2015全国高考卷文科-导数专题汇编(带答案)

合集下载

2015最新高考文科数学真题专题分类汇编03导数

2015最新高考文科数学真题专题分类汇编03导数

( 2)已知函数 f ( x) 在 [ - 1,1] 上存在零点, 0 b 2a 1 ,求 b 的取值范围 .
17.【 2015 高考重庆,文 19】已知函数 f (x)
ax3
x2 ( a
R )在 x=
4
处取得极值 .
3
(Ⅰ ) 确定 a 的值,
(Ⅱ ) 若 g( x) f (x)ex ,讨论的单调性 .
( I )讨论 f x 的导函数 f x 的零点的个数;
( II )证明:当 a 0 时 f x
2 2a a ln .
a
16.【 2015 高考浙江,文 20】(本题满分 15 分)设函数 f (x) x2 ax b,( a, b R) .
( 1)当 b = a2 +1时,求函数 f ( x) 在 [ - 1,1] 上的最小值 g(a) 的表达式; 4
( I )求 f x 的单调区间和极值;
( II ) 证明:若 f x 存 在零点,则 f x 在区间 1, e 上仅有一个零点.
( x 1)2
9.【 2015 高考福建,文 22】已知函数 f ( x) ln x

2
(Ⅰ ) 求函数 f x 的单调递增区间;
(Ⅱ)证明:当 x 1 时, f x x 1;
则a
.
5.【2015 高考天津,文 11】已知函数 f x axln x, x 0,
,其中 a 为实数 , f x 为 f x 的导函数 ,
若 f 1 3 ,则 a 的值为

6. 【 2015 高考陕西,文 15】函数 y xex 在其极值点处的切线方程为 ____________.
ax
7.【 2015 高考安徽,文 21】已知函数 f ( x)

2015-2018年高考全国卷文科数学--函数与导数大题汇编

2015-2018年高考全国卷文科数学--函数与导数大题汇编

2015年~2018年高考全国卷数学(文科)—函数与导数汇编1.(2015年全国乙卷第21题)已知函数()ln (1)f x x a x =+-﹒(1)讨论函数()f x 的单调性;(2)当()f x 有最大值,且最大值大于22a -时,求a 的取值范围﹒2.(2015年全国甲卷第21题)设函数2()ln x f x ea x =-﹒ (1)讨论()f x 的导函数()f x '零点的个数;(2)证明:当0a >时,2()2lnf x a a a ≥+﹒3.(2016年全国丙卷第21题)设函数()ln 1f x x x =-+﹒(1)讨论函数()f x 的单调性;(2)证明:当(1,)x ∈+∞时,11ln x x x-<<; (3)设1c >,证明:当(0,1)x ∈时,1(1)x c x c +->﹒4.(2016年全国乙卷第20题)已知函数()(1)ln (1)f x x x a x =+--﹒(1)当4a =时,求曲线()y f x =在(1,(1))f 处的切线方程;(2)若当(1,)x ∈+∞时,()0f x >,求a 的取值范围﹒5.(2016年全国甲卷第21题)已知函数2()(2)(1)x f x x e a x =-+-﹒(1)讨论函数()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围﹒6. (2017年全国丙卷第21题)已知函数2()ln (21)f x x ax a x =+++﹒(1)讨论函数()f x 的单调性;(2)当0a <时,证明:3()24f x a≤--﹒7.(2017年全国乙卷第21题)设函数2()(1)xf x x e =-﹒(1)讨论函数()f x 的单调性;(2)当0x ≥时,()1f x ax ≤+,求a 的取值范围﹒8. (2017年全国甲卷第21题)已知函数2()()x x f x e e a a x =--﹒(1)讨论函数()f x 的单调性;(2)若()0f x ≥,求a 的取值范围﹒9.(2018年全国丙卷第21题)已知函数21()x ax x f x e+-=﹒ (1)求曲线在()y f x =在点(0,1)-处的切线方程;(2)证明:当1a ≥时,()0f x e +≥﹒10.(2018年全国乙卷第21题)已知函数()ln 1x f x ae x =--﹒(1)设2x =是()f x 的极值点,求a 及()f x 的单调区间;(2)证明:当1a e ≥时,()0f x ≥﹒11.(2018年全国甲卷第21题)已知函数321()(1)3f x x a x x =-++﹒ (1)若3a =时,求函数()f x 的单调区间;(2)证明:()f x 只有一个零点﹒。

全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案)全国卷历年高考函数与导数真题归类分析(含答案)(2015年-2018年共11套)函数与导数小题(共23小题)一、函数奇偶性与周期性1.(2015年1卷13)若函数$f(x)=x\ln(x+a+x^2)$为偶函数,则$a=$解析】由题知$y=\ln(x+a+x^2)$是奇函数,所以$\ln(x+a+x^2)+\ln(-x+a+x^2)=\ln(a+x-x)=\ln a$,解得$a=1$。

考点:函数的奇偶性。

2.(2018年2卷11)已知$$f(x)=\begin{cases}\frac{x+1}{x},x<0\\ax^2,x\geq0\end{cases}$$ 是定义域为$(-\infty,0)\cup[0,+\infty)$的奇函数,满足$f(\frac{1}{2})=1$。

若,$f'(-1)=-2$,则$a=$解:因为$f(x)$是奇函数,所以$f(-\frac{1}{2})=-1$,$f(0)=0$。

又因为$f'(-1)=-2$,所以$f'(-x)|_{x=1}=2$,$f'(0+)=0$,$f'(0-)=0$。

由此可得$$\begin{aligned}a&=\lim\limits_{x\to 0^+}\frac{f(x)-f(0)}{x-0}\\&=\lim\limits_{x\to 0^+}\frac{ax^2}{x}\\&=\lim\limits_{x\to0^+}ax\\&=\lim\limits_{x\to 0^-}ax\\&=-\frac{1}{2}\end{aligned}$$ 故选B。

3.(2016年2卷12)已知函数$f(x)(x\in R)$满足$f(-x)=2-f(x)$,若函数$y=\sum\limits_{i=1}^m(x_i+y_i)$的图像的交点为$(x_1,y_1),(x_2,y_2),\cdots,(x_m,y_m)$,则$\sum\limits_{i=1}^m(x_i+y_i)=( )$解析】由$f(x)$的奇偶性可得$f(0)=1$,又因为$f(x)$是偶函数,所以$f'(0)=0$。

2015年普通高等学校招生全国统一考试文科数学精彩试题及问题详解.

2015年普通高等学校招生全国统一考试文科数学精彩试题及问题详解.

绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷4至6页。

注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。

3. 考试结束,监考员将试题卷、答题卡一并收回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B中元素的个数为(A)5 (B)4 (C)3 (D)2(2)已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC=(A)(-7,-4)(B)(7,4)(C)(-1,4)(D)(1,4)(3)已知复数z满足(z-1)i=i+1,则z=(A)-2-I (B)-2+I (C)2-I (D)2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y²=8x的焦点重合,A,B是C的准线与E的两个焦点,则|AB|= (A)3 (B)6 (C)9 (D)12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)已知是公差为1的等差数列,则=4,= (A)(B)(C)10 (D)12(8)函数f(x)=的部分图像如图所示,则f(x)的单调递减区间为(A)(k-, k-),k(A)(2k-, 2k-),k(A)(k-, k-),k(A)(2k-, 2k-),k(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A)5 (B)6 (C)7 (D)8(10)已知函数,且f(a)=-3,则f(6-a)=(A)-74(B)-54(C)-34(D)-14(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=(A )1 (B) 2 (C) 4 (D) 8(12)设函数y=f (x )的图像关于直线y=-x 对称,且f (-2)+f (-4)=1,则a= (A )-1 (B )1 (C )2 (D )4第Ⅱ卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上作答。

2015年全国统一高考数学试卷(文科)(新课标i)答案与解析

2015年全国统一高考数学试卷(文科)(新课标i)答案与解析

2015年全国统一高考数学试卷(文科)(新课标I)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5B.4C.3D.2考点:交集及其运算.专题:集合.分析:根据集合的基本运算进行求解.解答:解:A={x|x=3n+2,n∈N}={2,5,8,11,14,17,…},则A∩B={8,14},故集合A∩B中元素的个数为2个,故选:D.点评:本题主要考查集合的基本运算,比较基础.2.(5分)已知点A(0,1),B(3,2),向量=(﹣4,﹣3),则向量=()A.(﹣7,﹣4)B.(7,4)C.(﹣1,4)D.(1,4)考点:平面向量的坐标运算.专题:平面向量及应用.分析:顺序求出有向线段,然后由=求之.解答:解:由已知点A(0,1),B(3,2),得到=(3,1),向量=(﹣4,﹣3),则向量==(﹣7,﹣4);故答案为:A.点评:本题考查了有向线段的坐标表示以及向量的三角形法则的运用;注意有向线段的坐标与两个端点的关系,顺序不可颠倒.3.(5分)已知复数z满足(z﹣1)i=1+i,则z=()A.﹣2﹣i B.﹣2+i C.2﹣i D.2+i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由已知等式变形,然后利用复数代数形式的乘除运算化简求得z﹣1,进一步求得z.解答:解:由(z﹣1)i=1+i,得z﹣1=,∴z=2﹣i.故选:C.点评:本题考查复数代数形式的乘除运算,是基础的计算题.4.(5分)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()A.B.C.D.考点:列举法计算基本事件数及事件发生的概率.专题:概率与统计.分析:一一列举出所有的基本事件,再找到勾股数,根据概率公式计算即可.解答:解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种,其中只有(3,4,5)为勾股数,故这3个数构成一组勾股数的概率为.故选:C点评:本题考查了古典概型概率的问题,关键是不重不漏的列举出所有的基本事件,属于基础题.5.(5分)已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=()A.3B.6C.9D.12考点:圆锥曲线的综合;直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:利用椭圆的离心率以及抛物线的焦点坐标,求出椭圆的半长轴,然后求解抛物线的准线方程,求出A,B坐标,即可求解所求结果.解答:解:椭圆E的中心在坐标原点,离心率为,E的右焦点(c,0)与抛物线C:y2=8x 的焦点(2,0)重合,可得c=2,a=4,b2=12,椭圆的标准方程为:,抛物线的准线方程为:x=﹣2,由,解得y=±3,所以a(﹣2,3),B(﹣2,﹣3).|AB|=6.故选:B.点评:本题考查抛物线以及椭圆的简单性质的应用,考查计算能力.6.(5分)《九章算术》是我国古代内容极为丰富的数学明著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:根据圆锥的体积公式计算出对应的体积即可.解答:解:设圆锥的底面半径为r,则×2×3r=8,解得r=,故米堆的体积为××3×()2×5=,∵1斛米的体积约为1.62立方,∴÷1.62≈22,故选:B.点评:本题主要考查椎体的体积的计算,比较基础.7.(5分)已知{a n}是公差为1的等差数列;S n为{a n}的前n项和,若S8=4S4,则a10=()A.B.C.10 D.12考点:等差数列的前n项和.专题:等差数列与等比数列.分析:利用等差数列的通项公式及其前n项和公式即可得出.解答:解:∵{a n}是公差为1的等差数列,S8=4S4,∴=4×(4a1+),解得a1=.则a10==.故选:B.点评:本题考查了等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.8.(5分)函数f(x)=cos(ωx+ϕ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+,),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z考点:余弦函数的单调性.专题:三角函数的图像与性质.分析:由周期求出ω,由五点法作图求出φ,可得f(x)的解析式,再根据余弦函数的单调性,求得f(x)的减区间.解答:解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为=2(﹣)=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得+ϕ=,k∈z,即ϕ=,f(x)=cos(πx+).由2kπ≤πx+≤2kπ+π,求得2k﹣≤x≤2k+,故f(x)的单调递减区间为(,2k+),k∈z,故选:D.点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值;还考查了余弦函数的单调性,属于基础题.9.(5分)执行如图的程序框图,如果输入的t=0.01,则输出的n=()A.5B.6C.7D.8考点:程序框图.专题:算法和程序框图.分析:由题意可得,算法的功能是求S=1﹣﹣≤t 时n的最小值,由此可得结论.解答:解:由程序框图知:算法的功能是求S=1﹣﹣≤t 时n的最小值,再根据t=0.01,可得当n=6时,S=1﹣﹣=>0.01,而当n=7时,S=1﹣﹣=≤0.01,故输出的n值为7,故选:C.点评:本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键,属于基础题.10.(5分)(2015春•河南校级月考)已知函数f(x)=且f(a)=﹣3,则f(6﹣a)=()A.﹣B.﹣C.﹣D.﹣考点:分段函数的应用;函数的零点.专题:函数的性质及应用.分析:由f(a)=﹣3,结合指数和对数的运算性质,求得a=7,再由分段函数求得f(6﹣a)的值.解答:解:函数f(x)=且f(a)=﹣3,若a≤1,则2a﹣1﹣2=﹣3,即有2a﹣1=﹣1<0,方程无解;若a>1,则﹣log2(a+1)=﹣3,解得a=7,则f(6﹣a)=f(﹣1)=2﹣1﹣1﹣2=﹣.故选:A.点评:本题考查分段函数的运用:求函数值,主要考查指数和对数的运算性质,属于中档题.11.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.8考点:由三视图求面积、体积.专题:立体几何.分析:通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可.解答:解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:×4πr2+×πr22r×2πr+2r×2r+×πr2=5πr2+4r2,又∵该几何体的表面积为16+20π,∴5πr2+4r2=16+20π,解得r=2,故选:B.点评:本题考查由三视图求表面积问题,考查空间想象能力,注意解题方法的积累,属于中档题.12.(5分)(2015春•河南校级月考)设函数y=f(x)的图象与y=2x+a的图象关于y=﹣x对称,且f(﹣2)+f(﹣4)=1,则a=()A.﹣1 B.1C.2D.4考点:函数的图象与图象变化.专题:开放型;函数的性质及应用.分析:先求出与y=2x+a的反函数的解析式,再由题意f(x)的图象与y=2x+a的反函数的图象关于原点对称,继而求出函数f(x)的解析式,问题得以解决.解答:解:∵与y=2x+a的图象关于y=x对称的图象是y=2x+a的反函数,x=log2y﹣a(y>0),即g(x)=log2x﹣a,(x>0).∵函数y=f(x)的图象与y=2x+a的图象关于y=﹣x对称,∴f(x)=﹣g(﹣x)=﹣log2(﹣x)+a,x<0,∵f(﹣2)+f(﹣4)=1,∴﹣log22+a﹣log24+a=1,解得,a=2,故选:C.点评:本题考查反函数的概念、互为反函数的函数图象的关系、求反函数的方法等相关知识和方法,属于基础题二、本大题共4小题,每小题5分.13.(5分)在数列{a n}中,a1=2,a n+1=2a n,S n为{a n}的前n项和,若S n=126,则n=6.考点:等比数列的前n项和;等比关系的确定.专题:计算题;等差数列与等比数列.分析:由a n+1=2a n,结合等比数列的定义可知数列{a n}是a1=2为首项,以2为公比的等比数列,代入等比数列的求和公式即可求解.解答:解:∵a n+1=2a n,∴,∵,a1=2,∴数列{a n}是a1=2为首项,以2为公比的等比数列,∴S n===2n+1﹣2=126,∴2n+1=128,∴n+1=7,∴n=6.故答案为:6点评:本题主要考查了等比数列的通项公式及求和公式的简单应用,解题的关键是熟练掌握基本公式.14.(5分)已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=1.考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:求出函数的导数,利用切线的方程经过的点求解即可.解答:解:函数f(x)=ax3+x+1的导数为:f′(x)=3ax2+1,f′(1)=3a+1,而f(1)=a+2,切线方程为:y﹣a﹣2=(3a+1)(x﹣1),因为切线方程经过(2,7),所以7﹣a﹣2=(3a+1)(2﹣1),解得a=1.故答案为:1.点评:本题考查函数的导数的应用,切线方程的求法,考查计算能力.15.(5分)若x,y满足约束条件,则z=3x+y的最大值为4.考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.解答:解:作出不等式对应的平面区域如图,由z=3x+y,得y=﹣3x+z,平移直线y=﹣3x+z,由图象可知当直线y=﹣3x+z,经过点A时,直线y=﹣3x+z的截距最大,此时z最大.由,解得,即A(1,1)此时z的最大值为z=3×1+1=4,故答案为:4.点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.16.(5分)已知F是双曲线C:x2﹣=1的右焦点,P是C的左支上一点,A(0,6).当△APF周长最小时,该三角形的面积为12.考点:双曲线的简单性质.专题:计算题;开放型;圆锥曲线的定义、性质与方程.分析:利用双曲线的定义,确定△APF周长最小时,P的坐标,即可求出△APF周长最小时,该三角形的面积.解答:解:由题意,设F′是左焦点,则△APF周长=|AF|+|AP|+|PF|=|AF|+|AP|+|PF′|+2 ≥|AF|+|AF′|+2(A,P,F′三点共线时,取等号),直线AF′的方程为与x2﹣=1联立可得y2+6y﹣96=0,∴P的纵坐标为2,∴△APF周长最小时,该三角形的面积为﹣=12.故答案为:12.点评:本题考查双曲线的定义,考查三角形面积的计算,确定P的坐标是关键.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.考点:正弦定理;余弦定理.专题:解三角形.分析:(I)sin2B=2sinAsinC,由正弦定理可得:b2=2ac,再利用余弦定理即可得出.(II)利用(I)及勾股定理可得c,再利用三角形面积计算公式即可得出.解答:解:(I)∵sin2B=2sinAsinC,由正弦定理可得:>0,代入可得(bk)2=2ak•ck,∴b2=2ac,∵a=b,∴a=2c,由余弦定理可得:cosB===.(II)由(I)可得:b2=2ac,∵B=90°,且a=,∴a2+c2=2ac,解得a=c=.∴S△ABC==1.点评:本题考查了正弦定理余弦定理、勾股定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.18.(12分)如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(Ⅰ)证明:平面AEC⊥平面BED;(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.考点:平面与平面垂直的判定;棱柱、棱锥、棱台的侧面积和表面积.专题:空间位置关系与距离.分析:(Ⅰ)根据面面垂直的判定定理即可证明:平面AEC⊥平面BED;(Ⅱ)根据三棱锥的条件公式,进行计算即可.解答:证明:(Ⅰ)∵四边形ABCD为菱形,∴AC⊥BD,∵BE⊥平面ABCD,∴AC⊥BE,则AC⊥平面BED,∵AC⊂平面AEC,∴平面AEC⊥平面BED;解:(Ⅱ)设AB=x,在菱形ABCD中,由∠ABC=120°,得AG=GC=x,GB=GD=,∵AE⊥EC,∴△EBG为直角三角形,则BE=x,∵三棱锥E﹣ACD的体积V===,解得x=2,从而得AE=EC=ED=,∴△EAC的面积为3,∴△EAD的面积和△ECD的面积均为,故该三棱锥的侧面积为3+2.点评:本题主要考查面面垂直的判定,以及三棱锥体积的计算,要求熟练掌握相应的判定定理以及体积公式.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i ﹣)2(w i ﹣)2(x i ﹣)(y i﹣)(w i ﹣)(y i ﹣)46.6 563 6.8 289.8 1.6 1469 108.8表中w i =1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利率的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.考点:线性回归方程.专题:概率与统计.分析:(Ⅰ)根据散点图,即可判断出,(Ⅱ)先建立中间量w=,建立y关于w的线性回归方程,根据公式求出w,问题得以解决;(Ⅲ)(i)年宣传费x=49时,代入到回归方程,计算即可,(ii)求出预报值得方程,根据函数的性质,即可求出.解答:解:(Ⅰ)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型;(Ⅱ)令w=,先建立y关于w 的线性回归方程,由于==68,=﹣=563﹣68×6.8=100.6,所以y关于w的线性回归方程为=100.6+68w,因此y关于x的回归方程为=100.6+68,(Ⅲ)(i)由(Ⅱ)知,当x=49时,年销售量y的预报值=100.6+68=576.6,年利润z的预报值=576.6×0.2﹣49=66.32,(ii)根据(Ⅱ)的结果可知,年利润z的预报值=0.2(100.6+68)﹣x=﹣x+13.6+20.12,当==6.8时,年利润的预报值最大.点评:本题主要考查了线性回归方程和散点图的问题,准确的计算是本题的关键,属于中档题.20.(12分)已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M、N两点.(1)求k的取值范围;(2)若•=12,其中O为坐标原点,求|MN|.考点:直线与圆的位置关系;平面向量数量积的运算.专题:开放型;直线与圆.分析:(1)由题意可得,直线l的斜率存在,用点斜式求得直线l的方程,根据圆心到直线的距离等于半径求得k的值,可得满足条件的k的范围.(2)由题意可得,经过点M、N、A的直线方程为y=kx+1,根据直线和圆相交的弦长公式进行求解.解答:(1)由题意可得,直线l的斜率存在,设过点A(0,1)的直线方程:y=kx+1,即:kx﹣y+1=0.由已知可得圆C的圆心C的坐标(2,3),半径R=1.故由=1,解得:k1=,k2=.故当<k<,过点A(0,1)的直线与圆C:(x﹣2)2+(y﹣3)2=1相交于M,N两点.(2)设M(x1,y1);N(x2,y2),由题意可得,经过点M、N、A的直线方程为y=kx+1,代入圆C的方程(x﹣2)2+(y﹣3)2=1,可得(1+k2)x2﹣4(k+1)x+7=0,∴x1+x2=,x1•x2=,∴y1•y2=(kx1+1)(kx2+1)=,由•=x1•x2+y1•y2==12,解得k=1,故直线l的方程为y=x+1,即x﹣y+1=0.圆心C在直线l上,MN长即为圆的直径.所以|MN|=2.点评:本题主要考查直线和圆的位置关系的应用,以及直线和圆相交的弦长公式的计算,考查学生的计算能力.21.(12分)(2015春•河南校级月考)设函数f(x)=e2x﹣alnx.(Ⅰ)讨论f(x)的导函数f′(x)零点的个数;(Ⅱ)证明:当a>0时,f(x)≥2a+aln.考点:导数在最大值、最小值问题中的应用;根的存在性及根的个数判断;导数的运算.专题:开放型;导数的综合应用.分析:(Ⅰ)先求导,在分类讨论,当a≤0时,当a>0时,根据零点存在定理,即可求出;(Ⅱ)设导函数f′(x)在(0,+∞)上的唯一零点为x0,根据函数f(x)的单调性得到函数的最小值f(x0),只要最小值大于2a+aln,问题得以证明.解答:解:(Ⅰ)f(x)=e2x﹣alnx的定义域为(0,+∞),∴f′(x)=2e2x﹣.当a≤0时,f′(x)>0恒成立,故f′(x)没有零点,当a>0时,∵y=e2x为单调递增,y=﹣单调递增,∴f′(x)在(0,+∞)单调递增,又f′(a)>0,当b满足0<b<时,且b<,f(b)<0,故当a>0时,导函数f′(x)存在唯一的零点,(Ⅱ)由(Ⅰ)知,可设导函数f′(x)在(0,+∞)上的唯一零点为x0,当x∈(0,x0)时,f′(x)<0,当x∈(x0+∞)时,f′(x)>0,故f(x)在(0,x0)单调递减,在(x0+∞)单调递增,所欲当x=x0时,f(x)取得最小值,最小值为f(x0),由于﹣=0,所以f(x0)=+2ax0+aln≥2a+aln.故当a>0时,f(x)≥2a+aln.点评:本题考查了导数和函数单调性的关系和最值的关系,以及函数的零点存在定理,属于中档题.四、请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分.【选修4-1:几何证明选讲】22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.考点:圆的切线的判定定理的证明.专题:直线与圆.分析:(Ⅰ)连接AE和OE,由三角形和圆的知识易得∠OED=90°,可得DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由射影定理可得关于x的方程x2=,解方程可得x值,可得所求角度.解答:解:(Ⅰ)连接AE,由已知得AE⊥BC,AC⊥AB,在RT△ABC中,由已知可得DE=DC,∴∠DEC=∠DCE,连接OE,则∠OBE=∠OEB,又∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°,∴∠OED=90°,∴DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由已知得AB=2,BE=,由射影定理可得AE2=CE•BE,∴x2=,即x4+x2﹣12=0,解方程可得x=∴∠ACB=60°点评:本题考查圆的切线的判定,涉及射影定理和三角形的知识,属基础题.五、【选修4-4:坐标系与参数方程】23.(2015春•新乐市校级月考)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(Ⅰ)由条件根据x=ρcosθ,y=ρsinθ求得C1,C2的极坐标方程.(Ⅱ)把直线C3的极坐标方程代入ρ2﹣3ρ+4=0,求得ρ1和ρ2的值,结合圆的半径可得C2M⊥C2N,从而求得△C2MN的面积•C2M•C2N的值.解答:解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,∴C1:x=﹣2 的极坐标方程为ρcosθ=﹣2,故C2:(x﹣1)2+(y﹣2)2=1的极坐标方程为:(ρcosθ﹣1)2+(ρsinθ﹣2)2=1,化简可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0.(Ⅱ)把直线C3的极坐标方程θ=(ρ∈R)代入ρ2﹣3ρ+4=0,求得ρ1=2,ρ2=,∴|MN|=ρ1﹣ρ2=,由于圆C2的半径为1,∴C2M⊥C2N,△C2MN的面积为•C2M•C2N=.点评:本题主要考查简单曲线的极坐标方程,点的极坐标的定义,属于基础题.六、【选修4-5:不等式选讲】24.已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.考点:绝对值不等式的解法.专题:不等式的解法及应用.分析:(Ⅰ)当a=1时,把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.(Ⅱ)化简函数f(x)的解析式,求得它的图象与x轴围成的三角形的三个顶点的坐标,从而求得f(x)的图象与x轴围成的三角形面积;再根据f(x)的图象与x轴围成的三角形面积大于6,从而求得a 的取值范围.解答:解:(Ⅰ)当a=1时,不等式f(x)>1,即|x+1|﹣2|x﹣1|>1,即①,或②,或③.解①求得x∈∅,解②求得<x<1,解③求得1≤x<2.综上可得,原不等式的解集为(,2).(Ⅱ)函数f(x)=|x+1|﹣2|x﹣a|=,由此求得f(x)的图象与x轴的交点A (,0),B(2a+1,0),故f(x)的图象与x轴围成的三角形的第三个顶点C(a,a+1),由△ABC的面积大于6,可得[2a+1﹣]•(a+1)>6,求得a>2.故要求的a的范围为(2,+∞).点评:本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。

导数高考题及答案

导数高考题及答案

导数高考题及答案【篇一:2015年高考数学导数真题及答案】1.【2015高考福建,理10】 ................................................................................................ - 2 -2.【2015高考陕西,理12】 ................................................................................................ -2 -3.【2015高考新课标2,理12】 ......................................................................................... - 3 - 4.【2015高考新课标1,理12】 ......................................................................................... - 4 - 5.【2015高考陕西,理16】 ................................................................................................ -5 -6.【2015高考天津,理11】 ................................................................................................ -6 -7.【2015高考新课标2,理21】(本题满分12分) .......................................................... - 7 -8.【2015高考江苏,19】(本小题满分16分) .................................................................. - 8 -9.【2015高考福建,理20】 .............................................................................................. - 10 -10.【2015江苏高考,17】(本小题满分14分) .............................................................. - 13 -11.【2015高考山东,理21】 ............................................................................................ - 14 -12.【2015高考安徽,理21】 ............................................................................................ - 17 -13.【2015高考天津,理20(本小题满分14分) ........................................................... - 19 -14.【2015高考重庆,理20】 ............................................................................................ - 21 -15.【2015高考四川,理21】 ............................................................................................ - 22 -16.【2015高考湖北,理22】 ............................................................................................ - 24 -17.【2015高考新课标1,理21】 ..................................................................................... - 26 -18.【2015高考北京,理18】 ............................................................................................ - 27 -19.【2015高考广东,理19】 ............................................................................................ - 29 - 20【2015高考湖南,理21】 ............................................................................................. - 31 -1.【2015高考福建,理10】若定义在r上的函数f?x? 满足f?0???1 ,其导函数f??x? 满足f??x??k?1 ,则下列结论中一定错误的是()a.f??1?1??b.f?k?k11k?1??1??1?c. d. ?f?f????????k?k?1?k?1?k?1 ?k?1?k?1【答案】c【解析】由已知条件,构造函数g(x)?f(x)?kx,则g(x)?f(x)?k?0,故函数g(x)在r上单调递增,且111k?0,故g()?g(0),所以f()???1,k?1k?1k?1k?111,所以结论中一定错误的是c,选项d 无法判断;构造函数h(x)?f(x)?x,)?k?1k?111则h(x)?f(x)?1?0,所以函数h(x)在r上单调递增,且?0,所以h()?h(0),kk1111即f()???1,f()??1,选项a,b无法判断,故选c. kkkkf(【考点定位】函数与导数.【名师点睛】联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,属于难题.2.【2015高考陕西,理12】对二次函数f(x)?ax?bx?c(a为非零常数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是()a.?1是f(x)的零点 b.1是f(x)的极值点c.3是f(x)的极值d. 点(2,8)在曲线y?f(x)上【答案】a【解析】若选项a错误时,选项b、c、d正确,f??x??2ax?b,因为1是f?x?的极值点,2??2a?b?0?b??2a?f??1??0,即?,解得:?,因为点?2,8?在3是f?x?的极值,所以??a?b?c?3?c?3?a??f?1??3曲线y?f?x?上,所以4a?2b?c?8,即4a?2???2a??a?3?8,解得:a?5,所以b??10,c?8,所以f?x??5x2?10x?8,因为f??1??5???1??10???1??8?23?0,所以?1不是f?x?的零点,所以选项a错误,选2项b、c、d正确,故选a.【考点定位】1、函数的零点;2、利用导数研究函数的极值.【名师点晴】本题主要考查的是函数的零点和利用导数研究函数的极值,属于难题.解题时一定要抓住重要字眼“有且仅有一个”和“错误”,否则很容易出现错误.解推断结论的试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊值进行检验,也可作必要的合情推理.3.【2015高考新课标2,理12】设函数f(x)是奇函数f(x)(x?r)的导函数,f(?1)?0,当x?0时,xf(x)?f(x)?0,则使得f(x)?0成立的x的取值范围是()a.(??,?1)?(0,1)b.(?1,0)?(1,??)c.(??,?1)?(?1,0) d.(0,1)?(1,??)【答案】a【考点定位】导数的应用、函数的图象与性质.【名师点睛】联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,属于难题.4.【2015高考新课标1,理12】设函数f(x)=ex(2x?1)?ax?a,其中a1,若存在唯一的整数x0,使得f(x0)取值范围是() (a)[-0,则a的333333,1) (b)[-,)(c)[,)(d)[,1) 2e2e42e42ex【答案】d 【解析】设g(x)=e(2x?1),y?ax?a,由题知存在唯一的整数x0,使得g(x0)在直线y?ax?a的下方.因为g?(x)?ex(2x?1),所以当x??111时,g?(x)<0,当x??时,22?1g?(x)>0,所以当x??时,[g(x)]max=-2e2,当x?0时,g(0)=-1,g(1)?3e?0,直2线y?ax?a恒过(1,0)斜率且a,故?a?g(0)??1,且g(?1)??3e?1??a?a,解得3≤a<1,故选d. 2e【考点定位】本题主要通过利用导数研究函数的图像与性质解决不等式成立问题【名师点睛】对存在性问题有三种思路,思路1:参变分离,转化为参数小于某个函数(或参数大于某个函数),则参数该于该函数的最大值(大于该函数的最小值);思路2:数形结合,利用导数先研究函数的图像与性质,再画出该函数的草图,结合图像确定参数范围,若原函数图像不易做,常化为一个函数存在一点在另一个函数上方,用图像解;思路3:分类讨论,本题用的就是思路2.5.【2015高考陕西,理16】如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为.【答案】1.2【解析】建立空间直角坐标系,如图所示:y?x1,因??10?10?2?2??2?16,设抛物线的方程为x2?2py(p?0)2 2525222为该抛物线过点?5,2?,所以2p?2?5,解得p?,所以x2?y,即y?x,所4225原始的最大流量是以当前最大流量是22?23???2?xdx?2x?x?????5?2575????55?522403????,故??2?5??53???2???5?????5???75753????原始的最大流量与当前最大流量的比值是16?1.2,所以答案应填:1.2. 403【考点定位】1、定积分;2、抛物线的方程;3、定积分的几何意义.【名师点晴】本题主要考查的是定积分、抛物线的方程和定积分的几何意义,属于难题.解题时一定要抓住重要字眼“原始”和“当前”,否则很容易出现错误.解本题需要掌握的知识点是定积分的几何意义,即由直线x?a,x?b,y?0和曲线y?f?x?所围成的曲边梯形的面积是?f?x?dx. ab【篇二:导数及其应用高考题精选(含答案)】(a)y?2x?1(b)y?2x?1(c)y??2x?3(d)y??2x?2 【命题立意】本题主要考查导数的几何意义,以及熟练运用导数的运算法则进行求解.【思路点拨】先求出导函数,解出斜率,然后根据点斜式求出切线方程.【规范解答】选a.因为 y??率k?y?x??1?x在点??1,?1?处的切线方x?22,所以,在点??1,?1?处的切线斜(x?2)22?2,y?1?2(x?1),y?2x?1,所以,切线方程为即2(?1?2)故选a.3万元)与年产量x(单位:万件)的函数关系式为y??x?81x?234, 13则使该生产厂家获得最大年利润的年产量为() (a) 13万件 (b) 11万件 (c) 9万件 (d) 7万件【命题立意】本题考查利用导数解决生活中的优化问题,考查了考生的分析问题解决问题能力和运算求解能力. 【思路点拨】利用导数求函数的最值.【规范解答】选c,y??x2?81,令y??0得x?9或x??9(舍去),当x?9时y?0;当x?9时y?0,故当x?9时函数有极大值,也是最大值,故选c.1 1223(b)1 4(c)1 3(d)7 12【命题立意】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的面积,考查了考生的想象能力、推理论证能力和运算求解能力.【思路点拨】先求出曲线y=x2,y=x3的交点坐标,再利用定积分求面积.【规范解答】选a,由题意得: 曲线y=x2,y=x3的交点坐标为(0,0), 1,故选a. 124e?123?1-?1=((1,1),故所求封闭图形的面积为?10x-x)dx=1314曲线在点p处的切线的倾斜角,则?的取值范围是()(a)[0,)(b)[,)(, 2?4??42?3?4] (d) [3?,?) 4【命题立意】本题考查了导数的几何意义,考查了基本等式,函数的值域,直线的倾斜角与斜率。

2015年全国高考数学试题分类汇编3导数(文)

2015年全国高考数学试题分类汇编3导数(文)

一、选择题:1.(安徽10)函数()32f x ax bx cx d =+++的图像如图所示,则下列结论成立的是( )A .0a >,0b <,0c >,0d >B .0a >,0b <,0c <,0d >C .0a <,0b <,0c >,0d >D .0a >,0b >,0c >,0d <2.(福建12)“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的( )A .充分而不必要条件B .必要而不充分条件C . 充分必要条件D .既不充分也不必要条件二、填空题:1.(新课标1)已知函数3()1f x ax x =++的图像在点(1(1))f ,处的切线过点(27),,则a = .2.(陕西15)函数x y xe =在其极值点处的切线方程为____________.3.(新课标2,16)已知曲线x x y ln +=在点)1,1(处的切线与曲线1)2(2+++=x a ax y 相切,则=a .4.(天津11)已知函数()ln f x ax x =,()0,x ∈+∞,其中a 为实数,()f x '为()f x 的导函数,若()13f '=,则a 的值为 .三、解答题:1.(重庆)已知函数32()f x ax x =+(a R ∈)在43x =-处取得极值. (1)确定a 的值;(2)若()()x g x f x e =⋅,讨论()g x 的单调性.2.(安徽)已知函数)0,0()()(2>>+=r a r x ax x f (1)求)(x f 的定义域,并讨论)(x f 的单调性;(2)若400=ra ,求)(x f 在),0(+∞内的极值。

3.(北京)设函数()2ln 2x f x k x =-,0k >. (1)求()f x 的单调区间和极值;(2)证明:若()f x 存在零点,则()f x 在区间(上仅有一个零点.4.(新课标1)设函数2()ln x f x e a x =-.(1)讨论()f x 的导函数'()f x 零点的个数;(2)证明:当0a >时,2()2lnf x a a a≥+.5.(新课标2)已知()()ln 1f x x a x =+-.(1)讨论()f x 的单调性;(2)当()f x 有最大值,且最大值大于22a -时,求a 的取值范围.6.(四川)已知函数22()2ln 2f x x x x ax a =-+-+,其中0a >. (1)设()g x 为()f x 的导函数,讨论()g x 的单调性;(2)证明:存在(01)a ∈,,使得()()f x g x ≥.7.(湖北)设函数()f x ,()g x 的定义域均为R ,且()f x 是奇函数,()g x 是偶函数,()()x f x g x e +=,其中e 为自然对数的底数.(1)求()f x ,()g x 的解析式,并证明:当0x >时,()0f x >,()1g x >;(2)设0a ≤,1b ≥,证明:当0x >时,()()(1)()(1)f x ag x a bg x b x+-<<+-.8.(陕西)设2()1n n f x x x x =++⋅⋅⋅+-,0x ≥,n N ∈,2n ≥(1)求()n f x '.9.(福建)已知函数2(1)()ln 2x f x x -=-. (1)求函数()f x 的单调递增区间;(2)证明:当1x >时,()1f x x <-;(3)确定实数k 的所有可能取值,使得存在01x >,当0(1,)x x ∈时,恒有()()1f x k x >-.10.(山东)设函数()()ln f x x a x =+,2()x x g x e=,已知曲线)(x f y =在点))1(,1(f 处的切线与直线02=-y x 平行。

2015年高考数学真题分类汇编:专题(03)导数(文科)及答案

2015年高考数学真题分类汇编:专题(03)导数(文科)及答案

2015年高考数学真题分类汇编 专题03 导数 文1.【2015高考福建,文12】“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的( )A .充分而不必要条件B .必要而不充分条件C . 充分必要条件D .既不充分也不必要条件 【答案】B【解析】当1k <时,sin cos sin 22k k x x x =,构造函数()sin 22kf x x x =-,则'()cos 210f x k x =-<.故()f x 在(0,)2x π∈单调递增,故()()022f x f ππ<=-<,则sin cos k x x x <; 当1k =时,不等式sin cos k x x x <等价于1sin 22x x <,构造函数1()sin 22g x x x =-,则'()cos 210g x x =-<,故()g x 在(0,)2x π∈递增,故()()022g x g ππ<=-<,则sin cos x x x <.综上所述,“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的必要不充分条件,选B .【考点定位】导数的应用.【名师点睛】本题以充分条件和必要条件为载体考查三角函数和导数在单调性上的应用,根据已知条件构造函数,进而研究其图象与性质,是函数思想的体现,属于难题. 2.【2015高考湖南,文8】设函数()ln(1)ln(1)f x x x =+--,则()f x 是( ) A 、奇函数,且在(0,1)上是增函数 B 、奇函数,且在(0,1)上是减函数 C 、偶函数,且在(0,1)上是增函数 D 、偶函数,且在(0,1)上是减函数 【答案】A 【解析】 函数()ln(1)ln(1)f x x x =+--,函数的定义域为(-1,1),函数()ln(1)ln(1)()f x x x f x -=--+=-所以函数是奇函数.()2111'111f x x x x=+=+-- ,在(0,1)上()'0f x > ,所以()f x 在(0,1)上单调递增,故选A. 【考点定位】利用导数研究函数的性质【名师点睛】利用导数研究函数()f x 在(a ,b)内的单调性的步骤:(1)求()'f x ;(2)确认()'f x 在(a ,b)内的符号;(3)作出结论:()'0f x >时为增函数;()'0f x <时为减函数.研究函数性质时,首先要明确函数定义域.3.【2015高考北京,文8】某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.注:“累计里程“指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为( )A .6升B .8升C .10升D .12升 【答案】B【解析】因为第一次邮箱加满,所以第二次的加油量即为该段时间内的耗油量,故耗油量48V =升. 而这段时间内行驶的里程数3560035000600S =-=千米. 所以这段时间内,该车每100千米平均耗油量为481008600⨯=升,故选B. 【考点定位】平均变化率.【名师点晴】本题主要考查的是平均变化率,属于中档题.解题时一定要抓住重要字眼“每100千米”和“平均”,否则很容易出现错误.解此类应用题时一定要万分小心,除了提取必要的信息外,还要运用所学的数学知识进行分析和解决问题.4.【2015高考新课标1,文14】已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则 a = . 【答案】1 【解析】试题分析:∵2()31f x ax '=+,∴(1)31f a '=+,即切线斜率31k a =+,又∵(1)2f a =+,∴切点为(1,2a +),∵切线过(2,7),∴273112a a +-=+-,解得a =1.考点:利用导数的几何意义求函数的切线;常见函数的导数;【名师点睛】对求过某点的切线问题,常设出切点,利用导数求出切线方程,将已知点代入切线方程得到关于切点横坐标的方程,解出切点的横坐标,即可求出切线方程,思路明确,关键是运算要细心.5.【2015高考天津,文11】已知函数()()ln ,0,f x ax x x =∈+∞ ,其中a 为实数,()f x '为()f x 的导函数,若()13f '= ,则a 的值为 .【答案】3【解析】因为()()1ln f x a x '=+ ,所以()13f a '==. 【考点定位】本题主要考查导数的运算法则.【名师点睛】本题考查内容单一,求出()()1ln f x a x '=+由,再由()13f '=可直接求得a 的值,因此可以说本题是一道基础题,但要注意运算的准确性,由于填空题没有中间分,一步出错,就得零分,故运算要特别细心.6.【2015高考陕西,文15】函数xy xe =在其极值点处的切线方程为____________. 【答案】1y e=-【解析】()()(1)xxy f x xe f x x e '==⇒=+,令()01f x x '=⇒=-,此时1(1)f e-=-函数xy xe =在其极值点处的切线方程为1y e=- 【考点定位】:导数的几何意义.【名师点睛】1.本题考查导数的几何意义,利用导数研究曲线上某点处切线方程等基础知识,考查运算求解能力.2.解决导数几何意义的问题时要注意抓住切点的三重作用:○1切点在曲线上;○2切点在切线上;○3切点处导函数值等于切线斜率. 7.【2015高考安徽,文21】已知函数)0,0()()(2>>+=r a r x axx f (Ⅰ)求)(x f 的定义域,并讨论)(x f 的单调性; (Ⅱ)若400=ra,求)(x f 在),0(+∞内的极值. 【答案】(Ⅰ)递增区间是(-r ,r );递减区间为(-∞,-r )和(r ,+∞);(Ⅱ)极大值为100;无极小值.【解析】(Ⅰ)由题意可知r x -≠ 所求的定义域为()()r r -∞--+∞,,. 2222)()(r xr x axr x ax x f ++=+=,422222)())(()2()22()2()(r x r x x r a r xr x r x ax r xr x a x f ++-=+++-++=' 所以当r x -<或r x >时,0)(<'x f ,当r x r <<-时,0)(>'x f因此,)(x f 单调递减区间为),(),,(+∞--∞r r ;)(x f 的单调递增区间为(),r r -. (Ⅱ)由(Ⅰ)的解答可知0)('=r f )(x f 在()r ,0上单调递增,在()+∞,r 上单调递减. 因此r x =是)(x f 的极大值点,所以)(x f 在),0(+∞内的极大值为()100440042)(2====r a r ar r f ,)在(+∞,0)(x f 内无极小值; 综上,)在(+∞,0)(x f 内极大值为100,无极小值.【考点定位】本题主要考查了函数的定义域、利用导数求函数的单调性,以及求函数的极值等基础知识.【名师点睛】本题在利用导数求函数的单调性时要注意,求导后的分子是一个二次项系数为负数的一元二次式,在求0)(>'x f 和0)(<'x f 时要注意,本题主要考查考生对基本概念的掌握情况和基本运算能力.8.【2015高考北京,文19】(本小题满分13分)设函数()2ln 2x f x k x =-,0k >.(I )求()f x 的单调区间和极值;(II )证明:若()f x 存在零点,则()f x 在区间(上仅有一个零点.【答案】(I )单调递减区间是,单调递增区间是)+∞;极小值(1ln )2k k f -=;(II )证明详见解析.2'()k x kf x x x x-=-=.由'()0f x =解得x =.()f x 与'()f x 在区间(0,)+∞上的情况如下:所以,()f x 的单调递减区间是,单调递增区间是)+∞;()f x 在x =处取得极小值(1ln )2k k f -=.(Ⅱ)由(Ⅰ)知,()f x 在区间(0,)+∞上的最小值为(1ln )2k k f -=. 因为()f x 存在零点,所以(1ln )02k k -≤,从而k e ≥.当k e =时,()f x 在区间上单调递减,且0f =,所以x =是()f x 在区间上的唯一零点.当k e >时,()f x 在区间上单调递减,且1(1)02f =>,02e kf -=<,所以()f x 在区间上仅有一个零点.综上可知,若()f x 存在零点,则()f x 在区间上仅有一个零点.考点:导数的运算、利用导数判断函数的单调性、利用导数求函数的极值、函数零点问题. 【名师点晴】本题主要考查的是导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和函数的零点,属于难题.利用导数求函数()f x 的单调性与极值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③求方程()0f x '=的所有实数根;④列表格.证明函数仅有一个零点的步骤:①用零点存在性定理证明函数零点的存在性;②用函数的单调性证明函数零点的唯一性.9.【2015高考福建,文22】已知函数2(1)()ln 2x f x x -=-.(Ⅰ)求函数()f x 的单调递增区间; (Ⅱ)证明:当1x >时,()1f x x <-;(Ⅲ)确定实数k 的所有可能取值,使得存在01x >,当0(1,)x x ∈时,恒有()()1f x k x >-.【答案】(Ⅰ) ⎛ ⎝;(Ⅱ)详见解析;(Ⅲ)(),1-∞. 【解析】(I )()2111x x f x x x x-++'=-+=,()0,x ∈+∞.由()0f x '>得210x x x >⎧⎨-++>⎩解得0x <<.故()f x 的单调递增区间是⎛ ⎝. (II )令()()()F 1x f x x =--,()0,x ∈+∞.则有()21F x x x-'=.当()1,x ∈+∞时,()F 0x '<, 所以()F x 在[)1,+∞上单调递减,故当1x >时,()()F F 10x <=,即当1x >时,()1f x x <-. (III )由(II )知,当1k =时,不存在01x >满足题意.当1k >时,对于1x >,有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意.当1k <时,令()()()G 1x f x k x =--,()0,x ∈+∞,则有()()2111G 1x k x x x k x x-+-+'=-+-=.由()G 0x '=得,()2110x k x -+-+=.解得10x =<,21x =>.当()21,x x ∈时,()G 0x '>,故()G x 在[)21,x 内单调递增. 从而当()21,x x ∈时,()()G G 10x >=,即()()1f x k x >-, 综上,k 的取值范围是(),1-∞. 【考点定位】导数的综合应用.【名师点睛】利用导数判断或求函数的单调区间,通过不等式'()0f x >或'()0f x <求解,但是要兼顾定义域;利用导数研究函数的单调性,再用单调性来证明不等式是函数、导数、不等式综合中的一个难点,解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或最值,从而证得不等式,注意()()f x g x >与min max ()()f x g x >不等价,min max ()()f x g x >只是()()f x g x >的特例,但是也可以利用它来证明,在2014年全国Ⅰ卷理科高考21题中,就是使用该种方法证明不等式;导数的强大功能就是通过研究函数极值、最值、单调区间来判断函数大致图象,这是利用研究基本初等函数方法所不具备的,而是其延续.10.【2015高考广东,文21】(本小题满分14分)设a 为实数,函数()()()21f x x a x a a a =-+---.(1)若()01f ≤,求a 的取值范围; (2)讨论()f x 的单调性; (3)当2a ≥时,讨论()4f x x+在区间()0,+∞内的零点个数. 【答案】(1)1,2⎛⎤-∞ ⎥⎝⎦;(2))(x f 在),(+∞a 上单调递增,在),(a -∞上单调递减;(3)当2=a 时,()4f x x +有一个零点2x =;当2>a 时,()4f x x+有两个零点. 【解析】试题分析:(1)先由()01f <可得1≤+a a ,再对a 的取值范围进行讨论可得1≤+a a 的解,进而可得a 的取值范围;(2)先写函数()f x 的解析式,再对a 的取值范围进行讨论确定函数()f x 的单调性;(3)先由(2)得函数()f x 的最小值,再对a 的取值范围进行讨论确定()4f x x+在区间()0,+∞内的零点个数. 试题解析:(1)22(0)f a a a a a a =+-+=+,因为()01f ≤,所以1≤+a a , 当0≤a 时,10≤,显然成立;当0>a ,则有12≤a ,所以21≤a .所以210≤<a . 综上所述,a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦.(2)()⎪⎩⎪⎨⎧<++-≥--=ax a x a x ax x a x x f ,2)12(,12)(22对于()x a x u 1221--=,其对称轴为a a a x <-=-=21212,开口向上, 所以)(x f 在),(+∞a 上单调递增;对于()a x a x u 21221++-=,其对称轴为a a a x >+=+=21212,开口向上, 所以)(x f 在),(a -∞上单调递减.综上所述,)(x f 在),(+∞a 上单调递增,在),(a -∞上单调递减.(3)由(2)得)(x f 在),(+∞a 上单调递增,在),0(a 上单调递减,所以2min )()(a a a f x f -==.(i)当2=a 时,2)2()(min -==f x f ,⎪⎩⎪⎨⎧<+-≥-=2,452,3)(22x x x x x x x f令()40f x x +=,即xx f 4)(-=(0x >). 因为)(x f 在)2,0(上单调递减,所以2)2()(-=>f x f而x y 4-=在)2,0(上单调递增,2)2(-=<f y ,所以)(x f y =与xy 4-=在)2,0(无交点. 当2≥x 时,xx x x f 43)(2-=-=,即04323=+-x x ,所以042223=+--x x x ,所以()0)1(22=+-x x ,因为2≥x ,所以2=x ,即当2=a 时,()4f x x+有一个零点2x =.(ii)当2>a 时,2min )()(a a a f x f -==,当),0(a x ∈时,42)0(>=a f ,2)(a a a f -=,而xy 4-=在),0(a x ∈上单调递增, 当a x =时,a y 4-=.下面比较2)(a a a f -=与a4-的大小 因为0)2)(2()4()4(2232<++--=---=---aa a a a a a a a a所以aa a a f 4)(2-<-=结合图象不难得当2>a 时,)(x f y =与xy 4-=有两个交点. 综上所述,当2=a 时,()4f x x +有一个零点2x =;当2>a 时,()4f x x+有两个零点. 考点:1、绝对值不等式;2、函数的单调性;3、函数的最值;4、函数的零点.【名师点晴】本题主要考查的是绝对值不等式、函数的单调性、函数的最值和函数的零点,属于难题.零点分段法解绝对值不等式的步骤:①求零点;②划区间,去绝对值号;③分别解去掉绝对值的不等式;④取每段结果的并集,注意在分段时不要遗漏区间的端点值.判断函数的单调性的方法:①基本初等函数的单调性;②导数法.判断函数零点的个数的方法:①解方程法;②图象法.11.【2015高考湖北,文21】设函数()f x ,()g x 的定义域均为R ,且()f x 是奇函数,()g x 是偶函数,()()e x f x g x +=,其中e 为自然对数的底数.(Ⅰ)求()f x ,()g x 的解析式,并证明:当0x >时,()0f x >,()1g x >; (Ⅱ)设0a ≤,1b ≥,证明:当0x >时,()()(1)()(1)f x ag x a bg x b x+-<<+-. 【答案】(Ⅰ)1()(e e )2x x f x -=-,1()(e e )2x x g x -=+.证明:当0x >时,e 1x >,0e 1x -<<,故()0.f x >又由基本不等式,有1()(e e )12x x g x -=+>=,即() 1.g x > (Ⅱ)由(Ⅰ)得2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x f x g x -''=-=+=+=⑤2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x g x f x -''=+=-=-=⑥当0x >时,()()(1)f x ag x a x >+-等价于()()(1)f x axg x a x >+- ⑦ ()()(1)f x bg x b x<+-等价于()()(1).f x bxg x b x <+- ⑧于是设函数 ()()()(1)h x f x cxg x c x =---,由⑤⑥,有()()()()(1)h x g x cg x cxf x c '=----(1)[()1]().c g x cxf x =--- 当0x >时,(1)若0c ≤,由③④,得()0h x '>,故()h x 在[0,)+∞上为增函数,从而()(0)0h x h >=,即()()(1)f x cxg x c x >+-,故⑦成立.(2)若1c ≥,由③④,得()0h x '<,故()h x 在[0,)+∞上为减函数,从而()(0)0h x h <=,即()()(1)f x cxg x c x <+-,故⑧成立.综合⑦⑧,得 ()()(1)()(1)f x ag x a bg x b x+-<<+-.【考点定位】本题考查函数的奇偶性和导数在研究函数的单调性与极值中的应用,属高档题.【名师点睛】将函数的奇偶性和导数在研究函数的单调性与极值中的应用联系在一起,重点考查函数的综合性,体现了函数在高中数学的重要地位,其解题的关键是第一问需运用奇函数与偶函数的定义及性质建立方程组进行求解;第二问属于函数的恒成立问题,需借助导数求解函数最值来解决.12.【2015高考山东,文20】设函数. 已知曲线在点(1,(1))f 处的切线与直线平行.(Ⅰ)求a 的值;(Ⅱ)是否存在自然数k ,使得方程错误!未找到引用源。

-2015全国高考卷文科-导数专题汇编(带答案)

-2015全国高考卷文科-导数专题汇编(带答案)

导 数 专 题题型1 根据导数的几何意义研究曲线的切线1.(2012全国文13)曲线()3ln 1y x x =+在点()1,1处的切线方程为________.2. (2015全国I 文14)已知函数()31f x ax x =++的图像在点()()1,1f 处的切线过点()2,7,则a = .3. (2015全国II 文16) 已知曲线ln y x x =+在点()11,处的切线与曲线()221y ax a x =+++相切,则a = .4.(2009,全国卷1) 已知函数42()36f x x x =-+.. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设点P 在曲线()y f x =上,若该曲线在点P 处的切线l 通过坐标原点,求l 的方程。

【解】(1)3'()464(f x x x x x x =-=-当(,)2x ∈-∞-和(0,2x ∈时,'()0f x <;当(x ∈和)x ∈+∞时,'()0f x >因此,()f x 在区间(,2-∞-和(0,2是减函数,()f x 在区间(2-和)+∞是增函数。

(Ⅱ)设点P 的坐标为00(,())x f x ,由l 过原点知,l 的方程为0'()y f x x = 因此 000()'()f x x f x =,即 4230000036(46)0x x x x x -+--= 整理得 2200(1)(2)0x x +-=解得 0x = 或 0x =因此切线l 的方程为 y =- 或 y =。

题型2 判断函数的单调性、极值与最值5.(2013全国II 文11).已知函数32()f x x ax bx c =+++,下列结论中错误的是( ) . A. 0x R ∃∈,0()0f x =B. 函数()y f x =的图象是中心对称图形C. 若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减D. 若0x 是()f x 的极值点,则0'()0f x =6.(2013全国I 文20)已知函数()()2e 4x f x ax b x x =+--,曲线()y f x =在点()()00f ,处的切线方程为44y x =+. (1)求a b ,的值;(2)讨论()f x 的单调性,并求()f x 的极大值.7(2013全国II 文21)已知函数2()e xf x x -=. (1)求()f x 的极小值和极大值;(2)当曲线()y f x =的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围. 【解】(1)f(x)的定义域为(-∞,+∞),f ′(x)=-e -xx(x -2).① 当x ∈(-∞,0)或x ∈(2,+∞)时,f ′(x)<0; 当x ∈(0,2)时,f ′(x)>0.所以f(x)在(-∞,0),(2,+∞)单调递减,在(0,2)单调递增. 故当x =0时,f(x)取得极小值,极小值为f(0)=0;当x =2时,f(x)取得极大值,极大值为f(2)=4e -2. (2)设切点为(t ,f(t)),则l 的方程为y =f ′(t)(x -t)+f(t).所以l 在x 轴上的截距为m(t)=()223'()22f t t t t t f t t t -=+=-++--. 由已知和①得t ∈(-∞,0)∪(2,+∞).令h(x)=2x x+(x ≠0),则当x ∈(0,+∞)时,h(x)的取值范围为[,+∞); 当x ∈(-∞,-2)时,h(x)的取值范围是(-∞,-3).所以当t ∈(-∞,0)∪(2,+∞)时,m(t)的取值范围是(-∞,0)∪[3,+∞).综上,l 在x 轴上的截距的取值范围是(-∞,0)∪[3,+∞). 8. (2015全国II 文21)已知函数()()=ln +1f x x a x -.(1)讨论()f x 的单调性;(2)当()f x 有最大值,且最大值大于22a -时,求a 的取值范围.题型3 函数零点和图像交点个数问题9.(2011全国文10)在下列区间中,函数()e 43x f x x =+-的零点所在的区间为( ). A.1,04⎛⎫-⎪⎝⎭ B.10,4⎛⎫⎪⎝⎭ C. 11,42⎛⎫⎪⎝⎭ D. 13,24⎛⎫ ⎪⎝⎭10.(2011全国文12)已知函数()y f x =的周期为2,当[1,1]x ∈-时函数2()f x x =,那么函数()y f x =的图像与函数lg y x =的图像的交点共有( ).A.10个B.9个C.8个D.1个11. (2014全国I 文12)已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( )A. (2,)+∞B. (1,)+∞C. (,2)-∞-D. (,1)-∞-12. (2014新课标Ⅱ文21)已知函数()3232f x x x ax =-++,曲线()y f x =在点()0,2处的切线与x 轴交点的横坐标为2-.(1)求a ;(2)求证:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.【解】(1)1,200-2),0(),0,2-()2,0()0(6-3)(∴23-)(223==+′==′+=′++=a a f k B x A af a x x x f ax x x x f AB 所以即则轴交点为,切线与设切点, (2)仅有一个交点与时,当所以图像如图所示仅有一个根点时,当时,单调递减,且,当时,,当上递增;,在时,当上递减;,在时,当递增;且时,,,或,当递减时,当,则令则令则时,令当2-)(1,,)(1∴)∞,∞-(∈)()0∞-(∈ 1)2(≥)()∞0(∪)2,0(∈ ∴)∞0()(,0)(,0)(2 )2,0(),0∞-()(,0)(,0)(2 ∴.0)2(,0)0()(,0)()∞1()0∞-(∈ .)(,0)()1,0(∈∴)1-(66-6)(4-3-2)(.4-3-24-3-2)(.413-)(0≠,413-.04-3-2-)(122322322223kx y x f y k k x g k x g x g x g x x g x g x h x x g x g x h x h h x h x h x x h x h x x x x x x h x x x h x x x x x x g x x x x g x k xx x kx x x x kx x f k ==<=<+=++>′>><′<<=<>′+<′==′===′++==++=++=+<题型4 不等式恒成立与存在性问题13. (2010,全国卷1) 已知函数422()32(31)2(31)4f x ax a x a x x =-+-++ (I )当16a =时,求()f x 的极值; (II )若()f x 在()1,1-上是增函数,求a 的取值范围 【解】(Ⅰ)()()()241331f x x ax ax '=-+- 当16a =时,()22(2)(1)f x x x '=+-,()f x 在(,2)-∞-内单调减,在2-+∞(,)内单调增,在2x =-时,()f x 有极小值.所以(2)12f -=-是()f x 的极小值.14.(2012全国文21)设函数()f x 满足()e 2xf x ax =--. (1)求()f x 的单调区间;(2)若1a =,k 为整数,且当0x >时,()()10x k f x x '-++>,求k 的最大值.【解】(I )函数f (x )=e x﹣ax ﹣2的定义域是R ,f′(x )=e x﹣a ,若a≤0,则f′(x )=e x ﹣a≥0,所以函数f (x )=e x ﹣ax ﹣2在(﹣∞,+∞)上单调递增.若a >0,则当x ∈(﹣∞,lna )时,f′(x )=e x ﹣a <0;当x ∈(lna ,+∞)时,f′(x )=e x ﹣a >0;所以,f (x )在(﹣∞,lna )单调递减,在(lna ,+∞)上单调递增. (II )由于a=1,所以,(x ﹣k ) f´(x )+x+1=(x ﹣k ) (e x ﹣1)+x+1故当x >0时,(x ﹣k ) f´(x )+x+1>0等价于k <(x >0)①令g (x )=,则g′(x )=由(I )知,函数h (x )=e x ﹣x ﹣2在(0,+∞)上单调递增,而h (1)<0,h (2)>0,所以h (x )=e x﹣x ﹣2在(0,+∞)上存在唯一的零点,故g′(x )在(0,+∞)上存在唯一的零点,设此零点为α,则有α∈(1,2)当x ∈(0,α)时,g′(x )<0;当x ∈(α,+∞)时,g′(x )>0;所以g (x )在(0,+∞)上的最小值为g (α).又由g′(α)=0,可得e α=α+2所以g (α)=α+1∈(2,3) 由于①式等价于k <g (α),故整数k 的最大值为2.15.(2013全国II 文12).若存在正数x 使2()1xx a -<成立,则a 的取值范围是( ) .A.(,)-∞+∞B.(2,)-+∞C.(0,)+∞D.(1,)-+∞ 16. (2014新课标Ⅰ文21)设函数()21ln 2a f x a x x bx -=+-()1a ≠,曲线()y f x =在点()()1,1f 处的切线斜率为0.(1)求b ;(2)若存在01x ≥,使得()01af x a <-,求a 的取值范围.17. (2014新课标Ⅱ文11)若函数()ln f x kx x =-在区间()1,+∞单调递增,则k 的取值范围是( ) A.(],2-∞- B.(],1-∞- C.[)2,+∞ D.[)1,+∞题型5 利用导数证明不等式18.(2011全国文21)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(1)求a ,b 的值;(2)证明:当0x >,且1x ≠时,ln ()1xf x x >-. 【解】(Ⅰ)221(ln )()(1)x a x b x f x x x+-'=-+,由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩解得1a =,1b =.(Ⅱ)由(Ⅰ)知f (x )=x x x 11ln ++,所以)1ln 2(111ln )(22xx x x x x f x ---=--,考虑函数,则22222)1()1(22)(x x x x x x x h --=---=',所以x ≠1时h ′(x )<0,而h (1)=0故)1,0(∈x 时,h (x )>0可得ln ()1x f x x >-,),1(+∞∈x 时,h (x )<0可得ln ()1x f x x >-,从而当0x >,且1x ≠时,ln ()1xf x x >-.19.(2015,全国卷1)设函数()2ln xf x e a x =-.(1)讨论()f x 的导函数()f x '的零点的个数; (2)证明:当0a >时()22ln f x a a a≥+.【解】(I )()f x 的定义域为()0+¥,,()2()=20x af x e x x¢->.当0a £时,()0f x ¢>,()f x ¢没有零点;当0a >时,因为2x e 单调递增,ax-单调递增,所以()f x ¢在()0+¥,单调递增.又()0f a ¢>,当b满足04a b <<且14b <时,(b)0f ¢<,故当0a >时,()f x ¢存在唯一零点.题型6 导数在实际问题中的应用。

2015年全国统一高考数学试卷(文科)(新课标ⅱ)(含答案及解析)

2015年全国统一高考数学试卷(文科)(新课标ⅱ)(含答案及解析)

2015年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分1.(5分)已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2)D.(2,3)2.(5分)若为a实数,且=3+i,则a=()A.﹣4B.﹣3C.3D.43.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.(5分)=(1,﹣1),=(﹣1,2)则(2+)=()A.﹣1B.0C.1D.25.(5分)已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.116.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.7.(5分)已知三点A(1,0),B(0,),C(2,)则△ABC外接圆的圆心到原点的距离为()A.B.C.D.8.(5分)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0B.2C.4D.149.(5分)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.10.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π11.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.12.(5分)设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x﹣1)成立的x的取值范围是()A.(﹣∞,)∪(1,+∞)B.(,1)C.()D.(﹣∞,﹣,)二、填空题13.(3分)已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=.14.(3分)若x,y满足约束条件,则z=2x+y的最大值为.15.(3分)已知双曲线过点且渐近线方程为y=±x,则该双曲线的标准方程是.16.(3分)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=.三.解答题17.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.18.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100)频数2814106(1)做出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.20.椭圆C:=1,(a>b>0)的离心率,点(2,)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.21.设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.四、选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.五、选修4-4:坐标系与参数方程23.(10分)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.六、选修4-5不等式选讲24.(10分)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.2015年全国统一高考数学试卷(文科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分1.(5分)已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2)D.(2,3)【考点】1D:并集及其运算.【专题】5J:集合.【分析】根据集合的基本运算进行求解即可.【解答】解:∵A={x|﹣1<x<2},B={x|0<x<3},∴A∪B={x|﹣1<x<3},故选:A.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)若为a实数,且=3+i,则a=()A.﹣4B.﹣3C.3D.4【考点】A1:虚数单位i、复数.【专题】5N:数系的扩充和复数.【分析】根据复数相等的条件进行求解即可.【解答】解:由,得2+ai=(1+i)(3+i)=2+4i,则a=4,故选:D.【点评】本题主要考查复数相等的应用,比较基础.3.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【考点】B8:频率分布直方图.【专题】5I:概率与统计.【分析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.【解答】解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选:D.【点评】本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5分)=(1,﹣1),=(﹣1,2)则(2+)=()A.﹣1B.0C.1D.2【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】利用向量的加法和数量积的坐标运算解答本题.【解答】解:因为=(1,﹣1),=(﹣1,2)则(2+)=(1,0)•(1,﹣1)=1;故选:C.【点评】本题考查了向量的加法和数量积的坐标运算;属于基础题目.5.(5分)已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.11【考点】85:等差数列的前n项和.【专题】35:转化思想;4A:数学模型法;54:等差数列与等比数列.【分析】由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3.再利用等差数列的前n项和公式即可得出.【解答】解:由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3=1.则S5==5a3=5.故选:A.【点评】本题考查了等差数列的通项公式及其性质、前n项和公式,考查了推理能力与计算能力,属于中档题.6.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5分)已知三点A(1,0),B(0,),C(2,)则△ABC外接圆的圆心到原点的距离为()A.B.C.D.【考点】J1:圆的标准方程.【专题】5B:直线与圆.【分析】利用外接圆的性质,求出圆心坐标,再根据圆心到原点的距离公式即可求出结论.【解答】解:因为△ABC外接圆的圆心在直线BC垂直平分线上,即直线x=1上,可设圆心P(1,p),由PA=PB得|p|=,得p=圆心坐标为P(1,),所以圆心到原点的距离|OP|===,故选:B.【点评】本题主要考查圆性质及△ABC外接圆的性质,了解性质并灵运用是解决本题的关键.8.(5分)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0B.2C.4D.14【考点】EF:程序框图.【专题】27:图表型;5K:算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的a,b的值,当a=b=2时不满足条件a≠b,输出a的值为2.【解答】解:模拟执行程序框图,可得a=14,b=18满足条件a≠b,不满足条件a>b,b=4满足条件a≠b,满足条件a>b,a=10满足条件a≠b,满足条件a>b,a=6满足条件a≠b,满足条件a>b,a=2满足条件a≠b,不满足条件a>b,b=2不满足条件a≠b,输出a的值为2.故选:B.【点评】本题主要考查了循环结构程序框图,属于基础题.9.(5分)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.【考点】88:等比数列的通项公式.【专题】54:等差数列与等比数列.【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵,a3a5=4(a4﹣1),∴=4,化为q3=8,解得q=2则a2==.故选:C.【点评】本题考查了等比数列的通项公式,属于基础题.10.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB===36,故R=6,则球O的表面积为4πR2=144π,故选:C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.11.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.【考点】HC:正切函数的图象.【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当0≤x≤时,BP=tanx,AP==,此时f(x)=+tanx,0≤x≤,此时单调递增,当P在CD边上运动时,≤x≤且x≠时,如图所示,tan∠POB=tan(π﹣∠POQ)=tanx=﹣tan∠POQ=﹣=﹣,∴OQ=﹣,∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,∴PA+PB=,当x=时,PA+PB=2,当P在AD边上运动时,≤x≤π,PA+PB=﹣tanx,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.12.(5分)设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x﹣1)成立的x的取值范围是()A.(﹣∞,)∪(1,+∞)B.(,1)C.()D.(﹣∞,﹣,)【考点】6B:利用导数研究函数的单调性.【专题】33:函数思想;49:综合法;51:函数的性质及应用.【分析】根据函数的奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.【解答】解:∵函数f(x)=ln(1+|x|)﹣为偶函数,且在x≥0时,f(x)=ln(1+x)﹣,导数为f′(x)=+>0,即有函数f(x)在[0,+∞)单调递增,∴f(x)>f(2x﹣1)等价为f(|x|)>f(|2x﹣1|),即|x|>|2x﹣1|,平方得3x2﹣4x+1<0,解得:<x<1,所求x的取值范围是(,1).故选:B.【点评】本题主要考查函数奇偶性和单调性的应用,综合考查函数性质的综合应用,运用偶函数的性质是解题的关键.二、填空题13.(3分)已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=﹣2.【考点】36:函数解析式的求解及常用方法.【专题】11:计算题;51:函数的性质及应用.【分析】f(x)是图象过点(﹣1,4),从而该点坐标满足函数f(x)解析式,从而将点(﹣1,4)带入函数f(x)解析式即可求出a.【解答】解:根据条件得:4=﹣a+2;∴a=﹣2.故答案为:﹣2.【点评】考查函数图象上的点的坐标和函数解析式的关系,考查学生的计算能力,比较基础.14.(3分)若x,y满足约束条件,则z=2x+y的最大值为8.【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即A(3,2)将A(3,2)的坐标代入目标函数z=2x+y,得z=2×3+2=8.即z=2x+y的最大值为8.故答案为:8.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.15.(3分)已知双曲线过点且渐近线方程为y=±x,则该双曲线的标准方程是x2﹣y2=1.【考点】KB:双曲线的标准方程.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】设双曲线方程为y2﹣x2=λ,代入点,求出λ,即可求出双曲线的标准方程.【解答】解:设双曲线方程为y2﹣x2=λ,代入点,可得3﹣=λ,∴λ=﹣1,∴双曲线的标准方程是x2﹣y2=1.故答案为:x2﹣y2=1.【点评】本题考查双曲线的标准方程,考查学生的计算能力,正确设出双曲线的方程是关键.16.(3分)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=8.【考点】6H:利用导数研究曲线上某点切线方程.【专题】26:开放型;53:导数的综合应用.【分析】求出y=x+lnx的导数,求得切线的斜率,可得切线方程,再由于切线与曲线y=ax2+(a+2)x+1相切,有且只有一切点,进而可联立切线与曲线方程,根据△=0得到a的值.【解答】解:y=x+lnx的导数为y′=1+,曲线y=x+lnx在x=1处的切线斜率为k=2,则曲线y=x+lnx在x=1处的切线方程为y﹣1=2x﹣2,即y=2x﹣1.由于切线与曲线y=ax2+(a+2)x+1相切,故y=ax2+(a+2)x+1可联立y=2x﹣1,得ax2+ax+2=0,又a≠0,两线相切有一切点,所以有△=a2﹣8a=0,解得a=8.故答案为:8.【点评】本题考查导数的运用:求切线方程,主要考查导数的几何意义:函数在某点处的导数即为曲线在该点处的导数,设出切线方程运用两线相切的性质是解题的关键.三.解答题17.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.【考点】HP:正弦定理.【专题】58:解三角形.【分析】(Ⅰ)由题意画出图形,再由正弦定理结合内角平分线定理得答案;(Ⅱ)由∠C=180°﹣(∠BAC+∠B),两边取正弦后展开两角和的正弦,再结合(Ⅰ)中的结论得答案.【解答】解:(Ⅰ)如图,由正弦定理得:,∵AD平分∠BAC,BD=2DC,∴;(Ⅱ)∵∠C=180°﹣(∠BAC+∠B),∠BAC=60°,∴,由(Ⅰ)知2sin∠B=sin∠C,∴tan∠B=,即∠B=30°.【点评】本题考查了内角平分线的性质,考查了正弦定理的应用,是中档题.18.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100)频数2814106(1)做出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.【考点】B8:频率分布直方图;CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】(I)根据分布表的数据,画出频率直方图,求解即可.(II)计算得出C A表示事件:“A地区用户的满意度等级为不满意”,C B表示事件:“B地区用户的满意度等级为不满意”,P(C A),P(C B),即可判断不满意的情况.【解答】解:(Ⅰ)通过两个地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值,B 地区的用户满意度评分的比较集中,而A地区的用户满意度评分的比较分散.(Ⅱ)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意”,C B表示事件:“B地区用户的满意度等级为不满意”,由直方图得P(C A)=(0.01+0.02+0.03)×10=0.6得P(C B)=(0.005+0.02)×10=0.25∴A地区用户的满意度等级为不满意的概率大.【点评】本题考查了频率直方图,频率表达运用,考查了阅读能力,属于中档题.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.【考点】LF:棱柱、棱锥、棱台的体积;LJ:平面的基本性质及推论.【专题】15:综合题;5F:空间位置关系与距离.【分析】(Ⅰ)利用平面与平面平行的性质,可在图中画出这个正方形;(Ⅱ)求出MH==6,AH=10,HB=6,即可求平面a把该长方体分成的两部分体积的比值.【解答】解:(Ⅰ)交线围成的正方形EFGH如图所示;(Ⅱ)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EFGH为正方形,所以EH=EF=BC=10,于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为.【点评】本题考查平面与平面平行的性质,考查学生的计算能力,比较基础.20.椭圆C:=1,(a>b>0)的离心率,点(2,)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.【考点】K3:椭圆的标准方程;KH:直线与圆锥曲线的综合.【专题】5D:圆锥曲线的定义、性质与方程.【分析】(1)利用椭圆的离心率,以及椭圆经过的点,求解椭圆的几何量,然后得到椭圆的方程.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),联立直线方程与椭圆方程,通过韦达定理求解K OM,然后推出直线OM的斜率与l的斜率的乘积为定值.【解答】解:(1)椭圆C:=1,(a>b>0)的离心率,点(2,)在C上,可得,,解得a2=8,b2=4,所求椭圆C方程为:.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),把直线y=kx+b代入可得(2k2+1)x2+4kbx+2b2﹣8=0,故x M==,y M=kx M+b=,于是在OM的斜率为:K OM==,即K OM•k=.∴直线OM的斜率与l的斜率的乘积为定值.【点评】本题考查椭圆方程的综合应用,椭圆的方程的求法,考查分析问题解决问题的能力.21.设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】26:开放型;53:导数的综合应用.【分析】(Ⅰ)先求导,再分类讨论,根据导数即可判断函数的单调性;(2)先求出函数的最大值,再构造函数(a)=lna+a﹣1,根据函数的单调性即可求出a的范围.【解答】解:(Ⅰ)f(x)=lnx+a(1﹣x)的定义域为(0,+∞),∴f′(x)=﹣a=,若a≤0,则f′(x)>0,∴函数f(x)在(0,+∞)上单调递增,若a>0,则当x∈(0,)时,f′(x)>0,当x∈(,+∞)时,f′(x)<0,所以f(x)在(0,)上单调递增,在(,+∞)上单调递减,(Ⅱ),由(Ⅰ)知,当a≤0时,f(x)在(0,+∞)上无最大值;当a>0时,f(x)在x=取得最大值,最大值为f()=﹣lna+a﹣1,∵f()>2a﹣2,∴lna+a﹣1<0,令g(a)=lna+a﹣1,∵g(a)在(0,+∞)单调递增,g(1)=0,∴当0<a<1时,g(a)<0,当a>1时,g(a)>0,∴a的取值范围为(0,1).【点评】本题考查了导数与函数的单调性最值的关系,以及参数的取值范围,属于中档题.四、选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.【考点】N4:相似三角形的判定.【专题】26:开放型;5F:空间位置关系与距离.【分析】(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;(2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC﹣S△AEF计算即可.【解答】(1)证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30°,∴△ABC与△AEF都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN=,∴OD=1,∴AD=5,AB=,∴四边形EBCF的面积为×﹣××=.【点评】本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.五、选修4-4:坐标系与参数方程23.(10分)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把代入可得直角坐标方程.同理由C3:ρ=2cosθ.可得直角坐标方程,联立解出可得C2与C3交点的直角坐标.(2)由曲线C1的参数方程,消去参数t,化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),利用|AB|=即可得出.【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2cosθ.可得直角坐标方程:,联立,解得,,∴C2与C3交点的直角坐标为(0,0),.(2)曲线C1:(t为参数,t≠0),化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B都在C1上,∴A(2sinα,α),B.∴|AB|==4,当时,|AB|取得最大值4.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、曲线的交点、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.六、选修4-5不等式选讲24.(10分)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【考点】29:充分条件、必要条件、充要条件;R6:不等式的证明.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】(1)运用不等式的性质,结合条件a,b,c,d均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.【点评】本题考查不等式的证明,主要考查不等式的性质的运用,同时考查充要条件的判断,属于基础题.。

高考文科数学导数真题汇编(带答案)

高考文科数学导数真题汇编(带答案)

高考文科数学导数真题汇编(带答案)高考数学文科导数真题汇编答案一、客观题组4.设函数f(x)在R上可导,其导函数f'(x),且函数f(x)在x=-2处取得极小值,则函数y=xf'(x)的图象可能是。

5.设函数f(x)=x^2-2x,则f(x)的单调递减区间为。

7.设函数f(x)在R上可导,其导函数f'(x),且函数f(x)在x=2处取得极大值,则函数y=xf'(x)的图象可能是。

8.设函数f(x)=1/(2x-lnx),则x=2为f(x)的极小值点。

9.函数y=1/(2x-lnx)的单调递减区间为(0,1]。

11.已知函数f(x)=x^2+bx+c的图象经过点(1,2),且在点(2,3)处的切线斜率为4,则b=3.12.已知函数f(x)=ax^2+bx+c的图象过点(1,1),且在点(2,3)处的切线斜率为5,则a=2.二、大题组2011新课标】21.已知函数f(x)=aln(x/b)+2,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.(1) 求a、b的值;(2) 证明:当x>1,且x≠b时,f(x)>2ln(x/b)。

解析】1) f'(x)=a/(xlnb)+2/x,由于直线x+2y-3=0的斜率为-1/2,且过点(1,f(1)),解得a=1,b=1.2) 由(1)知f(x)=ln(x)+1,所以f(x)-2ln(x/b)=ln(x/b)+1>0,当x>1,且x≠b时,f(x)>2ln(x/b)成立。

2012新课标】21.设函数f(x)=ex-ax-2.(1) 求f(x)的单调区间;(2) 若a=1,k为整数,且当x>0时,(x-k)f'(x)+x+1>0,求k的最大值。

解析】1) f(x)的定义域为(-∞,+∞),f'(x)=ex-a,若a≤0,则f'(x)>0,所以f(x)在(-∞,+∞)单调递增。

2015年高考全国2卷文科数学试题(含解析)

2015年高考全国2卷文科数学试题(含解析)

绝密★启用前 2015年高考全国2卷文科数学试题(含解析)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题(题型注释)1.已知集合{}|12A x x =-<<,{}|03B x x =<<,则A B =( )A .()1,3- B .()1,0- C .()0,2 D .()2,32.若为a 实数,且2i3i 1ia +=++,则a =( ) A .4- B .3- C .3 D .43.根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化碳排放量的效果最显著B .2007年我国治理二氧化碳排放显现成效C .2006年以来我国二氧化碳年排放量呈减少趋势D .2006年以来我国二氧化碳年排放量与年份正相关4.已知()1,1=-a ,()1,2=-b ,则(2)+⋅=a b a ( )A .1-B .0C .1D .25.设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A .5 B .7 C .9 D .116.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为()1A.81B.71C.61D.57.已知三点(1,0),A B C ,则△ABC 外接圆的圆心到原点的距离为( )5A.334D.38.下边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b 分别为14,18,则输出的a 为( )A.0B.2C.4D.149.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( )A.2B.11C.21D.810.已知B A ,是球O 的球面上两点,︒=∠90AOB ,C 为该球面上的动点.若三棱锥ABC O -体积的最大值为36,则球O 的表面积为( ) A.36π B. 64π C.144π D. 256π11.如图,长方形的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC,CD 与DA 运动,记BOP x ∠= ,将动点P 到A,B 两点距离之和表示为x 的函数()f x ,则的图像大致为( )12.设函数21()ln(1||)1f x x x=+-+,则使得()(21)f x f x >-成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭ B .()1,1,3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫-⎪⎝⎭D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)13.已知函数()32f x ax x=-的图像过点(-1,4),则a=.14.若x,y 满足约束条件50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩,则z=2x+y 的最大值为.15.已知双曲线过点(,且渐近线方程为12y x =±,则该双曲线的标准方程为. 16.已知曲线lny xx =+在点()1,1 处的切线与曲线()221y ax a x =+++ 相切,则a=.三、解答题(题型注释)17.(本小题满分12分)△ABC 中D 是BC 上的点,AD 平分∠BAC,BD=2DC. (Ⅰ)求sin sin BC∠∠ ;(Ⅱ)若60BAC ∠=,求B ∠.18.(本小题满分12分)某公司为了了解用户对其产品的满意度,从A,B 两地区分别随机调查了40个用户,根据用户对其产品的满意度的评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频率分布表.A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频率分布表 满意度评分分组[50,60)[50,60)[50,60)[50,60)[50,60)频数 2814106(Ⅰ)在答题卡上作出B 地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度.(不要求计算出具体值,给出结论即可)B 地区用户满意度评分的频率分布直方图(Ⅱ)根据用户满意度评分,将用户的满意度评分分为三个等级: 满意度评分 低于70分 70分到89分 不低于90分 满意度等级 不满意满意非常满意估计那个地区的用户的满意度等级为不满意的概率大,说明理由.19.(本小题满分12分)如图,长方体1111ABCD A B C D -中AB=16,BC=10,18AA =,点E,F 分别在1111,A B DC上,11 4.A E D F ==过点E,F 的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说明画法与理由); (Ⅱ)求平面α把该长方体分成的两部分体积的比值.20.(本小题满分12分)已知椭圆()2222:10x y C a b a b+=>>,点(在C 上.(Ⅰ)求C 的方程;(Ⅱ)直线l 不经过原点O,且不平行于坐标轴,l 与C 有两个交点A,B,线段AB 中点为M,证明:直线OM 的斜率与直线l 的斜率乘积为定值.21.(本小题满分12分)已知()()ln 1f x x a x =+-.(Ⅰ)讨论()f x 的单调性;(Ⅱ)当()f x 有最大值,且最大值大于22a -时,求a 的取值范围.22.(本小题满分10分)选修4-1:几何证明选讲如图O 是等腰三角形ABC 内一点,圆O 与△ABC 的底边BC 交于M,N 两点,与底边上的高交于点G,且与AB,AC 分别相切于E,F 两点.(Ⅰ)证明EFBC ;(Ⅱ)若AG 等于圆O 半径,且AE MN ==求四边形EBCF 的面积. 23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,且0t ≠ ),其中0απ≤<,在以O 为极点,x轴正半轴为极轴的极坐标系中,曲线23:2sin ,:.C C ρθρθ==(Ⅰ)求2C 与3C 交点的直角坐标;(Ⅱ)若1C 与2C 相交于点A,1C 与3C 相交于点B,求AB最大值.24.(本小题满分10分)选修4-5:不等式证明选讲 设,,,a b c d 均为正数,且a b c d +=+.证明:(Ⅰ)若ab cd > ,>>a b c d-<-的充要条件.参考答案1.A 【解析】因为{}|12A x x =-<<,{}|03B x x =<<,所以{}|13.A B x x =-<<故选A.考点:本题主要考查不等式基础知识及集合的交集运算. 2.D【解析】由题意可得()()2i 1i 3i 24i 4a a +=++=+⇒= ,故选D.考点:本题主要考查复数的乘除运算,及复数相等的概念. 3. D【解析】由柱形图可知2006年以来,我国二氧化碳排放量基本成递减趋势,所以二氧化碳排放量与年份负相关,故选D.考点:本题主要考查统计知识及对学生柱形图的理解 4.C 【解析】试题分析:由题意可得2112=+=a ,123,⋅=--=-a b 所以()222431+⋅=+⋅=-=a ba a ab .故选C.考点:本题主要考查向量数量积的坐标运算. 5.A 【解析】试题解析:由13533331a a a a a ++==⇒=,所有()15535552a a S a +===.故选A. 考点:本题主要考查等差数列的性质及前n 项和公式的应用. 6.D 【解析】试题分析:如图所示,截去部分是正方体的一个角,其体积是正方体体积的16,剩余部分体积是正方体体积的56,所以截去部分体积与剩余部分体积的比值为15,故选D. 考点:本题主要考查三视图及几何体体积的计算. 7.B 【解析】试题分析:△ABC 外接圆圆心在直线BC 垂直平分线上即直线1x =上,设圆心D ()1,b ,由DA=DB得3b b =⇒=,所以圆心到原点的距离3d ==. 故选B. 考点:本题主要考查圆的方程的求法,及点到直线距离公式. 8.B 【解析】试题分析:由题意可知输出的a 是18,14的最大公约数2,故选B. 考点:本题主要考查程序框图及更相减损术. 9.C【解析】试题分析:由题意可得()235444412a a a a a ==-⇒=,所以34182a q q a ==⇒= ,故2112a a q ==,选C. 考点:本题主要考查等比数列性质及基本运算.【解析】试题分析:设球的半径为R,则△AOB 面积为212R ,三棱锥O ABC - 体积最大时,C 到平面AOB 距离最大且为R,此时313666V R R ==⇒= ,所以球O 的表面积24π144πS R ==.故选C.考点:本题主要考查球与几何体的切接问题及空间想象能力. 11.B 【解析】试题分析:由题意可得ππππ12424f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==⇒< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,由此可排除C,D ;当π04x <<时点P 在边BC 上,tan PB x =,PA =,所以()tan f x x =可知π0,4x ⎛⎫∈ ⎪⎝⎭时图像不是线段,可排除A,故选B. 考点:本题主要考查函数的识图问题及分析问题解决问题的能力. 12.A 【解析】试题分析:由21()ln(1||)1f x x x =+-+可知()f x 是偶函数,且在[)0,+∞是增函数,所以()()()()()2212121212113f x f x f x f x x x x x x >-⇔>-⇔>-⇔>-⇔<< .故选A.考点:本题主要考查函数的奇偶性、单调性及不等式的解法. 13.-2 【解析】试题分析:由()32f x ax x=-可得()1242f a a -=-+=⇒=- .考点:本题主要考查利用函数解析式求值.【解析】试题分析:不等式组50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩表示的可行域是以()()()1,1,2,3,3,2为顶点的三角形区域,2z x y =+的最大值必在顶点处取得,经验算,3,2x y ==时max 8z =. 考点:本题主要考查线性规划知识及计算能力.15.2214x y -= 【解析】试题分析:根据双曲线渐近线方程为12y x =±,可设双曲线的方程为224x y m -= ,把(代入224x y m -=得1m =.所以双曲线的方程为2214x y -=.考点:本题主要考查双曲线几何性质及计算能力. 16.8 【解析】试题分析:由11y x'=+可得曲线ln y x x =+在点()1,1处的切线斜率为2,故切线方程为21y x =-,与()221y ax a x =+++ 联立得220ax ax ++=,显然0a ≠,所以由2808a a a ∆=-=⇒=.考点:本题主要考查导数的几何意义及直线与抛物线相切问题. 17.(Ⅰ)12;(Ⅱ)30. 【解析】试题分析:(Ⅰ)利用正弦定理转化得:sin 1.sin 2B DC C BD ∠==∠(Ⅱ)由诱导公式可得()1sin sin sin .2C BAC B B B ∠=∠+∠=∠+∠ 由(Ⅰ)知2sin sin B C ∠=∠,所以tan 30.B B ∠=∠= 试题解析:(Ⅰ)由正弦定理得,,sin sin sin sin AD BD AD DCB BADC CAD==∠∠∠∠ 因为AD 平分∠BAC,BD=2DC,所以sin 1.sin 2B DC C BD ∠==∠.(Ⅱ)因为()180,60,C BAC B BAC ∠=-∠+∠∠=所以()1sin sin sin .2C BAC B B B ∠=∠+∠=∠+∠ 由(I )知2s i n s i n B C ∠=∠,所以tan 30.B B ∠=∠= 考点:本题主要考查正弦定理及诱导公式的应用,意在考查考生的三角变换能力及运算能力. 18.(Ⅰ)见试题解析(Ⅱ)A 地区的用户的满意度等级为不满意的概率大. 【解析】试题分析:(Ⅰ)通过两地区用户满意度评分的频率分布直方图可以看出,B 地区用户满意度评分的平均值高于A 地区用户满意度评分的平均值,B 地区用户满意度评分比较集中,而A 地区用户满意度评分比较分散.(II )由直方图得()A P C 的估计值为0.6,()B PC 的估计值为0.25.,所以A 地区的用户的满意度等级为不满意的概率大. 试题解析:(Ⅰ)通过两地区用户满意度评分的频率分布直方图可以看出,B 地区用户满意度评分的平均值高于A 地区用户满意度评分的平均值,B 地区用户满意度评分比较集中,而A 地区用户满意度评分比较分散.(Ⅱ)A 地区的用户的满意度等级为不满意的概率大.记A C 表示事件“A 地区的用户的满意度等级为不满意”;B C 表示事件“B 地区的用户的满意度等级为不满意”.由直方图得()A P C 的估计值为()0.010.020.03100.6++⨯=,()B PC 的估计值为()0.0050.02100.25.+⨯=,所以A 地区的用户的满意度等级为不满意的概率大. 考点:本题主要考查频率分布直方图及概率估计. 19.(Ⅰ)见试题解析(Ⅱ)97 或79【解析】试题分析:(Ⅰ)分别在,AB CD 上取H,G,使10AH DG ==;长方体被平面α 分成两个高为10的直棱柱,可求得其体积比值为97 或79试题解析:解:(Ⅰ)交线围成的正方形EHGF 如图:(Ⅱ)作,EM AB ⊥ 垂足为M,则14AM A E ==,112EB =,18EM AA ==,因为EHGF 是正方形,所以10EH EF BC ===,于是6,10, 6.MH AH HB ====因为长方体被平面α 分成两个高为10的直棱柱,所以其体积比值为97 (79也正确). 考点:本题主要考查几何体中的截面问题及几何体的体积的计算.20.(Ⅰ)2222184x y +=(Ⅱ)见试题解析【解析】试题分析:(Ⅰ)由2242,1,2a a b=+=求得228,4a b ==,由此可得C 的方程.(II )把直线方程与椭圆方程联立得()222214280.k x kbx b +++-=,所以12222,,22121M M M x x kb bx y kx b k k +-===+=++于是1,2M OM M y k x k==-12OM k k ⇒⋅=-.试题解析:解:(Ⅰ)由题意有2242,1,2a a b =+= 解得228,4a b ==,所以椭圆C 的方程为2222184x y +=. (Ⅱ)设直线():0,0l y kx b k b =+≠≠,()()()1122,,,,,M M A x y B x y M x y ,把y kx b=+代入2222184x y +=得()222214280.k x kbx b +++-=故12222,,22121M M M x x kb bx y kx b k k +-===+=++ 于是直线OM 的斜率1,2M OM M y k x k ==- 即12OM k k ⋅=-,所以直线OM 的斜率与直线l 的斜率乘积为定值. 考点:本题主要考查椭圆方程、直线与椭圆及计算能力、逻辑推理能力.21.(Ⅰ)0a ≤,()f x 在()0,+∞是单调递增;0a >,()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a⎛⎫+∞⎪⎝⎭单调递减;(Ⅱ)()0,1.【解析】试题分析:(Ⅰ)由()1f x a x'=-,可分0a ≤,0a >两种情况来讨论;(II )由(I )知当0a ≤时()f x 在()0,+∞无最大值,当0a >时()f x 最大值为1ln 1.f a a a ⎛⎫=-+- ⎪⎝⎭因此122ln 10f a a a a ⎛⎫>-⇔+-< ⎪⎝⎭.令()ln 1g a a a =+-,则()g a 在()0,+∞是增函数,当01a <<时,()0g a <,当1a >时()0g a >,因此a 的取值范围是()0,1.试题解析:(Ⅰ)()f x 的定义域为()0,+∞,()1f x a x'=-,若0a ≤,则()0f x '>,()f x 在()0,+∞是单调递增;若0a >,则当10,x a ⎛⎫∈ ⎪⎝⎭时()0f x '>,当1,x a ⎛⎫∈+∞ ⎪⎝⎭时()0f x '<,所以()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减.(Ⅱ)由(Ⅰ)知当0a ≤时()f x 在()0,+∞无最大值,当0a >时()f x 在1x a=取得最大值,最大值为111l n1l n 1.f a a a a a a ⎛⎫⎛⎫⎛⎫=+-=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因此122l n 10f a a aa ⎛⎫>-⇔+-< ⎪⎝⎭.令()ln 1g a a a =+-,则()g a 在()0,+∞是增函数,()10g =,于是,当01a <<时,()0g a <,当1a >时()0g a >,因此a 的取值范围是()0,1.考点:本题主要考查导数在研究函数性质方面的应用及分类讨论思想.22. 【解析】试题分析:(Ⅰ)要证明EFBC ,可证明,AD BC ⊥AD EF ⊥;(Ⅱ)先求出有关线段的长度,然后把四边形EBCF 的面积转化为△ABC 和△AEF 面积之差来求. 试题解析:(Ⅰ)由于△ABC 是等腰三角形,,AD BC ⊥ 所以AD 是CAB ∠的平分线,又因为圆O 与AB,AC 分别相切于E,F,所以AE AF =,故AD EF ⊥,所以EFBC .(Ⅱ)由(Ⅰ)知AE AF =,AD EF ⊥,故AD 是EF 的垂直平分线,又EF 为圆O 的弦,所以O 在AD 上,连接OE,OF,则OE AE ⊥,由AG 等于圆O 的半径得AO=2OE,所以30OAE ∠=,因此,△ABC 和△AEF 都是等边三角形,,因为AE =,所以4,2,AO OE == 因为2,OM OE ==12DM MN == 所以OD=1,于是AD=5,AB = 所以四边形DBCF的面积为(221122⨯-⨯=⎝⎭考点:本题主要考查几何证明、四边形面积的计算及逻辑推理能力.23.(Ⅰ)()30,0,22⎛⎫⎪ ⎪⎝⎭;(Ⅱ)4.试题分析:(Ⅰ)把2C 与3C 的方程化为直角坐标方程分别为2220x y y +-=,220x y +-=,联立解方程组可得交点坐标;(Ⅱ)先确定曲线1C 极坐标方程为(),0,θαρρ=∈≠R 进一步求出点A 的极坐标为()2si n ,αα,点B 的极坐标为(),αα,,由此可得2sin 4sin 43AB πααα⎛⎫=-=-≤ ⎪⎝⎭.试题解析:解:(Ⅰ)曲线2C 的直角坐标方程为2220x y y +-=,曲线3C 的直角坐标方程为220x y +-=,联立两方程解得00x y =⎧⎨=⎩或32x y ⎧=⎪⎪⎨⎪=⎪⎩,所以2C 与3C 交点的直角坐标()30,0,22⎛⎫⎪ ⎪⎝⎭.(Ⅱ)曲线1C 极坐标方程为(),0,θαρρ=∈≠R 其中0απ≤< ,因此点A 的极坐标为()2sin ,αα,点B的极坐标为(),αα,所以2sin cos 4sin 3AB πααα⎛⎫=-=- ⎪⎝⎭,当56πα=时AB 取得最大值,最大值为4.考点:本题主要考查参数方程、直角坐标及极坐标方程的互化.圆的方程及三角函数的最值. 24. 【解析】试题分析:(Ⅰ)由a b c d +=+及ab cd >,可证明22>,开方即得>(Ⅱ)本小题可借助第一问的结论来证明,但要分必要性与充分性来证明.解:(Ⅰ)因为22a b c d =++=++由题设a b c d +=+,ab cd >,得22>,>(Ⅱ)(ⅰ)若a b c d-<-,则()()22a b c d -<-,即()()2244,a b ab c d cd +-<+- 因为a b c d +=+,所以ab cd >,>(ⅱ)若>,则22>,即a b c d ++>++因为a b c d +=+,所以ab cd >,于是()()()()222244,a b a b a b c d c dc d-=+-<+-=-因此a b c d-<-,综上a b c d-<-的充要条件.考点:本题主要考查不等式证明及充分条件与必要条件.。

(完整word版)2015年全国新课标2卷高考文科数学及答案

(完整word版)2015年全国新课标2卷高考文科数学及答案

2015年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}{}30|,21|<<=<<-=x x B x x A ,则=⋃B A ( )A .(-1,3)B .(-1,0)C .(0,2)D .(2,3)2.若a 为实数,且i iai +=++312,则=a ( ) A .-4 B .-3 C .3 D .43.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关4.向量()1,1-=a ,()2,1-=b ,则()=⋅+a b a 2 ( )A .-1B .0C .1D .25.设n S 是等差数列{}n a 的前n 项和,若3531=++a a a ,则=5S ( )A .5B .7C .9D .11 6.第6题图一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.157.已知三点()01,A ()30,B ,()32,C ,则ABC ∆外接圆的圆心到原点的距离为( )A.53B.213C.253D.438.第8题图右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的=a ( )A .0B .2C .4D .149.已知等比数列{}n a 满足411=a ,()14453-=a a a ,则=2a ( ) A .2 B .1 C.12 D.1810.已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O ­ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π 11.如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点.点P 沿着边BC ,CD 与DA 运动,记∠BOP =x ,将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )12.设函数()()2111ln x x x f +-+=,则使得()()12->x f x f 成立的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,1B.()∞+⋃⎪⎭⎫ ⎝⎛∞,,131- C.⎝ ⎛⎭⎪⎫-13,13 D.⎪⎭⎫ ⎝⎛∞+⋃⎪⎭⎫ ⎝⎛∞,,3131-- 第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知函数()x ax x f 23-=的图象过点()4,1-,则=a ________.14.若x ,y 满足约束条件⎩⎨⎧ x +y -5≤0,2x -y -1≥0,x -2y +1≤0,则y x z +=2的最大值为________. 15.已知双曲线过点()34,,且渐近线方程为x y 21±=,则该双曲线的标准方程为________.16.已知曲线x x y ln +=在点()1,1处的切线与曲线()122+++=x a ax y 相切,则=a ________. 三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分) ABC ∆中,D 是BC 上的点,AD 平分BAC ∠,DC BD 2=(1)求CB sin sin (2)若︒=∠60BAC ,求B ∠18.(本小题满分12分)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.图①B地区用户满意度评分的频数分布表2015·新课标Ⅱ卷第4页(1)在图②中作出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).图②(2)根据用户满意度评分,将用户的满意度分为三个等级:估计哪个地区用户的满意度等级为不满意的概率大?说明理由.19.(本小题满分12分)如图,长方体1111D C B A ABCD -中,16=AB ,10=BC ,81=AA ,点E ,F 分别在11B A ,11C D 上,411==F D E A .过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.20.(本小题满分12分)已知椭圆C :12222=+by a x ()0.>>b a 的离心率为22,点()22,在C 上.(1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.21.(本小题满分12分)已知函数()()x a x x f -+=1ln .(1)讨论()x f 的单调性;(2)当()x f 有最大值,且最大值大于22-a 时,求a 的取值范围.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22. (本小题满分10分)选修4-1:几何证明选讲如图O 是等腰三角形AB C 内一点, ⊙O 与△ABC 的底边BC 交于M ,N 两点,与底边上的高交于点G ,且与AB ,AC 分别相切于E ,F 两点.(I )证明EF ∥BC .(II )若AG 等于⊙O 的半径,且AE MN ==,求四边形EDCF 的面积23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩ (t 为参数,且0t ≠ ),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:.C C ρθρθ== (I )求2C 与3C 交点的直角坐标;(II )若1C 与 2C 相交于点A ,1C 与3C 相交于点B ,求AB 最大值24.(本小题满分10分)选修4-5:不等式选讲设a ,b ,c ,d 均为正数,且a +b =c +d .证明:(1)若ab >cd ,则a +b >c +d ;N M G OFE D C B A(2)a+b>c+d是|a-b|<|c-d|的充要条件.2015·新课标Ⅱ卷第8页1、选A2、故选D3、选D4、选B5、解:在等差数列中,因为.,5525)(,1,335153531A a a a S a a a a 故选所以==⨯+===++6、解:如图所示,选D.7、选B.8、故选B.9、解:因为{}),1(4,414531-==a a a a a n 满足所以, .21241,2,2),1(4123144424=⨯=====-=q a a q q a a a a a 所以,所以又解得故选C.10、解:因为A,B 都在球面上,又为该球面上动点,C AOB ,90︒=∠所以 三棱锥的体积的最大值为3661213132==⨯⨯R R R ,所以R=6,所以球的表面积为 S=14442=R ππ,故选C.11、解:如图,当点P 在BC 上时, ,tan 4tan ,tan 4,tan ,22x x PB PA x PA x PB x BOP ++=+∴+===∠ 当4π=x 时取得最大值51+,以A,B 为焦点C,D 为椭圆上两定点作椭圆,显然,当点P 在C,D 之间移动时PA+PB<51+. 又函数)(x f 不是一次函数,故选B.xP O DC B A12、解:因为函数时函数是增函数是偶函数,),0[,11)1ln()(2+∞∈+-+=x x x x f .131,)12(,12)12()(22<<->∴->∴->x x x x x x f x f 解得 故选A.第二卷一、填空题:本大题共4个小题,每小题5分 13、答:a=-214、解:当x=3,y=2时,z=2x+y 取得最大值8.15、解:设双曲线的方程为.43,4),0(422=≠=-k k k y x )代入方程,解得,点(1422=-∴y x 双曲线的标准方程为16、解:.122,11'-=∴+=x y xy ,切线方程为切线的斜率为 .8120.08,08,021)2(12222=+=====-=∆=+++++=-=a x y a a a a a ax ax x a ax y x y 所以与切线平行,不符。

2015年全国高考文科数学试题及标准答案

2015年全国高考文科数学试题及标准答案

绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试(全国卷1)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷4至6页。

注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。

3.考试结束,监考员将试题卷、答题卡一并收回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={x|x=3n+2,n∈N},B={6,8,12,14},则集合A ⋂B中元素的个数为ﻩ(A)5ﻩ(B)4ﻩﻩ(C)3 (D)2(2)已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC=(A)(-7,-4)(B)(7,4)(C)(-1,4) (D)(1,4)(3)已知复数z满足(z-1)i=i+1,则z=(A)-2-I (B)-2+I (C)2-I (D)2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y²=8x的焦点重合,A,B是C的准线与E的两个焦点,则|AB|=(A)3 (B)6 (C)9 (D)12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有ﻩ A.14斛 B.22斛C.36斛 D.66斛(7)已知是公差为1的等差数列,则=4,=(A)(B)(C)10 (D)12(8)函数f(x)=的部分图像如图所示,则f(x)的单调递减区间为(A)(k-, k-),k(A)(2k-, 2k-),k。

2015年高考数学真题分类汇编:专题(03)导数(文科)及答案

2015年高考数学真题分类汇编:专题(03)导数(文科)及答案

2015年高考数学真题分类汇编 专题03 导数 文1.【2015高考福建,文12】“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的( )A .充分而不必要条件B .必要而不充分条件C . 充分必要条件D .既不充分也不必要条件 【答案】B【解析】当1k <时,sin cos sin 22k k x x x =,构造函数()sin 22kf x x x =-,则'()cos 210f x k x =-<.故()f x 在(0,)2x π∈单调递增,故()()022f x f ππ<=-<,则sin cos k x x x <; 当1k =时,不等式sin cos k x x x <等价于1sin 22x x <,构造函数1()sin 22g x x x =-,则'()cos 210g x x =-<,故()g x 在(0,)2x π∈递增,故()()022g x g ππ<=-<,则sin cos x x x <.综上所述,“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的必要不充分条件,选B .【考点定位】导数的应用.【名师点睛】本题以充分条件和必要条件为载体考查三角函数和导数在单调性上的应用,根据已知条件构造函数,进而研究其图象与性质,是函数思想的体现,属于难题. 2.【2015高考湖南,文8】设函数()ln(1)ln(1)f x x x =+--,则()f x 是( ) A 、奇函数,且在(0,1)上是增函数 B 、奇函数,且在(0,1)上是减函数 C 、偶函数,且在(0,1)上是增函数 D 、偶函数,且在(0,1)上是减函数 【答案】A 【解析】 函数()ln(1)ln(1)f x x x =+--,函数的定义域为(-1,1),函数()ln(1)ln(1)()f x x x f x -=--+=-所以函数是奇函数.()2111'111f x x x x =+=+-- ,在(0,1)上()'0f x > ,所以()f x 在(0,1)上单调递增,故选A. 【考点定位】利用导数研究函数的性质【名师点睛】利用导数研究函数()f x 在(a ,b)内的单调性的步骤:(1)求()'f x ;(2)确认()'f x 在(a ,b)内的符号;(3)作出结论:()'0f x >时为增函数;()'0f x <时为减函数.研究函数性质时,首先要明确函数定义域.3.【2015高考北京,文8】某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.注:“累计里程“指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为( )A .6升B .8升C .10升D .12升 【答案】B【解析】因为第一次邮箱加满,所以第二次的加油量即为该段时间内的耗油量,故耗油量48V =升. 而这段时间内行驶的里程数3560035000600S =-=千米. 所以这段时间内,该车每100千米平均耗油量为481008600⨯=升,故选B. 【考点定位】平均变化率.【名师点晴】本题主要考查的是平均变化率,属于中档题.解题时一定要抓住重要字眼“每100千米”和“平均”,否则很容易出现错误.解此类应用题时一定要万分小心,除了提取必要的信息外,还要运用所学的数学知识进行分析和解决问题.4.【2015高考新课标1,文14】已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则 a = . 【答案】1 【解析】试题分析:∵2()31f x ax '=+,∴(1)31f a '=+,即切线斜率31k a =+,又∵(1)2f a =+,∴切点为(1,2a +),∵切线过(2,7),∴273112a a +-=+-,解得a =1.考点:利用导数的几何意义求函数的切线;常见函数的导数;【名师点睛】对求过某点的切线问题,常设出切点,利用导数求出切线方程,将已知点代入切线方程得到关于切点横坐标的方程,解出切点的横坐标,即可求出切线方程,思路明确,关键是运算要细心.5.【2015高考天津,文11】已知函数()()ln ,0,f x ax x x =∈+∞ ,其中a 为实数,()f x '为()f x 的导函数,若()13f '= ,则a 的值为 .【答案】3【解析】因为()()1ln f x a x '=+ ,所以()13f a '==. 【考点定位】本题主要考查导数的运算法则.【名师点睛】本题考查内容单一,求出()()1ln f x a x '=+由,再由()13f '=可直接求得a 的值,因此可以说本题是一道基础题,但要注意运算的准确性,由于填空题没有中间分,一步出错,就得零分,故运算要特别细心.6.【2015高考陕西,文15】函数xy xe =在其极值点处的切线方程为____________. 【答案】1y e=-【解析】()()(1)xxy f x xe f x x e '==⇒=+,令()01f x x '=⇒=-,此时1(1)f e-=-函数xy xe =在其极值点处的切线方程为1y e=- 【考点定位】:导数的几何意义.【名师点睛】1.本题考查导数的几何意义,利用导数研究曲线上某点处切线方程等基础知识,考查运算求解能力.2.解决导数几何意义的问题时要注意抓住切点的三重作用:○1切点在曲线上;○2切点在切线上;○3切点处导函数值等于切线斜率. 7.【2015高考安徽,文21】已知函数)0,0()()(2>>+=r a r x axx f (Ⅰ)求)(x f 的定义域,并讨论)(x f 的单调性; (Ⅱ)若400=ra,求)(x f 在),0(+∞内的极值. 【答案】(Ⅰ)递增区间是(-r ,r );递减区间为(-∞,-r )和(r ,+∞);(Ⅱ)极大值为100;无极小值.【解析】(Ⅰ)由题意可知r x -≠ 所求的定义域为()()r r -∞--+∞ ,,. 2222)()(r xr x axr x ax x f ++=+=,422222)())(()2()22()2()(r x r x x r a r xr x r x ax r xr x a x f ++-=+++-++=' 所以当r x -<或r x >时,0)(<'x f ,当r x r <<-时,0)(>'x f因此,)(x f 单调递减区间为),(),,(+∞--∞r r ;)(x f 的单调递增区间为(),r r -. (Ⅱ)由(Ⅰ)的解答可知0)('=r f )(x f 在()r ,0上单调递增,在()+∞,r 上单调递减.因此r x =是)(x f 的极大值点,所以)(x f 在),0(+∞内的极大值为()100440042)(2====r a r ar r f ,)在(+∞,0)(x f 内无极小值; 综上,)在(+∞,0)(x f 内极大值为100,无极小值.【考点定位】本题主要考查了函数的定义域、利用导数求函数的单调性,以及求函数的极值等基础知识.【名师点睛】本题在利用导数求函数的单调性时要注意,求导后的分子是一个二次项系数为负数的一元二次式,在求0)(>'x f 和0)(<'x f 时要注意,本题主要考查考生对基本概念的掌握情况和基本运算能力.8.【2015高考北京,文19】(本小题满分13分)设函数()2ln 2x f x k x =-,0k >.(I )求()f x 的单调区间和极值;(II )证明:若()f x 存在零点,则()f x 在区间(上仅有一个零点.【答案】(I )单调递减区间是(0,)k ,单调递增区间是(,)k +∞;极小值(1ln )2k k f -=;(II )证明详见解析.2'()k x kf x x x x-=-=.由'()0f x =解得x =.()f x 与'()f x 在区间(0,)+∞上的情况如下:所以,()f x 的单调递减区间是,单调递增区间是)+∞;()f x 在x =处取得极小值(1ln )2k k f -=.(Ⅱ)由(Ⅰ)知,()f x 在区间(0,)+∞上的最小值为(1ln )2k k f -=. 因为()f x 存在零点,所以(1ln )02k k -≤,从而k e ≥.当k e =时,()f x 在区间上单调递减,且0f =,所以x =是()f x 在区间上的唯一零点.当k e >时,()f x 在区间(0,)e 上单调递减,且1(1)02f =>,(02e kf e -=<,所以()f x 在区间上仅有一个零点.综上可知,若()f x 存在零点,则()f x 在区间上仅有一个零点.考点:导数的运算、利用导数判断函数的单调性、利用导数求函数的极值、函数零点问题. 【名师点晴】本题主要考查的是导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和函数的零点,属于难题.利用导数求函数()f x 的单调性与极值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③求方程()0f x '=的所有实数根;④列表格.证明函数仅有一个零点的步骤:①用零点存在性定理证明函数零点的存在性;②用函数的单调性证明函数零点的唯一性.9.【2015高考福建,文22】已知函数2(1)()ln 2x f x x -=-.(Ⅰ)求函数()f x 的单调递增区间; (Ⅱ)证明:当1x >时,()1f x x <-;(Ⅲ)确定实数k 的所有可能取值,使得存在01x >,当0(1,)x x ∈时,恒有()()1f x k x >-.【答案】(Ⅰ) ⎛ ⎝;(Ⅱ)详见解析;(Ⅲ)(),1-∞. 【解析】(I )()2111x x f x x x x-++'=-+=,()0,x ∈+∞.由()0f x '>得2010x x x >⎧⎨-++>⎩解得0x <<.故()f x 的单调递增区间是⎛ ⎝. (II )令()()()F 1x f x x =--,()0,x ∈+∞.则有()21F x x x-'=.当()1,x ∈+∞时,()F 0x '<, 所以()F x 在[)1,+∞上单调递减,故当1x >时,()()F F 10x <=,即当1x >时,()1f x x <-. (III )由(II )知,当1k =时,不存在01x >满足题意.当1k >时,对于1x >,有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意.当1k <时,令()()()G 1x f x k x =--,()0,x ∈+∞,则有()()2111G 1x k x x x k x x-+-+'=-+-=.由()G 0x '=得,()2110x k x -+-+=.解得10x =<,21x =>.当()21,x x ∈时,()G 0x '>,故()G x 在[)21,x 内单调递增. 从而当()21,x x ∈时,()()G G 10x >=,即()()1f x k x >-, 综上,k 的取值范围是(),1-∞.【考点定位】导数的综合应用.【名师点睛】利用导数判断或求函数的单调区间,通过不等式'()0f x >或'()0f x <求解,但是要兼顾定义域;利用导数研究函数的单调性,再用单调性来证明不等式是函数、导数、不等式综合中的一个难点,解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或最值,从而证得不等式,注意()()f x g x >与min max ()()f x g x >不等价,min max ()()f x g x >只是()()f x g x >的特例,但是也可以利用它来证明,在2014年全国Ⅰ卷理科高考21题中,就是使用该种方法证明不等式;导数的强大功能就是通过研究函数极值、最值、单调区间来判断函数大致图象,这是利用研究基本初等函数方法所不具备的,而是其延续.10.【2015高考广东,文21】(本小题满分14分)设a 为实数,函数()()()21f x x a x a a a =-+---.(1)若()01f ≤,求a 的取值范围; (2)讨论()f x 的单调性; (3)当2a ≥时,讨论()4f x x+在区间()0,+∞内的零点个数. 【答案】(1)1,2⎛⎤-∞ ⎥⎝⎦;(2))(x f 在),(+∞a 上单调递增,在),(a -∞上单调递减;(3)当2=a 时,()4f x x +有一个零点2x =;当2>a 时,()4f x x+有两个零点. 【解析】试题分析:(1)先由()01f <可得1≤+a a ,再对a 的取值范围进行讨论可得1≤+a a 的解,进而可得a 的取值范围;(2)先写函数()f x 的解析式,再对a 的取值范围进行讨论确定函数()f x 的单调性;(3)先由(2)得函数()f x 的最小值,再对a 的取值范围进行讨论确定()4f x x+在区间()0,+∞内的零点个数. 试题解析:(1)22(0)f a a a a a a =+-+=+,因为()01f ≤,所以1≤+a a , 当0≤a 时,10≤,显然成立;当0>a ,则有12≤a ,所以21≤a .所以210≤<a . 综上所述,a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦.(2)()⎪⎩⎪⎨⎧<++-≥--=ax a x a x ax x a x x f ,2)12(,12)(22对于()x a x u 1221--=,其对称轴为a a a x <-=-=21212,开口向上, 所以)(x f 在),(+∞a 上单调递增;对于()a x a x u 21221++-=,其对称轴为a a a x >+=+=21212,开口向上, 所以)(x f 在),(a -∞上单调递减.综上所述,)(x f 在),(+∞a 上单调递增,在),(a -∞上单调递减.(3)由(2)得)(x f 在),(+∞a 上单调递增,在),0(a 上单调递减,所以2min )()(a a a f x f -==.(i)当2=a 时,2)2()(min -==f x f ,⎪⎩⎪⎨⎧<+-≥-=2,452,3)(22x x x x x x x f令()40f x x +=,即xx f 4)(-=(0x >). 因为)(x f 在)2,0(上单调递减,所以2)2()(-=>f x f而x y 4-=在)2,0(上单调递增,2)2(-=<f y ,所以)(x f y =与xy 4-=在)2,0(无交点. 当2≥x 时,xx x x f 43)(2-=-=,即04323=+-x x ,所以042223=+--x x x ,所以()0)1(22=+-x x ,因为2≥x ,所以2=x ,即当2=a 时,()4f x x+有一个零点2x =.(ii)当2>a 时,2min )()(a a a f x f -==,当),0(a x ∈时,42)0(>=a f ,2)(a a a f -=,而xy 4-=在),0(a x ∈上单调递增, 当a x =时,a y 4-=.下面比较2)(a a a f -=与a4-的大小 因为0)2)(2()4()4(2232<++--=---=---aa a a a a a a a a 所以aa a a f 4)(2-<-=结合图象不难得当2>a 时,)(x f y =与xy 4-=有两个交点. 综上所述,当2=a 时,()4f x x +有一个零点2x =;当2>a 时,()4f x x+有两个零点. 考点:1、绝对值不等式;2、函数的单调性;3、函数的最值;4、函数的零点.【名师点晴】本题主要考查的是绝对值不等式、函数的单调性、函数的最值和函数的零点,属于难题.零点分段法解绝对值不等式的步骤:①求零点;②划区间,去绝对值号;③分别解去掉绝对值的不等式;④取每段结果的并集,注意在分段时不要遗漏区间的端点值.判断函数的单调性的方法:①基本初等函数的单调性;②导数法.判断函数零点的个数的方法:①解方程法;②图象法.11.【2015高考湖北,文21】设函数()f x ,()g x 的定义域均为R ,且()f x 是奇函数,()g x 是偶函数,()()e x f x g x +=,其中e 为自然对数的底数.(Ⅰ)求()f x ,()g x 的解析式,并证明:当0x >时,()0f x >,()1g x >; (Ⅱ)设0a ≤,1b ≥,证明:当0x >时,()()(1)()(1)f x ag x a bg x b x+-<<+-. 【答案】(Ⅰ)1()(e e )2x x f x -=-,1()(e e )2x x g x -=+.证明:当0x >时,e 1x >,0e 1x -<<,故()0.f x >又由基本不等式,有1()(e e )12x x g x -=+>=,即() 1.g x > (Ⅱ)由(Ⅰ)得2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x f x g x -''=-=+=+=⑤2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x g x f x -''=+=-=-=⑥当0x >时,()()(1)f x ag x a x >+-等价于()()(1)f x axg x a x >+- ⑦ ()()(1)f x bg x b x<+-等价于()()(1).f x bxg x b x <+- ⑧于是设函数 ()()()(1)h x f x cxg x c x =---,由⑤⑥,有()()()()(1)h x g x cg x cxf x c '=----(1)[()1]().c g x cxf x =--- 当0x >时,(1)若0c ≤,由③④,得()0h x '>,故()h x 在[0,)+∞上为增函数,从而()(0)0h x h >=,即()()(1)f x cxg x c x >+-,故⑦成立.(2)若1c ≥,由③④,得()0h x '<,故()h x 在[0,)+∞上为减函数,从而()(0)0h x h <=,即()()(1)f x cxg x c x <+-,故⑧成立.综合⑦⑧,得 ()()(1)()(1)f x ag x a bg x b x+-<<+-.【考点定位】本题考查函数的奇偶性和导数在研究函数的单调性与极值中的应用,属高档题. 【名师点睛】将函数的奇偶性和导数在研究函数的单调性与极值中的应用联系在一起,重点考查函数的综合性,体现了函数在高中数学的重要地位,其解题的关键是第一问需运用奇函数与偶函数的定义及性质建立方程组进行求解;第二问属于函数的恒成立问题,需借助导数求解函数最值来解决.12.【2015高考山东,文20】设函数. 已知曲线在点(1,(1))f 处的切线与直线平行.(Ⅰ)求a 的值;(Ⅱ)是否存在自然数k ,使得方程()()f x g x =在(,1)k k +内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由;(Ⅲ)设函数()min{(),()}m x f x g x =({},min p q 表示,,p q 中的较小值),求()m x 的最大值.【答案】(I )1a = ;(II) 1k = ;(III) 24e. 【解析】(I )由题意知,曲线在点(1,(1))f 处的切线斜率为2,所以'(1)2f =,又'()ln 1,af x x x=++所以1a =. (II )1k =时,方程()()f x g x =在(1,2)内存在唯一的根.设2()()()(1)ln ,x x h x f x g x x x e=-=+-当(0,1]x ∈时,()0h x <. 又2244(2)3ln 2ln 8110,h e e=-=->-= 所以存在0(1,2)x ∈,使0()0h x =. 因为1(2)'()ln 1,x x x h x x x e -=+++所以当(1,2)x ∈时,1'()10h x e>->,当(2,)x ∈+∞时,'()0h x >,所以当(1,)x ∈+∞时,()h x 单调递增.所以1k =时,方程()()f x g x =在(,1)k k +内存在唯一的根.(III )由(II )知,方程()()f x g x =在(1,2)内存在唯一的根0x ,且0(0,)x x ∈时,()()f x g x <,0(,)x x ∈+∞时,()()f x g x >,所以020(1)ln ,(0,](),(,)xx x x x m x x x x e +∈⎧⎪=⎨∈+∞⎪⎩. 当0(0,)x x ∈时,若(0,1],()0;x m x ∈≤若0(1,),x x ∈由1'()ln 10,m x x x=++>可知00()();m x m x <≤故0()().m x m x ≤ 当0(,)x x ∈+∞时,由(2)'(),xx x m x e -=可得0(,2)x x ∈时,'()0,()m x m x >单调递增;(2,)x ∈+∞时,'()0,()m x m x <单调递减;可知24()(2),m x m e≤=且0()(2)m x m <. 综上可得函数()m x 的最大值为24e.【考点定位】1.导数的几何意义;2.应用导数研究函数的单调性、最值;3.函数零点存在性定理.【名师点睛】本题考查了导数的几何意义、应用导数研究函数的性质、函数零点存在性定理等,解答本题的主要困难是(II )(III)两小题,首先是通过构造函数,利用函数零点存在性定理,作出判断,并进一步证明函数在给定区间的单调性,明确方程()()f x g x =在(,1)k k +内存在唯一的根.其次是根据(II )的结论,确定得到()m x 的表达式,并进一步利用分类讨论思想,应用导数研究函数的单调性、最值.本题是一道能力题,属于难题.在考查导数的几何意义、应用导数研究函数的性质、函数零点存在性定理等基础知识的同时,考查考生的计算能力、应用数学知识分析问题解决问题的能力及分类讨论思想.本题是教辅材料的常见题型,有利于优生正常发挥. 13.【2015高考四川,文21】已知函数f (x )=-2lnx +x 2-2ax +a 2,其中a >0. (Ⅰ)设g (x )为f (x )的导函数,讨论g (x )的单调性;(Ⅱ)证明:存在a ∈(0,1),使得f (x )≥0恒成立,且f (x )=0在区间(1,+∞)内有唯一解. 【解析】(Ⅰ)由已知,函数f (x )的定义域为(0,+∞)g (x )=f '(x )=2(x -1-lnx -a )所以g '(x )=2-22(1)x x x-= 当x ∈(0,1)时,g '(x )<0,g (x )单调递减 当x ∈(1,+∞)时,g '(x )>0,g (x )单调递增(Ⅱ)由f '(x )=2(x -1-lnx -a )=0,解得a =x -1-lnx令Φ(x )=-2xlnx +x 2-2x (x -1-lnx )+(x -1-lnx )2=(1+lnx )2-2xlnx 则Φ(1)=1>0,Φ(e )=2(2-e )<0 于是存在x 0∈(1,e ),使得Φ(x 0)=0令a 0=x 0-1-lnx 0=u (x 0),其中u (x )=x -1-lnx (x ≥1) 由u '(x )=1-1x≥0知,函数u (x )在区间(1,+∞)上单调递增 故0=u (1)<a 0=u (x 0)<u (e )=e -2<1即a 0∈(0,1)当a =a 0时,有f '(x 0)=0,f (x 0)=Φ(x 0)=0 再由(Ⅰ)知,f '(x )在区间(1,+∞)上单调递增 当x ∈(1,x 0)时,f '(x )<0,从而f (x )>f (x 0)=0 当x ∈(x 0,+∞)时,f '(x )>0,从而f (x )>f (x 0)=0 又当x ∈(0,1]时,f (x )=(x -a 0)2-2xlnx >0 故x ∈(0,+∞)时,f (x )≥0综上所述,存在a ∈(0,1),使得f (x )≥0恒成立,且f (x )=0在区间(1,+∞)内有唯一解.【考点定位】本题主要考查导数的运算、导数在研究函数中的应用、函数的零点等基础知识,考查推理论证能力、运算求解能力、创新意识,考查函数与方程、数形结合、化归与转化等数学思想.【名师点睛】本题第(Ⅰ)问隐藏二阶导数知识点,由于连续两次求导后,参数a 消失,故函数的单调性是确定的,讨论也相对简单.第(Ⅱ)问需要证明的是:对于某个a ∈(0,1),f (x )的最小值恰好是0,而且在(1,+∞)上只有一个最小值.因此,本题仍然要先讨论f (x )的单调性,进一步说明对于找到的a ,f (x )在(1,+∞)上有且只有一个等于0的点,也就是在(1,+∞)上有且只有一个最小值点.属于难题.14.【2015高考天津,文20】(本小题满分14分)已知函数4()4,,f x x x x R =-? (I )求()f x 的单调区间;(II )设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x =,求证:对于任意的正实数x ,都有()()f x g x £;(III )若方程()=()f x a a 为实数有两个正实数根12x x ,,且12x x <,求证:1321-43a x x <-+.【答案】(I )()f x 的单调递增区间是(),1-∞ ,单调递减区间是()1,+∞;(II )见试题解析;(III )见试题解析. 【解析】(I )由3()44f x x ¢=-,可得()f x 的单调递增区间是(),1-∞ ,单调递减区间是()1,+∞;(II )()()()00g x f x x x '=-,()()()F x f x g x =- ,证明()F x 在()0,x -∞单调递增,在()0,x +∞单调递减,所以对任意的实数x ,()()00F x F x ≤= ,对于任意的正实数x ,都有()()f x g x £;(III )设方程()g x a = 的根为2x ' ,可得132412ax '=-+,由()g x 在(),-∞+∞ 单调递减,得()()()222g x f x a g x '≥== ,所以22x x '≤ .设曲线()y f x = 在原点处的切线为(),y h x = 方程()h x a = 的根为1x ' ,可得14ax '=,由()4h x x = 在在(),-∞+∞ 单调递增,且()()()111h x a f x h x '==≤ ,可得11,x x '≤ 所以13212143ax x x x ''-≤-=-+ .试题解析:(I )由4()4f x x x =-,可得3()44f x x ¢=-,当()0f x '> ,即1x < 时,函数()f x 单调递增;当()0f x '< ,即1x > 时,函数()f x 单调递减.所以函数()f x 的单调递增区间是(),1-∞ ,单调递减区间是()1,+∞.(II )设()0,0P x ,则1304x = ,()012,f x '=- 曲线()y f x = 在点P 处的切线方程为()()00y f x x x '=- ,即()()()00g x f x x x '=-,令()()()F x f x g x =- 即()()()()0F x f x f x x x '=-- 则()()()0F x f x f x '''=-.由于3()44f x x ¢=-在(),-∞+∞ 单调递减,故()F x '在(),-∞+∞ 单调递减,又因为()00F x '=,所以当()0,x x ∈-∞时,()0F x '>,所以当()0,x x ∈+∞时,()0F x '<,所以()F x 在()0,x -∞单调递增,在()0,x +∞单调递减,所以对任意的实数x ,()()00F x F x ≤= ,对于任意的正实数x ,都有()()f x g x £.(III )由(II )知()13124g x x ⎛⎫=-- ⎪⎝⎭,设方程()g x a = 的根为2x ' ,可得132412a x '=-+,因为()g x 在(),-∞+∞ 单调递减,又由(II )知()()()222g x f x a g x '≥== ,所以22x x '≤ .类似的,设曲线()y f x = 在原点处的切线为(),y h x = 可得()4h x x = ,对任意的(),x ∈-∞+∞,有()()40f x h x x -=-≤ 即()()f x h x ≤ .设方程()h x a = 的根为1x ' ,可得14ax '=,因为()4h x x = 在(),-∞+∞ 单调递增,且()()()111h x a f x h x '==≤ ,因此,11,x x '≤ 所以13212143ax x x x ''-≤-=-+ .【考点定位】本题主要考查导数的几何意义及导数的应用.考查函数思想、化归思想及综合分析问题解决问题的能力【名师点睛】给出可导函数求单调区间,实质是解关于导函数的不等式,若函数解析式中不含参数,一般比较容易.不过要注意求单调区间,要注意定义域优先原则,且结果必须写成区间形式,不能写成不等式形式;利用导数证明不等式是近几年高考的一个热点,解决此类问题的基本思路是构造适当的函数,利用导数研究函数的单调性和极值破解. 15.【2015高考新课标1,文21】(本小题满分12分)设函数()2ln xf x e a x =-.(I )讨论()f x 的导函数()f x '的零点的个数; (II )证明:当0a >时()22lnf x a a a≥+. 【答案】(I )当0a £时,()f x ¢没有零点;当0a >时,()f x ¢存在唯一零点.(II )见解析 【解析】试题分析:(I )先求出导函数,分0a £与0a >考虑()f x '的单调性及性质,即可判断出零点个数;(II )由(I )可设()f x ¢在()0+¥,的唯一零点为0x ,根据()f x '的正负,即可判定函数的图像与性质,求出函数的最小值,即可证明其最小值不小于22ln a a a+,即证明了所证不等式.试题解析:(I )()f x 的定义域为()0+¥,,()2()=20x af x e x x¢->.当0a £时,()0f x ¢>,()f x ¢没有零点; 当0a >时,因为2x e 单调递增,ax-单调递增,所以()f x ¢在()0+¥,单调递增.又()0f a ¢>,当b 满足04a b <<且14b <时,(b)0f ¢<,故当0a >时,()f x ¢存在唯一零点.(II )由(I ),可设()f x ¢在()0+¥,的唯一零点为0x ,当()00x x Î,时,()0f x ¢<;当()0+x x 违,时,()0f x ¢>. 故()f x 在()00x ,单调递减,在()0+x ¥,单调递增,所以当0x x=时,()f x 取得最小值,最小值为0()f x . 由于0202=0x a ex -,所以00022()=2ln 2ln 2a f x ax a a a x a a++?.故当0a >时,2()2lnf x a a a?. 考点:常见函数导数及导数运算法则;函数的零点;利用导数研究函数图像与性质;利用导数证明不等式;运算求解能力.【名师点睛】导数的综合应用是高考考查的重点和热点,解决此类问题,要熟练掌握常见函数的导数和导数的运算法则、掌握通过利用导数研究函数的单调性、极值研究函数的图像与性质.对函数的零点问题,利用导数研究函数的图像与性质,画出函数图像草图,结合图像处理;对恒成立或能处理成立问题,常用参变分离或分类讨论来处理.16.【2015高考浙江,文20】(本题满分15分)设函数2(),(,)f x x ax b a b R =++∈.(1)当214a b =+时,求函数()f x 在[1,1]-上的最小值()g a 的表达式;(2)已知函数()f x 在[1,1]-上存在零点,021b a ≤-≤,求b 的取值范围.【答案】(1)222,2,4()1,22,2,24a a a g a a a a a ⎧++≤-⎪⎪⎪=-<≤⎨⎪⎪-+>⎪⎩;(2)[3,9--【解析】(1)将函数进行配方,利用对称轴与给定区间的位置关系,通过分类讨论确定函数在给定上的最小值,并用分段函数的形式进行表示;(2)设定函数的零点,根据条件表示两个零点之间的不等关系,通过分类讨论,分别确定参数b 的取值情况,利用并集原理得到参数b 的取值范围.试题解析:(1)当214a b =+时,2()()12a f x x =++,故其对称轴为2ax =-.当2a ≤-时,2()(1)24a g a f a ==++.当22a -<≤时,()()12a g a f =-=.当2a >时,2()(1)24a g a f a =-=-+.综上,222,2,4()1,22,2,24a a a g a a a a a ⎧++≤-⎪⎪⎪=-<≤⎨⎪⎪-+>⎪⎩(2)设,s t 为方程()0f x =的解,且11t -≤≤,则s t ast b +=-⎧⎨=⎩.由于021b a ≤-≤,因此212(11)22t ts t t t --≤≤-≤≤++. 当01t ≤≤时,222222t t t b t t --≤≤++, 由于222032t t --≤≤+和212932t t t --≤≤-+,所以293b -≤≤-当10t -≤≤时,222222t t t b t t --≤≤++, 由于22202t t --≤<+和2302t t t --≤<+,所以30b -≤<.综上可知,b的取值范围是[3,9--.【考点定位】1.函数的单调性与最值;2.分段函数;3.不等式性质;4.分类讨论思想. 【名师点睛】本题主要考查函数的单调性与最值,函数零点问题.利用函数的单调性以及二次函数的对称轴与给定区间的位置关系,利用分类讨论思想确定在各种情况下函数的最小值情况,最后用分段函数的形式进行表示;利用函数与方程思想,确定零点与系数之间的关系,利用其范围,通过分类讨论确定参数b 的取值范围.本题属于中等题,主要考查学生应用函数性质解决有关函数应用的能力,考查学生对数形结合数学、分类讨论思想以及函数与方程思想的应用能力,考查学生基本的运算能力.17.【2015高考重庆,文19】已知函数32()f x ax x =+(a R ∈)在x=43-处取得极值. (Ⅰ)确定a 的值,(Ⅱ)若()()xg x f x e =,讨论的单调性. 【答案】(Ⅰ)12a =,(Ⅱ)g()x 在(,4)(1,0)-?-和 内为减函数,(4,1)(0,)--+?和内为增函数..【解析】试题分析:(Ⅰ)先求出函数()f x 的导函数2()32f x ax x ¢=+,由已知有4()03f ¢-=可得关于a 的一个一元方程,解之即得a 的值,(Ⅱ)由(Ⅰ)的结果可得函数321g()2x x x x e 骣琪=+琪桫,利用积的求导法则可求出g ()x ¢=1(1)(4)2x x x x e ++,令g ()0x ¢=,解得0,1=-4x x x ==-或.从而分别讨论-4x <,41x -<<-,-10x <<及0x >时g ()x ¢的符号即可得到函数g()x 的单调性.试题解析: (1)对()f x 求导得2()32f x ax x ¢=+因为()f x 在43x =-处取得极值,所以4()03f ¢-=, 即16416832()09333a a ??=-=,解得12a =.(2)由(1)得,321g()2xx x x e 骣琪=+琪桫,故232323115g ()222222x x x x x x e x x e x x x e 骣骣骣¢琪琪琪=+++=++琪琪琪桫桫桫1(1)(4)2x x x x e =++ 令g ()0x ¢=,解得0,1=-4x x x ==-或. 当-4x <时,g ()0x ¢<,故g()x 为减函数, 当41x -<<-时,g ()0x ¢>,故g()x 为增函数, 当-10x <<时,g ()0x ¢<,故g()x 为减函数, 当0x >时,g ()0x ¢>,故g()x 为增函数,综上知g()x 在(,4)(1,0)-?-和 内为减函数,(4,1)(0,)--+?和内为增函数. 【考点定位】1. 导数与极值,2. 导数与单调性.【名师点睛】本题考查函数导数的概念和运算,运用导数研究函数的单调性及导数与函数极值之间的关系,利用函数的极值点必是导数为零的点,使导函数大于零的x 的区间函数必增,小于零的区间函数必减进行求解,本题属于中档题,注意求导的准确性及使导函数大于零或小于零的x 的区间的确定.。

2015年全国高考文科数学试题与答案

2015年全国高考文科数学试题与答案

绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试(全国卷1)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷4至6页。

注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。

3. 考试结束,监考员将试题卷、答题卡一并收回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B中元素的个数为(A)5 (B)4 (C)3 (D)2(2)已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC=(A)(-7,-4)(B)(7,4)(C)(-1,4)(D)(1,4)(3)已知复数z满足(z-1)i=i+1,则z=(A)-2-I (B)-2+I (C)2-I (D)2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y²=8x的焦点重合,A,B是C的准线与E的两个焦点,则|AB|= (A)3 (B)6 (C)9 (D)12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)已知是公差为1的等差数列,则=4,= (A)(B)(C)10 (D)12(8)函数f(x)=的部分图像如图所示,则f(x)的单调递减区间为(A)(k-, k-),k(A)(2k-, 2k-),k(A)(k-, k-),k(A)(2k-, 2k-),k(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A)5 (B)6 (C)7 (D)8(10)已知函数,且f(a)=-3,则f(6-a)=(A)-74(B)-54(C)-34(D)-14(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=(A )1 (B) 2 (C) 4 (D) 8(12)设函数y=f (x )的图像关于直线y=-x 对称,且f (-2)+f (-4)=1,则a= (A )-1 (B )1 (C )2 (D )4第Ⅱ卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上作答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档