精品解析:广东省2018年中考数学试题(原卷版)(真题)
2018年全国中考数学真题分类 线段垂直平分线、角平分线、中位线解析版(精品文档)
2018年全国中考数学真题分类 线段垂直平分线、角平分线、中位线(一)一、选择题1. (2018四川泸州,7题,3分) 如图2,ABCD 的对角线AC ,BD 相交于点O ,E 是AB 中点,且AE+EO=4,则ABCD 的周长为( )A.20B. 16C. 12D.8第7题图 【答案】B 【解析】ABCD 的对角线AC ,BD 相交于点O ,所以O 为AC 的中点,又因为E 是AB 中点,所以EO是△ABC 的中位线,AE=21AB ,EO=21BC ,因为AE+EO=4,所以AB+BC=2(AE+EO)=8,ABCD 中AD=BC ,AB=CD ,所以周长为2(AB+BC)=16【知识点】平行四边形的性质,三角形中位线2. (2018四川省南充市,第8题,3分)如图,在Rt ABC ∆中,90ACB ∠=,30A ∠=,D ,E ,F 分别为AB ,AC ,AD 的中点,若2BC =,则EF 的长度为( )A .12B .1C .32D【答案】B【思路分析】1.由∠ACB =90°,∠A =30°,BC 的长度,可求得AB 的长度,2.利用直角三角形斜边D的中线等于斜边第一半,求得CD 的长度;3.利用中位线定理,即可求得EF 的长.【解题过程】解:在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2,,∴AB =4,CD =12AB ,∴CD =12×4=2,∵E ,F 分别为AC ,AD 的中点,∴EF =12CD =12×2=1,故选B.【知识点】30°所对直角边是斜边的一半;直角三角形斜边的中线等于斜边第一半;中位线定理3. (2018四川省达州市,8,3分) △ABC 的周长为19,点D 、E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为N ,∠ACB 的平分线垂直于AD ,垂足为M .若BC =7,则MN 的长为( ) . A .32 B .2 C .52D .3第8题图 【答案】C ,【解析】∵△ABC 的周长为19,BC =7, ∴AB +AC =12.∵∠ABC 的平分线垂直于AE ,垂足为N ,∴BA =BE ,N 是AE 的中点. ∵∠ACB 的平分线垂直于AD ,垂足为M ,∴AC =DC ,M 是AD 的中点. ∴DE =AB +AC -BC =5. ∵MN 是△ADE 的中位线, ∴MN =12DE =52. 故选C.【知识点】三角形的中位线4. (2018浙江杭州, 10,3分)如图,在△ABC 中,点D 在AB 边上,DE//BC ,与边AC 交于点E ,连接BE ,记△ADE ,△BCE 的面积分别为S 1,S 2,( )A. 若2AD>AB ,则3S 1>2S 2B. 若2AD>AB ,则3S 1<2S 2C. 若2AD<AB ,则3S 1>2S 2D. 若2AD<AB ,则3S 1<2S 2【答案】D【思路分析】首先考虑极点位置,当2AD=AB 即AD=BD 时S 1,S 2的关系,然后再考虑AD>BD 时S 1,S 2的变化情况。
精品解析:2024年广东省深圳市中考数学试题(解析版)
数学学科试卷
说明:
1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡定的位置
上,并将条形码粘贴好.
2.全卷共 6 页.考试时间 90 分钟,满分 100 分.
3.作答选择题 1-8,选出每题答案后,用 2B 铅笔把答题卡上对应题目答案标号的信息点框
涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题 9—20,用黑色字迹的
钢笔或签字笔将答案(含作辅助线)写在答题卡指定区域内.写在本试卷或草稿纸上,其答
案一律无效.
4.考试结束后,请将答题卡交回.
第一部分 选择题
.一、选择题(本大题共 8 小题,每小题 3 分,共 24 分,每小题有四个选项,其中只有一个是
B、 m2n m = m3n ,故该选项符合题意; C、 3mn − m 3n ,故该选项不符合题意;
D、 (m −1)2 = m2 − 2m +1 m2 −1,故该选项不符合题意;
故选:B. 4. 二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律, 二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、 小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大 寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为( )
∴扇形 EOF 的面积为 90 42 = 4 , 360
故答案为: 4 .
12. 如图,在平面直角坐标系中,四边形 AOCB 为菱形,tan AOC = 4 ,且点 A 落在反比例函数 y = 3 上,
3
x
点 B 落在反比例函数 y = k (k 0) 上,则 k = ________.
精品解析:2022年广东省中考语文真题(原卷版)
(4)任务四:请从青春榜样(“红小鬼”和保尔)中任选一个,结合名著,在班刊栏目“致敬榜样”中写下你的感悟。
致敬的榜样是______________________________。
我向您致敬,_________________________________。
12. 材料二提到有声阅读在弘扬中华优秀传统文化中发挥了积极的作用,请你用材料三的相关信息对这一提法加以说明。
13. 即将升入七年级的小文准备在暑假用一周时间读完《西游记》。他想采用听书的方式阅读,你是否赞成?请结合上述材料说明理由。
(三)(15分)
阅读下面的文字,完成下面小题。
在地图上旅行
张凌云
①作为地理爱好者,我醉心于长时间地盯着地图,或者索性闭上双眼,在脑海里描摹出地图的模样,持续一场场精骛八极、心游万仞的神游。只要对着地形图,我就会熟练地穿越时空的罅隙,腾挪跃动,自由飞翔……
4.下列对病句的修改不正确的一项是( )
A. 学校提倡学生“自己的事情自己做,简单的家务抢着做,复杂的家务帮着做”,旨在培养他们每天劳动。(在“劳动”后加上“的观念”)
B. 广大青年崇德向善,不仅关乎其人生道路能否走得正、走得远,更关乎整个社会能否风清气正、和谐友爱。(在“崇德向善”前加上“能否”)
班刊栏目:青春榜样
人物
特点
名著内容
“红小鬼”
坚韧不拔,一心向党
①______________
保尔
刚强不屈,奋斗不止
②______________
A他的心又怦怦地跳起来了。他日夜盼望的梦想已经实现了!铁环已经被砸碎,现在他拿起新的武器,回到战斗的队伍里,开始了新的生活。
精品解析:2024年江西高考真题化学试题(原卷版)(合并)
2024年江西省新高考化学试卷一、选择题:本题共14小题,每小题3分,共42分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.景德镇青花瓷素有“国瓷”的美誉。
是以黏土为原料,用含钴、铁的颜料着色,上釉后一次性高温烧制而成的青蓝色彩瓷。
下列关于青花瓷说法正确的是A.青蓝色是由于生成了单质钴 B.表面的釉属于有机高分子膜C.主要成分为铝硅酸盐D.铁元素的存在形式只有Fe 2O 32.科学家发现宇宙中存在100多种星际分子。
下列关于星际分子说法正确的是A.分子的极性:SiH 4>NH 3 B.键的极性:H—Cl>H—HC.键角:H 2O>CH 4D.分子中三键的键长:HC≡N>HC≡CH3.“稀土之父”徐光宪先生提出了稀土串级萃取理论,其基本操作是利用有机络合剂把稀土离子从水相富集到有机相再进行分离。
分离时可用的玻璃装置是A.B. C. D.4.蛇孢菌素(X)是一种具有抗癌活性的天然植物毒素。
下列关于X 说法正确的是A.含有4种官能团,8个手性碳原子B.1mol X 最多可以和3mol H 2发生加成反应C.只有1种消去产物D.可与新制的Cu(OH)2反应生成砖红色沉淀5.某新材料阳离子为W 36X 18Y 2Z 6M +。
W 、X 、Y 、Z 和M 是原子序数依次增大的前20号主族元素,前四周期中M 原子半径最大,X 、Y 、Z 同周期。
X 6W 6分子含有大π键(66),XZ 2分子呈直线形。
下列说法正确的是A.WYZ 2是强酸B.MZW 是强碱C.M 2Z 2是共价化合物D.X 2W 2是离子化合物6.由下列实验事实得出的结论正确的是实验事实结论A 铝和氧化铁反应需要引燃该反应H 0∆>B KI 溶液加热浓缩后加入淀粉溶液,溶液变蓝氧化性:22O I >C 久置的NaOH 溶液试剂瓶口出现白色固体NaOH 结晶析出D久置的2FeCl 溶液中出现红褐色沉淀()()sp sp 32K Fe OH >K Fe OH ⎡⎤⎡⎤⎣⎦⎣⎦A.A B.B C.CD.D7.我国学者把游离态氮固定在碳上(示踪反应如下),制得的[N=C=N]2﹣离子可用于合成核酸的结构单元。
精品解析:2023年广东省深圳市中考数学真题 (原卷版)
2023年深圳市初中学业水平测试(回忆版)数学学科试卷一、选择题1. 如果10+°C 表示零上10度,则零下8度表示( )A 8+℃ B. 8−℃ C. 10+℃ D. 10−℃ 2. 下列图形中,为轴对称的图形的是( )A. B. C. D. 3. 深中通道世界级“桥、岛、隧、水下互通”跨海集群工程,总计用了320000万吨钢材,320000这个数用科学记数法表示为( )A. 60.3210×B. 53.210×C. 93.210×D. 83210× 4. 下表为五种运动耗氧情况,其中耗氧量的中位数是( ) 打网球 跳绳 爬楼梯 慢跑 游泳80L /h 90L /h 105L /h 110L /h 115L /hA. 80L /hB. 107.5L /hC. 105L /hD. 110L /h 5. 如图,在平行四边形ABCD 中,4AB =,6BC =,将线段AB 水平向右平移a 个单位长度得到线段EF ,若四边形ECDF 为菱形时,则a的值为()A. 1B. 2C. 3D. 46. 下列运算正确的是( )A. 326a a a ⋅=B. 44ab ab −=C. ()2211a a +=+D. ()236a a −= 7. 如图为商场某品牌椅子的侧面图,120DEF ∠=°,DE 与地面平行,50ABD ∠=°,则ACB =∠( ) .是A. 70°B. 65°C. 60°D. 50°8. 某运输公司运输一批货物,已知大货车比小货车每辆多运输5吨货物,且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同,设有大货车每辆运输x 吨,则所列方程正确的是( ) A. 75505x x =− B. 75505x x =− C. 75505x x =+ D. 75505x x =+ 9. 爬坡时坡角与水平面夹角为α,则每爬1m 耗能()1.025cos J α−,若某人爬了1000m ,该坡角为30°,1.732≈1.414≈)( )A. 58JB. 159JC. 1025JD. 1732J10. 如图1,在Rt ABC △中,动点P 从A 点运动到B 点再到C 点后停止,速度为2单位/s ,其中BP 长与运动时间t (单位:s )的关系如图2,则AC 的长为( )A.B. C. 17D.二、填空题11. 小明从《红星照耀中国》,《红岩》,《长征》,《钢铁是怎样炼成的》四本书中随机挑选一本,其中拿到《红星照耀中国》这本书的概率为______.12. 已知实数a ,b ,满足6a b +=,7ab =,则22a b ab +值为______.13. 如图,在O 中,AB 为直径,C 为圆上一点,BAC ∠的角平分线与O 交于点D ,若20ADC ∠=°,的则BAD ∠=______°.14. 如图,Rt OAB 与Rt OBC △位于平面直角坐标系中,30AOB BOC ∠=∠=°,BA OA ⊥,CB OB ⊥,若AB =()0k y k x=≠恰好经过点C ,则k =______.15. 如图,在ABC 中,AB AC =,3tan 4B =,点D 为BC 上一动点,连接AD ,将ABD △沿AD 翻折得到ADE ,DE 交AC 于点G ,GE DG <,且:3:1AG CG =,则AGEADG S S =三角形三角形______.三、解答题16. 计算:()01232sin45π++−−+°. 17. 先化简,再求值:22111121x x x x − +÷ −−+,其中3x =. 18. 为了提高某城区居民的生活质量,政府将改造城区配套设施,并随机向某居民小区发放调查问卷(1人只能投1票),共有休闲设施,儿童设施,娱乐设施,健身设施4种选项,一共调查了a 人,其调查结果如下:如图,为根据调查结果绘制的扇形统计图和条形统计图,请根据统计图回答下面的问题:①调查总人数=a ______人;②请补充条形统计图;③若该城区共有10万居民,则其中愿意改造“娱乐设施”的约有多少人?④改造完成后,该政府部门向甲、乙两小区下发满意度调查问卷,其结果(分数)如下:若以1:1:1:1进行考核,______小区满意度(分数)更高;若以1:1:2:1进行考核,______小区满意度(分数)更高.19. 某商场在世博会上购置A ,B 两种玩具,其中B 玩具的单价比A 玩具的单价贵25元,且购置2个B 玩具与1个A 玩具共花费200元.(1)求A ,B 玩具的单价;(2)若该商场要求购置B 玩具的数量是A 玩具数量的2倍,且购置玩具的总额不高于20000元,则该商场最多可以购置多少个A 玩具?20. 如图,在单位长度为1的网格中,点O ,A ,B 均在格点上,3OA =,2AB =,以O 为圆心,OA 为半径画圆,请按下列步骤完成作图,并回答问题:①过点A 作切线AC ,且4AC =(点C 在A 上方);②连接OC ,交O 于点D ;③连接BD ,与AC 交于点E .(1)求证:BD 为O 的切线;(2)求AE 的长度.21. 蔬菜大棚是一种具有出色保温性能的框架覆膜结构,它出现使得人们可以吃到反季节蔬菜.一般蔬菜大棚使用竹结构或者钢结构的骨架,上面覆上一层或多层保温塑料膜,这样就形成了一个温室空间.如图,某个温室大棚的横截面可以看作矩形ABCD 和抛物线AED 构成,其中3m AB =,4m BC =,取BC 中点O ,过点O 作线段BC 的垂直平分线OE 交抛物线AED 于点E ,若以O 点为原点,BC 所在直线为x 轴,OE 为y 轴建立如图所示平面直角坐标系.请回答下列问题:(1)如图,抛物线AED 的顶点()0,4E ,求抛物线的解析式;(2)如图,为了保证蔬菜大棚的通风性,该大棚要安装两个正方形孔的排气装置LFGT ,SMNR ,若0.75m FL NR ==,求两个正方形装置的间距GM 的长;(3)如图,在某一时刻,太阳光线透过A 点恰好照射到C 点,此时大棚截面的阴影为BK ,求BK 的长.的的22. (1)如图,在矩形ABCD 中,E 为AD 边上一点,连接BE , ①若BE BC =,过C 作CF BE ⊥交BE 于点F ,求证:ABE FCB ≌△△;②若20ABCD S =矩形时,则BE CF ⋅=______.(2)如图,在菱形ABCD 中,1cos 3A =,过C 作CE AB ⊥交AB 的延长线于点E ,过E 作EF AD ⊥交AD 于点F ,若24ABCD S =菱形时,求EF BC ⋅的值.(3)如图,在平行四边形ABCD 中,60A ∠=°,6AB =,5AD =,点E 在CD 上,且2CE =,点F 为BC 上一点,连接EF ,过E 作EG EF ⊥交平行四边形ABCD 的边于点G ,若EF EG ⋅接写出AG 的长.。
(完整版)2018广东中考数学试题和参考答案解析
2017年广东省初中毕业生学业考试数 学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。
用2B 铅笔把对应该号码的标号涂黑。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卡的整洁。
考试结束时,将试卷和答题卡一并交回。
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 5的相反数是( )A. B.5 C.- D.-5 2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。
2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×B.0.4×C.4×D.4× 3.已知,则的补角为( )A. B. C. D. 4.如果2是方程的一个根,则常数k 的值为( )A.1B.2C.-1D.-25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:15159101010910101070A ∠=︒A ∠110︒70︒30︒20︒230x x k -+=90,85,90,80,95,则这组的数据的众数是( )A.95B.90C.85D.80 6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆 7.如题7图,在同一平面直角坐标系中,直线与双曲 线 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( )A.(-1,-2)B.(-2,-1)C.(-1,-1)D.(-2,-2) 8.下列运算正确的是( )A. B. C. D.9.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )A.130°B.100°C.65°D.50°10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①;②;③;④,其中正确的是( ) A.①③ B.②③ C.①④ D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡11(0)y k x k =≠22(0)k y k x=≠223a a a +=325·a a a =426()a a =424a a a +=ABF ADF S S =△△4CDF CBF S S =△△2ADF CEF S S =△△2ADF CDF S S =△△题7图相应的位置上.11.分解因式:aa+2 .12.一个n边形的内角和是,那么n= .13.已知实数a,b在数轴上的对应点的位置如题13图所示,则 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 .15.已知,则整式的值为 .16.如题16图(1),矩形纸片ABCD中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按题16图(3)操作:沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为 .三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:.720︒a b÷431a b÷=863a b÷-21|7|(1)3π-⎛⎫---+ ⎪⎝⎭18.先化简,再求值,其中x =√5 .19.学校团委组织志愿者到图书馆整理一批新进的图书。
精品解析:2024年高考重庆卷物理真题(原卷版)(合并)
重庆市2024年普通高等学校统一招生考试物理试卷一、选择题:共43分(一)单项选择题:共7题,每题4分,共28分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图所示,某滑雪爱好者经过M点后在水平雪道滑行。
然后滑上平滑连接的倾斜雪道,当其达到N点时速度为0,水平雪道上滑行视为匀速直线运动,在倾斜雪道上的运动视为匀减速直线运动。
则M到N的运动过程中,其速度大小v随时间t的变化图像可能是()A. B.C. D.2.2024年5月3日,嫦娥六号探测成功发射,开启月球背面采样之旅,探测器的着陆器上升器组合体着陆月球要经过减速、悬停、自由下落等阶段。
则组合体着陆月球的过程中()A.减速阶段所受合外力为0B.悬停阶段不受力C.自由下落阶段机械能守恒D.自由下落阶段加速度大小g=9.8m/s23.某救生手环主要由高压气罐密闭。
气囊内视为理想气体。
密闭气囊与人一起上浮的过程中。
若气囊内气体温度不变,体积增大,则()A.外界对气囊内气体做正功B.气囊内气体压强增大C.气囊内气体内能增大D.气囊内气体从外界吸热4.活检针可用于活体组织取样,如图所示。
取样时,活检针的针芯和针鞘被瞬间弹出后仅受阻力。
针鞘质量为m ,针鞘在软组织中运动距离d 1后进入目标组织,继续运动d 2后停下来。
若两段运动中针翘鞘整体受到阻力均视为恒力。
大小分别为F 1、F 2,则针鞘()A.B.到达目标组织表面时的动能为F 1d 1C.运动d 2过程中,阻力做功为(F 1+F 2)d 2D.运动d 2的过程中动量变化量大小为5.某同学设计了一种测量液体折射率的方案。
容器过中心轴线的剖面图如图所示,其宽度为16cm ,让单色光在此剖面内从空气入射到液体表面的中心。
调整入射角,当反射光与折射光垂直时,测出竖直器壁上的反射光点与液体表面的距离h ,就能得到液体的折射率n 。
忽略气壁厚度,由该方案可知()A.若h =4cm ,则n =B.若h =6cm ,则43n =C.若54n =,则h =10cmD.若32n =,则h =5cm 6.沿空间某直线建立x 轴,该直线上的静电场方向沿x 轴,其电电势的φ随位置x 变化的图像如图所示,一电荷都为e 带负电的试探电荷,经过x 2点时动能为1.5eV ,速度沿x 轴正方向若该电荷仅受电场力。
精品解析:2024年江西省高考地理真题(原卷版)(合并)
2024年江西省普通高中学业水平选择性考试地理一、选择题:本题共16小题,每小题3分,共48分。
在每小题的四个选项中只有一项符合题目要求。
越南是东南亚最大的摩托车拥有国之一。
相对于燃油摩托车,电动摩托车拥有量占比较小,但增长势头强劲。
M公司是集研发、生产和销售于一体的中国电动摩托车龙头企业。
2019年该公司在越南投资建厂,年产20万辆,并计划在新厂设立研发中心。
据此完成下面小题。
1.越南民众纷纷转而购买电动摩托车,考虑的最主要因素是()A.环保B.经济C.舒适度D.质量2.M公司计划在越南设立研发中心的主要目的是()A.提升产品产能B.提高技术水平C.降低生产成本D.适应当地市场3.M公司的投资有利于越南相关产业()①劳动力价格降低②能耗总量减少③转型升级加速④国际竞争力提升A.①②B.①③C.③④D.②④农业新质生产力正为国家粮食安全提供有力保障。
生长期短的早稻品种,产量一般不高。
我国研发的水稻高速育秧机突破了传统育秧模式,将育秧搬至工厂,通过智能控制,提前和缩短了早稻育秧的时间,可为早稻生长赢得更长的时间。
据此完成下面小题。
4.应用高速育秧机克服的传统育秧限制因素主要是()A.养分B.气温C.水分D.光照5.与传统育秧比,采用高速育秧机育秧主要是为了()A.增加育秧数量B.改良水稻品种C.提高水稻产量D.节约耕地资源货物周转量指在一定时期内,由各种运输工具运送的货物重量与其相应运输距离的乘积之总和。
下图示意某年甲、乙、丙、丁四个省级行政区的铁路、公路与水路货物周转量占三者总量的比例。
据此完成下面小题。
6.四个省级行政区的铁路货物周转量占比从大到小的排序是()A.甲>乙>丙>丁B.乙>丙>甲>丁C.甲>丁>丙>乙D.乙>丙>丁>甲7.据图判断甲、乙、丙、丁分别可能是()A.湖南、上海、山西、重庆B.山西、湖南、上海、重庆C.湖南、山西、重庆、上海D.山西、上海、重庆、湖南小东赴下图所示区域开展研学活动,发现该区域河岸冲刷严重,滑坡易发,公路安全受到威胁。
(精品中考卷)广东省中考数学真题(解析版)
2022年广东省初中学业水平考试数学本试卷共4页,23小题,满分120分.考试用时90分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号.将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 2-的值等于()A. 2B.12- C. 12D. ﹣2【答案】A【解析】【详解】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以22-=,故选A.2. 计算22的结果是()A. 1B.C. 2D. 4【答案】D【解析】【分析】利用乘方的意义计算即可.【详解】解:22224=⨯=故选:D .【点睛】本题考查有理数的乘方,熟练掌握乘方的意义是解答本题的关键.3. 下列图形中具有稳定性的是( )A. 平行四边形B. 三角形C. 长方形D. 正方形【答案】B【解析】【分析】根据三角形具有稳定性,四边形具有不稳定性可得结论. 详解】解:三角形具有稳定性;故选:B .【点睛】本题考查了三角形的稳定性和四边形的不稳定性,比较简单.4. 如图,直线a ,b 被直线c 所截,a ∥b ,∠1=40°,则∠2等于( )A. 30°B. 40°C. 50°D. 60°【答案】B【解析】 【分析】两条平行线被第三条直线所截,同位角相等.即:两直线平行,同位角相等.【详解】 //a b ,140∠=︒,∴240∠=︒.故选B .【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等. 5. 如图,在ABC 中,4BC =,点D ,E 分别为AB ,AC 的中点,则DE =( )A. 14B. 12 C. 1 D. 2【答案】D【解析】【【分析】利用中位线的性质即可求解.【详解】∵D 、E 分比为AB 、AC 的中点,∴DE 为△ABC 的中位线, ∴12DE BC =, ∵BC =4,∴DE =2,故选:D .【点睛】本题考查了中位线的判定与性质,掌握中位线的判定与性质是解答本题的关键. 6. 在平面直角坐标系中,将点()1,1向右平移2个单位后,得到的点的坐标是( )A. ()3,1B. ()1,1-C. ()1,3D. ()1,1- 【答案】A【解析】【分析】把点()1,1的横坐标加2,纵坐标不变,得到()3,1,就是平移后的对应点的坐标.【详解】解:点()1,1向右平移2个单位长度后得到的点的坐标为()3,1.故选A .【点睛】本题考查了坐标与图形变化﹣平移.掌握平移的规律是解答本题的关键. 7. 书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为( ) A. 14 B. 13 C. 12 D. 23【答案】B【解析】【分析】根据概率公式直接求概率即可;【详解】解:一共有3本书,从中任取1本书共有3种结果,选中的书是物理书的结果有1种,∴从中任取1本书是物理书的概率=13, 故选: B .【点睛】本题考查了概率的计算,掌握概率=所求事件的结果数÷总的结果数是解题关键. 8. 如图,在ABCD 中,一定正确的是( )A. AD CD =B. AC BD =C. AB CD =D. CD BC =【答案】C【解析】【分析】根据平行四边形的性质:平行四边形的对边相等,然后对各选项进行判断即可.【详解】解:∵四边形ABCD 是平行四边形∴AB =CD ,AD =BC故选C .【点睛】本题考查了平行四边形的性质.解题的关键在于熟练掌握平行四边形的性质. 9. 点()11,y ,()22,y ,()33,y ,()44,y 在反比例函数4y x=图象上,则1y ,2y ,3y ,4y 中最小的是( )A. 1yB. 2yC. 3yD. 4y 【答案】D【解析】【分析】根据反比例函数的性质可直接进行求解. 【详解】解:由反比例函数解析式4y x=可知:40>, ∴在每个象限内,y 随x 的增大而减小, ∵点()11,y ,()22,y ,()33,y ,()44,y 在反比例函数4y x =图象上, ∴1234y y y y >>>,故选D .【点睛】本题主要考查反比例函数的性质,熟练掌握反比例函数的性质是解题的关键. 10. 水中涟漪(圆形水波)不断扩大,记它的半径为r ,则圆周长C 与r 的关系式为2πC r =.下列判断正确的是( )A. 2是变量B. π是变量C. r 是变量D. C 是常量【答案】C【解析】【分析】根据变量与常量的定义分别判断,并选择正确的选项即可.【详解】解:2与π为常量,C 与r 为变量,故选C .【点睛】本题考查变量与常量概念,能够熟练掌握变量与常量的概念为解决本题的关键.二、填空题:本大题共5小题,每小题3分,共15分.11. sin30°的值为_____. 【答案】12【解析】【详解】试题分析:根据特殊角的三角函数值计算即可:sin30°=12.12. 单项式3xy 的系数为___________.【答案】3【解析】【分析】单项式中数字因数叫做单项式的系数,从而可得出答案.【详解】3xy 的系数是3,故答案为:3.【点睛】此题考查了单项式的知识,解答本题的关键是掌握单项式系数的定义. 13. 菱形的边长为5,则它的周长为____________.【答案】20【解析】【分析】根据菱形的四条边相等,即可求出.【详解】∵菱形的四条边相等.∴周长:5420⨯=,故答案为:20.【点睛】本题考查菱形的性质;熟练掌握菱形的性质是本题解题关键.14. 若1x =是方程220x x a -+=的根,则=a ____________.【答案】1【解析】【分析】本题根据一元二次方程的根的定义,把x =1代入方程得到a 的值.【详解】把x =1代入方程220x x a -+=,得1−2+a =0,解得a =1,故答案:1. 的为【点睛】本题考查的是一元二次方程的根即方程的解的定义,一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.15. 扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为____________.【答案】π【解析】【分析】根据扇形面积公式可直接进行求解. 【详解】解:由题意得:该扇形的面积为2902360ππ⨯⨯=; 故答案为π.【点睛】本题主要考查扇形面积公式,熟练掌握扇形的面积公式是解题的关键.三、解答题(一):本大题共3小题,每小题8分,共24分.16. 解不等式组:32113x x ->⎧⎨+<⎩. 【答案】12x <<【解析】【分析】分别解出两个不等式,根据求不等式组解集的口诀得到解集.【详解】解:32113x x ->⎧⎨+<⎩①②解①得:1x >,解②得:2x <,∴不等式组的解集是12x <<.【点睛】本题考查求不等式组的解集,掌握求不等式组解集的口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”是解题关键.17. 先化简,再求值:211a a a -+-,其中5a =. 【答案】21a +,11【解析】【分析】利用平方差公式约分,再合并同类项可;【详解】解:原式=()()111211a a a a a a a +-+=++=+-, a =5代入得:原式=2×5+1=11;【点睛】本题考查了分式化简求值,掌握平方差公式是解题关键.18. 如图,已知AOC BOC ∠=∠,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为的D ,E .求证:OPD OPE ≌V V .【答案】见解析【解析】【分析】根据角平分线的性质得PD PE =,再用HL 证明OPD OPE ≌V V .【详解】证明:∵AOC BOC ∠=∠,∴OC 为AOB ∠的角平分线,又∵点P 在OC 上,PD OA ⊥,PE OB ⊥,∴PD PE =,90PDO PEO ∠=∠=︒,又∵PO PO =(公共边),∴()HL OPD OPE ≌.【点睛】本题考查角平分线的性质,全等三角形的判定,利用合适的条件证明三角形全等是本题的关键.四、解答题(二):本大题共3小题,每小题9分,共27分.19. 《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?【答案】学生人数为7人,该书的单价为53元.【解析】【分析】设学生人数为x 人,然后根据题意可得8374x x -=+,进而问题可求解.【详解】解:设学生人数为x 人,由题意得:8374x x -=+,解得:7x =,∴该书的单价为77453⨯+=(元),答:学生人数为7人,该书的单价为53元.【点睛】本题主要考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.20. 物理实验证实:在弹性限度内,某弹簧长度y (cm )与所挂物体质量x (kg )满足函数关系15y kx =+.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x 0 2 5y 15 19 25(1)求y 与x 的函数关系式;(2)当弹簧长度为20cm 时,求所挂物体的质量.【答案】(1)215y x =+(2)所挂物体的质量为2.5kg【解析】【分析】(1)由表格可代入x =2,y =19进行求解函数解析式;(2)由(1)可把y =20代入函数解析式进行求解即可.【小问1详解】解:由表格可把x =2,y =19代入解析式得: 21519k +=,解得:2k =,∴y 与x 的函数关系式为215y x =+;【小问2详解】解:把y =20代入(1)中函数解析式得:21520x +=,解得: 2.5x =,即所挂物体的质量为2.5kg .【点睛】本题主要考查一次函数的应用,解题的关键是得出一次函数解析式. 21. 为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10,4,7,5,4,10,5,4,4,18,8,3,5,10,8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?【答案】(1)作图见解析;(2)月销售额在4万元的人数最多;中间的月销售额为5万元;平均数为7万元;(3)月销售额定为7万元合适,【解析】【分析】(1)根据所给数据确定销售额为4万元的人数为4人;销售额为8万元的人数为2人,然后补全条形统计图即可;(2)根据众数、中位数及平均数的计算方法求解即可;(3)根据题意,将月销售额定为7万元合适.【小问1详解】解:根据数据可得:销售额为4万元的人数为4人;销售额为8万元的人数为2人;补全统计图如图所示:【小问2详解】由条形统计图可得:月销售额在4万元的人数最多;将数据按照从小到大排序后,中间的月销售额为第8名销售员的销售额为5万元; 平均数为:3144537182103181715⨯+⨯+⨯+⨯+⨯+⨯+⨯=万元; 小问3详解】月销售额定为7万元合适,给予奖励,可以激发销售员的积极性,振兴乡村经济.【点睛】题目主要考查条形统计图及相关统计数据的计算方法,包括,众数、中位数、平均数,以及利用平均数做决策等,理解题意,综合运用这些知识点是解题关键.五、解答题(三):本大题共2小题,每小题12分,共24分.22. 如图,四边形ABCD 内接于O ,AC 为O 的直径,ADB CDB ∠=∠.(1)试判断ABC 的形状,并给出证明;(2)若AB =,1AD =,求CD 的长度.【答案】(1)△ABC 是等腰直角三角形;证明见解析;(2【解析】【分析】(1)根据圆周角定理可得∠ABC =90°,由∠ADB =∠CDB 根据等弧对等角可得∠ACB =∠CAB ,即可证明;(2)Rt △ABC 中由勾股定理可得AC ,Rt △ADC 中由勾股定理求得CD 即可;【【小问1详解】证明:∵AC 是圆的直径,则∠ABC =∠ADC =90°,∵∠ADB =∠CDB ,∠ADB =∠ACB ,∠CDB =∠CAB ,∴∠ACB =∠CAB ,∴△ABC 是等腰直角三角形;【小问2详解】解:∵△ABC 是等腰直角三角形,∴BC =AB ,∴AC 2=,Rt △ADC 中,∠ADC =90°,AD =1,则CD =∴CD ; 【点睛】本题考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理等知识;掌握等弧对等角是解题关键.23. 如图,抛物线2y x bx c =++(b ,c 是常数)的顶点为C ,与x 轴交于A ,B 两点,()1,0A ,4AB =,点P 为线段AB 上的动点,过P 作PQ BC ∥交AC 于点Q .(1)求该抛物线的解析式;(2)求CPQ 面积的最大值,并求此时P 点坐标.【答案】(1)223y x x =+-(2)2;P (-1,0)【解析】【分析】(1)用待定系数法将A ,B 的坐标代入函数一般式中,即可求出函数的解析式;(2)分别求出C 点坐标,直线AC ,BC 的解析式,PQ 的解析式为:y =-2x +n ,进而求出P ,Q 的坐标以及n 的取值范围,由CPQ CPA APQ S S S =-△△△列出函数式求解即可.【小问1详解】解:∵点A (1,0),AB =4,∴点B 的坐标为(-3,0),将点A (1,0),B (-3,0)代入函数解析式中得:01093b c b c =++⎧⎨=-+⎩, 解得:b =2,c =-3,∴抛物线的解析式为223y x x =+-;【小问2详解】解:由(1)得抛物线的解析式为223y x x =+-,顶点式为:2y (x 1)4=+-,则C 点坐标为:(-1,-4),由B (-3,0),C (-1,-4)可求直线BC 的解析式为:y =-2x -6,由A (1,0),C (-1,-4)可求直线AC 的解析式为:y =2x -2,∵PQ ∥BC ,设直线PQ 的解析式为:y =-2x +n ,与x 轴交点P ,02n ⎛⎫ ⎪⎝⎭, 由222y x n y x =-+⎧⎨=-⎩解得:22,42n n Q +-⎛⎫ ⎪⎝⎭, ∵P 在线段AB 上, ∴312n -<<, ∴n 的取值范围为-6<n <2,则CPQ CPA APQ S S S =-△△△11214122222n n n -⎛⎫⎛⎫⎛⎫=⨯-⨯-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()21228n =-++ ∴当n =-2时,即P (-1,0)时,CPQ S △最大,最大值为2.【点睛】本题考查二次函数的面积最值问题,二次函数的图象与解析式间的关系,一次函数的解析式与图象,熟练掌握数形结合思想是解决本题的关键。
精品解析:2023年高考广东卷化学真题(原卷版)
A.电解总反应:
B.每生成 ,双极膜处有 解离
C.电解过程中,阳极室中 的物质的量不因反应而改变
D.相比于平面结构双极膜,“卯榫”结构可提高氨生成速率
(4) 会使滤泥中的一种胶状物质转化为疏松分布的棒状颗粒物。滤渣的X射线衍射图谱中,出现了 的明锐衍射峰。
① 属于___________(填“晶体”或“非晶体”)。
② 提高了 的浸取速率,其原因是___________。
(5)①“析晶”过程中通入的酸性气体A为___________。
②由 可制备 晶体,其立方晶胞如图。 与O最小间距大于 与O最小间距,x、y为整数,则 在晶胞中的位置为___________;晶体中一个 周围与其最近的O的个数为___________。
2.科教兴国,“可上九天揽月,可下五洋捉鳖”。下列说法正确的是
A.“天舟六号”为中国空间站送去推进剂 气, 是第 族元素
B.火星全球影像彩图显示了火星表土颜色,表土中赤铁矿主要成分为
C.创造了可控核聚变运行纪录的“人造太阳”,其原料中的 与 互为同位素
D.“深地一号”为进军万米深度提供核心装备,制造钻头用的金刚石为金属晶体
A.AB.BC.CD.D
13.利用活性石墨电极电解饱和食盐水,进行如图所示实验。闭合 ,一段时间后
A.U型管两侧均有气泡冒出,分别是 和 B.a处布条褪色,说明 具有漂白性
C.b处出现蓝色,说明还原性: D.断开 ,立刻闭合 ,电流表发生偏转
14.化合物 可作肥料,所含的5种元素位于主族,在每个短周期均有分布,仅有Y和M同族。Y的基态原子价层p轨道半充满,X的基态原子价层电子排布式为 ,X与M同周期,E在地壳中含量最多。下列说法正确的是
【推荐】精品解析:广东省2018年中考数学试题(解析版)
2018年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 四个实数0、、﹣3.14、2中,最小的数是()A. 0B.C. ﹣3.14D. 2【答案】C【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】根据实数比较大小的方法,可得﹣3.14<0<<2,所以最小的数是﹣3.14,故选C.【点睛】本题考查了实数的大小比较,要熟练掌握比较方法,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2. 据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A. 1.442×107B. 0.1442×107C. 1.442×108D. 0.1442×108【答案】A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【详解】14420000的小数点向左移动7位得到1.442,所以14420000用科学记数法可以表示为:1.442×107,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3. 如图,由5个相同正方体组合而成的几何体,它的主视图是()A. B. C. D.【答案】B【解析】【分析】根据主视图是从物体正面看所得到的图形解答即可.【详解】观察可知主视图有三列小正方形,从左至右的个数依次为2、1、1,即主视图为:,故选B.【点睛】本题考查的是简单几何体的三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.4. 数据1、5、7、4、8的中位数是()A. 4B. 5C. 6D. 7【答案】B【解析】【分析】根据中位数的定义进行解答即可得.【详解】将数据重新排列为1、4、5、7、8,则这组数据的中位数为5,故选B.【点睛】本题考查了中位数的定义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5. 下列所述图形中,是轴对称图形但不是中心对称图形的是()A. 圆B. 菱形C. 平行四边形D. 等腰三角形【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念进行求解即可.【详解】A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确,故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6. 不等式3x﹣1≥x+3的解集是()A. x≤4B. x≥4C. x≤2D. x≥2【答案】D【解析】【分析】按移项、合并同类项、系数化为1的步骤进行求解即可得.【详解】移项,得:3x﹣x≥3+1,合并同类项,得:2x≥4,系数化为1,得:x≥2,故选D.【点睛】本题主要考查解一元一次不等式,熟练掌握解一元一次不等式的步骤以及注意事项是解题的关键.7. 在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A. B. C. D.【答案】C【详解】如图,∵点D、E分别为边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴,故选C.【点睛】本题考查了相似三角形的判定与性质、三角形中位线定理,利用三角形的中位线定理找出DE∥BC 是解题的关键.8. 如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A. 30°B. 40°C. 50°D. 60°【答案】B【解析】【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到∠B=∠D=40°.【详解】∵∠DEC=100°,∠C=40°,∴∠D=180°-∠DEC-∠C=40°,又∵AB∥CD,∴∠B=∠D=40°,故选B.【点睛】本题考查了三角形内角和定理,平行线性质的应用,运用两直线平行,内错角相等是解题的关键.9. 关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A. m<B. m≤C. m>D. m≥【答案】A【解析】【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【详解】∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<,故选A.【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10. 如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD 的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A. B. C. D.【答案】B【解析】【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【详解】分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确,故选B.【点睛】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,运用分类讨论思想,分三段求出△PAD的面积的表达式是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11. 同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是_____.【答案】50°【解析】【分析】直接利用圆周角定理进行求解即可.【详解】∵弧AB所对的圆心角是100°,∴弧AB所对的圆周角为50°,故答案为:50°.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12. 分解因式:x2﹣2x+1=_____.【答案】(x﹣1)2.【解析】分析:根据本题中多项式的特点,用“完全平方公式”进行分解即可.详解:.故答案为:.点睛:熟记:“完全平方公式:”是正确解答本题的关键.13. 一个正数的平方根分别是x+1和x﹣5,则x=_____.【答案】2【解析】【分析】根据正数的两个平方根互为相反数可得关于x的方程,解方程即可得.【详解】根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.【点睛】本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.14. 已知+|b﹣1|=0,则a+1=_____.【答案】2【解析】【分析】直接利用非负数的性质结合绝对值的性质得出a,b的值进而即可得出答案.【详解】∵+|b﹣1|=0,∴b﹣1=0,a﹣b=0,解得:b=1,a=1,故a+1=2,故答案为:2.【点睛】本题主要考查了非负数的性质以及绝对值的性质,根据几个非负数的和为0,那么每个非负数都为0得到关于a、b的方程,从而得出a,b的值是解题的关键.15. 如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为_____.(结果保留π)【答案】π【解析】【分析】连接OE,如图,利用切线的性质得OD=2,OE⊥BC,易得四边形OECD为正方形,先利用扇形面积公式,利用S正方形OECD﹣S扇形EOD计算由弧DE、线段EC、CD所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【详解】连接OE,如图,∵以AD为直径的半圆O与BC相切于点E,∴OD=2,OE⊥BC,易得四边形OECD为正方形,∴由弧DE、线段EC、CD所围成的面积=S正方形OECD﹣S扇形EOD=22﹣=4﹣π,∴阴影部分的面积=×2×4﹣(4﹣π)=π,故答案为:π.【点睛】本题考查了切线的性质、矩形的性质和扇形的面积公式,正确添加辅助线、仔细识图从中得到阴影部分面积的由来是解题的关键.16. 如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为_____.【答案】(2,0).【解析】【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点B6的坐标.【详解】如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0),故答案为:(2,0).【点睛】本题考查了规律题,反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点B n的规律是解题的关键.三、解答题(一)17. 计算:|﹣2|﹣20180+()﹣1【答案】3.【解析】【分析】按顺序先分别进行绝对值化简、0次幂的计算、负指数幂的计算,然后再按运算顺序进行计算即可得.【详解】|﹣2|﹣20180+()﹣1=2﹣1+2=3.【点睛】本题主要考查了实数的混合运算,涉及到绝对值的化简、0指数幂的运算、负指数幂的运算,熟练掌握各运算法则是解题的关键.18. 先化简,再求值:,其中a=.【答案】【解析】【分析】原式的分子分母先因式分解,再约分即可进行化简,然后将a的值代入化简后的结果进行计算即可得.【详解】原式==2a,当a=时,原式=2×=.【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.19. 如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【答案】(1)作图见解析;(2)45°.【解析】【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可.【详解】(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C,∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠FBA=∠A=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【点睛】本题考查了作图﹣基本作图,线段的垂直平分线的性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题.20. 某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?【答案】(1)A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)购买了80条A型芯片.【解析】【分析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【详解】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26,答:A型芯片的单价为26元/条,B型芯片的单价为35元/条;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80,答:购买了80条A型芯片.【点睛】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.21. 某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?【答案】(1)800;(2)补图见解析;(3)3500人.【解析】【分析】(1)由“不剩”的人数及其所占百分比即可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.【详解】(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)“剩少量”的人数为800﹣(400+80+40)=280人,补全条形图如下:(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.【点睛】本题考查了用样本估计总体,条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22. 如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.【详解】(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD,在△ADE和△CED中,,∴△ADE≌△CED(SSS);(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【点睛】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质得到∠DEF=∠EDF.23. 如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C 和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.【答案】(1)-3;(2)y=x2﹣3;(3)M的坐标为(3,6)或(,﹣2).【解析】【分析】(1)把C(0,﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定二次函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【详解】(1)将(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:,解得:,所以二次函数的解析式为:y=x2﹣3;(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC•tan30°=,设DC为y=kx﹣3,代入(,0),可得:k=,联立两个方程可得:,解得:,,所以M1(3,6);②若M在B下方,设MC交x轴于点E,则∠OEC=45°﹣15°=30°,∴OE=OC•tan60°=3,设EC为y=kx﹣3,代入(3,0)可得:k=,联立两个方程可得:,解得:,,,所以M2(,﹣2),综上所述M的坐标为(3,6)或(,﹣2).【点睛】本题主要考查了二次函数的综合题,涉及到待定系数法求二次函数解析式,待定系数法求一次函数解析式,解方程组、解直角三角形等,熟练掌握待定系数法以及运用分类讨论思想进行解题是解题的关键.24. 如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.【答案】(1)证明见解析;(2)证明见解析;(3)【解析】【分析】(1)连接OC,证△OAD≌△OCD得∠ADO=∠CDO,由AD=CD知DE⊥AC,再由AB为直径知BC⊥AC,从而得OD∥BC;(2)根据tan∠ABC=2可设BC=a、则AC=2a、AD=AB=,证OE为中位线知OE=a、AE=CE=AC=a,进一步求得DE==2a,在△AOD中利用勾股定理逆定理证∠OAD=90°即可得;学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...【详解】(1)如图,连接OC,在△OAD和△OCD中,,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,又AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)∵tan∠ABC==2,∴设BC=a、则AC=2a,∴AD=AB=,∵OE∥BC,且AO=BO,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE==2a,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OF+DF)2=(a+2a)2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,则DA与⊙O相切;(3)如图,连接AF,∵AB是⊙O的直径,∴∠AFD=∠BAD=90°,∵∠ADF=∠BDA,∴△AFD∽△BAD,∴,即DF•BD=AD2①,又∵∠AED=∠OAD=90°,∠ADE=∠ODA,∴△AED∽△OAD,∴,即OD•DE=AD2②,由①②可得DF•BD=OD•DE,即,又∵∠EDF=∠BDO,∴△EDF∽△BDO,∴,∵BC=1,∴AB=AD=、OD=、ED=2、BD=、OB=,∴,∴EF=.【点睛】本题考查了切线的判定、等腰三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理以及勾股定理的逆定理等,综合性较强,有一定的难度,准确添加辅助线构造图形是解题的关键.25. 已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC= °;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?【答案】(1)60;(2);(3).【解析】【分析】(1)只要证明△OBC是等边三角形即可;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当<x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.【详解】(1)由旋转性质可知:OB=OC,∠BOC=60°,∴△OBC是等边三角形,∴∠OBC=60°,故答案为:60;(2)∵OB=4,∠ABO=30°,∴OA=OB=2,AB=OA=2,∴S△AOC=•OA•AB=×2×2=2,∵△BOC是等边三角形,∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,∴AC==2,∴OP=;(3)①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E,如图,则NE=ON•sin60°=x,∴S△OMN=•OM•NE=×1.5x×x,∴y=x2,∴x=时,y有最大值,最大值=;②当<x≤4时,M在BC上运动,N在OB上运动,如图,作MH⊥OB于H.则BM=8﹣1.5x,MH=BM•sin60°=(8﹣1.5x),∴y=×ON×MH=﹣x2+2x,当x=时,y取最大值,y<;③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G,如图,MN=12﹣2.5x,OG=AB=2,∴y=•MN•OG=12﹣x,当x=4时,y有最大值,最大值=2,综上所述,y有最大值,最大值为.【点睛】本题考查了旋转变换综合题,涉及到二次函数的最值,30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,仔细分析,正确添加辅助线,分类讨论的思想思考问题是解题的关键.。
精品解析:2024年广东省深圳市中考英语真题(原卷版)
A.Because he was a warm person.B.Because he had mental health problems.
C.Because he was a clown.D.Because he wasn’t the same as others.
Hunter Adams became famous during the 1980s, and in 1998, Universal Pictures made a film about his life. It was very successful. In the film (called Patch Adams), Robin Williams played Adams. Williams said, “Adams is a really warm person, who believes that patients need a doctor who is a friend. I enjoyed playing him.”
6. A.calmB.awakeC.relaxedD.free
7. A.tellsB.excusesC.failuresD.meeting
8. A.fellB.flewC.openedD.turned
9. A.excitedlyB.hurriedlyC.carefullyD.worriedly
10. A.teamB.clubC.schoolD.village
“That is___3___!” Though he didn’t know what a windmill was, he decided to give it a try.
精品解析:2024年广东省广州市中考数学试题(解析版)
2024年广州市初中学业水平考试数学试卷共8页,25小题,满分120分.考试用时120分钟.注意事项:1.答题前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的圆珠笔或钢笔填写自己的考生号、姓名;将自己的条形码粘贴在答题卡的“条形码粘贴处”.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试卷上.3.非选择题答案必须用黑色字迹的圆珠笔或钢笔写在答题卡各题目指定区域内的相应位置上,涉及作图的题目,用2B铅笔画图;如需改动,先划掉原来的答案,然后再写上新的答案,改动后的答案也不能超出指定的区域;不准使用铅笔(作图除外)、涂改液和修正带.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)−,1−,0,10中,最小的数是()1. 四个数10− B. 1− C. 0 D. 10A. 10【答案】A【解析】【分析】本题考查了有理数的大小比较,解题关键是掌握有理数大小比较法则:正数大于零,负数小于零,正数大于一切负数;两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.−<−<<,【详解】解:101010∴最小的数是10−,故选:A.2. 下列图案中,点O为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O 对称的是()A. B. C. D.【答案】C【解析】【分析】本题考查了图形关于某点对称,掌握中心对称图形的性质是解题关键.根据对应点连线是否过点O 判断即可.【详解】解:由图形可知,阴影部分的两个三角形关于点O对称的是C,故选:C.3. 若0a≠,则下列运算正确的是()A.235a a a+= B. 325a a a⋅=C.235a a a⋅= D. 321a a÷=【答案】B【解析】【分析】本题考查了分式的乘法,同底数幂乘法与除法,掌握相关运算法则是解题关键.通分后变为同分母分数相加,可判断A 选项;根据同底数幂相乘,底数不变,指数相加,可判断B选项;根据分式乘法法则计算,可判断C选项;根据同底数幂除法,底数不变,指数相减,可判断D 选项.【详解】解:A、32523666a a a a a+=+=,原计算错误,不符合题意;B、325a a a⋅=,原计算正确,符合题意;C、2236a a a⋅=,原计算错误,不符合题意;D、32a a a÷=,原计算错误,不符合题意;故选:B.4. 若a b<,则()A. 33a b+>+ B. 22a b−>− C. a b−<− D. 22a b<【答案】D【解析】【分析】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.根据不等式的基本性质逐项判断即可得.【详解】解:A .∵a b <,∴33a b +<+,则此项错误,不符题意; B .∵a b <,∴22a b −<−,则此项错误,不符题意; C .∵a b <,∴a b −>−,则此项错误,不符合题意; D .∵a b <,∴22a b <,则此项正确,符合题意; 故选:D .5. 为了解公园用地面积x (单位:公顷)的基本情况,某地随机调查了本地50个公园的用地面积,按照04x <≤,48x <≤,812x <≤,1216x <≤,1620x <≤的分组绘制了如图所示的频数分布直方图,下列说法正确的是( )A. a 的值为20B. 用地面积在812x <≤这一组的公园个数最多C. 用地面积在48x <≤这一组的公园个数最少D. 这50个公园中有一半以上的公园用地面积超过12公顷 【答案】B 【解析】【分析】本题考查的是从频数分布直方图获取信息,根基图形信息直接可得答案. 【详解】解:由题意可得:5041612810a =−−−−=,故A 不符合题意; 用地面积在812x <≤这一组的公园个数有16个,数量最多,故B 符合题意;用地面积在04x <≤这一组的公园个数最少,故C 不符合题意;这50个公园中有20个公园用地面积超过12公顷,不到一半,故D 不符合题意; 故选B6. 某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆.设该车企去年5月交付新车x 辆,根据题意,可列方程为( ) A. 1.2110035060x += B. 1.2110035060x −= C. 1.2(1100)35060x += D. 110035060 1.2x −=⨯【答案】A 【解析】【分析】本题考查了一元一次方程的应用,找出题目中的数量关系是解题关键.设该车企去年5月交付新车x 辆,根据“今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆”列出方程即可.【详解】解:设该车企去年5月交付新车x 辆, 根据题意得:1.2110035060x +=, 故选:A .7. 如图,在ABC 中,90A ∠=︒,6AB AC ==,D 为边BC 的中点,点E ,F 分别在边AB ,AC 上,AE CF =,则四边形AEDF 的面积为( )A. 18B.C. 9D.【答案】C 【解析】【分析】本题考查等腰直角三角形的性质以及三角形全等的性质与判定,掌握相关的线段与角度的转化是解题关键.连接AD ,根据等腰直角三角形的性质以及AE CF =得出ADE CDF V V ≌,将四边形AEDF 的面积转化为三角形ADC 的面积再进行求解.【详解】解:连接AD ,如图:∵90BAC ∠=︒,6AB AC ==,点D 是BC 中点,AE CF = ∴45,BAD B C AD BD DC ∠=∠=∠=︒== ∴ADE CDF V V ≌,∴12AED ADF CFD ADF ADC ABC AEDF S S S S S S S =+=+==四边形△△△△△△ 又∵166182ABCS=⨯⨯= ∴1=92ABCAEDF S S =四边形故选:C8. 函数21y ax bx c =++与2ky x=的图象如图所示,当( )时,1y ,2y 均随着x 的增大而减小.A. 1x <−B. 10x −<<C. 02x <<D. 1x >【答案】D 【解析】【分析】本题考查了二次函数以及反比例函数的图象和性质,利用数形结合的思想解决问题是关键.由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于在一、三象限内,且2y 均随着x 的增大而减小,据此即可得到答案.【详解】解:由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于一、三象限内,且在每一象限内2y 均随着x 的增大而减小,∴当1x >时,1y ,2y 均随着x 的增大而减小,故选:D .9. 如图,O 中,弦AB 的长为C 在O 上,OC AB ⊥,30ABC ∠=︒.O 所在的平面内有一点P ,若5OP =,则点P 与O 的位置关系是( )A. 点P 在O 上B. 点P 在O 内C. 点P 在O 外D. 无法确定【答案】C 【解析】【分析】本题考查了垂径定理,圆周角定理,点与圆的位置关系,锐角三角函数,掌握圆的相关性质是解题关键.由垂径定理可得AD =由圆周角定理可得60AOC ∠=︒,再结合特殊角的正弦值,求出O 的半径,即可得到答案.【详解】解:如图,令OC 与AB 的交点为D ,OC 为半径,AB 为弦,且OC AB ⊥,12AD AB ∴==,30ABC =︒∠260AOC ABC ∴∠=∠=︒,在ADO △中,90ADO ∠=︒,60AOD ∠=︒,AD = sin ADAOD OA∠=,4sin 60AD OA ∴===︒,即O 的半径为4,54OP =>,∴点P 在O 外,故选:C .10. 如图,圆锥的侧面展开图是一个圆心角为72︒的扇形,若扇形的半径l 是5,则该圆锥的体积是( )A.π8B.π8C.D.【答案】D 【解析】【分析】本题考查了弧长公式,圆锥的体积公式,勾股定理,理解圆锥的底面周长与侧面展开图扇形的弧长相等是解题关键,设圆锥的半径为r ,则圆锥的底面周长为2r π,根据弧长公式得出侧面展开图的弧长为2π=,进而得出1r =,再利用勾股定理,求出圆锥的高,再代入体积公式求解即可.【详解】解:设圆锥的半径为r ,则圆锥的底面周长为2r π,圆锥的侧面展开图是一个圆心角为72︒的扇形,且扇形的半径l 是5,∴扇形的弧长为7252180ππ⨯=, 圆锥的底面周长与侧面展开图扇形的弧长相等,22r ππ∴=,1r ∴=,∴=,∴圆锥的体积为2113π⨯⨯,故选:D .第二部分 非选择题(共90分)二、填空题(本大题共6小题,每小题3分,满分18分.)11. 如图,直线l 分别与直线a ,b 相交,ab ,若171∠=︒,则2∠的度数为______.【答案】109︒ 【解析】【分析】本题考查的是平行线的性质,邻补角的含义,先证明1371∠=∠=︒,再利用邻补角的含义可得答案.【详解】解:如图,∵a b ,171∠=︒,∴1371∠=∠=︒, ∴21803109∠=︒−∠=︒; 故答案为:109︒12. 如图,把1R ,2R ,3R 三个电阻串联起来,线路AB 上的电流为I ,电压为U ,则123U IR IR IR =++.当120.3R =,231.9R =,347.8R =, 2.2I =时,U 的值为______.【答案】220 【解析】【分析】本题考查了代数式求值,乘法运算律,掌握相关运算法则,正确计算是解题关键.根据123U IR IR IR =++,将数值代入计算即可.【详解】解:123U IR IR IR =++,当120.3R =,231.9R =,347.8R =, 2.2I =时,()20.3 2.231.9 2.247.8 2.220.331.947.8 2.2220U =⨯+⨯+⨯=++⨯=, 故答案为:220.13. 如图,ABCD Y 中,2BC =,点E 在DA 的延长线上,3BE =,若BA 平分EBC ∠,则DE =______.【答案】5 【解析】【分析】本题考查了平行四边形的性质,等腰三角形的判定和性质,掌握平行四边形的性质是解题关键.由平行四边形的性质可知,2AD BC ==,BC AD ∥,进而得出BAE EBA ∠=∠,再由等角对等边的性质,得到3BE AE ==,即可求出DE 的长. 【详解】解:在ABCD Y 中,2BC =,2AD BC ∴==,BC AD ∥,CBA BAE ∴∠=∠,BA 平分EBC ∠,CBA EBA ∴∠=∠, BAE EBA ∴∠=∠,3BE AE ∴==,235DE AD AE ∴=+=+=,故答案为:5.14. 若2250a a −−=,则2241a a −+=______. 【答案】11 【解析】【分析】本题考查了因式分解,提取公因式,得出条件的等价形式是解题关键.由2250a a −−=,得225a a −=,根据提公因式法分解因式得()22241221a a a a −+=−+,代入可得答案. 【详解】解:2250a a −−=,225a a ∴−=,()2224122125111a a a a ∴−+=−+=⨯+=,故答案为:11.15. 定义新运算:()()200a b a a b a b a ⎧−≤⎪⊗=⎨−+>⎪⎩例如:224(2)40−⊗=−−=,23231⊗=−+=.若314x ⊗=−,则x 的值为______.【答案】12−或74【解析】【分析】本题考查了一元二次方程的应用,一元一次方程的应用,解题的关键是明确新运算的定义.根据新定义运算法则列出方程求解即可.【详解】解:∵()()200a b a a b a b a ⎧−≤⎪⊗=⎨−+>⎪⎩, 而314x ⊗=−, ∴①当0x ≤时,则有2314x −=−, 解得,12x =−; ②当0x >时,314x −+=−, 解得,74x =综上所述,x 的值是12−或74, 故答案为:12−或74. 16. 如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数(0)ky x x=>的图象上,(1,0)A ,(0,2)C .将线段AB 沿x 轴正方向平移得线段A B ''(点A 平移后的对应点为A '),A B ''交函数(0)ky x x=>的图象于点D ,过点D 作DE y ⊥轴于点E ,则下列结论:①2k =;②OBD 的面积等于四边形ABDA '的面积;③A E ' ④B BD BB O ''∠=∠.其中正确的结论有______.(填写所有正确结论的序号) 【答案】①②④ 【解析】【分析】由()1,2B ,可得122k =⨯=,故①符合题意;如图,连接OB ,OD ,BD ,OD 与AB 的交点为K ,利用k 的几何意义可得OBD 的面积等于四边形ABDA '的面积;故②符合题意;如图,连接A E ',证明四边形A DEO '为矩形,可得当OD 最小,则A E '最小,设()2,0D x x x ⎛⎫> ⎪⎝⎭,可得A E '的最小值为2,故③不符合题意;如图,设平移距离为n ,可得()1,2B n '+,证明B BD A OB '''∽,可得B BD B OA '''∠=∠,再进一步可得答案.【详解】解:∵(1,0)A ,(0,2)C ,四边形OABC 是矩形; ∴()1,2B ,∴122k =⨯=,故①符合题意;如图,连接OB ,OD ,BD ,OD 与AB 的交点为K ,∵1212AOBA ODS S'==⨯=, ∴BOKAKDA S S '=四边形, ∴BOKBKDBKDAKDA SSS S'+=+四边形,∴OBD 的面积等于四边形ABDA '的面积;故②符合题意; 如图,连接A E ',∵DE y ⊥轴,90DA O EOA ''∠=∠=︒, ∴四边形A DEO '为矩形, ∴A E OD '=,∴当OD 最小,则A E '最小, 设()2,0D x x x ⎛⎫> ⎪⎝⎭, ∴2224224OD x x x x=+≥⋅⋅=, ∴2OD ≥,∴A E '的最小值为2,故③不符合题意; 如图,设平移距离为n , ∴()1,2B n '+, ∵反比例函数为2y x=,四边形A B CO ''为矩形, ∴90BB D OA B '''∠=∠=︒,21,1D n n ⎛⎫+ ⎪+⎝⎭, ∴BB n '=,1OA n '=+,22211n B D n n '=−=++,2A B ''=, ∴2112n BB n B D n OA n A B ''+==='''+,∴B BD A OB '''∽, ∴B BD B OA '''∠=∠, ∵B C A O ''∥, ∴CB O A OB '''∠=∠,∴B BD BB O ''∠=∠,故④符合题意; 故答案为:①②④【点睛】本题考查的是反比例函数的图象与性质,平移的性质,矩形的判定与性质,相似三角形的判定与性质,勾股定理的应用,作出合适的辅助线是解本题的关键.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17. 解方程:1325x x=−.【答案】3x = 【解析】【分析】本题考查的是解分式方程,掌握分式方程的解法是解题关键,注意检验.依次去分母、去括号、移项、合并同类项求解,检验后即可得到答案. 【详解】解:1325x x=−,去分母得:()325x x =−, 去括号得:615x x =−, 移项得:615x x −=−, 合并同类项得:515x −=−, 解得:3x =,经检验,3x =是原方程的解,∴该分式方程的解为3x =.18. 如图,点E ,F 分别在正方形ABCD 的边BC ,CD 上,3BE =,6EC =,2CF =.求证:ABE ECF △△∽.【答案】见解析 【解析】【分析】本题考查了正方形的性质,相似三角形的判定,掌握相似三角形的判定定理是解题关键.根据正方形的性质,得出90B C ∠=∠=︒,9AB CB ==,进而得出AB BEEC CF=,根据两边成比例且夹角相等的两个三角形相似即可证明. 【详解】解:3BE =,6EC =,9BC ∴=,四边形ABCD 是正方形, 9AB CB ∴==,90B C ∠=∠=︒,9362AB EC ==,32BE CF =, AB BEEC CF∴= 又90B C ∠=∠=︒,ABE ECF ∴∽.19. 如图,Rt ABC △中,90B??.(1)尺规作图:作AC 边上的中线BO (保留作图痕迹,不写作法);(2)在(1)所作的图中,将中线BO 绕点O 逆时针旋转180︒得到DO ,连接AD ,CD .求证:四边形ABCD 是矩形.【答案】(1)作图见解析 (2)证明见解析 【解析】【分析】本题考查的是作线段的垂直平分线,矩形的判定,平行四边形的判定与性质,旋转的性质;(1)作出线段AC 的垂直平分线EF ,交AC 于点O ,连接BO ,则线段BO 即为所求; (2)先证明四边形ABCD 为平行四边形,再结合矩形判定可得结论. 【小问1详解】解:如图,线段BO 即为所求;【小问2详解】证明:如图,∵由作图可得:AO CO =,由旋转可得:BO DO =, ∴四边形ABCD 为平行四边形, ∵90ABC ∠=︒, ∴四边形ABCD 为矩形.20. 关于x 的方程2240x x m −+−=有两个不等的实数根. (1)求m 的取值范围;(2)化简:2113|3|21m m m m m −−−÷⋅−+.【答案】(1)3m > (2)2− 【解析】【分析】本题考查的是一元二次方程根的判别式,分式的混合运算,掌握相应的基础知识是解本题的关键; (1)根据一元二次方程根的判别式建立不等式解题即可;(2)根据(1)的结论化简绝对值,再计算分式的乘除混合运算即可. 【小问1详解】解:∵关于x 的方程2240x x m −+−=有两个不等的实数根. ∴()()224140m ∆=−−⨯⨯−>, 解得:3m >;的【小问2详解】解:∵3m>,∴2113|3|21m m mm m−−−÷⋅−+()()1123311 m m mm m m−+−−=⋅⋅−−+2=−;21. 善于提问是应用人工智能解决问题的重要因素之一.为了解同学们的提问水平,对A,B两组同学进行问卷调查,并根据结果对每名同学的提问水平进行评分,得分情况如下(单位:分):(1)求A组同学得分的中位数和众数;(2)现从A、B两组得分超过90分的4名同学中随机抽取2名同学参与访谈,求这2名同学恰好来自同一组的概率.【答案】(1)A组同学得分的中位数为85分,众数为82分;(2)1 3【解析】【分析】本题考查了中位数与众数,列表法或树状图法求概率,掌握相关知识点是解题关键.(1)根据中位数和众数的定义求解即可;(2)由题意可知,A、B两组得分超过90分同学各有2名,画树状图法求出概率即可.【小问1详解】解:由题意可知,每组学生人数为10人,∴中位数为第5、6名同学得分的平均数,∴A组同学得分的中位数为8486852+=分,82分出现了两次,次数最多,∴众数为82分;【小问2详解】的解:由题意可知,A 、B 两组得分超过90分的同学各有2名, 令A 组的2名同学为1A 、2A ,B 组的2名同学为1B 、2B , 画树状图如下:由树状图可知,共有12种等可能的情况,其中这2名同学恰好来自同一组的情况有4种,∴这2名同学恰好来自同一组的概率41123=. 22. 2024年6月2日,嫦娥六号着陆器和上升器组合体(简称为“着上组合体”)成功着陆在月球背面.某校综合实践小组制作了一个“着上组合体”的模拟装置,在一次试验中,如图,该模拟装置在缓速下降阶段从A 点垂直下降到B 点,再垂直下降到着陆点C ,从B 点测得地面D 点的俯角为36.87︒,17AD =米,10BD =米.(1)求CD 的长;(2)若模拟装置从A 点以每秒2米的速度匀速下降到B 点,求模拟装置从A 点下降到B 点的时间.(参考数据:sin36.870.60︒≈,cos36.870.80︒≈,tan36.870.75︒≈) 【答案】(1)CD 的长约为8米;(2)模拟装置从A 点下降到B 点的时间为4.5秒. 【解析】【分析】本题考查了解直角三角形的应用——仰俯角问题,灵活运用锐角三角函数求边长是解题关键. (1)过点B 作BE CD ∥交AD 于点E ,根据余弦值求出CD 的长即可;(2)先由勾股定理,求出AC 的长,再利用正弦值求出BC 的长,进而得到AB 的长,然后除以速度,即可求出下降时间.【小问1详解】解:如图,过点B 作BE CD ∥交AD 于点E , 由题意可知,36.87DBE ∠=︒, 36.87BDC ∴∠=︒,在BCD △中,90C ∠=︒,10BD =米,cos CDBDC BD∠=, cos36.87100.808CD BD ∴=⋅︒≈⨯≈米,即CD 的长约为8米;【小问2详解】解:17AD =Q 米,8CD =米,15AC ∴==米,在BCD △中,90C ∠=︒,10BD =米, sin BCBDC BD∠=, sin36.87100.606BC BD ∴=⋅︒≈⨯≈米, 1569AB AC BC ∴=−=−=米,模拟装置从A 点以每秒2米的速度匀速下降到B 点,∴模拟装置从A 点下降到B 点的时间为92 4.5÷=秒,即模拟装置从A 点下降到B 点的时间为4.5秒.23. 一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y 和脚长x 之间近似存在一个函数关系,部分数据如下表:(1)在图1中描出表中数据对应的点(,)x y ; (2)根据表中数据,从(0)y ax b a =+≠和(0)ky k x=≠中选择一个函数模型,使它能近似地反映身高和脚长函数关系,并求出这个函数的解析式(不要求写出x 的取值范围);(3)如图2,某场所发现了一个人的脚印,脚长约为25.8cm ,请根据(2)中求出的函数解析式,估计这个人的身高.【答案】(1)见解析 (2)75y x =− (3)175.6cm 【解析】【分析】本题考查了函数的实际应用,正确理解题意,选择合适的函数模型是解题关键. (1)根据表格数据即可描点;(2)选择函数(0)y ax b a =+≠近似地反映身高和脚长的函数关系,将点()()23,156,24,163代入即可求解;(3)将25.8cm 代入75y x =−代入即可求解; 【小问1详解】 解:如图所示:的【小问2详解】解:由图可知:y 随着x 的增大而增大,因此选择函数(0)y ax b a =+≠近似地反映身高和脚长的函数关系, 将点()()23,156,24,163代入得:1562316324a ba b=+⎧⎨=+⎩, 解得:75a b =⎧⎨=−⎩∴75y x =− 【小问3详解】解:将25.8cm 代入75y x =−得:725.85175.6cm y =⨯−=∴估计这个人身高175.6cm24. 如图,在菱形ABCD 中,120C ∠=︒.点E 在射线BC 上运动(不与点B ,点C 重合),AEB △关于AE 的轴对称图形为AEF △.(1)当30BAF ∠=︒时,试判断线段AF 和线段AD 的数量和位置关系,并说明理由;(2)若6AB =+O 为AEF △的外接圆,设O 的半径为r .①求r 的取值范围; ②连接FD ,直线FD 能否与O 相切?如果能,求BE 的长度;如果不能,请说明理由.【答案】(1)AF AD =,AF AD ⊥(2)①3r ≥+;②12 【解析】【分析】(1)由菱形的性质可得120BAD C ∠=∠=︒,AB AD =,再结合轴对称的性质可得结论; (2)①如图,设AEF △的外接圆为O ,连接AC 交BD 于H .连接OA ,OE ,OF ,OC ,证明ABC 为等边三角形,,,,A E F C 共圆,2120AOE AFE ∠=∠=︒,O 在BD 上,30AEO EAO ∠=∠=︒,过O 作OJ AE ⊥于J ,当AE BC ⊥时,AE 最小,则AO 最小,再进一步可得答案;②如图,以A 为圆心,AC 为半径画圆,可得,,,B C F D 在A 上,延长CA 与A 交于L ,连接DL ,证明18030150CFD ∠=︒−︒=︒,可得60OFC ∠=︒,OCF △为等边三角形,证明1203090BAF ∠=︒−︒=︒,可得:45BAE FAE ∠=∠=︒,BE EF =,过E 作EM AF ⊥于M ,再进一步可得答案. 【小问1详解】解:AF AD =,AF AD ⊥;理由如下: ∵在菱形ABCD 中,120C ∠=︒, ∴120BAD C ∠=∠=︒,AB AD =, ∵30BAF ∠=︒,∴1203090FAD ∠=︒−︒=︒, ∴AF AD ⊥,由对折可得:AB AF =, ∴AF AD =; 【小问2详解】 解:①如图,设AEF△外接圆为O ,连接AC 交BD 于H .连接OA ,OE ,OF ,OC ,∵四边形ABCD 为菱形,120BCD ∠=︒, ∴AC BD ⊥, 60BCA ∠=︒,BA BC =, ∵ABC 为等边三角形,∴60ABC AFE ACB ∠=∠=︒=∠,的∴,,,A E F C 共圆,2120AOE AFE ∠=∠=︒,O 在BD 上, ∵AO OE =,∴30AEO EAO ∠=∠=︒, 过O 作OJ AE ⊥于J ,∴AJ EJ =,3AO AJ =,∴3AO AE =, 当AE BC ⊥时,AE 最小,则AO 最小,∵6AB =+60ABC ∠=︒,∴(sin 6069AE AB =⋅︒=+=,∴)93AO ==+∴r 的取值范围为3r ≥+; ②DF 能为O 的切线,理由如下:如图,以A 为圆心,AC 为半径画圆, ∵AB AC AF AD ===, ∴,,,B C F D A 上,延长CA 与A 交于L ,连接DL ,在同理可得ACD 为等边三角形, ∴60CAD ∠=︒, ∴30CLD ∠=︒,∴18030150CFD ∠=︒−︒=︒, ∵DF 为O 的切线,∴90OFD ∠=︒, ∴60OFC ∠=︒, ∵OC OF =,∴OCF △为等边三角形, ∴60COF ∠=︒, ∴1302CAF COF ∠=∠=︒, ∴603030DAF ︒−︒=︒∠=, ∴1203090BAF ∠=︒−︒=︒,由对折可得:45BAE FAE ∠=∠=︒,BE EF =, 过E 作EM AF ⊥于M , ∴设AMEM x ==,∵60EFM ∠=︒,∴33FM EM x ==,∴63x x +=+解得:x =∴63FM =⨯=, ∴212BE EF FM ===.【点睛】本题考查的是轴对称的性质,菱形的性质,等边三角形的判定与性质,圆周角定理的应用,锐角三角函数的应用,勾股定理的应用,切线的性质,本题难度很大,作出合适的辅助线是解本题的关键. 25. 已知抛物线232:621(0)G y ax ax a a a =−−++>过点()1,2A x 和点()2,2B x ,直线2:l y m x n =+过点(3,1)C ,交线段AB 于点D ,记CDA 的周长为1C ,CDB △的周长为2C ,且122C C =+. (1)求抛物线G 的对称轴; (2)求m 的值;(3)直线l 绕点C 以每秒3︒的速度顺时针旋转t 秒后(045)t ≤<得到直线l ',当l AB '∥时,直线l '交抛物线G 于E ,F 两点. ①求t 的值;②设AEF △的面积为S ,若对于任意的0a >,均有S k ≥成立,求k 的最大值及此时抛物线G 的解析式.【答案】(1)对称轴为直线:3x =; (2)1m =±(3)①15t =,②k的最大值为G 为262y x x =−+; 【解析】【分析】(1)直接利用对称轴公式可得答案;(2)如图,由122C C =+,可得A 在B 的左边,2AD AC CD CD BC BD ++=+++,证明CA CB =,可得2AD BD =+,设(),2D p ,建立1212232x x p x x p +=⨯⎧⎨−=−+⎩,可得:4p =,()4,2D ,再利用待定系数法求解即可;(3)①如图,当l AB '∥时,与抛物线交于,E F ,由直线y x n =+,可得45DCF ∠=︒,可得345t =,从而可得答案;②计算()1122AEFA E SEF y y EF =⋅−=,当1y =时, 可得22620x x a a −−+=,则126x x +=,2122x x a a =−+,可得12EF x x =−==1a =时,EF 的最小值为【小问1详解】解:∵抛物线232:621(0)G y ax ax a a a =−−++>, ∴抛物线对称轴为直线:632ax a−=−=; 【小问2详解】解:∵直线2:l y m x n =+过点(3,1)C , ∴231m n +=, 如图,∵直线2:l y m x n =+过点(3,1)C ,交线段AB 于点D ,记CDA 的周长为1C ,CDB △的周长为2C ,且122C C =+,∴A 在B 的左边,2AD AC CD CD BC BD ++=+++, ∵C 在抛物线的对称轴上, ∴CA CB =, ∴2AD BD =+, 设(),2D p ,∴1212232x x p x x p +=⨯⎧⎨−=−+⎩,解得:4p =, ∴()4,2D ,∴223142m n m n ⎧+=⎨+=⎩, ∴21m =, 解得:1m =±; 【小问3详解】解:①如图,当l AB '∥时,与抛物线交于,E F , ∵直线y x n =+, ∴45DCF ∠=︒,∴345t =, 解得:15t =, ②∵()1122AEFA E SEF y y EF =⋅−=, 当1y =时,2326211ax ax a a −−++=, ∴22620x x a a −−+=,∴126x x +=,2122x x a a =−+,∴12EF x x =−====∵40>,∴当1a =时,EF 的最小值为∴此时12AEFS=⨯= ∵对于任意的0a >,均有S k ≥成立,∴k 的最大值为 ∴抛物线G 为262y x x =−+;【点睛】本题考查的是二次函数的图象与性质,一次函数的性质,坐标与图形面积,一元二次方程根与系数的关系,理解题意,利用数形结合的方法解题是关键.。
精品解析:广东省2018年中考数学试题(原卷版)(精编)
2018年广东中考数学试题一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.四个实数0、13、 3.14-、2中,最小的数是A .0B .13C . 3.14-D .22.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为A .71.44210⨯B .70.144210⨯C .81.44210⨯D .80.144210⨯3.如图,由5个相同正方体组合而成的几何体,它的主视图是A .B .C .D .4.数据1、5、7、4、8的中位数是A .4B .5C .6D .75.下列所述图形中,是轴对称图形但不是..中心对称图形的是 A .圆 B .菱形 C .平行四边形 D .等腰三角形6.不等式313x x -≥+的解集是A .4x ≤B .4x ≥C .2x ≤D .2x ≥7.在△ABC 中,点D 、E 分别为边AB 、AC 的中点,则ADE 与△ABC 的面积之比为 A .12 B .13 C .14 D .168.如图,AB ∥CD ,则100DEC ∠=︒,40C ∠=︒,则B ∠的大小是 A .30° B .40° C .50° D .60°9.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为A .94m < B .94m ≤ C .94m > D .94m ≥ 10.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿A B C D →→→路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为11. 同圆中,已知弧AB 所对的圆心角是100,则弧AB 所对的圆周角是 .12. 分解因式:=+-122x x .13. 一个正数的平方根分别是51-+x x 和,则x= .14. 已知01=-+-b b a ,则=+1a .15.如图,矩形ABCD 中,2,4==CD BC ,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 .(结果保留π)16.如图,已知等边△11B OA ,顶点1A 在双曲线)0(3>=x xy 上,点1B 的坐标为(2,0).过1B 作121//OA A B 交双曲线于点2A ,过2A 作1122//B A B A 交x 轴于点2B ,得到第二个等边△221B A B ;过2B 作2132//A B A B 交双曲线于点3A ,过3A 作2233//B A B A 交x 轴于点3B ,得到第三个等边△332B A B ;以此类推,…,则点6B 的坐标为三、解答题(一)17.计算:1-0212018-2-⎪⎭⎫ ⎝⎛+18.先化简,再求值:.2341642222=--⋅+a a a a a a ,其中19.如图,BD 是菱形ABCD 的对角线,︒=∠75CBD ,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.20.某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等。
精品解析:2022年河北省中考数学真题 (原卷版)
(2)△PQM从图1 位置出发,先沿着BC方向向右平移(图2),当点P到达点D后立刻绕点D逆时针旋转(图3),当边PM旋转50°时停止.
①边PQ从平移开始,到绕点D旋转结束,求边PQ扫过的面积;
②如图2,点K在BH上,且 .若△PQM右移的速度为每秒1个单位长,绕点D旋转的速度为每秒5°,求点K在△PQM区域(含边界)内的时长;
(1)AB与CD是否垂直?______(填“是”或“否”);
(2)AE=______.
19.如图,棋盘旁有甲、乙两个围棋盒.
(1)甲盒中都是黑子,共10个,乙盒中都是白子,共8个,嘉嘉从甲盒拿出a个黑子放入乙盒,使乙盒棋子总数是甲盒所剩棋子数的2倍,则a=______;
(2)设甲盒中都是黑子,共 个,乙盒中都是白子,共2m个,嘉嘉从甲盒拿出 个黑子放入乙盒中,此时乙盒棋子总数比甲盒所剩棋子数多______个;接下来,嘉嘉又从乙盒拿回a个棋子放到甲盒,其中含有 个白子,此时乙盒中有y个黑子,则 的值为______.
A B.
C. D.
13.平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是()
A.1B.2C.7D.8
14.五名同学捐款数分别是5,3,6,5,10(单位:元),捐10元的同学后来又追加了10元.追加后的5个数据与之前的5个数据相比,集中趋势相同的是()
A.只有平均数B.只有中位数C.只有众数D.中位数和众数
三、解答题(本大题共7个小题,共69分.解答应写出文字说明、证明过程或演算步骤)
20.整式 的值为P.
(1)当m=2时,求P的值;
(2)若P的取值范围如图所示,求m的负整数值.
21.某公司要在甲、乙两人中招聘一名职员,对两人的学历、能力、经验这三项进行了测试,各项满分均为10分,成绩高者被录用.图1是甲、乙测试成绩的条形统计图.
精品解析:2023年广东省广州市实验中学中考二模数学试题(原卷版)
2023年中考适应性训练数学一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四个数中,属于有理数的是()A.111 B. C.π D.2.单项式24xy 的次数是()A.1 B.2 C.3D.43.若正数a 的两个平方根是32m -与32m -,则m 为()A.0B.1C.1-D.1或1-4.下列运算正确的是().A .22-=- B.()22346a b a b =C.()2211a a -=-D.3+=5.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是7,10,9,8,7,9,9,8,对这组数据,下列说法正确的是()A.中位数是8 B.众数是9C.平均数是8D.方差是06.下列命题是真命题的是()A.一组对边平行,一组对边相等的四边形是平行四边形B.有一个角是直角的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角形互相垂直平分且相等的四边形是正方形7.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a +b 的值为()A.﹣4 B.4 C.﹣2 D.28.如图,在Rt ABC △中,90C ∠=︒,6AC =,8BC =,则ABC 的内切圆的半径r 是()A.2B.3C.4D.无法判断9.如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能是()A. B. C. D.10.如图,AB 为O 直径,点C 为圆上一点,将劣弧ACˆ沿弦AC 翻折交AB 于点D,连接CD,若点D 与圆心O 不重合,∠BAC=20°,则∠DCA ()A.30°B.40°C.50°D.60°二、填空题(本大题共6小题,每小题3分,满分18分.)11.点()3,4关于原点对称的点的坐标是______.12.因式分解:2312m -=__________.13.在ABC 中,70BAC ∠=︒,12∠=∠,则ADC ∠=______.14.计算:20222023122⎛⎫⨯-= ⎪⎝⎭______.15.一元二次方程230x x m -+=有两个相等的实数根,点()11A x y ,、()22B x y ,是反比例函数m y x =上的两个点,若120x x <<,则1y ______2y (填“<”或“>”或“=”).16.如图,在矩形ABCD 中,4,8AB AD ==,点E ,F 分别在边,AD BC 上,且3AE =,按以下步骤操作:第一步,沿直线EF 翻折,点A 的对应点'A 恰好落在对角线AC 上,点B 的对应点为B',则线段BF的长为_______;第二步,分别在,'EF A B ¢上取点M ,N ,沿直线MN 继续翻折,使点F 与点E 重合,则线段MN 的长为_______.三、解答题(本大题共9小题,满分72分,解答应写出文字说明、证明过程或演算步骤)17.计算,()02cos452023π︒+-18.如图,已知1120∠=︒,260∠︒,若3122∠=︒,求4∠的度数.19.已知T 229633a a a a a -=+++()().(1)化简T ;(2)若正方形ABCD 的边长为a ,且它的面积为9,求T 的值.20.为传承中华优秀传统文化,深入挖掘中华经典诗词中所蕴含的民族正气、爱国情怀、道德品质和艺术魅力,引领诗词教育发展,我校举办诗词大赛,第一轮为经典诵读参赛者从《短歌行》《将进酒》《观沧海》《木兰辞》(分别用A 、B 、C 、D 表示)中随机抽取一首进行朗诵:第二轮为诗词讲解,参赛者从《蒹葭》《沁园春·雪》《念奴娇·赤壁怀古》(分别用E 、F 、G 表示)中随机抽取一首进行讲解,小明和晓慧都参加了诗词大赛.(1)小明第一轮抽到《将进酒》的概率是______.(2)利用树状图或列表法,求晓慧第一轮抽中《木兰辞》且第二轮抽中《沁园春·雪》的概率.21.电灭蚊器的电阻随温度x ℃变化的大致图像如图所示,通电后温度由室温10℃上升到30℃时,电阻与温度成反比例函数关系,且在温度达到30℃时,电阻下降到最小值,随后电阻随温度升高而增加,温度每上升1℃,电阻增加1k 5Ω.(1)当1030x ≤≤时,求y 与x 之间的关系式;(2)电灭蚊器在使用过程中,温度x 在什么范围内时,电阻不超过5kΩ?22.便捷的交通为经济发展提供了更好的保障,桥梁作为公路的咽喉,左右着公路的生命.通过对桥梁的试验监测,可以了解其使用性能和承载能力,同时也为桥梁的养护、加固和安全使用提供可靠的资料.某综合与实践活动小组对其自制的桥梁模型的承重开展了项目化学习活动,下面是此活动的设计方案.请你参与该项目化学习活动,并完成下列问题:(1)该综合与实践活动小组在设计桥梁模型时,选用了三角形结构作为设计单元,这样设计依据的数学原理是__________.A .三角形具有稳定性B .两点确定一条直线C .两点之间线段最短(2)在水桶内加入一定量的水后,桥梁发生了如图2所示的形变.若其他因素忽略不计,测得30cm,12,45CD C AC C AD =∠='︒∠='︒,请计算此时水桶下降的高度CC '.(参考数据:sin120.2,cos12 1.0,tan120.2︒≈︒≈︒≈)23.如图,已知ABC 中,90ACB ∠=︒;以BC 为直径作O ,与边AC 相切于点C ,交AB 边于点D ,E 为AC 中点,连接DE .(1)求证,DE 是O 的切线;(2)尺规作图,点P 是线段BC 上一动点,当DP EP +最小时,请在图中西出点P 的位置(不写作法,保留作图痕迹),(3)在(2)的条件下,若8CD =,3tan 4ECD ∠=,求出CP 的长度.24.平面直角坐标系中,抛物线2211:221C y x mx m =-+-,与y 轴交于点A .(1)2m =时,过点A 作直线l 垂直于y 轴,与抛物线1C 的另一个交点记为点B .求AB 的长;(2)拋物线2C 的开口方向和开口大小均与抛物线1C 相同,顶点在21y x =-上,2C 的顶点横坐标为n ,且2C 解析式记为2y .①2C 与直线l 交于点C 、D 两点,若CD AB >,求n 的范围;②若m n ≠,当抛物线1C 2C 的交点始终在定直线x k =(k 为常数)上时,求此时12y y +的最小值(用含k 的代数式表示).25.如图1,在钝角ABC 中,30ABC ∠=︒,4AC =,点D 、E 分别为边AB 、BC 上的点,BA =,BC =,将BDE 绕点B 逆时针方向旋转α度()0180α︒≤≤︒.(1)求DE 的长;(2)如图2,当0180α︒<<︒时,连接AD CE 、.求证:BDA BEC ∽;(3)如图3,在旋转BDE 的过程中,直线CE AD 、交于点G .∠=______;①AGC从图1位置绕点B逆时针方向旋转180︒,求点G的运动路程.②将BDE第8页/共8页。
精品解析:2025年广东省普通高中学业水平合格性考试数学模拟卷(四)(原卷版)
高中数学芝士第1页/共4页2025年广东省普通高中学业水平合格性考试数学模拟卷(四)学生版考试时间:120分钟满分:150分注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回一、单选题:本大题共12小题,每小题6分,共72分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}lg ,1,02,A y y x x B x x x ==>=<≤∈Z ,则下列结论正确的是()A.{}2,1A B =-- B.{}0A B x x ⋃=<C.{}0A B x x ⋃=≥ D.{}1,2A B = 2.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,那么互斥不对立的两个事件是()A.恰有1名男生与恰有2名女生B.至少有1名男生与全是男生C.至少有1名男生与至少有1名女生D.至少有1名男生与全是女生3.与函数y x =有相同图象的一个函数是()A.y =B.2x y x=C.log a x y a =,其中0,1a a >≠ D.log x a y a =,其中0,1a a >≠4.已知向量()()1,01,2ab ==- ,,且ka b + 与2a b- 互相垂直,则k 的值为()A.1 B.13 C.75 D.735.下列叙述正确的是()A.180︒的角是第二象限的角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年广东中考数学试题
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.
1.四个实数0、13、 3.14-、2中,最小的数是 A .0 B .13
C . 3.14-
D .2
2.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为
A .71.44210⨯
B .70.144210⨯
C .81.44210⨯
D .80.144210⨯
3.如图,由5个相同正方体组合而成的几何体,它的主视图是 A . B . C . D .
4.数据1、5、7、4、8的中位数是
A .4
B .5
C .6
D .7
5.下列所述图形中,是轴对称图形但不是..
中心对称图形的是 A .圆 B .菱形 C .平行四边形 D .等腰三角形
6.不等式313x x -≥+的解集是
A .4x ≤
B .4x ≥
C .2x ≤
D .2x ≥
7.在△ABC 中,点D 、E 分别为边AB 、AC 的中点,则ADE 与△ABC 的面积之比为
A .12
B .13
C .14
D .16
8.如图,AB ∥CD ,则100DEC ∠=︒,40C ∠=︒,则B ∠的大小是
A .30°
B .40°
C .50°
D .60°
9.关于x 的一元二次方程2
30x x m -+=有两个不相等的实数根,则实数m 的取值范围为
A .94
m < B .94m ≤ C .94m > D .94m ≥ 10.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿A B C D →→→路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为
11. 同圆中,已知弧AB 所对的圆心角是ο100,则弧AB 所对的圆周角是 . 12. 分解因式:=+-122x x .
13. 一个正数的平方根分别是51-+x x 和,则x= .
14. 已知01=-+-b b a ,则=+1a .
15.如图,矩形ABCD 中,2,4==CD BC ,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 .(结果保留π)
16.如图,已知等边△11B OA ,顶点1A 在双曲线)0(3>=x x
y 上,点1B 的坐标为(2,0).过1B 作121//OA A B 交双曲线于点2A ,过2A 作1122//B A B A 交x 轴于点2B ,得到第二个等边△221B A B ;过2B 作2132//A B A B 交双曲线于点3A ,过3A 作2233//B A B A 交x 轴于点3B ,得到第三个等边△332B A B ;以此类推,…,则点6B 的坐标为
三、解答题(一)
17.计算:1-0212018-2-⎪⎭⎫ ⎝⎛+
18.先化简,再求值:.2
341642222=--⋅+a a a a a a ,其中
19.如图,BD 是菱形ABCD 的对角线,︒=∠75CBD ,
(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)
(2)在(1)条件下,连接BF ,求DBF ∠的度数.
20.某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等。
(1)求该公司购买的A 、B 型芯片的单价各是多少元?
(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A 型芯片?
21.某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图21-1图和题21-2图所示的不完整统计图.
(1)被调查员工人数为人:
(2)把条形统计图补充完整;
(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?
22.如图,矩形ABCD 中,AD AB >,把矩形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE .
(1)求证:△ADF ≌△CED ;
(2)求证:△DEF 是等腰三角形.
23.如图,已知顶点为()0,3C -的抛物线()2
0y ax b a =+≠与x 轴交于,A B 两点,直线y x m =+过顶点C 和点B .
(1)求m 的值;
(2)求函数()2
0y ax b a =+≠的解析式 (3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.
24.如图,四边形ABCD 中,AB AD CD ==,以AB 为直径的O e 经过点C ,连接,AC OD 交于点E .
(1)证明://OD BC ;
(2)若tan 2ABC ∠=,证明:DA 与O e 相切;
(3)在(2)条件下,连接BD 交于O e 于点F ,连接EF ,若1BC =,求EF 的长.
25.已知OAB Rt ∆,90OAB ∠=︒,30ABO ∠=︒,斜边4OB =,将OAB Rt ∆绕点O 顺时针旋转60︒,如题251-图,连接BC .
(1)填空:OBC ∠= °;
(2)如题251-图,连接AC ,作OP AC ⊥,垂足为P ,求OP 的长度;
(3)如题252-图,点,M N 同时从点O 出发,在OCB ∆边上运动,M 沿O C B →→路径匀速运动,N 沿O B C →→路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为
1.5/单位秒,点N 的运动速度为1单位/秒,设运动时间为x 秒,OMN ∆的面积为y ,求当x 为何值时y 取得最大值?最大值为多少?。