∧q 是真命题 C.p∨(⌝q)是真命题 D.p∧(⌝q)是假命题 {}{}12,15A x x B x x =-<≤=≤-≤, 定义集合{},,A B z z x y x A y B *==+∈∈,则()B A B **等于 A.{}61x x -<≤ B.{}112x x <≤ C.{}110x x -<≤ D.{}56x x -<≤8.已知定义在R 上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a x - a -x +2(a>0且a≠1),若g(2)=a ,则函数f(x 2+2x)的单调递增区间为A(-1.1) B.(-∞,1) C.(1,+∞) D.(-1,+∞)9.如图是二次函数f(x)=x 2-bx +a 的部分图象,则函数g(x)=alnx + f’(x)的零点所在的区间是 A.(14,12) B.(12,1) C.(1,2) D.(2,3) ∈R ,函数f(x)满足f(2-x)=-f(x),且当x≧1时,函数f(x)=1x -。
安徽省部分学校2024-2025学年高三上学期8月联考试题 数学含答案
![安徽省部分学校2024-2025学年高三上学期8月联考试题 数学含答案](https://img.taocdn.com/s3/m/f14e8adcd5d8d15abe23482fb4daa58da0111cf9.png)
2024~2025学年(上)安徽高三8月份联考数学(答案在最后)考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足23z z +=-(i 为虚数单位),则z =().A.1+B.1C.1-D.1-2.已知向量()2,1a = ,()2,b m m =- ,若a b ∥ ,则m =().A.4- B.2- C.2D.43.在等比数列{}n a 中,若23138a a a =,则48a a =().A.2B. C.4D.84.设a ,b 是两条不同的直线,α,β是两个不同的平面,若a α⊂,b β⊂,αβ⊥,则“a β⊥”是“a b ⊥r r”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知集合()(){},ln 1A x y y x ==+,(){}22,1B x y xy =+=,则A B ⋂中的元素个数为().A.1B.2C.3D.46.22π7πsinsin 1212-=().A.2B.12C.12-D.2-7.某公司进行招聘,甲、乙、丙被录取的概率分别为23,45,34,且他们是否被录取互不影响,若甲、乙、丙三人中恰有两人被录取,则甲被录取的概率为().A.1013B.23 C.713D.7308.已知双曲线()222:10y C x b b-=>的左焦点为F ,过坐标原点O 作C 的一条渐近线的垂线l ,直线l 与C交于A ,B 两点,若ABF △的面积为3,则C 的离心率为().A.3B.C.2D.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知椭圆22:416C x y +=的左、右焦点分别为1F ,2F ,P 是C 上的任意一点,则()A.C 的离心率为12B.128PF PF +=C.1PF 的最大值为4+D.使12F PF ∠为直角的点P 有4个10.若01a b <<<,则().A.a b +>+B.cos sin a b >C .log a bb a>D.ln ln a b a b-<-11.在四棱锥S ABCD -中,已知底面ABCD 为梯形,2222AD AB BC CD SD =====,AS =,则下列说法正确的是().A.四边形ABCD 的面积为4B.棱SB 的长度可能为C.若SD AB ⊥,则点A 到平面SBD 的距离为1D.若SD AB ⊥,则四棱锥S ABCD -外接球的半径为2三、填空题:本题共3小题,每小题5分,共15分.12.甲、乙、丙、丁4名老师分到3所不同的乡村学校支教,若每名老师只去一所学校,每所学校都有老师去,且甲不和别的老师去同一所学校,则不同的支教分派方案有__________种.13.已知函数()()cos f x x ωϕ=+在区间24,33⎡⎤-⎢⎥⎣⎦上单调递增,且42233f f ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭,则()2f =__________.14.在平面直角坐标系xOy 中,M 为曲线ln xy x=上一点且位于第一象限,将线段OM 绕x 轴旋转一周,得到一个圆锥的侧面,再将其展开成扇形,则该扇形的圆心角的最大值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,且平面PAD ⊥平面ABCD ,PD AD ⊥.(1)证明:⊥BC 平面PCD ;(2)若4PA =,E 为棱PC 的中点,求直线PC 与平面ABE 所成角的正弦值.16.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知12cos sin 2sin sin BC A B=+.(1)求C ;(2)若32a b c +=且3a =,求ABC V 的外接圆半径.17.已知抛物线()2:20E y px p =>的焦点为F ,过点F 且互相垂直的两条动直线分别与E 交于点A ,B和点C ,D ,当AB CD =时,8AB =.(1)求E 的方程;(2)设线段AB ,CD 的中点分别为M ,N ,若直线AB 的斜率为正,且18FN FM=,求直线AB 和CD 的方程.18.无人驾驶被视为推动社会进步和改善生活质量的重要工具,但其安全性和对劳动就业的影响也受到人们的质疑.为了解某大学的学生对无人驾驶的态度,随机调查了该校96名大学生,调查结果如下表所示:对无人驾驶的态度支持中立反对频数483216用样本的频率分布估计该校每名学生对无人驾驶态度的概率分布,且学生的态度相互独立.为衡量学生对无人驾驶的支持程度,每名支持者得5分,每名中立者得3分,每名反对者得1分.(1)从该校任选2名学生,求他们的得分不相同的概率.(2)从该校任选3名学生,求他们的得分之和为7的概率.(3)从该校任选n 名学生,其中得分为5的学生人数为X ,若30.944nn P X ⎛⎫≤≤≥ ⎪⎝⎭,利用下面所给的两个结论,求正整数n 的最小值.结论一:若随机变量(),B n p ξ ,则随机变量η=近似服从正态分布()0,1N ;结论二:若随机变量()0,1N ξ ,则()1.280.9P ξ≤≈,()1.650.95P ξ≤≈.19.已知函数()221ln 11x x f x x x x -=--+-.(1)求()f x 的定义域;(2)求()f x 在区间10,2⎛⎫ ⎪⎝⎭上的零点个数;(3)设10,2k ⎛⎫∈ ⎪⎝⎭,证明:()()()22211111nk k k k k k -+++<+-L .附:()()2222211ln 111x x x x x x x '⎛⎫-+= ⎪+--+-⎝⎭,()()22212ln 111x x x x x x x x '--⎛⎫= ⎪+--+-⎝⎭.2024~2025学年(上)安徽高三8月份联考数学考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】A【2题答案】【答案】B【3题答案】【答案】C【4题答案】【答案】A【5题答案】【答案】B【6题答案】【答案】D【7题答案】【答案】C【8题答案】【答案】B二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】BCD 【10题答案】【答案】AD 【11题答案】【答案】AC三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】18【13题答案】【答案】12##0.5【14题答案】【答案】24e 1+四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)证明见详解(2)5【16题答案】【答案】(1)2π3C =(2)3【17题答案】【答案】(1)24y x=(2):210AB x y --=,:220CD x y +-=【18题答案】【答案】(1)1118(2)772(3)11【19题答案】【答案】(1)(),111122,,⎛⎛⎫+-∞--+∞ ⎝⎭⎝⎭(2)1(3)证明见解析。
山西省晋中市榆次区第三中学高三数学理联考试题含解析
![山西省晋中市榆次区第三中学高三数学理联考试题含解析](https://img.taocdn.com/s3/m/c4c4b2fc16fc700aba68fcf8.png)
山西省晋中市榆次区第三中学高三数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知是上最小正周期为2的周期函数,且当时,,则函数的图象在区间[0,6]上与轴的交点的个数为()(A)6 (B)7 (C)8 (D)9参考答案:B2. 设向量A. B. C. D.10参考答案:B因为所以,解得,又所以,所以,所以,所以,选B.3. 如图,设A、B两点在河的两岸,一测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离为50m,∠ACB = 45°,∠CAB = 105°后,就可以计算出A、B两点的距离为( )A. B. C. D.参考答案:A4. 执行右面的框图,输出的结果s的值为A. B. 2 C. D.参考答案:A略5. 函数y=在(-1,+∞)上单调递增,则a的取值范围是 ( ).A.a=-3 B.a<3 C.a≤-3 D.a≥-3参考答案:【知识点】函数单调性的应用.恒成立问题. B3【答案解析】C 解析:,:解得,所以选C.【思路点拨】导数法确定函数在区间上单调递增的条件.6. 某几何体的正视图和侧视图如图①所示,它的俯视图的直观图是,如图②所示,其中,则该几何体的表面积为()A.B.C.D.参考答案:C7. 已知双曲线,过其右焦点作圆的两条切线,切点分别记作、,双曲线的右顶点为,,其双曲线的离心率为( )A. B. C.D.参考答案:D8. 如图是某个几何体的三视图,则这个几何体的体积是()A.2+B.2+C.4+D.4+参考答案:A9. 在等腰梯形ABCD中,AB∥CD,且|AB|=2,|AD|=1,|CD|=2x其中x∈(0,1),以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为e2,若对任意x∈(0,1)不等式t<e1+e2恒成立,则t的最大值为()A.B.C.2 D.参考答案:B【考点】椭圆的简单性质.【分析】根据余弦定理表示出BD,进而根据双曲线的定义可得到a1的值,再由AB=2c1,e=可表示出e1,同样的在椭圆中用c2和a2表示出e2,然后利用换元法即可求出e1+e2的取值范围,即得结论?【解答】解:在等腰梯形ABCD中,BD2=AD2+AB2﹣2AD?AB?cos∠DAB=1+4﹣2×1×2×(1﹣x)=1+4x,由双曲线的定义可得a1=,c1=1,e1=,由椭圆的定义可得a2=,c2=x,e2=,则e1+e2=+=+,令t=∈(0,﹣1),则e1+e2=(t+)在(0,﹣1)上单调递减,所以e1+e2>×(﹣1+)=,故选:B.10. 已知函数有唯一零点,则()A.B.C.D.1参考答案:C由条件,,得:∴,即为的对称轴,由题意,有唯一零点,∴的零点只能为,即,解得.二、填空题:本大题共7小题,每小题4分,共28分11. 设函数若不存在,使得与同时成立,则实数的取值范围是参考答案:12. 曲线y =(ax+1)e x在点(0,1)处的切线的斜率为-2,则a =________.参考答案:-3则所以13. 当函数取得最大值时,___________.参考答案:函数为,当时,,由三角函数图象可知,当,即时取得最大值,所以.14. 若.参考答案:答案:3解析:由得,所以15. 已知向量,是平面内的一组基向量,O为内的定点,对于内任意一点P,当时,则称有序实数对为点P的广义坐标,若点A、B的广义坐标分别为、,对于下列命题:①线段A、B的中点的广义坐标为;②A、B两点间的距离为;③向量平行于向量的充要条件是;④向量垂直于向量的充要条件是.其中的真命题是________(请写出所有真命题的序号)参考答案:①③【分析】根据点、的广义坐标分别为、,,,利用向量的运算公式分别计算①②③④,得出结论.【详解】点、的广义坐标分别为、,,,对于①,线段、的中点设为M,根据=()=中点的广义坐标为,故①正确.对于②,∵(x2﹣x1),A、两点间的距离为,故②不一定正确.对于③,向量平行于向量,则,即()=t,,故③正确. 对于④,向量垂直于向量,则=0,,故④不一定正确.故答案为①③.【点睛】本题在新情境下考查了数量积运算性质、数量积定义,考查了推理能力与计算能力,属于中档题.16. 设集合A={5,log2(a+3)},B={a,b},若A∩B={2},则A∪B=________.参考答案:{1,2,5}略17. 若集合,集合,则参考答案:三、解答题:本大题共5小题,共72分。
湖北省重点高中智学联盟2024-2025学年高三上学期10月联考试题 数学含答案
![湖北省重点高中智学联盟2024-2025学年高三上学期10月联考试题 数学含答案](https://img.taocdn.com/s3/m/572a2285a48da0116c175f0e7cd184254b351b35.png)
湖北省重点高中智学联盟2024年秋季高三年级10月联考数学试题(答案在最后)命题学校:一、单项选择题:(每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}(){}3390,lg 3A x x x B x y x =+-≤=∈=-N ∣∣,则集合A B ⋂的子集个数为()A.2B.4C.8D.162.若复数z 满足1i34i z-=+,则z =()A.5B.25C.5D.23.在ABC V 中,G 为ABC V 的重心,设,BA a BC b == ,则CG =()A.1233a b - B.2133a b-+C.1233a b -+D.2133a b - 4.已知集合()(){}210,21102x A xB x x a x a a x ⎧⎫-=≤=-+++≤⎨⎬+⎩⎭∣,若“x A ∈”是“x B ∈”的必要不充分条件,则实数a 的取值范围是()A.3a ≤-或1a ≥B.3a ≤-或1a >C.3a <-或1a ≥ D.3a <-或1a >5.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL 血液中酒精含量达到2079mg 的驾驶员即为酒后驾车,80mg 及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了0.4mg /mL .如果停止喝酒以后,他血液中酒精含量会以每小时20%的速度减少,那么他至少经过几个小时才能驾驶?()(结果取整数,参考数据:lg20.3010≈)A.5B.4C.3D.26.已知实数(),1,0a b ∈-,且满足cos πcos πa b >,则下列一定正确的是()A.sin sin a b <B.3355ab-->C.sin sin a a b b->- D.4433a b<7.已知函数()f x 的定义域为R ,若()1f x +为偶函数,()2f x +为奇函数,则下列一定正确的是()A.()20221f =B.()()2f x f x =+C.()3f x +为奇函数D.()2024f x +为奇函数8.在ABC V 中,记角,,A B C 的对边分别为,,a b c ,若222c a b ab =++,点D 在边AB 上,CD 平分ACB ∠,且12CD =,则49a b +的最小值为()A.252B.25C.254D.24二、多项选择题:每小题6分,共18分.在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知向量)(),0,1a m b ==,则下列说法正确的是()A.若2= a ,则1a b ⋅= B.不存在实数m ,使得a∥bC.若向量()4a a b ⊥-,则1m =或3m =D.若向量a 在b 向量上的投影向量为b - ,则,a b的夹角为2π310.已知函数()π3πsin cos 22f x x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭,则下列说法正确的是()A.()f x 的图像可由y x =的图像向左平移π4个单位得到B.()f x 图像关于点π,04⎛⎫⎪⎝⎭对称C.()f x 在[]0,π上值域为[]1,1-D.若()π,0,5cos22f ααα⎛⎫∈-= ⎪⎝⎭,则2cos275α=11.已知函数()ln ,()e ln x f x x x g x a x a =-=-+,则下列说法正确的是()A.()f x 有极大值为1-B.()0g x ≥对于x ∈R 恒成立,则实数a 的取值范围是12[e ,)-+∞C.当1a =时,过原点与曲线()()1y g x f x =--相切的直线有2条D.若关于x 的方程()()f x g x =有两个不等实根,则实数a 的取值范围是1(0,)e三、填空题:本大题共3小题,每小题5分,共15分.12.已知()sin2g x x =,若()()2lg 1f x g x a x ⎛⎫=⋅+⎪-⎝⎭为偶函数,则实数a =__________.13.已知ABC V 的外心为O ,内角,,A B C 的对边分别为,,a b c ,且::5:6:5a b c =.若7BA BC ⋅=,则BO BA ⋅=__________.14.定义:如果集合A 存在一组两两不交(任意两个集合交集为空集时,称为不交)的非空真子集()12,,,,2m A A A m m ∈≥N ,且12m A A A A ⋃⋃⋃= ,那么称无序子集组12,,,m A A A 构成集合A 的一个m 划分.若使函数()()πsin 4f x x ωω⎛⎫=+∈ ⎪⎝⎭N 在π0,4⎛⎫⎪⎝⎭有且仅有一个零点的ω的取值集合为A ,则集合A 的所有划分的个数为__________.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.对于任意两个非零向量,a b,定义新运算:2a b a b b ⋅⊕= .(1)若向量()()1,5,3,4a b =-=,求()2a b b -⊕ ;(2)若两个单位向量,a b 满足()()5323a b a b +⊕-=- ,求a b + 与b夹角的余弦值.16.已知ABC V 的三个内角,,A B C 的对边分别为,,a b c ,且π22sin 6b aA c+⎛⎫+=⎪⎝⎭.(1)求角C ;(2)若1a =,点D 满足2AD DB =,且3CD =,求ABC V 的面积;17.已知函数()2ln f x x ax a =-+.(1)若1x =是()f x 的极值点,求实数a 的值,并求()f x 的单调区间;(2)若存在()1,x ∈+∞,使得()0f x >,求实数a 的取值范围.18.已知函数()()()2log 20,1a f x x x a a =++>≠在1,14⎡⎤-⎢⎥⎣⎦上的最大值为2,集合()[]{}1,0,2A y y f x x ==+∈∣.(1)求a 的值,并用区间的形式表示集合A ;(2)若()()221xx x x g x a a m a a --=+-++,对1x A ∀∈,都[]20,1x ∃∈,使得()12x g x =,求实数m 的值.19.(1)当[]0,πx ∈时,求证:(i )sin x x ≥;(ii )21e 12xx x ≥++(2)已知函数()e sin 1xf x mx x x =+--.(i )当1m =时,求()y f x =在点()()0,0f 处的切线方程;(ii )讨论函数()y f x =在[]0,π上的零点个数.湖北省重点高中智学联盟2024年秋季高三年级10月联考数学试题命题学校:一、单项选择题:(每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的.)【1题答案】【答案】B【2题答案】【答案】C【3题答案】【答案】A【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】D【7题答案】【答案】D【8题答案】【答案】A二、多项选择题:每小题6分,共18分.在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】BCD【10题答案】【答案】BD【11题答案】【答案】ABD三、填空题:本大题共3小题,每小题5分,共15分.【12题答案】【答案】1【13题答案】【答案】252【14题答案】【答案】14四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)925(2)10【16题答案】【答案】(1)23π(2)334【17题答案】【答案】(1)12a =,单调增区间为()0,1;单调减区间为()1,+∞(2)1,2⎛⎫-∞ ⎪⎝⎭.【18题答案】【答案】(1)2,[]2,4A =(2)12.【19题答案】【答案】(1)(i )证明见解析;(ii )证明见解析;(2)(i )0y =;(ii )答案见解析。
2024学年四川省成都市棠湖中学高三第二次联考考数学试题理试题
![2024学年四川省成都市棠湖中学高三第二次联考考数学试题理试题](https://img.taocdn.com/s3/m/48cfc76cbf23482fb4daa58da0116c175f0e1e1c.png)
2024学年四川省成都市棠湖中学高三第二次联考考数学试题理试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()3sin cos f x x m x =+,其图象关于直线3x π=对称,为了得到函数2()3cos2g x m x =+的图象,只需将函数()f x 的图象上的所有点( ) A .先向左平移6π个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变 B .先向右平移6π个单位长度,再把所得各点横坐标缩短为原来的12,纵坐标保持不变 C .先向右平移3π个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变 D .先向左平移3π个单位长度,再把所得各点横坐标缩短为原来的12,纵坐标保持不变 2.如图是一个算法流程图,则输出的结果是( )A .3B .4C .5D .63.若()()()20192019012019111x a a x a x -=+++++,x ∈R ,则22019122019333a a a ⋅+⋅++⋅的值为( )A .201912--B .201912-+C .201912-D .201912+4.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面 5.设复数121,1z i z i =+=-,则1211z z +=( ) A .1B .1-C .iD .i -6.已知各项都为正的等差数列{}n a 中,23415a a a ++=,若12a +,34a +,616a +成等比数列,则10a =( ) A .19B .20C .21D .227.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分; ②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关; ④乙同学连续九次测验成绩每一次均有明显进步. 其中正确的个数为( ) A .B .C .D .8.洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.如图,若从四个阴数和五个阳数中分别随机选取1个数,则其和等于11的概率是( ).A .15B .25C .310D .149.已知函数2(0)()ln (0)x x f x x x ⎧≤=⎨>⎩,且关于x 的方程()0f x x a +-=有且只有一个实数根,则实数a 的取值范围( ). A .[0,)+∞B .(1,)+∞C .(0,)+∞D .[,1)-∞10.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:2222(1)(21)1236n n n n ++++++=)A .1624B .1024C .1198D .156011.函数()()()22214f x xxx =--的图象可能是( )A .B .C .D .12.已知函数()x af x x e-=+,()()ln 24a xg x x e-=+-,其中e 为自然对数的底数,若存在实数0x ,使()()003f x g x -=成立,则实数a 的值为( )A .ln21--B .1ln2-+C .ln 2-D .ln 2二、填空题:本题共4小题,每小题5分,共20分。
江西省宜春市八校2023届高三第一次联考数学(理)试题(含解析)
![江西省宜春市八校2023届高三第一次联考数学(理)试题(含解析)](https://img.taocdn.com/s3/m/23dd05dde109581b6bd97f19227916888486b983.png)
江西省宜春市八校2023届高三第一次联考数学(理)试题学校:___________姓名:___________班级:___________考号:___________A.25B.24C.55.若π13πtan sin123α⎛⎫-=⎪⎝⎭,则πtan4α⎛⎫-=⎪⎝⎭()A.39-B.35-C.396.2022年男足世界杯于2022年11月21日至2022年12月17排甲、乙等5名志愿者去A,B,C三个足球场服务,要求每个足球场都有人去,每人A .62B .20239.已知函数()f x 满足()()1ln f x x f x x'+1⎛⎫1⎛⎫二、填空题14.已知函数()3sin 4cos f x x x =+,且对任意实数x 都有()(2)(R)f x f x αα=-∈sin 2α的值为__________.15.已知一组数据x ,x ,x ,…,x 的平均数为x ,方差为2s .若31x +,3x +(1)若BE =B 1E ,证明:CC 1⊥(2)若112BE B E =,求二面角19.已知椭圆C :(22221x y a b+=(1)求椭圆C 的方程;参考答案:326x y --的几何意义是曲线上的点到直线3260x y --=的距离的两倍,双曲线的渐近线3y x =与3所以曲线在第一、三象限上的点到在12F PF △中,由余弦定理得4c 可得()22422cos3c m n mn mn =-+-即得2222544487916c a a a =+⨯=279c =,所以,(PC PB PA PB OA ⋅=-⋅=- ()1OP OA OB OA OB =⋅+-⋅-,因为()22OA OB OPOA OB +-=+因为四边形ABCD 是菱形,所以BD AC ⊥,11BC B C ==因为1AA BD ⊥,1AA ,AC ⊂则131,,33E ⎛⎫- ⎪ ⎪⎝⎭,所以51,3AE ⎛= ⎝ 易知平面11ACC A 的一个法向量为则100AC m AE m ⎧⋅=⎪⎨⋅=⎪⎩,即3305333y z x y ⎧+=⎪⎨++⎪⎩21.(1)(23)3n n a =-+,1,2,3,n =(2)证明见解析【分析】(1)由题意可得13n a +-=比为23-的等比数列,由等比数列的通项公式即可求出。
2025届福建省龙岩市长汀县长汀、连城一中等六校高三下学期期中联考数学试题理试题
![2025届福建省龙岩市长汀县长汀、连城一中等六校高三下学期期中联考数学试题理试题](https://img.taocdn.com/s3/m/653a9374580102020740be1e650e52ea5418ce01.png)
2025届福建省龙岩市长汀县长汀、连城一中等六校高三下学期期中联考数学试题理试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某校在高一年级进行了数学竞赛(总分100分),下表为高一·一班40名同学的数学竞赛成绩: 55 57 59 61 68 64 62 59 80 88 98 95 60 73 88 74 86 77 79 94 97 100 99 97 89 81 80 60 79 60 82959093908580779968如图的算法框图中输入的i a 为上表中的学生的数学竞赛成绩,运行相应的程序,输出m ,n 的值,则m n -=( )A .6B .8C .10D .122.已知随机变量X 服从正态分布()1,4N ,()20.3P X >=,()0P X <=( ) A .0.2B .0.3C .0.7D .0.83.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为2,a ,b ,且()520,02a b a b +=>>,则此三棱锥外接球表面积的最小值为( )A .174π B .214π C .4π D .5π4.已知集合{|12},{|15}=-<=-A x x B x x ,定义集合*{|,,}==+∈∈A B z z x y x A y B ,则*(*)B A B 等于( ) A .{|61}-<x x B .{|112}<x x C .{|110}-<x x D .{|56}-<x x 5.定义在上的函数满足,且为奇函数,则的图象可能是( )A .B .C .D .6.如图,在ABC ∆中, 13AN AC =,P 是BN 上的一点,若23mAC AP AB =-,则实数m 的值为( )A .13B .19C .1D .27.《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“- ”当作数字“1”,把阴爻“--”当作数字“0”,则八卦所代表的数表示如下: 卦名 符号表示的二进制数 表示的十进制数 坤000震 001 1坎 010 2 兑0113依此类推,则六十四卦中的“屯”卦,符号“ ”表示的十进制数是( ) A .18B .17C .16D .158.设数列{}n a 是等差数列,1356a a a ++=,76a =.则这个数列的前7项和等于( ) A .12B .21C .24D .369.过抛物线()2:20E x py p =>的焦点F 作两条互相垂直的弦AB ,CD ,设P 为抛物线上的一动点,(1,2)Q ,若111||||4AB CD +=,则||||PF PQ +的最小值是( ) A .1B .2C .3D .410.在函数:①cos |2|y x =;②|cos |y x =;③cos 26y x π⎛⎫=+ ⎪⎝⎭;④tan 24y x π⎛⎫=- ⎪⎝⎭中,最小正周期为π的所有函数为( ) A .①②③B .①③④C .②④D .①③11.设i 是虚数单位,若复数5i2i()a a +∈+R 是纯虚数,则a 的值为( ) A .3-B .3C .1D .1-12.关于函数()sin |||cos |f x x x =+有下述四个结论:( )①()f x 是偶函数; ②()f x 在区间,02π⎛⎫- ⎪⎝⎭上是单调递增函数;③()f x 在R 上的最大值为2; ④()f x 在区间[]2,2ππ-上有4个零点. 其中所有正确结论的编号是( ) A .①②④B .①③C .①④D .②④二、填空题:本题共4小题,每小题5分,共20分。
广东省潮州市南春中学高三数学理联考试题含解析
![广东省潮州市南春中学高三数学理联考试题含解析](https://img.taocdn.com/s3/m/7ebd9bdd7e192279168884868762caaedd33bafa.png)
广东省潮州市南春中学高三数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知角的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点,且,则()A. B. C. D.参考答案:B【分析】由已知求得的值,可得,得到结果【详解】∵角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,且,∴,易知解得,∴,.故选:B.【点睛】本题考查两数差的绝对值的求法,考查二倍角公式、直线的斜率等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.2. 已知等差数列的前项和为,且,.若,则()A.420 B.340 C.-420 D.-340参考答案:D 3. 抛物线的焦点为,点在抛物线上,且,弦中点在准线上的射影为的最大值为A. B. C. D.参考答案:B略4. 已知函数f(x)=|mx|﹣|x﹣1|(m>0),若关于x的不等式f(x)<0的解集中的整数恰有3个,则实数m的取值范围为( )A.0<m≤1B.≤m<C.1<m<D.≤m<2参考答案:B考点:函数的零点与方程根的关系.专题:计算题;作图题;函数的性质及应用;不等式的解法及应用.分析:f(x)<0可化为|mx|<|x﹣1|,作函数y=|mx|与函数y=|x﹣1|的图象,由数形结合求解即可.解答:解:f(x)<0可化为|mx|<|x﹣1|,作函数y=|mx|与函数y=|x﹣1|的图象如下,结合图象可知,关于x的不等式f(x)<0的解集中的3个整数解为0,﹣1,﹣2;故只需使,解得,≤m<;故选:B.点评:本题考查了不等式的解与函数的图象的关系应用,属于基础题.5. 若复数(其中)为纯虚数,则复数在复平面内对应的点位于()第二或第三象限第三或第四象限第三象限第四象限参考答案:C6. 正方体ABCD—A1B1C1D1的棱长为,在正方体表面上与点A距离是的点形成一条封闭的曲线,这条曲线的长度是A.B.C.D.参考答案:D【知识点】柱,锥,台,球的结构特征【试题解析】此问题的实质是:以A为球心,以2为半径的球在正方体各面上交线的长度计算。
甘肃省张掖市2023届高三下学期4月联考数学(理)试题
![甘肃省张掖市2023届高三下学期4月联考数学(理)试题](https://img.taocdn.com/s3/m/21a4aec9760bf78a6529647d27284b73f24236e2.png)
甘肃省张掖市2023届高三下学期4月联考数学(理)试题学校:___________姓名:___________班级:___________考号:___________A .若2a =,则甲地区考核得分的极差大于乙地区考核得分的极差B .若4a =,则甲地区考核得分的平均数小于乙地区考核得分的平均数C .若5a =,则甲地区考核得分的方差小于乙地区考核得分的方差D .若6a =,则甲地区考核得分的中位数小于乙地区考核得分的中位数4.已知向量a ,b 满足a b = ,A .255-B .2555.设n S 为等差数列{}n a 的前n 项和,且()A .n S 的最小值是17S C .n S 的最大值是17S 6.图形是信息传播、互通的重要的视觉语言《画法几何》是法国著名数学家蒙日的数学A .12πB .24πC .48πD .96π7.执行下边的程序框图,如果输入的是1n =,0S =,输出的结果为40954096,则判断框中“”应填入的是()A .13n <B .12n >C .12n <D .11n <8.如图,在正方体1111ABCD A B C D -中,,,E F M 分别为所在棱的中点,P 为下底面的中心,则下列结论中错误的是()A .平面1EFC ⊥平面11C AAC C .1MP C D⊥9.已知椭圆(2222:1x y C a b a b+=>存在点M ,使得112=MF F F ,直线线,则椭圆C 的离心率为()A .612-B .52-10.已知函数()sin cos f x x ωω=正确的是()A .1ω=B .()f x 的单调递增区间为5π12⎡-⎢⎣C .将()f x 的图象向左平移π12个单位长度后所得图象关于D .ππ333f x f x ⎛⎫⎛⎫++-=- ⎪ ⎪⎝⎭⎝⎭11.已知抛物线C 的顶点为坐标原点两点,且OP OQ ⊥,线段PQ 的中点为A .66B .1212.已知函数()f x ,()g x 的定义域均为()()102g x g x +-=,则[91(i f =∑A .21B .22二、填空题三、解答题(1)证明:直线l⊥平面PAC(2)若Q在直线l上且BAQ∠19.某国家网球队为了预选特训.选拔过程中,记录了某队员的成功得1分,否则得0分,且每局结果相互独立,得到如图所示的频率分布直方图.(1)结合直方图,估算该队员40局接球成绩的平均分(同一组数据用该组区间的中点值作代表);(2)若该队员的接球训练成绩X 近似服从正态分布求()6494P X ≤≤的值;(3)为了营造竞技氛围,队员间相互比赛.得分达到80分,则接球方获胜,否则发球方获胜.若有人获胜达记比赛的局数为Y .以频率分布直方图中该队员获胜的频率作为概率,求均值参考数据:若随机变量()2~,N ξμσ,则()220.9545P μσξμσ-≤≤+≈,(P 20.已知双曲线C :(222210,x y a a b-=>(1)求双曲线C 的方程;(2)若A ,B 为双曲线的左、右顶点,的另一交点为Q (P 与A ,Q 与B 均不重合)求证:直线21.已知函数()()21,f x x ax g x =-+(1)若()()1,a f x g x =>在区间()0,t 上恒成立,求实数(2)若函数()f x 和()g x 有公切线,求实数22.在直角坐标系xOy 中,曲线1C 的参数方程为以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线4cos ρθ=-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
届高三联考数学试题(理)(-8-29)一、选择题:本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A={x ln(1)y x =-},集合B={y2y x =},则A B =( ).A .[0,1]B .[0,1)C .(,1]-∞D .(,1)-∞2.复平面内,复数2)31(i +对应的点位于( )A .第一象限 B.第二象限 C.第三象限 D.第四象限3.若平面向量)2,1(-=a 与b 的夹角是180°,且53||=b ,则b 等于( )A .)6,3(- B.)6,3(- C.)3,6(- D.)3,6(-4.如图,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为( )A .1B .21C .31 D .615.设奇函数)(x f 的定义域为[]5,5-,若当[0,5]x ∈时,)(x f 的图象如右图,则不等式()0f x <的解集是( )A .()2,0)0,2(⋃- B.)2,0( C.[)()2,02,5⋃-- D. ()()2,02,5⋃--6.动点在圆122=+y x 上移动时,它与定点)0,3(B 连线的中点的轨迹方程是( )A .4)3(22=++y x B .1)3(22=+-y x C .14)32(22=+-y xD .21)23(22=++y x7.函数y =Asin(ωx +φ) (A >0,ω>0,|φ|<2π)的图象如图所示,则y 的表达式为( ) A.y =2sin(611x 10π+) B.y =2sin(611x 10π-) 第4题图正视图 侧视图俯视图y 2 x6π32πoC.y =2sin(2x +6π) D.y =2sin(2x -6π) 8.如图,在杨辉三角形中,斜线l 的上方从1按箭头所示方向可以构成一个“锯齿形”的数列}{n a :1,3,3,4,6,5,10,…,则a 21的值为( )A .66B .220C .78D .286二、填空题:本大题共4个小题,每小题5分,共20分.9.Rt ABC ∆中,3,4,5AB BC AC ===,将三角形绕直角边AB 旋转一周所成的几何体的体积为____________10.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________.11.设f (x )= 1232,2,log (1),2,x e x x x -⎧<⎪⎨-≥⎪⎩ 则不等式f (x )>2的解集为________________.12. 已知x 、y 满足约束条件2010220x y x y -≤⎧⎪-≤⎨⎪+-≥⎩,则z x y =-的取值范围为___________13. 已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设63(),(),52a fb f ==5(),2c f =请比较,,的大小a b c _______________.14.如图所示的阴影部分由方格纸上3个小方格组成,我们称这样的图案为L 形(每次旋转900仍为L 形图案),那么在由45⨯个小方格组成的方格纸上可以画出不同位置的L 形图案 的个数是__________三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤.15、(本题满分12分)已知函数12)6(,8)0(,cos 2cos sin 2)(2==+=πf f x b x x a x f 且(1)求实数,a b 的值;(2)求函数)(x f 的最小正周期及其单调增区间.16、(本小题满分12分)已知a 为实数,函数2()(1)()f x x x a =++. (1) 若(1)0f '-=,求函数y =()f x 在[-32,1]上的最大值和最小值; (2)若函数()f x 的图象上有与x 轴平行的切线,求a 的取值范围.17、(本题满分14分)箱中装有15张大小、重量一样的卡片,每张卡片正面分别标有1到15中的一个号码,正面号码为n 的卡片反面标的数字是.40122+-n n (卡片正反面用颜色区分)(1)如果任意取出一张卡,试求正面数字大于反面数字的概率;(2)如果同时取出两张卡片,试求他们反面数字相同的概率.18、(本小题满分14分)如图,在四棱锥ABCD P -中,底面ABCD 是正方形,侧棱⊥PD 底面ABCD ,DC PD =,E 是PC 的中点,作PB EF ⊥交PB 于点F .(I) 证明 ∥PA 平面EDB ;(II) 证明⊥PB 平面EFD ;(III)求二面角D -PB -C 的大小.19、(本小题满分14分)已知函数()f x 对任意的实数,x y 都有()()()2()1f x y f x f y y x y +=++++,且(1)1f =(1)若+∈x N ,试求()f x 的解析式(2)若+∈x N ,且2x ≥时,不等式()(7)(10)f x a x a ≥+-+恒成立,求实数a 的取值范围.20、(本小题满分14分) 设A ,B分别是直线y x =和y =上的两个动点,并且||20AB =P 满足OP OA OB =+.记动点P 的轨迹为C .(I) 求轨迹C 的方程;(II)若点D 的坐标为(0,16),M 、N 是曲线C 上的两个动点,且DM DN λ=,求实数λ的取值范围.2008届高三级联考数学试题答题卡(理)一、选择题(每题5分,10题共50分)二、填空题(每题5分,4题共20分) 9、_____________________________ 10、_______________________________11、_____________________________ 12、_______________________________装订 线外 座号______________考试编号_________________________13、_____________________________ 14、_______________________________三、解答题(共80分)装订线外不得答装 订 线外 不 得 答 ____________姓名______________座号______________考试编号_________________________一、 选择题:1.解;A={2.解:()i i322312+-=+,选B3.解:设),(y x =,2180y x -=y x 2)1(535-=-⋅⋅∴ (1)又5322=+y x (2)由(1)(2)可解得x=-3,y=6 4.解:V=61112131=⨯⨯⨯ 5. [)5,2(0,2)-- 奇函数关于原点对称,补足左边的图象6.解:设动点),(y x P 在圆上,设中点坐标为),(,,y x∴⎪⎩⎪⎨⎧=-=,,232yy x x 代入圆的方程可得C7.解:A=2, 由五点法可得⎪⎪⎩⎪⎪⎨⎧=+⋅=+⋅233226πϕϖππϕϖπ解得⎪⎩⎪⎨⎧==62πϕϖ8.解:213=-a a335=-a a457=-a a……111921=-a a累加得662)111(11113211132121=+=++++=++++= a a 二.填空题:9. 16π 旋转一周所成的几何体是以BC 为半径,以AB 为高的圆锥,2211431633V r h πππ==⨯⨯=10.8 22x y +可看成原点到直线上的点的距离的平方,垂直时最短:d ==11. 解:当2<x 时,221>-x e ,21,1,1<<∴>∴>∴-x x e ex当2≥x 时,10,91,2log 2)1(32>∴>-∴>-x x x或10-<x (舍去);10>∴x12. 解:作出可行区域可得,当1,0==y x 时,z 取得最小值-1当0,2==y x 时,z 取得最大值2.所以取值范围为[]1,2-13. 解:)54()54()542()56(f f f f a -=-=-===54lg-, )21()21()212()23(f f f f b -=-=-===21lg -)21()212()25(f f f c =+===21lg∴ 021lg ,21lg 54lg 0,21lg 54lg 0<-<-<∴>>,b a c <<∴14. 48个三.解答题:15、 解: (0)8,()12,6f f π==(1)由可得 ………………………2分3(0)28,()12,62π===+=f b f b ………………4分………………6分………9分T=222πππω==,所以,最小正周期为π ………………10分 单调增区间为,36│ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭xk x k k Z ………12分16、解 (1)∵(1)0f '-=,∴3210a -+=,即2a =. …………2分∴21()3413()(1)3f x x x x x '=++=++.由()0f x '>,得1x <-或13x >-; ………………4分4,所以==ba (2)()24cos 248sin(2)4,6π=++=++f x x x x由()0f x '<,得113x -<<-.因此,函数()f x 的单调增区间为3[1]2--,,1[1]3-,;单调减区间为1[1]3--,. ………………6分()f x 在1x =-取得极大值为(1)2f -=;()f x 在13x =-取得极小值为150()327f -=. 由∵313()28f -=,(1)6f = 且5027>138∴()f x 在[-32,1]上的的最大值为(1)6f =,最小值为313()28f -=. ……8分(2) ∵32()f x x ax x a =+++,∴2()321f x x ax '=++.∵函数()f x 的图象上有与x 轴平行的切线,∴()0f x '=有实数解. ……10分 ∴244310a =-⨯⨯≥,∴23a ≥,即a a ≤≥或.因此,所求实数a的取值范围是([3)-∞-+∞,,. …12分 17、解:(1)由不等式21240,得5<n<8.>-+n n n ………………2分 由题意得, 6,7=n . ………………4分 即共有2张卡片正面数字大于反面数字,故所求的概率为215……6分 答: 所求的概率为215………………7分 (2)设取出的是第m 号卡片和n 号卡片(≠m n ),则有2212401240-+=-+m m n n ………………8分即2212(),12由得-=-≠+=n m n m m n m n ………………10分 符合条件的取法为1,11;2,10;3,9;4,8;5,7; ………12分 故所求的概率为2155121=C 答所求的概率为2155121=C ………………14分18、解:方法一:(1) 证明:连结AC ,AC 交BD 于O ,连结EO . ∵底面ABCD 是正方形,∴点O 是AC 的中点,在PAC ∆中,EO 是中位线,∴PA // EO ,而⊂EO 平面EDB 且⊄PA 平面EDB ,所以,PA //平面EDB .…5分(2) 证明:∵PD ⊥底面ABCD 且⊂DC 底面ABCD , ∴DC PD ⊥,∵PD=DC ,可知PDC ∆是等腰直角三角形,而DE 是斜边 PC 的 中线,∴PC DE ⊥. ① 同样由PD ⊥底面ABCD ,得PD ⊥BC .∵底面ABCD 是正方形,有DC ⊥BC ,∴BC ⊥平面PDC . 而⊂DE 平面PDC ,∴DE BC ⊥. ② 由①和②推得⊥DE 平面PBC . 而⊂PB 平面PBC ,∴PB DE ⊥又PB EF ⊥且E EF DE = ,所以PB ⊥平面EFD . ………………10分(3) 解:由(2)知,DF PB ⊥,故EFD ∠是二面角C —PB —D 的平面角. 由(2)知,DB PD EF DE ⊥⊥,.设正方形ABCD 的边长为a ,则a BD a DC PD 2,===,a BD PD PB 322=+=, a DC PD PC 222=+=,a PC DE 2221==.在PDB Rt ∆中,a aa a PB BD PD DF 3632=⋅=⋅=. 在EFD Rt ∆中,233622sin ===a a DF DE EFD ,∴3π=∠EFD .所以,二面角C —PB —D 的大小为3π. ………………14分方法二(理科选择):如图所示建立空间直角坐标系,D 为坐标原点,设a DC =.(1)证明:连结AC ,AC 交BD 于G ,连结EG . 依题意得)2,2,0(),,0,0(),0,0,(a a E a P a A . ∵底面ABCD 是正方形,∴G 是此正方形的中心,故点G 的坐标为)0,2,2(aa, 且(,0,),(,0,)22a aPA a a EG =-=-.∴2=,这表明PA//EG .而⊂EG 平面EDB 且⊄PA 平面EDB ,∴PA//平面EDB . (2)证明:依题意得)0,,(a a B ,),,(a a a -=.又(0,,)22a aDE =,故022022=-+=⋅a a . ∴DE PB ⊥.由已知PB EF ⊥,且E DE EF = ,所以⊥PB 平面EFD . (3)解:设点F 的坐标为),,(000z y x ,λ=,则),,(),,(000a a a a z y x -=-λ.从而a z a y a x )1(,,000λλλ-===.所以00011(,,)(,(),())2222a a FE x y z a a a λλλ=---=---. 由条件PB EF ⊥知,0=⋅PB FE ,即0)21()21(222=---+-a a a λλλ,解得31=λ∴点F 的坐标为)32,3,3(a a a ,且(,,)366a a a FE =--,2(,,)333a a aFD =---∴03233222=+--=⋅a a a ,即FD PB ⊥,故EFD ∠是二面角C —PB —D 的平面角.∵691892222a a a a FD FE =+-=⋅,且 a a a a 6636369||222=++=,aa a a 369499||222=++=,∴2136666cos 2=⋅==a a a EFD . ∴3π=∠EFD .所以,二面角C —PB —D 的大小为3π.(或用法向量求)19、解:(1)令1y =则(1)()(1)2(1)1f x f x f x +=++++, ………2分 所以(1)()24f x f x x +-=+, ………………4分于是当x N +∈时,有(2)(1)214f f -=⨯+,(3)(2)224f f -=⨯+,(4)(3)234f f -=⨯+,……,()(1)2(1)4f x f x x --=-+ ………6分将上面各式相加得:2()33f x x x =+-(x N +∈) ………7分(2)因为当x N +∈,且2x ≥时,2()33f x x x =+-, ………8分 所以不等式()(7)(10)f x a x a ≥+-+恒成立,即当x N +∈,且2x ≥时,不等式233(7)(10)x x a x a +-≥+-+,等价于247(1)x x a x -+≥-恒成立,又2x ≥,所以2471x x a x -+≥- ………12分 因为2474(1)2211x x x x x -+=-+-≥--(当且仅当4131x x x -==-即时取等号),所以2471x x x -+-的最小值是2,故当2a ≤时满足条件. ………14分20、解:(I) 设P (x ,y ),因为A 、B分别为直线5y x =和5y x =-上的点,故可设11()A x x,22(,)B x . ∵OP OA OB =+,∴1212,)x x x y x x =+⎧⎪⎨=-⎪⎩.∴1212,x x x x x y +=⎧⎪⎨-=⎪⎩.………………………4分又20AB =, ∴2212124()()205x x x x -++=.…………………5分∴22542045y x +=. 即曲线C 的方程为2212516x y +=.…………………6分(II) 设N (s ,t ),M (x ,y ),则由DM DN λ=,可得(x ,y - 16) = λ (s ,t - 16). 故x = λs ,y = 16 + λ (t - 16).……………………………………8分∵M 、N 在曲线C 上,∴222221,2516(1616) 1.2516s t s t λλλ⎧+=⎪⎪⎨-+⎪+=⎪⎩……………………………………10分 消去s 得 222(16)(1616)11616t t λλλ--++=.由题意知0≠λ,且1≠λ,解得17152t λλ-=.……………………………12分又 4t ≤, ∴171542λλ-≤. 解得 3553λ≤≤(1≠λ).故实数λ的取值范围是3553λ≤≤(1≠λ).………………………………14分。