saber教程3
Saber入门经典教程
第一章使用Saber Designer创建设计本教材的第一部分介绍怎样用Saber Design创建一个包含负载电阻和电容的单级晶体管放大器。
有以下任务:*怎样使用Part Gallery来查找和放置符号*怎样使用Property Editor来修改属性值*怎样为设计连线*怎样查找一些常用模板在运行此教材前,要确认已正确装载Saber Designer并且准备好在你的系统上运行(找系统管理员)。
注:对于NT鼠标用户:两键鼠标上的左、右键应分别对应于本教材所述的左、右键鼠标功能。
如果教材定义了中键鼠标功能,还介绍了完成该任务的替代方法。
一、创建教材目录你需要创建两个目录来为你所建立的单级放大器电路编组数据。
1. 创建(如有必要的话)一个名为analogy_tutorial的目录,以创建教材实例。
2. 进入analogy_tutorial目录。
3. 创建一个名为amp的目录。
4. 进入amp目录。
二、使用Saber Sketch创建设计在这一部分中,你将使用Saber Sketch设计一个单级晶体管放大器。
1. 调用Saber Sketch(Sketch),将出现一个空白的原理图窗口。
2. 按以下方法为设计提供名称3) 通过选择File>Save As …菜单项,存储目前空白的设计。
此时将出现一个Save Schematic As对话框,如图1所示。
图 12) 在File Name字段输入名称Single_amp。
3) 单击OK。
3. 检查Saber Sketch工作面1)将光标置于某一图符上并保持在那里。
会显示一个文字窗口来识别该图符。
在工作面底部的Help字段也可查看有关图符的信息2)注意有一个名为Single_amp的Schematic窗口出现在工作面上。
三、放置部件在教材的这一部分你将按图2所示在原理框图上放置符号。
图中增加了如r1、r2等部件标号以便参照。
图 2 单级晶体管放大器部件布局1.按以下方式查找和放置npn晶体管符号:1) 单击Parts Gallery图符出现Parts Gallery对话框,如图3所示。
Saber入门教程中文版
Saber⼊门教程中⽂版Saber 软件简介Saber软件主要⽤于外围电路的仿真模拟,包括SaberSketch和SaberDesigner 两部分。
SaberSketch⽤于绘制电路图,⽽SaberDesigner⽤于对电路仿真模拟,模拟结果可在SaberScope和DesignProbe中查看。
Saber的特点归纳有以下⼏条:1.集成度⾼:从调⽤画图程序到仿真模拟,可以在⼀个环境中完成,不⽤四处切换⼯作环境。
2.完整的图形查看功能:Saber提供了SaberScope和DesignProbe来查看仿真结果,⽽SaberScope功能更加强⼤。
3.各种完整的⾼级仿真:可进⾏偏置点分析、DC分析、AC分析、瞬态分析、温度分析、参数分析、傅⽴叶分析、蒙特卡诺分析、噪声分析、应⼒分析、失真分析等。
4.模块化和层次化:可将⼀部分电路块创建成⼀个符号表⽰,⽤于层次设计,并可对⼦电路和整体电路仿真模拟。
5.模拟⾏为模型:对电路在实际应⽤中的可能遇到的情况,如温度变化及各部件参数漂移等,进⾏仿真模拟。
第⼀章⽤SaberSketch画电路图在SaberSketch的画图⼯具中包括了模拟电路、数字电路、机械等模拟技术库,也可以⼤致分成原有库和⾃定义库。
要调⽤库,在Parts Gallery中,通过对库的描述、符号名称、MAST模板名称等,进⾏搜索。
画完电路图后,在SaberSketch界⾯可以直接调⽤SaberGuide对电路进⾏模拟,SaberGuide 的所有功能在SaberSketch中都可以直接调⽤。
启动SaberSketchSaberSketch包含电路图和符号编辑器,在电路图编辑器中,可以创建电路图。
如果要把电路图作为⼀个更⼤系统的⼀部分,可以⽤SaberSketch将该电路图⽤⼀个符号表⽰,作为⼀个块电路使⽤。
启动SaberSketch:▲UNIX:在UNIX窗⼝中键⼊ Sketch▲Windows NT:在SaberDesigner程序组中双击SaberSketch图标下⾯是SaberSketch的⽤户界⾯及主要部分名称,见图1-1:退出SaberSketch⽤ File>Exit。
Saber入门教程
第一章使用Saber Designer创建设计本教材的第一部分介绍怎样用Saber Design创建一个包含负载电阻和电容的单级晶体管放大器。
有以下任务:*怎样使用Part Gallery来查找和放置符号*怎样使用Property Editor来修改属性值*怎样为设计连线*怎样查找一些常用模板在运行此教材前,要确认已正确装载Saber Designer并且准备好在你的系统上运行(找系统管理员)。
注:对于NT鼠标用户:两键鼠标上的左、右键应分别对应于本教材所述的左、右键鼠标功能。
如果教材定义了中键鼠标功能,还介绍了完成该任务的替代方法。
一、创建教材目录你需要创建两个目录来为你所建立的单级放大器电路编组数据。
1. 创建(如有必要的话)一个名为analogy_tutorial的目录,以创建教材实例。
2. 进入analogy_tutorial目录。
3. 创建一个名为amp的目录。
4. 进入amp目录。
二、使用Saber Sketch创建设计在这一部分中,你将使用Saber Sketch设计一个单级晶体管放大器。
1. 调用Saber Sketch(Sketch),将出现一个空白的原理图窗口。
2. 按以下方法为设计提供名称3) 通过选择File>Save As …菜单项,存储目前空白的设计。
此时将出现一个Save Schematic As对话框,如图1所示。
图 12) 在File Name字段输入名称Single_amp。
3) 单击OK。
3. 检查Saber Sketch工作面1)将光标置于某一图符上并保持在那里。
会显示一个文字窗口来识别该图符。
在工作面底部的Help字段也可查看有关图符的信息2)注意有一个名为Single_amp的Schematic窗口出现在工作面上。
三、放置部件在教材的这一部分你将按图2所示在原理框图上放置符号。
图中增加了如r1、r2等部件标号以便参照。
图 2 单级晶体管放大器部件布局1.按以下方式查找和放置npn晶体管符号:1) 单击Parts Gallery图符出现Parts Gallery对话框,如图3所示。
ae中saber的用法
ae中saber的用法Saber是一种常用的效果创建工具,在AE中可以用于创建各种动态效果,如运动模糊、模糊、扭曲、变形等。
本文将介绍Saber在AE中的用法,帮助您更好地掌握这一工具。
一、了解Saber的基本概念Saber是一种基于物理的特效创建工具,它可以根据物体的运动规律和物理属性,模拟出各种动态效果。
在AE中,Saber可以用于创建各种动态图形、文字、物体等效果。
二、使用Saber前的准备工作在使用Saber之前,需要先确保您的AE软件已经安装了Saber插件。
您可以在AE的插件库中找到Saber插件并安装。
三、使用Saber创建动态效果1. 创建新的合成:打开AE软件,创建一个新的合成,设置合成的尺寸、分辨率和时长等参数。
2. 导入素材:将需要创建动态效果的素材导入到AE中。
3. 添加Saber效果:在素材上添加Saber效果,例如运动模糊、模糊、扭曲等。
4. 调整参数:根据需要调整Saber效果的参数,以达到最佳的动态效果。
5. 调整时间线:将调整好的素材移动到时间线上,根据需要调整时间线的速度和时长等参数。
四、使用Saber的高级技巧1. 创建复杂的动态效果:使用Saber创建复杂的动态效果,例如多个物体同时运动、变形等。
2. 调整物体的运动规律:根据物体的运动规律和物理属性,调整物体的运动轨迹、速度、加速度等参数,以获得更加逼真的动态效果。
3. 使用不同的Saber效果:尝试使用不同的Saber效果,例如运动模糊、模糊、扭曲、变形等,以获得不同的动态效果。
4. 结合其他工具:将Saber与其他工具结合使用,例如使用其他插件或工具来增强动态效果的视觉效果和质感。
5. 优化性能:在使用Saber时,需要注意优化性能,避免出现卡顿或崩溃等问题。
可以通过优化合成尺寸、分辨率、素材质量等参数来提高性能。
五、案例分析下面是一个简单的案例,展示如何使用Saber在AE中创建动态文字效果:1. 创建新的合成:创建一个新的合成,设置合成的尺寸为400x400像素,分辨率为72像素/英寸。
Saber中级仿真培训教材(经典)
第一章 SABER的建模方法研究一、前言:SABER仿真软件中的器体模型库很丰富,各种器件模型多达1万个,但它们均是一些通用的器件模型,可以满足大多数情况下的仿真需求。
但在下列三种情况下,就要自已建立模型进行仿真。
1、SABER提供的仿真模型不能满足一些特殊要求,如在进行参数扫描仿真分析时,不能将几个参数同时变化扫描进行仿真。
2、在对控制策略和系统进行仿真时,对于特定的控制算法或调节器通用软件本身不会提供现成的算法模型,此时就必须进行建模。
3、SABER提供的模型本身存在缺陷,仿真不能真实地反映电路或系统的工作情况。
如果遇到上述情况之一,为了取得较好的仿真结果和现实指导意义,建立仿真模型将不可避免。
通常建立仿真模型的方法有两种,一种是基于SABER模型库中已有的模型进行组合,将由多个器件组成的电路打包成一个器件,这种方法也称之为电路等级建模法;另一种是用MAST语言进行编写,对器件的行为进行描述,这在研究控制算法中应用较多。
下面列举实例,从这两个方面进行具体介绍建模的操作方法和思路。
二、基于电路基本器件的建模方法:电路等级建模法。
实例:在进行三相对称电路仿真时,在三相输入或输出的三根相线中串联三个电抗器La、Lb、Lc和并联三个电容进行滤波,并需要三个电抗器的电感值或三个电容值同时变化进行参数扫描分析,为了简化电路和仿真分析,可将它们组合成一个电路符号,并对三个电感和电容进行归一化处理。
1、画电路图:在SaberSketch中,将三个电感和电容接成如图1-1所示的电路。
图1-1、三相滤波电路图2、定义与外电路相连的接线端口和参数:在SABER的器件库界面下,利用关键词hierarchical查找,可以查找出四种接线端:Hierarchical Analog、Hierarchical Bidirection、Hierarchical Input、Hierarchical Output四个接线端口,它们均可放入电路图中与接线端相连,分别适用于模拟、双向、输入和输出端口。
saber中文使用教程之AC分析
如何开始 AC 分析a. 打开 AC 分析对话框( Analyses>Frequency>Small Signal AC... )b. 设置 AC 分析面板的内容, Start Frequency 和 End Frequency 一定要设置,否则,就无法进行仿真了,另外,进行 AC 分析之前,一定要将原理图中被当作 AC 激励源的模型的 ac_mag 参数修改为非零,否则 AC 分析无法得到正确的结果;c. 点击 Apply 按钮,执行 AC 分析。
在默认情况下,成功的 AC 分析会创建一个与原理图文件同名尾缀为 .ac.ai_pl 的波形文件;2. AC 分析的一些有用设置。
AC 分析的设置界面如下图所示。
在设置界面中有两个参数一定要进行设置。
一个是 Start Frequency ,它用于指定 AC 分析的起始频率点,单位为 Hz ,另一个是 End Frequency ,它用于指定 AC 分析的结束频率点,单位和 Start Frequency 一致。
一般情况下,要求 End Frequency 的值比 Start Frequency 的值大。
设置完这两个参数之后,可直接单击 Apply 或者 OK 按钮,执行 AC 分析。
Basic 标签栏中还有另外两个比较常用的参数。
一个是 Increment Type ,它用于指定从 Start Frequency到 End Frequency 之间频率变化的规则, log 表示按对数方式变化, lin 代表线性变化,这个参数将会觉得 AC 分析结果文件的显示方式,默认情况下使用log 方式。
另一个参数是 Number of Points ,它用于控制 AC 分析的精度,其值越高,代表在 Start Frequncy 和 End Frequency 之间插入的分析点越多,分析精度就越高。
剩下的一些常用参数包括 Plot After Analysis , Signal List 以及 Plot File 、 Data File 等,其定义可使用方式与前面介绍的 DT 分析一致,具体情况可参考有关 DT 分析的博客文章《 SaberGuide 的使用(三)》。
Saber使用手册
Saber使⽤⼿册第⼀章使⽤Saber Designer创建设计本教材的第⼀部分介绍怎样⽤Saber Design创建⼀个包含负载电阻和电容的单级晶体管放⼤器。
有以下任务:*怎样使⽤Part Gallery来查找和放置符号*怎样使⽤Property Editor来修改属性值*怎样为设计连线*怎样查找⼀些常⽤模板在运⾏此教材前,要确认已正确装载Saber Designer并且准备好在你的系统上运⾏(找系统管理员)。
注:对于NT⿏标⽤户:两键⿏标上的左、右键应分别对应于本教材所述的左、右键⿏标功能。
如果教材定义了中键⿏标功能,还介绍了完成该任务的替代⽅法。
⼀、创建教材⽬录你需要创建两个⽬录来为你所建⽴的单级放⼤器电路编组数据。
1. 创建(如有必要的话)⼀个名为analogy_tutorial的⽬录,以创建教材实例。
2. 进⼊⽬录。
3. 创建⼀个名为amp的⽬录。
4. 进⼊amp⽬录。
⼆、使⽤Saber Sketch创建设计在这⼀部分中,你将使⽤Saber Sketch设计⼀个单级晶体管放⼤器。
1. 调⽤Saber Sketch(Sketch),将出现⼀个空⽩的原理图窗⼝。
2. 按以下⽅法为设计提供名称3) 通过选择File>Save As …菜单项,存储⽬前空⽩的设计。
此时将出现⼀个Save Schematic As对话框,如图1所⽰。
图 12) 在File Name字段输⼊名称Single_amp。
3) 单击OK。
3. 检查Saber Sketch⼯作⾯1) 将光标置于某⼀图符上并保持在那⾥。
会显⽰⼀个⽂字窗⼝来识别该图符。
在⼯作⾯底部的Help字段也可查看有关图符的信息2) 注意有⼀个名为Single_amp的Schematic窗⼝出现在⼯作⾯上。
三、放置部件在教材的这⼀部分你将按图2所⽰在原理框图上放置符号。
图中增加了如r1、r2等部件标号以便参照。
图 2 单级晶体管放⼤器部件布局1. 按以下⽅式查找和放置npn晶体管符号:1) 单击Parts Gallery图符出现Parts Gallery对话框,如图3所⽰。
saber使用操作
1.翻转元件:选中该元件(可选多个),按R键,可实现90度翻转。
2.电容或电感初始电压或电流值设置:在电容或电感元件的属性里有一项ic设置,默认未设置(undef),设置其为想要的值即可。
3.Saber中,设置元件属性时,不能带任何单位符号,如电阻的“Ω”,电压的“V”,时间的“S”等,否则saber会报错。
4.Saber中,仿真文件名不能和元件库中的元件同名,否则会报错。
5.Saber中,原理图名称最好不要与路径名中有重复,否则会报错。
6.原理图放大或缩小:按“page up”或“page down”即可7.局部放大显示波形:直接拖动鼠标放大,或按“page up”即可8.恢复波形显示原始大小:按“page down”,或在右键菜单里点“zoom →to fit”即可9.按鼠标中键可拖动整个原理图包括波形显示图。
10.波形高级分析:①.双击波形图标,进入cosmosScooe 窗口界面,②.点击tools →measurement tool 显示measurement 窗口,③.点击measurement 窗口的measurement 后面的按钮,默认为At X 按钮,④.共有general 、time domain 、levels 、statistics 、RF 共5个可设置项,分别说明如下:*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***A.general(综合)设置,共有14 个参数:*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***At X :显示X轴Y轴参数At Y :只显示X轴参数Delta X :测量X轴任意两点间的时间,单位:SDelta Y :测量Y轴任意两点间的电压,单位:V(电压有方向)Length :测量Y轴任意两点间的电压,单位:V(电压无方向,取绝对值)Slope :测量斜坡???Local max/min :局部最大、最小测量Crossing :交叉Horizontal level :水平测量线Vertical level :垂直测量线Vertical cursor :垂直测量指针Point marker :波形任意单个点数据测量Point to point :波形任意两点间综合测量Vertical marker :垂直测量线*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***B.time domain(时频)设置,共有14 个参数:*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***falltime :测量脉冲下降时间risetime :测量脉冲上升时间slew rate :脉冲从0上升到最大值所需的时间period :测量脉冲周期frequency :测量脉冲频率fulse width :测量脉冲频率delay :测量脉冲延迟时间overshoot :测量脉冲正峰值undershoot :测量脉冲负峰值settle time :测量脉冲稳定时间eye diagram :*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***C.levels 设置,共11 个测量参数*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***maximum :波形最大值minimum :波形最小值x at maximum :最大值出现时间x at minimum :最小值出现时间peak to peak :脉冲峰–峰值topline :脉冲群顶线base line :脉冲群基线amplitude :脉冲振幅(0 ~ 正最大值)arerage :脉冲直流平均值(包括脉冲负值)RMS :脉冲直流均方根值(正平均值)AC coupled RMS :脉冲交流有效值*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***D.statistics(统计)设置,共13 个测量参数*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***maximum :波形最大值minimum :波形最小值rangl :脉冲峰–峰值mean :脉冲直流平均值(包括脉冲负值)median :中线值standard deviation :标准背离mean +3 std_dev :mean -3 std_dev :histogram :直方图。
Saber仿真软件入门教程
SABER讲义第一章使用Saber Designer创建设计本教材的第一部分介绍怎样用Saber Design创建一个包含负载电阻和电容的单级晶体管放大器。
有以下任务:*怎样使用Part Gallery来查找和放置符号*怎样使用Property Editor来修改属性值*怎样为设计连线*怎样查找一些常用模板在运行此教材前,要确认已正确装载Saber Designer并且准备好在你的系统上运行(找系统管理员)。
注:对于NT鼠标用户:两键鼠标上的左、右键应分别对应于本教材所述的左、右键鼠标功能。
如果教材定义了中键鼠标功能,还介绍了完成该任务的替代方法。
一、创建教材目录你需要创建两个目录来为你所建立的单级放大器电路编组数据。
1. 创建(如有必要的话)一个名为analogy_tutorial的目录,以创建教材实例。
2. 进入analogy_tutorial目录。
3. 创建一个名为amp的目录。
4. 进入amp目录。
二、使用Saber Sketch创建设计在这一部分中,你将使用Saber Sketch设计一个单级晶体管放大器。
1. 调用Saber Sketch(Sketch),将出现一个空白的原理图窗口。
2. 按以下方法为设计提供名称3) 通过选择File>Save As …菜单项,存储目前空白的设计。
此时将出现一个Save Schematic As对话框,如图1所示。
图 12) 在File Name字段输入名称Single_amp。
3) 单击OK。
3. 检查Saber Sketch工作面1)将光标置于某一图符上并保持在那里。
会显示一个文字窗口来识别该图符。
在工作面底部的Help字段也可查看有关图符的信息2)注意有一个名为Single_amp的Schematic窗口出现在工作面上。
三、放置部件在教材的这一部分你将按图2所示在原理框图上放置符号。
图中增加了如r1、r2等部件标号以便参照。
图 2 单级晶体管放大器部件布局1.按以下方式查找和放置npn晶体管符号:1) 单击Parts Gallery图符出现Parts Gallery对话框,如图3所示。
AE插件Saber使用教程
AE插件Saber使用教程AE(Adobe After Effects)是一款常用的电影后期制作软件,拥有丰富的功能和强大的插件系统。
其中,插件Saber是一款广泛使用的AE插件,可以用来创建各种动态而逼真的光效。
本文将为您介绍Saber插件的基本使用方法和一些技巧。
1. 安装Saber插件首先,您需要在AE软件中安装Saber插件。
将插件文件复制到AE的插件文件夹中,然后重新启动AE软件,即可完成插件的安装。
2. 创建一个合成在AE软件中打开一个新的合成,或者选择一个现有的合成。
在合成中创建一个光效效果的图层。
在图层上右键点击,选择“新建”,然后选择“光效”。
3. 添加Saber效果在图层上右键点击,选择“效果”,然后选择“Video Copilot”,再选择“Saber”。
这样,您就可以在图层上添加Saber效果。
4. 调整Saber效果在AE的效果控制面板中,您可以看到Saber插件的各种参数选项。
您可以根据需求调整这些参数,来创造不同的光效效果。
- Core Type(核心类型):可以选择光线的核心形状,例如:线条、圆形、多边形等。
- Core Size(核心大小):可以调整光线核心的大小。
- Core Color(核心颜色):可以选择光线核心的颜色。
- Glow Type(光晕类型):可以选择光线外层的光晕类型,例如:方形、圆形、流光等。
- Glow Size(光晕大小):可以调整光晕的大小。
- Glow Colors(光晕颜色):可以选择光晕的颜色。
- Speed(速度):可以调整光线效果的运动速度。
- Twist(扭曲):可以调整光线的扭曲程度。
5. 添加动画通过Saber插件,您可以为光效效果添加动画,使其更加生动。
在AE中可以使用关键帧来实现这一效果。
- 在时间轴上选择开始时刻,将某些参数值调整到您想要的状态。
- 在时间轴上选择结束时刻,再次调整参数值,使其与开始时刻不同。
- 点击时间轴上的“记录”按钮,然后在开始和结束时刻之间插入关键帧。
Saber 基础教程
第一章使用Saber Designer创建设计本教材的第一部分介绍怎样用Saber Design创建一个包含负载电阻和电容的单级晶体管放大器。
有以下任务:*怎样使用Part Gallery来查找和放置符号*怎样使用Property Editor来修改属性值*怎样为设计连线*怎样查找一些常用模板在运行此教材前,要确认已正确装载Saber Designer并且准备好在你的系统上运行(找系统管理员)。
注:对于NT鼠标用户:两键鼠标上的左、右键应分别对应于本教材所述的左、右键鼠标功能。
如果教材定义了中键鼠标功能,还介绍了完成该任务的替代方法。
一、创建教材目录你需要创建两个目录来为你所建立的单级放大器电路编组数据。
1. 创建(如有必要的话)一个名为analogy_tutorial的目录,以创建教材实例。
2. 进入analogy_tutorial目录。
3. 创建一个名为amp的目录。
4. 进入amp目录。
二、使用Saber Sketch创建设计在这一部分中,你将使用Saber Sketch设计一个单级晶体管放大器。
1. 调用Saber Sketch(Sketch),将出现一个空白的原理图窗口。
2. 按以下方法为设计提供名称3) 通过选择File>Save As …菜单项,存储目前空白的设计。
此时将出现一个Save Schematic As对话框,如图1所示。
图 12) 在File Name字段输入名称Single_amp。
3) 单击OK。
3. 检查Saber Sketch工作面1) 将光标置于某一图符上并保持在那里。
会显示一个文字窗口来识别该图符。
在工作面底部的Help字段也可查看有关图符的信息2) 注意有一个名为Single_amp的Schematic窗口出现在工作面上。
三、放置部件在教材的这一部分你将按图2所示在原理框图上放置符号。
图中增加了如r1、r2等部件标号以便参照。
图 2 单级晶体管放大器部件布局1. 按以下方式查找和放置npn晶体管符号:1) 单击Parts Gallery图符出现Parts Gallery对话框,如图3所示。
Saber仿真软件入门教程
Saber仿真软件入门教程SABER讲义第一章使用Saber Designer创建设计本教材的第一部分介绍怎样用Saber Design创建一个包含负载电阻和电容的单级晶体管放大器。
有以下任务:*怎样使用Part Gallery来查找和放置符号*怎样使用Property Editor来修改属性值*怎样为设计连线*怎样查找一些常用模板在运行此教材前,要确认已正确装载Saber Designer并且准备好在你的系统上运行(找系统管理员)。
注:对于NT鼠标用户:两键鼠标上的左、右键应分别对应于本教材所述的左、右键鼠标功能。
如果教材定义了中键鼠标功能,还介绍了完成该任务的替代方法。
一、创建教材目录你需要创建两个目录来为你所建立的单级放大器电路编组数据。
1. 创建(如有必要的话)一个名为analogy_tutorial的目录,以创建教材实例。
2. 进入analogy_tutorial目录。
3. 创建一个名为amp的目录。
4. 进入amp目录。
二、使用Saber Sketch创建设计在这一部分中,你将使用Saber Sketch设计一个单级晶体管放大器。
1. 调用Saber Sketch(Sketch),将出现一个空白的原理图窗口。
2. 按以下方法为设计提供名称3) 通过选择File>Save As …菜单项,存储目前空白的设计。
此时将出现一个Save Schematic As对话框,如图1所示。
图 12) 在File Name字段输入名称Single_amp。
3) 单击OK。
3. 检查Saber Sketch工作面1)将光标置于某一图符上并保持在那里。
会显示一个文字窗口来识别该图符。
在工作面底部的Help字段也可查看有关图符的信息2)注意有一个名为Single_amp的Schematic窗口出现在工作面上。
三、放置部件在教材的这一部分你将按图2所示在原理框图上放置符号。
图中增加了如r1、r2等部件标号以便参照。
Saber教程全
Saber软件的历史提到Saber软件的历史,就不得不提到几个公司Analogy,Avanti和Synopsys.Saber于1987年由Analogy公司推出,专用与混合信号和混合技术领域仿真验证.大家需要注意的一点是,1987年到现在已经20年了,也就是说Saber 这个软件产品从出生到现在已经活了20年.在非常注重商业效益的西方社会,一个软件产品在经历了20年的市场风雨以后,依然能够继续存在,只能说明一点,它确实有用,能够帮用户解决一些设计问题.到了90年中期,Avanti公司收购了Analogy 公司,Saber软件变成了Avanti公司的产品.在后来,到2000年左右的时候,Avanti 公司在那场EDA行业中最为惨烈专利战争中败给了当时的EDA行业巨头CADENCE,并为此要付出高额赔偿.当时EDA行业的另一巨头Synopsys抓住机会,将Avanti公司收购,而Saber软件也再次易主,成为Synopsys公司的产品.关于Synopsys公司和EDA行业,我不多说,有兴趣的网友可以上网查查.Saber软件的特点及应用领域Saber软件的特点我想主要有这么几个,一是集成度高,从调用绘制原理图到仿真分析,可以在一个环境中完成,不用切换工作环境.二是各种分析功能齐全,即可以进行DC、DT、AC、TR等这些基本功能分析,也能进行温度、参数灵敏度、蒙特卡诺、噪声、应力、失真等高级分析.三是强大的仿真数据后处理能力,运动SaberScope 工具,可以方便,自由的对仿真结果数据进行各种分析和比较乃至运算,同时,Saber 软件的交叉探针功能(crossprobe)可以很方便的在Sketch中观察仿真结果数据.Saber软件的工具环境Saber软件主要包括SaberGuide、SaberSketch、SaberScope三部分.SaberSketch主要用于绘制电路图,而SaberGuide用于仿真控制,仿真结果可在SaberScope查看.并且,目前Saber软件支持WindowsXP,Linux, UINX等多种平台.讨论SaberSketch的使用.如果我们采样基于原理图的仿真方式,那么Sketch是我们在整个仿真过程中主要操作的一个界面.先来看看要完成一次仿真,在Sketch中需要做些什么工作.1.启动Sketch,新建一个原理图设计;(呵呵,有点废话)2.选择和放置电路元件;3.设置元件参数;4.连线并设置网络节点名称;5.对混合信号以及混合技术的情况下,对接口部分进行处理;6.新建符号并添加到原理图中(如果需要)7.添加图框;(如果需要)8.保存设计,退出或启动SaberGuide界面,开始仿真设置.这几个步骤中,1和8我想不用介绍了,5和6我曾经在以前的博客文章中介绍过,7 做为可选项我不准备介绍,毕竟大家在PartGallery里找找就能找到包含图框的目录.着重介绍一些2、3、4.先来看看第二步选择和放置元件,关于如何放置元件,我想大家都会,在PartGalley里选中要放置的器件,双击鼠标左键就可以在原理图编辑界面中仿真一个符号了.新版的Saber中,支持鼠标的拖拽,即选中器件后,按住鼠标左键就可把元件拖入原理图编辑界面.下面主要介绍一下,如何在Sketch中找到需要的模型符号,在介绍这部分内容之前,先澄清几个概念,以便理解后面的一些过程.首先是符号和模型.对于仿真器而言,只能接受按固定语法描述的网表以及模型文件,无法理解符号以及由符号构成的原理图;而对于普通使用者而言,模型以及网表的语法过于抽象,不能直观的反映设计思想.为了解决这种矛盾,EDA工具中便有了符号和模型的概念.符号主要给人使用,用来编辑原理图;模型主要给仿真器(即计算机)用,用来建立数学方程.Saber中的符号和模型存在一一对应的关系,PartGallery中的每一个符号,都有一个模型与之对应.因此,用户在PartGellery中调用的符号就等于调用了模型,不过这种方式更为直观.需要注意的是,如果PartGallery中没有需要的模型符号,也就代表Saber的模型库中没有需要的模型,此时要想继续仿真,用户就必须自己提供(建模或者下载)模型并为模型建立相应的符号.另外,Saber软件中模型和网表问题的尾缀是一样的,都是*.sin,或许是因为它把网表也看成一个大的模型吧.另外两个需要了解的概念是模板(template)和器件(component).Saber里的模型就分这两类.简单的说,模板(template)是基于某一类器件的通用模型,它需要用户根据需要设置各种参数以达到使用要求;而器件(component)是某一或者某一系列商用元件(如LM324)的模型,它无须用户进行任何设置,可直接使用.另外,Saber的component 库分两种,DX库和SL库,后者比前者缺少容差和应力分析参数.来讨论一下如何在Sketch找到合适的器件.对一张原理图来讲,要完成对它的分析验证,首先是需要保证原理图中的各个元器件在Saber模型库中都有相应的模型;其次要保证在Sketch中绘制的原理图与原图的连接关系一致;再者就是根据目标系统的工作特点,设置并调整相应的分析参数.这三个条件都达到,应该能得到一个不错的分析结果.一张原理图中需要的模型涉及很多,但不管怎样,其所对应的模型正如我前面介绍的那样,只有template和component两种.对于需要设置参数template 模型,需要去PartGallery中寻找;而component模型则直接可以利用PartGallery 的search功能或者Parametric Search 工具进行进行查找.对于template对应的模型,由于template是某一类元件的通用模型,因此我们要在PartGallery里按照器件分类去寻找,而PartGallery的库组织结构也正是按照类来划分的.以下面的PartGallery为例(对应版本是Saber2006.06,以前的版本会有一些区别).在PartGallery中顶层目录按照大的应用领域和市场领域划分.比如Aerospace 目录下主要包含与宇航工业相关的一些模型;Automotive目录下主要包括与汽车行业相关的一些模型;Power System 目录下主要包括与电源系统设计相关的模型.这种分类方法的一个目地就是,如果你确定自己的目标系统属于其中的一个,就可以直接在该目录下查找所有需要的模型了.当然,还有一种分类方法,就是按照技术领域分类.个人认为,这种分类方法对于搞技术的人来说更加直观和方便.在上面的图中直接左键单击MAST Parts Library 目录,就可以得到如下图所示的展开.从上图中看,就可以更为直观的按照技术领域寻找需要的template模型了.比如,要找电机之类的模型,可在Electro-Mechanical目录下找,要找机械负载模型,可在Mechanical目录下找,各种激励源或者参考地可在Sources,Power,Ground目录下找.各种模拟数字电路可在Electronics目录下找.查找template模型的另一种方法是利用PartGalley的search功能.如下图所示:在search栏里输入需要查找的关键字符就按回车就可以了,利用这个功能需要对saber的template模型命名规则有一些了解.基本上,saber中template模型的名字都与其英文术语多少有些关系.比如,gnd 代表参考地,resistor 代表电阻,capacitor 代表电容, switch 代表开关之类的. 同时,还可以通过Search Object 和 Search Match去修改search的规则和范围,提高search 的效率.这些选项的具体含义看参考saber的帮助文档.需要注意的是,通常情况下,不用去改变这两个选项.在PartGallery里查找component的方法主要有两种,一种直接利用PartGallery 的search功能去搜索,只要清楚的知道所需模型的名称,就可以在search中输入查找,如果Saber的模型库中有该器件的模型,则会在下面显示出来.如果下图所示,是查找运算放大器NE5532的结果.需要注意的是,不同的尾缀主要是器件封装上的区别.但有一种例外,以_sl结尾的属于前面介绍过的SL库,这种模型没有MC和STRESS特性,但仿真速度很快.当用上述方法查找没有任何输出的时候,则表明Saber软件模型库中没有这个模型.这种情况下,可以去器件厂商的网站上找找,看看有没有提供该器件的模型,基于saber的或者基于spice都可以.如果是saber的,可直接为其建立符号并引用;如果是基于spice的,则需要用sketch中的Nspitos工具将其转换为saber模型以后在使用.但如果没法找到需要的模型,则需要对其进行建模,这是很多设计者不愿意做的事情.除了建模以外,我们还可以利用sketch中的parametric search工具来近似的完成任务.利用这个工具在PartGallery中查找指标参数和所需器件相近或者一样的模型来替代原图中的器件进行仿真,这样也能达到验证的目地.Parametric search工具如下图所示:首先选择器件类型,然后在后面出现的对话框中设置各种参数,缩小匹配器件的范围,如下图所示的运算放大器设置界面,在其中设置各种参数以后,单击finish按钮,可得到检索结果,在结果中选择一个可接受的,就可以作为替代模型使用了.1. 基本参数及其含义前面曾经介绍过Saber的模型库主要有两类模型,一类是component,不需要设置的任何参数,可以直接使用;另一类是template,需要根据目标器件的特点设置各种参数以达到使用要求.无论是哪一类模型,都含有最基本的两个参数,一个是primitive,另一个是ref.primitive参数表明符号对应的模型名称,而ref参数是该模型在原理图中的唯一标识符,我想这个概念用过其他原理图编辑软件的网友,都应该能了解.如下图所示:上图是sketch电阻模型的参数设置界面,可以通过在sketch中双击该器件符号启动该设置界面.图中primitive属性的值为r,表明该符号对应的模型名称为r,在saber安装目录的template目录下,会有一个r.sin文件,里面包含着名字为r的模型.图中ref参数的值为r1,这表明这个器件在该图中的唯一表示符是r1,即在同一张原理图上,不能再出现ref值为r1的电阻模型,否则sketch会报错.值得一提的是,这两个参数都是软件自动指定的,其中primitive参数一般不允许用户更改,所以为锁定状态(蓝色的锁表示锁定该属性),而ref参数可由用户修改,因此在修改ref参数的时候要注意,不要把该参数设置重复了.另外,框中黑点表示该属性名称及值在电路图中不可见,半绿半黑表示该属性的值在电路图中可见,全绿表示该属性名称及值在电路图中都可见.对于上图中的设置,则在电路图中有如下显示:2. 获取参数含义的基本方法至于模型中的其他参数,就需要用户根据自己的需要进行设置了,由于saber软件template非常多,而且每个template带的参数也不少,因此不可能一一介绍参数的含义.这里给出几种查找参数定义的方法:a. 在属性编辑器的下拉菜单中,选择Help>Help on Part,会启动Acrobat reader,并显示与模型相关的帮助文档.b. 选中属性,在属性编辑器左下角的Help处会显示该属性的含义.c. 在属性编辑器中选择Help>View Template,或者在电路图中,鼠标移至元件符号处,从右键快捷菜单中选择View Template,可以查看器件的MAST模板,在里面会有各种参数的解释.3. 关于全局变量的设置Saber软件提供了一种全局变量参数设置的方法.这种全局变量一旦设定以后,可以被整个原理图中所有元器件引用.该全局变量设置符号的名称为“Saber Include File”,可以利用它指定全局变量.有兴趣的网友可以去试试,但需要主要,元件的属性定义优先于全局变量定义的值.4. 关于变量的分层传递关于这个问题,我曾在我的博客文章《滤波器电路仿真》和《滤波器电路仿真续》中仔细介绍过,有兴趣的网友可以去查查看.来谈谈sketch中如何布线的问题,这个问题不太复杂,在这里只是对布线方法和过程做一个简单的总结.1. 如何开始一段布线?先来看看如何在sketch中开始一段布线,通常有四种途径可以在sketch中开始一段布线:a. 将鼠标移至元件管脚处,图标变成十字架,表示鼠标已在管脚处,点击左键即可开始画线;b. 快捷键方式-按W键开始画线;c. 点击图标栏中的布线按钮开始画线;d. 选择Schematic>Create>Wire,或者从右键快捷菜单中选择Create>Wire 命令开始画线;2.如何控制走线方向?要改变布线方向,在指定位置点击左键,然后可以继续画下一段线.在布线过程中,如果按Escape键可取消整个布线;如果双击鼠标左键,可完成这段布线;布线完成以后,如果左键单击选中这段线并Delete键,可删除这段布线.这里需要注意的是两个问题,一是sketch中默认的布线都是正交方式,如何绘制任意角度的线呢?二是在布线过程中,如果只想取消到上一个端点的布线而不是整根布线,该如何处理(注意:Escape键是取消整根布线)?布线时,在未结束布线前,点击鼠标右键,可弹出快捷菜单,菜单中的Any-Angle Segment命令可以实现任意角度布线,而Delete Previous Vertex命令可以删除先前的端点.3.如何给连线命名?画完连线后,可以给它命名,如果不命名,Sketch会自动为连线生成一个名字(如_n183).虽然这样,但对于连线比较多的目标系统,还是建议针对关键节点进行命名,以便在scope中观察结果.给连线命名的方法如下:a. 将光标移至连线上,高亮显示红色,单击鼠标右键,在弹出菜单中选择Attributes命令;b. 操作显示连线属性框,在Name栏更改连线的名字,在Display栏选择是否sketch中显示连线名字;c. 在连线属性框中的左下脚的Apply 按钮即可.需要注意的是,连线名称应用字母和数字构成切不能和Saber的命令或者MAST 模板的保留字同名.另外,如果多个连线连到同一个点,只需命名一条连线,Sketch会将此命名应用到与其相连的其它连线.4. 如何实现不直接连接但表示同一网络节点?有时候,由于要绘制的原理图比较复杂,各种线相互交杂,使得阅读原理图非常不方便,这就需要一种不直接连接,但能表示为同一网络的方法以简化原理图.Sketch 中只要两条连线名称相同,就被认为是相连的,因此可用命名相同连线名称的方法实现,但这种方法相对不够直观.另一种方法是使用页间连接器(Same Page Connector),其符号位于Parts Gallery的MAST Parts Library>Schematic Only>Connector,编辑其Name属性即可改变连线名称,通过页间连接器来定义连线名称,这样要更为直观一些.5. 如何绘制一组线?可以使用使用Bundle功能来绘制一组连线.在Sketch图标栏中选择bundle图标,如同画连线一样.要从bundle中添加或移走连线,仅连接或去除连到bundle上的连线即可.Sketch用附于bundle上的连线名来决定连线间的连接,连线名可以在电路图中直接编辑.要修改bundle的属性,高亮显示bundle,从右键快捷菜单中选择Attributes,或者双击bundle.在Sketch中完成电路图后,就可以对设计进行仿真了.在开始今天仿真设置之前,建议对所绘制的原理图进行一次简单的检查.这一步是很有用,因为有很多仿真中出现的问题,都跟原理图有关系.检查的内容主要包括以下几个方面:1. 原理图是否和目标系统一致,有没有连错线路,或者参数设置不对;2. 如果是混合技术混合信号系统,各种接口设置是否正确;3. 系统中有没有对地短路的节点;4. 系统中有没有悬空的节点;5. 如原理图分层次,确认当前的是不是顶层原理图.在完成检查之后,可以通过在sketch中通过Design/Netlist 命令为原理图自动产生网表(关于网表和原理图的关系,以前已讨论过).如果报错,则根据出错信息修改原理图,如果没有报错,则表明已生成网表,可继续调用 Design/Simulate将网表文件加载到仿真器当中,同时启动SaberGuide仿真环境设置界面(注意:此时仍在Sketch框架内,不过菜单和快捷按钮发生了变化).如果一切正常,则会在右上角的状态栏上显示 Saber Ready或者 Simulator Ready(不同版本的区别),如果出错,则要根据出错信息修改原理图,并重复上述过程直至能够正常加载网表文件为止.到了这里,就进入了SaberGuide工具的管辖界内,可以开始仿真了.仿真的过程操作相对简单,通过快捷按钮或Analysis菜单下的相应命令启动所需进行分析的设置界面,根据要求进行设置,单击OK或者Apply按钮就可以开始仿真了.仿真结束以后,可以通过scope后者sketch中的probe工具观察仿真结果.Saber软件提供的分析功能很多,每一种分析功能都有自己特定的应用领域.在这里不准备一一介绍,着重讨论一下4个基本也是最常用的分析功能,DC、DT、AC、TR.1. 如何开始DC分析a. 打开DC分析对话框(Analyses>Operating Point>DC Analysis)b. 设置DC分析面板的内容,大多数情况下,Saber用默认设置就可以制定工作点.c. 点击Apply按钮,执行DC分析.成功的DC分析会创建一个End Point File处指定的初始点文件,包含系统中每个节点的电压和电流.2. DC分析的一些有用设置.DC分析的设置界面如下图所示.在设置界面中有两个参数可用于调试DC分析以得到合理的分析结果.一个是Monitor Progress,如果设为0,Transcript将报告分析的整个执行时间;如果设为-1,Transcript将报告执行概要和时间;如果设为正数,Transcript将报告电路系统的总体信息、运算法则、CPU时间等.另一个是Debug,它对Saber计算的每个可能方案进行统计,该特点通常用于当Saber用默认设置不能找到工作点或者要知道设计在工作点上是否收敛.另外,在Input Output标签栏,还有两个参数比较常用.一个是Starting Initial Point File,它包含在DC分析开始时,所有设计变量的初始值.默认文件名(zero),设置所有连续时间变量(模拟)为0,如果在数字管脚上,事件驱动(数字)或者不定义或者为一个初始值.另一个是 Ending Initial Point File,它包含在DC分析完成处的节点值,用该文件作为其它Saber分析的初始点文件,如时域(瞬态)和小信号频域(ac).默认情况下,Saber为该文件命名dc.3. 如何查看DC分析的结果.在SaberGuide中有两种方法可以查看DC分析的结果,一种是通过DC分析报告查看,另一种是直接将DC分析结果反标到原理图上.在SaberGuide用户界面内,选择Results>Operation Point Report下拉菜单,可调出显示DC分析结果的设置对话框,采用默认设置,点击Apply按钮,则可在Report Tool中显示DC分析结果. 在SaberGuide用户界面内,选择Results>Back Annotation... 下拉菜单,可直接将DC分析结果反标到原理图上.4. DC分析的意义.DC分析的结果是一组数值,这些数值定义了在time=0时,非线性系统的稳定状态的值.DC分析遵循一下几个规则:a. 将所有随时间变化的参数以及它们的衍生物设置为0;b. 将所有噪声源设置为0;c. 将所有ac源设置为0;d. 将所有随时间变化的元件可以从电路中有效移走(如:电容器视为开路,电感视为短路);e. 将所有与时间有关的源有效移走;5. DC分析的作用DC分析在Saber软件中地位非常重要,可以说它是其它分析的基础.具体来说,它有两个基本作用:a. 它为其它分析的提供工作点,Saber用工作点作为时域分析的首个数据点.对小信号频率分析,Saber在工作点周围应用小正弦信号;c. 提供快速检查,以查出可能不正确的部件参数.虽然大多数电路图工具有电气规则检查来验证设计的连接性,但是这些工具不能查出来指定的元件参数,如:如果100kΩ的电阻器上忘记“k”,或者与DC电源连接反向了,设计将会通过检查,但是系统功能是不正确的.1. 如何开始DT分析a. 打开DT分析对话框(Analyses>Operating Point>DC Transfer)b. 设置DT分析面板的内容,Independence Source 和 Sweep range一定要设置,否则,就会出现lan_boy001网友在留言中提到的那种错误“Required Fields not Complete!!”c. 点击Apply按钮,执行DT分析.在默认情况下,成功的DT分析会创建一个与原理图文件同名尾缀为.dt.ai_pl的波形文件.2. DT分析的一些有用设置.DC分析的设置界面如下图所示.在设置界面中有两个参数一定要进行设置.一个是Independence Source,它用于制定DT分析所扫描的独立源,其输入可以是系统中的任何一个独立激励源,如电气上的电压源、电流源,后者电磁系统的磁通源和磁势源等,但一定要是独立源,受控源不能作为其输入,可以通过点击旁边的箭头选择Browse Design,通过弹出的对话框进行选择并指定.另一个必须设置的参数是Sweep Range,它用于制定所扫描变化独立源的变化规则以及内容.系统默认的是变化规则是step by 模式,即所谓的步进模式,即从一个起始值开始按照固定的步长进行变化,到结束值为止.选择这种模式,下面的from 后面设置起始值,to后面设置结束值,by 后面设置步长.下面在来看看DT分析和后面要介绍的其他几种分析所共有的几个设置参数.一个是上图中的Plot After Analysis, 改参数用于确定在分析接受一个是否自动在Scope中打开分析结果文件以及打开的方式,默认设置的NO,不打开;可改选为Yes或者其它参数.在来看看Input Output标签栏的几个参数,Input Output 标签栏如下图所示:其中常用的几个是Signal List,Include Signal Types以及Plot File和Data File 参数. Signal List栏用于设置分析结果文件中包含那些系统变量,它有一套固定的语法表达,这里就不仔细介绍了,只是简单看看它的设置菜单中的几个选项(单击旁边的箭头可弹出下拉菜单).a. All TopLevel Signals 表示所有顶层变量(默认值);b. All Signals 表示系统中的所有变量;c. Browse Design 可通过弹出的选择界面进行选择.Include Signal Types用于设置分析结果文件中包含那种类型的系统变量.其中a. Acoss Variables Only 只包含跨接变量;b. Throught Variables Only 只包含贯通变量;c. Acoss and Through Variables 包含跨接以及贯通变量;通常情况下,Signal List 和Include Signal Types 需要配合使用. Plot File 和Data File用于指定输出波形文件和数据文件的名字.关于这几个参数设置的定义以及使用,看参考我以前的博客文章《Saber中如何控制TR分析的仿真数据大小》.3. 如何查看DT分析的结果.在SaberGuide中有两种方法可以查看DT分析的结果,一种是通过SCOPE查看分析结果的波形文件,另一种是利用交叉探针(Probe)功能直接在原理图上查看分析结果波形.在SaberGuide用户界面内,选中一个系统节点并单击邮件,在弹出菜单中选择Probe即可显示改节点的波形.另外,在Scope中打开分析结果文件,选择需要观察的信号,并双击,也可在Scope中显示分析结果.4. DT分析的意义.DT分析的实际上是在用户指定的范围内,对独立电压(电流)源按照指定步长进行扫描变化,并计算系统的直流工作点.其基本功能还是计算系统的直流工作点.5. DT分析的作用DT分析常用于分析器件以及系统的各种直流特性,如BJT、MOSFET的转移特性等,如下图所示:功能的运算放大器》提到的例子.1. 如何开始AC分析a. 打开AC分析对话框(Analyses>Frequency>Small Signal AC...)b. 设置AC分析面板的内容,Start Frequency 和 End Frequency 一定要设置,否则,就无法进行仿真了,另外,进行AC分析之前,一定要将原理图中被当作AC激励源的模型的ac_mag参数修改为非零,否则AC分析无法得到正确的结果;c. 点击Apply按钮,执行AC分析.在默认情况下,成功的AC分析会创建一个与原理图文件同名尾缀为.ac.ai_pl的波形文件;2. AC分析的一些有用设置.AC分析的设置界面如下图所示.在设置界面中有两个参数一定要进行设置.一个是Start Frequency,它用于指定AC分析的起始频率点,单位为Hz,另一个是End Frequency, 它用于指定AC分析的结束频率点,单位和Start Frequency一致.一般情况下,要求End Frequency。
Saber入门经典教程
Category Name
/
Search String
ground
1) 选择选择 Options>Preferences 菜单条目。
2) 单击 Search 页签并选择设定值如下:
Search part by
Part Name
Search match 3) 单击 OK。
Beginning with
4) 单击 Search 按键。
1) 单击 Parts Gallery 图符 所示。
出现 Parts Gallery 对话框,如图 3
图 3 Parts Gallery 对话框
2) 设置以下 Parts Gallery 字段:
Category Name(目录名) /
Search String(查找串) npn
Available Categories
标。
会 显 示 Property Editor 对 话 框 。 注 意 , 由 于 设 定 了 Visibility
Indicators(Vis),因而可为一些属性显示值。通过多次点击这些指示器,并根据
原理图窗口显示的情况,设置指示器, 如图 5 所示。
图 5 属性框 4) 在 Property Editor 对话框中,将 ref 属性改为 VCC。 5) 将 dc_Value 属性改为 12,默认为 V。 6) 在 Property Editor 对话框中,单击 Apply 键。
,在原理
4
10)在 Saber Sketch Icon Bar 中,单击 Zoom to Fit 图符
,使用
Zoom 图符来处理显示内容的大小。
3. 使用下列 Parts Gallery 设定值及图 2 所示的部件布局图来查找并放置
saber中文使用教程SaberSimulink协同仿真
Saber中文使用教程之软件仿真流程今天来简单谈谈 Saber 软件的仿真流程问题。
利用 Saber 软件进行仿真分析主要有两种途径,一种是基于原理图进行仿真分析,另一种是基于网表进行仿真分析。
前一种方法的基本过程如下:a. 在 SaberSketch 中完成原理图录入工作;b. 然后使用 netlist 命令为原理图产生相应的网表;c. 在使用 simulate 命令将原理图所对应的网表文件加载到仿真器中,同时在Sketch 中启动 SaberGuide 界面;d. 在 SaberGuide 界面下设置所需要的仿真分析环境,并启动仿真;e. 仿真结束以后利用 CosmosScope 工具对仿真结果进行分析处理。
在这种方法中,需要使用 SaberSketch 和 CosmosScope 两个工具,但从原理图开始,比较直观。
所以,多数 Saber 的使用者都采用这种方法进行仿真分析。
但它有一个不好的地方就是仿真分析设置和结果观察在两个工具中进行,在需要反复修改测试的情况下,需要在两个窗口间来回切换,比较麻烦。
而另一种方法则正好能弥补它的不足。
基于网表的分析基本过程如下:a. 启动 SaberGuide 环境,即平时大家所看到的 Saber Simulator 图标,并利用 load design 命令加载需要仿真的网表文件 ;b. 在 SaberGuide 界面下设置所需要的仿真分析环境,并启动仿真;c. 仿真结束以后直接在 SaberGuide 环境下观察和分析仿真结果。
这种方法要比前一种少很多步骤,并可以在单一环境下实现对目标系统的仿真分析,使用效率很高。
但它由于使用网表为基础,很不直观,因此多用于电路系统结构已经稳定,只需要反复调试各种参数的情况;同时还需要使用者对 Saber 软件网表语法结构非常了解,以便在需要修改电路参数和结构的情况下,能够直接对网表文件进行编辑saber中文使用教程Saber/Simulink协同仿真接下来需要在Saber中定义输入输出接口以便进行协同仿真,具体过程如下1. 启动Sketch并打开throttle_control_system.ai_sch文件,如下图所示:2.删除图中的throttle_controler符号,如下图所示:3 在Sketch启动SaberSimulinkCosim Tool,并在其界面中选择File/Import Simulink 命令,在弹出的对话框中选择throttle_controller_cosim.mdl文件,SaberSimulinkCosim Tool会自动为该MATLAB模型建立相关Saber符号,如下图所示:注意: 上图中左上方的Cosim Step Size(s)栏可以设置Saber和SIMULINK数据同步的步长,默认值为1ms, 根据系统时间常数来设置.4 保存上一步创建的符号并利用Sketch中的Schematic/Get Part/By Symbol Name 命令将该符号放入第2步修改好的原理图中,完成连线后,将该图另存为throttle_control_system_cosim.ai_sch.Sketch的使用之saber模型参数及其设置1. 基本参数及其含义前面曾经介绍过 Saber 的模型库主要有两类模型,一类是 component ,不需要设置的任何参数,可以直接使用;另一类是 template ,需要根据目标器件的特点设置各种参数以达到使用要求。
saber中文使用教程SaberSimulink协同仿真之三
saber中文使用教程Saber/Simulink协同仿真之三
接下来需要在Saber中定义输入输出接口以便进行协同仿真,具体过程如下1. 启动Sketch并打开throttle_control__sch文件,如下图所示:
2.删除图中的throttle_controler符号,如下图所示:
3 在Sketch启动SaberSimulinkCosim Tool,并在其界面中选择File/Import Simulink 命令,在弹出的对话框中选择throttle_controller_文件,SaberSimulinkCosim Tool会自动为该MATLAB模型建立相关Saber符号,如下图所示:
注意: 上图中左上方的Cosim Step Size(s)栏可以设置Saber和SIMULINK数据同步的步长,默认值为1ms, 根据系统时间常数来设置.
4 保存上一步创建的符号并利用Sketch中的Schematic/Get Part/By Symbol Name 命令将该符号放入第2步修改好的原理图中,完成连线后,将该图另存为throttle_control_system__sch.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前段时间收到一位网友的来信,对我博客中的一篇文章《半桥推挽电路的开环仿真》提出了疑问。
疑点主要在于当驱动电压为高时,三极管CE两端电压应该趋于饱和,但在仿真中确看到为高电平;而当驱动电压为低时,三极管两端电压应该为高,但在仿真中确看到为低电平。
具体情况如下图所示:
仿真原理图
三极管C极以及驱动电压
上图中Vtop其实就是三极管CE两端的电压。
仔细查看当时用作分析的电路以及分析结果后发现,这个电路的仿真确实存在问题。
观察变压器原副边的端压如下图所示:
从上图看,当驱动为高电平时,变压器原副边电压都为低,这与工作原理是不一致的。
实际上当驱动为高时,变压器原边电压应该为高,相应的副边电压也应该为高。
反之亦然,当驱动电压为低时,变压器原副边电压也响应为低。
而这个电路仿真的波形确恰好相反。
所以,该仿真电路的结果并没有真实反映推挽的工作原理。
那么,为什么能得出貌似正确的结果呢?有待进一步分析...... 仔细分析电路,发现该电电路存在以下问题:
1. 电路中采用的是X2变压器模板,改模板虽然设置简单(只用设置原副边匝数就可以),但确非常理想,相当于一个VCVS,而不是通过电流传递能量;
2. 三极管B极没有驱动电阻,因此B极的电流Ib = 15/三极基极电阻,B极电流非常大。
并且当驱动电压为高电平时,B极电压(+15V)比C极电压(+12V)还高。
通过观察三极管B/C/E极电流可以看出三极管处于非正常工作状态,如下图所示:
在这种情况下,三极管C极的电压由B极电压决定,比B 极电压低一个PN结的压降。
因此才会出现当驱动为高时,C极电压也为高。
此时,变压器原边电压为12V电压和三极管C极电压之差,因此为低。
如
果将驱动电压高电平改为10V,则三极管的C极电压高电平会随之减小,如下图所示:
而当驱动电压为低时,由于三极管关断。
但由于变压器的原边输入阻抗要比三极管的关断阻抗大很多(VCVS 的输入阻抗无穷大),因此,按照阻抗分压,三极管C极的电压很小,就出现了低电平的情况。
此时,变压器原边电压为12V电压和三极管C极电压之差,因此为高。
对于X2变压器模板,由于相当于VCVS,因此主要根据原边电压决定副边电压而非电流,因此就出现了前面提到的那种貌似正确的结果。
针对前面的
分析,对该电路做如下修改:
1.采用xfrl2变压器模板代替X2模板, 变比与原来一致;
2.调整二极管的位置, 便于吸收开关关断时由变压器电感产生的尖峰电压;
3.在三极管B极增加驱动电阻;
4.将三极管驱动电压改为-5V~10V,加速三极管结电容的放电.
具体情况如下图所示:
其仿真结果如下图所示:
驱动电压与三极管C极电压
驱动电压与变压器原副边电压
从以上分析结果看, 修改以后的仿真电路和结果似乎符合了实际的工作原理, 但细心的网友会发现, 这个电路其实仍然有问题, 能看出问题所在的网友不防指出来, 大家一起讨论. 对前面修改过的原理图进行TR
分析,设置TEND=500u,会发现输出电压出现异常。
如下图所示:
三极管C极电压也出现异常,如下图所示:
变压器原副边电压同样出现异常,如下图所示:
现似乎原边电流出现饱和。
如下图所示:
仔细观察电路发现,由于钳位变压器尖峰电压的二极管只是提供了快速放电的通路,但确不具备将能量回溃给输入电压或者消耗掉的能力,因此在每个开关周期以后,剩余能量都会贮存在变压器中,导致变压器电流逐步上升,引起变压器的磁饱和。
但是电路中采用的xfrl2变压器模板是线形变压器模板,不具备磁饱和特性。
因此不是变压器引起原边电流限流,考虑三极管B极有100欧姆的驱动电阻,其B极最大电流为10/100 = 100mA,Saber中三极管模板的电流放大倍数默认为100,因此C极电流最大为Ic=100mAX100=10A 左右,这与上图中的仿真结果相似,因此可以判断,引起原边电流限流的原因在于三极管。
根据前面的分析,考虑在二极管放电通路上提供一个消耗能量的器件,以保证在每个开关周期内,将剩余能量消耗掉,
辅助变压器电流复位到零,这样才是正确的工作状态。
对电路稍作修改如下图所示:
仿真结果如下所示:
输出电压
三极管驱动电压与C极电压
变压器原副边电压
变压器原副边电流
思考:
1. 从此电路的分析过程可以看出,对于软件中的各种理想模板,在使用前要考虑清楚其适用的条件,谨慎使用。
2. 很多情况下,需要对仿真结果仔细分析,多方验证,而不能只看到一个相似的结果,就认为仿真验证正
确,swordman此次就犯了这个错误,希望其它网友在使用saber是以此为鉴。