黄冈市2012年中考数学适应性模拟试题八

合集下载

数学中考模拟试题

数学中考模拟试题

黄冈市2012年中考数学摸拟试题命题人:浠水县英才学校 占 政 时间:120分钟 满分:120分考生须知:1.本试卷分试题卷和答题卷两部分。

满分120分,考试时间120分钟。

2.答题前,必须在答题卷的密封区内填写校名、班级、学号、姓名、试场号、座位号。

3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。

4.考试结束后,只需上交答题卷。

一、认真填一填(本题有8个小题,每小题3分,共24分) 1. 化简.16的平方根为 。

(原创) 2.分解因式:a 2b -2ab 2+b 3= .(原创) 3.函数y =3-x x 中自变量x 的取值范围是__________.4.任何一个正整数 都可以写成两个正整数相乘的形式,我们把两个乘数的差的绝对值最小的一种分解 (p≤q )称为正整数 的最佳分解,并定义一个新运算 .例如:12=1×12=2×6=3×4,则F (24)= .(2011年中考模拟卷选择题改编)5.在Rt ABC ∆中, AC =6cm ,BC =8cm ,以BC 边所在的直线为轴,将ABC ∆ 旋 转一周,则所得到的几何体的表面积是 2cm .(结果保留π) (原创)6.如图,已知正三角形ABC 的边长为6,在△ABC 中作内切圆O 及三个角切圆(我们把与角两边及三角形内切圆都相切的圆叫角切圆),则△ABC 的内切圆O 的面积为 ;图中阴影部分的面积为 . (2012年中考模拟卷改编)7.如图,在直角坐标系中,已知点0P 的坐标为(10),,将线段0O P 按逆时针方向旋转45,再将其长度伸长为0O P 的2倍,得到线段1OP ;又将线段1OP 按逆时针方向旋转45,长度伸长为1OP 的2倍,得到线段2O P ;如此下去,得到线段3O P ,4O P , ,n O P (n 为正整数)则点6P 的坐标是 ;56P OP △的面积是 ;(摘录)第8题5PBCA E 1 E 2 E 3D 4D 1 D 2D 3(第10题图)8.如图,等腰梯形MNPQ 的上底长为2,腰长为3,一个底角为60°.正方形ABCD 的边长为1,它的一边AD 在MN 上,且顶点A 与M 重合.现将正方形ABCD 在梯形的外面沿边MN 、NP 、PQ 进行翻滚,翻滚到有一个顶点与Q 重合即停止滚动.正方形在整个翻滚过程中点A 所经过的路线与梯形MNPQ 的三边MN 、NP 、PQ 所围成图形的面积S 是 .(改编)二、仔细选一选(本题10小题,每小题3分,共21分) 9. 计算错误的是( )A.1)2012(0=-B.393-=-C.2)21(1=- D.()81322=10 (改编自网络)如图6,边长为n 的正ΔDEF 的三个顶点恰好在边长为m 的正ΔABC 的各边上,则ΔAEF 的内切圆半径为:( )(A) ()6m n -(B))4m n -(C)()3m n - (D))2m n -11.现给出下列四个命题:①无公共点的两圆必外离 ②位似三角形是相似三角形③菱形的面积等于两条对角线的积 ④三角形的三个内角中至少有一内角不小于600其中不正确的命题的个数是( )(原创)13.不等式组⎩⎨⎧8-3x ≥-1x -1>0的解集是( )A .x ≤3B .1<x ≤3C .x ≥3D .x >1 14.已知点P 是半径为5的⊙O 内一定点,且OP =4,则过点P 的所有弦中,弦长可能取到的整数值为( ) A. 5,4,3 B. 10,9,8,7,6,5,4,3C. 10,9,8,7,6D. 12,11,10,9,8,7,6 15. 如图,已知Rt ABC △,1D 是斜边AB 的中点,过1D 作11D E AC ⊥于E 1,连结1BE 交1C D 于2D ;过2D 作22D E AC ⊥于2E ,连结2BE 交1C D 于3D ;过3D 作33D E AC ⊥于3E ,…,如此继续,可以依次得到点45D D ,,…,n D ,分别记112233B D E B D E B D E △,△,△,…,n n BD E △的面积为123S S S ,,,…n S .则( )A .n S =14nABC S △ B .n S =13n +ABC S △ C .n S =()121n +ABC S △ D .n S =()211n +ABC S △图6三.解答题(共9道大题,共75分) 16.(本小题满分5分)先化简再求值:11131332--+÷--x x x x x ,并从不等式组x - 3(x-2) ≥24x - 2 < 5x + 1的解中选一个你喜欢的数代入,求原分式的值。

2012黄冈中考三套数学模拟题试卷纠错题

2012黄冈中考三套数学模拟题试卷纠错题

黄冈2012年中考数学三套模拟 纠错题一、填空题1、4的平方根是____________.2、北京时间2011年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.00000166秒.这里的0.00000166秒请你用科学记数法表示为________秒.(保留两个有效数字)3、若 与 互为相反数,则 的值为____________.4、如图,在直角坐标系中,已知菱形ABCD 的面积为3,顶点A 在双曲线 上,CD 与y 轴重合,则k 的值是____________.5、分解因式:2212123b ab a +-= .第6题图6、已知三个边长分别为4、5、9的正方形如图排列,则图中阴影部分面积为__________.7、如图,一副三角板拼在一起,O 为AD 的中点,AB =4.将△ABO 沿BO 对折于△A ′BO ,M 为BC上一动点,则A ′M 的最小值为____________.8、如图,n +1个边长为2的等边三角形有一条边在同一直线上,设△B 2D 1C 1的面积为S 1,△B 3D 2C的面积为,…,△的面积为,则S 5=____________.9、如图,正方形A1B1P1P2的顶点P1、P2在反比例函数(x >0)的图像上,顶点A1、B1分别在x 轴和y 轴的正半轴上,再在其右侧作正方形P2P3A2B2,顶点P3在反比例函数(x >0)的图象上,顶点A2在x 轴的正半轴上,则点P3的坐标为__________.10、如图,正方形ABCD 的面积为3,点E 是DC 边上一点,DE =1,将线段AE 绕点A 旋转,使点E 落在直线BC 上,落点记为F ,则FC 的长为 .11、在平面直角坐标系xOy 中,正方形O C B A 111、1222B C B A 、2333B C B A ,…,按如图所示的方式放置.点1A 、2A 、3A ,…和点1B 、2B 、3B ,…分别在直线b kx y +=和x 轴上.已知1C (1,1-),2C (27,23-),则点3A 的坐标是________________;点n A 的坐标是___________.第10题图 第11题图二、选择题1、已知关于x 的方程有两个不相等的实根为x 1、x 2,且满足.则a 的值是( )A .-3B .4C .-3或4D .1 2、如图所示,在矩形ABCD 中,垂直于对角线BD 的直线,从点B 开始沿着线段BD 匀速平移到D .设直线l 被矩形所截线段EF 的长度为y ,运动时间为t ,则y 关于t 的函数的大致图象是( )3、已知:如图,△ABC 内接于⊙O ,AB 为直径,弦于,是弧的中点,连结并延长交的延长线于点G ,连结AD ,分别交CE 、BC 于点P 、Q .则下列说法中正确的个数为 ①CO ⊥AD ②∠COB =2∠GDC ③P 是△ACQ 的外心④若, 则= ⑤ ⑥A .3B .4C .5D .64、如果0.06005是由四舍五入法得到的近似数,则它有( )个有效数字.A .6B .5C .4D .35、如图,分别以Rt △ABC 的斜边AB 、直角边AC 为边向外作等边△ABD 和△ACE ,F 为AB 的中点,连接DF 、EF 、DE ,EF 与AC 交于点O ,DE 与AB 交于点G ,连接OG ,若,下列结论:①△DBF ≌△EFA ;②AD =AE ;③EF ⊥AC ;④AD =4AG ;⑤△AOG 与△EOG 的面积比为1∶4.其中正确结论的个数是( )A .2个B .3个C .4个D .5个第3题6、下列图形中,既是轴对称图形,又是中心对称图形的是( )A .等边三角形;B .等腰梯形;C .平行四边形;D .正十边形7、如图,过O ⊙上一点C 作O ⊙的切线,交O ⊙直径AB 的延长线于点D . 若∠D =40°,则∠A 的度数为( )A .20°B .25°C .30°D .40° 第7题图8、 对于实数c 、d ,我们可用min{ c ,d }表示c 、d 两数中较小的数,如min{3,1-}=1-.若关于x 的函数y = min{22x ,2()a x t -}的图象关于直线3x =对称,则a 、t 的值可能是 ( )A .3,6B .2,6-C .2,6D .2-,6三、解答题1、 为迎接黄冈市体育中考,我校对全体初三学生60秒跳绳的次数进行了统计,全年级平均次数是100次.某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如下(每个分组包括左端点,不包括右端点).求:(1)该班60秒跳绳的平均次数至少是多少?是否超过全年级平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数”,请你给出该生跳绳成绩的所在范围.(3)从该班中任选一人,其跳绳次数达到或超过年级平均次数的概率是多少?2、 为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A 、B 两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:已知可供建造沼气池的占地面积不超过365m2,该村农户共有492户.(1)满足条件的方案共有哪几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱.3、 我市城市规划期间,欲拆除沿江路一电线杆AB (如图),已知望月堤D 距电线杆AB 水平距离为14m ,背水面CD 的坡度i =2∶1,堤高CF 为2m ,在堤顶C 处测得杆顶A 的仰角为30°,D 、E 之间是宽为2m 的人行道,试问在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上,请说明理由.(在地面上,以点B 为圆心,以AB 长为半径的圆形区域为危险区域)(,)4、 如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,点D 在⊙O 上,过点C 的切线交AD 的延长线于点E ,且AE ⊥CE ,连接CD .(1)求证:DC =BC ;(2)若AB =5,AC =4,求tan ∠DCE 的值.5、 如图,△ABC 内接于⊙O ,AD 是 ⊙O 直径,E 是CB 延长线上一点,且∠BAE =∠C.(1)求证:直线AE 是⊙O 的切线;(2)若EB=AB ,54 E cos ,AE =24,求EB 的长及⊙O 的半径.6、 某企业为手机产业基地提供手机配件,受人民币走高的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y 1(元)与月份x (1≤x ≤9,且x 取整数)之间的函数关系如下表: 随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y 2(元)与月份(10≤x ≤12,且x 取整数)之间存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y 1与x 之间的函数关系式,根据如图所示的变化趋势,直接写出y 2与x 之间满足的一次函数关系式;(2)若去年该配件每件的售价为100元,生产每件配件的人力成本为5元,其它成本3元,该配件在1至9月的销售量p 1(万件)与月份x 满足函数关系式p 1=0.1x +1.1(1≤x ≤9,且x 取整数),10至12月的销售量p 2 (万件)与月份x 满足函数关系式p 2=-0.1x +2.9(10≤x ≤12,且x 取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润;(3)今年1至5月,每件配件的原材料价格均比去年12月上涨6元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少8a%.这样,在保证每月上万件配件销量的前提下,完成了1至5月的总利润85万元的任务,请你计算出a 的值.月份x 1 2 3 4 5 6 7 8 9价格y 1(元/件) 56 58 60 62 64 66 68 70 727、 某公司开发了一种新型的家电产品,又适逢“家电下乡”的优惠政策.现投资50万元用于该产品的广告促销,已知该产品的本地销售量y1(万台)与本地的广告费用x (万元)之间的函数关系满足;该产品的外地销售量y2(万台)与外地广告费用t (万元)之间的函数关系可用如图所示的抛物线和线段AB 来表示.其中点A 为抛物线的顶点.(1)结合图象,写出y2(万台)与外地广告费用t (万元)之间的函数关系式;(2)求该产品的销售总量y (万台)与本地广告费用x (万元)之间的函数关系式;(3)如何安排广告费用才能使销售总量最大?8、 已知直线y =kx +6(k<0)分别交x 轴、y 轴于A 、B 两点,线段OA 上有一动点P 由原点O 向点A 运动,速度为每秒2个单位长度,过点P 作x 轴的垂线交直线AB 于点C ,设运动时间为t 秒. (1)当k =-1时,线段OA 上另有一动点Q 由点A 向点O 运动,它与点P 以相同速度同时出发,当点P 到达点A 时两点同时停止运动(如图1).①直接写出t =1秒时C 、Q 两点的坐标;②若以Q 、C 、A 为顶点的三角形与△AOB 相似,求t 的值.(2)当时,设以C 为顶点的抛物线y =(x +m)2+n 与直线AB 的另一交点为D (如图2),①求CD 的长; ②设△COD 的OC 边上的高为h ,当t 为何值时,h 的值最大?第7题9、(14分)如图,已知抛物线对称轴为直线x =4,且与x 轴交于A 、B 两点(A 在B 左侧),B 点坐标为(6,0),过点B 的直线与抛物线交于点C (3,).(1)写出点A 坐标;(2)求抛物线解析式;(3)在抛物线的BC 段上,是否存在一点P ,使得四边形ABPC 的面积最大?若存在,求出这个最大值及此时点P 的坐标;若不存在,请说明理由;(4)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动,同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动,当其中一个点停止运动时,另一个点也随之停止运动.设运动时间为t 秒,当t 为何值,△MNB 为等腰三角形,写出计算过程.10、(本题满分14分).如图,∠C =90°,点A 、B 在∠C 的两边上,CA =30,CB =20,连结AB .点P 从点B 出发,以每秒4个单位长度的速度沿BC 方向运动,到点C 停止.当点P 与B 、C 两点不重合时,作PD ⊥BC 交AB 于D ,作DE ⊥AC 于E .F 为射线CB 上一点,且∠CEF =∠ABC .设点P 的运动时间为x (秒).(1)用含有x 的代数式表示CF 的长.(2)求点F 与点B 重合时x 的值.(3)当点F 在线段CB 上时,设四边形DECP 与四边形DEFB 重叠部分图形的面积为y (平方单位).求y 与x 之间的函数关系式.(4)当x 为某个值时,沿PD 将以D 、E 、F 、B 为顶点的四边形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的x 值.第9题。

2012年黄冈市中考数学试卷及答案

2012年黄冈市中考数学试卷及答案

黄冈市2012年初中毕业生学业考试数学试题(满分:120 分考试时间:120 分钟)一、选择题(下列各题A、B、C、D 四个选项中,有且仅有一个是正确的,每小题3 分,共24 分)1.下列实数中是无理数的是2.2012 年5 月25 日有700 多位来自全国各地的知名企业家聚首湖北共签约项目投资总额为909 260 000 000 元,将909 260 000000 用科学记数法表示(保留3 个有效数字),正确的是A.909×1010B.9.09×1011C.9.09×1010D.9.0926×10113.下列运算正确的是4. 如图,水平放置的圆柱体的三视图是5. 若顺次连接四边形ABCD 各边的中点所得四边形是矩形,则四边形ABCD 一定是A. 矩形B. 菱形C. 对角线互相垂直的四边形D. 对角线相等的四边形6.如图,AB 为⊙O 的直径,弦CD⊥AB 于E,已知CD=12,则⊙O 的直径为A. 8B. 10C.16D.207.下列说法中①若式子有意义,则x>1.②已知∠α=27°,则∠α的补角是153°.③已知x=2 是方程x2-6x+c=0 的一个实数根,则c 的值为8.④在反比例函数中,若x>0 时,y 随x 的增大而增大,则k 的取值范围是k>2. 其中正确命题有A. 1 个B. 2 个C. 3 个D. 4 个8. 如图,在Rt △ ABC 中,∠C=90°,AC=BC=6cm,点P 从点A 出发,沿AB 方向以每秒cm的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒1cm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P′.设Q点运动的时间t 秒,若四边形QPCP′为菱形,则t 的值为二、填空题(共8 小题,每小题3 分,共24 分)9.- 的倒数是__________.10.分解因式x3-9x=__________.11.化简的结果是.12.如图,在△ ABC 中,AB=AC,∠A=36°,AB的垂直平分线交AC 于点E,垂足为点D,连接BE,则∠EBC 的度数为________.13.已知实数x 满足x+=3,则x2+的值为_________.14.如图,在梯形ABCD 中,AD∥BC ,AD=4,AB=CD=5,∠B=60°,则下底BC 的长为________.15.在平面直角坐标系中,△ABC 的三个顶点的坐标分别是A(-2,3),B(-4,-1),C(2,0),将△ABC平移至△A1B1C1的位置,点A、B、C 的对应点分别是A1B1C1,若点A1的坐标为(3,1).则点C1的坐标为__________.16.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45 分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60 千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4 个结论:①快递车从甲地到乙地的速度为100 千米/时;②甲、乙两地之间的距离为120 千米;③图中点B 的坐标为(3,75);④快递车从乙地返回时的速度为90 千米/时.以上4 个结论中正确的是____________(填序号)三、解答题(共9 小题,共72 分)17.(5分)解不等式组18.(7分)如图,在正方形ABCD 中,对角线AC、BD 相交于点O,E、F 分别在OD、OC 上,且DE=CF,连接DF、AE,AE 的延长线交DF于点M.求证:AM⊥DF.19.(6分)在一个口袋中有4个完全相同的小球,把它们分别标号l、2、3、4.小明先随机地摸出一个小球,小强再随机地摸出一个小球.记小明摸出球的标号为x,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y 时小明获胜,否则小强获胜.①若小明摸出的球不放回,求小明获胜的概率.②若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.20.(6 分)为了全面了解学生的学习、生活及家庭的基本情况,加强学校、家庭的联系,梅灿中学积极组织全体教师开展“课外访万家活动”,王老师对所在班级的全体学生进行实地家访,了解到每名学生家庭的相关信息,现从中随机抽取15 名学生家庭的年收入情况,数据如下表:(1)求这15 名学生家庭年收入的平均数、中位数、众数.(2)你认为用(1)中的哪个数据来代表这15 名学生家庭年收入的一般水平较为合适?请简要说明理由.21.(6 分)某服装厂设计了一款新式夏装,想尽快制作8800 件投入市场,服装厂有A、B 两个制衣车间,A 车间每天加工的数量是B车间的1.2 倍,A、B 两车间共同完成一半后,A 车间出现故障停产,剩下全部由B 车间单独完成,结果前后共用20 天完成,求A、B 两车间每天分别能加工多少件.22.(8 分)如图,在△ABC 中,BA=BC,以AB 为直径作半圆⊙O,交AC 于点D.连结DB,过点D 作DE⊥BC,垂足为点E.(1)求证:DE 为⊙O 的切线;(2)求证:DB2=AB·BE.23.(8 分)新星小学门口有一直线马路,为方便学生过马路,交警在门口设有一定宽度的斑马线,斑马线的宽度为4 米,为安全起见,规定车头距斑马线后端的水平距离不得低于2 米,现有一旅游车在路口遇红灯刹车停下,汽车里司机与斑马线前后两端的视角分别为∠FAE=15°和∠FAD=30° .司机距车头的水平距离为0.8 米,试问该旅游车停车是否符合上述安全标准?(E、D、C、B 四点在平行于斑马线的同一直线上.)(参考数据:tan15°=2-,sin15°=cos15°=≈1.732,≈1.414)24.(12 分)某科技开发公司研制出一种新型产品,每件产品的成本为2400 元,销售单价定为3000 元.在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10 件时,每件按3000 元销售;若一次购买该种产品超过10 件时,每多购买一件,所购买的全部产品的销售单价均降低10 元,但销售单价均不低于2600 元.(1)商家一次购买这种产品多少件时,销售单价恰好为2600 元?(2)设商家一次购买这种产品x 件,开发公司所获的利润为y 元,求y(元)与x(件)之间的函数关系式,并写出自变量x 的取值范围.(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)25.(14 分)如图,已知抛物线的方程C1:y=-(x+2)(x-m)(m>0)与x 轴相交于点B、C,与y 轴相交于点E,且点B 在点C 的左侧.(1)若抛物线C1过点M(2,2),求实数m 的值.(2)在(1)的条件下,求△BCE 的面积.(3)在(1)的条件下,在抛物线的对称轴上找一点H,使BH+EH 最小,并求出点H 的坐标.(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由.。

2012年全国各地市中考数学模拟试题分类汇编18二次函数的图象和性质

2012年全国各地市中考数学模拟试题分类汇编18二次函数的图象和性质

二次函数的图象和性质一、选择题1、(2012年浙江金华一模)抛物线2y x =先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( )A .()213y x =++B .()213y x =+- C .()213y x =-- D .()213y x =-+答案:D2、.(2012年浙江金华四模)抛物线)2(--=x x y 的顶点坐标是 ( )A .(-1,-1)B .(-1,1)C .(1,1)D .(1,-1)答案:C3、(2012年浙江金华五模)将抛物线122--=x y 向上平移若干个单位,使抛物线与坐标轴有三个交点,如果这些交点能构成直角三角形,那么平移的距离为( ▲ ) A .23个单位 B .1个单位 C .21个单位 D .2个单位 答案:A4、(2012年浙江金华五模)抛物线2(2)3y x =-+的对称轴是( ▲ )A.直线x = -2 B .直线 x =2 C .直线x = -3 D .直线x =3答案:B5、(2012江苏无锡前洲中学模拟)如图,四边形ABCD 中,∠BAD =∠ACB =90°,AB =AD ,AC =4BC ,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( )A . 2425y x =B .225y x =C .2225y x= D .245y x =答案:B(第1题) AB D6.(2012荆门东宝区模拟)在同一直角坐标系中,函数y =mx +m 和函数y =-mx 2+2x +2(m 是常数,且m ≠0)的图象可能..是( ).(第2题)答案:D7. (2012年江苏海安县质量与反馈)将y =2x 2的函数图象向左平移2个单位长度后,得到的函数解析式是A .y =2x 2+2B .y =2x 2-2C .y =(x -2)2D .y =2(x +2)2答案:D.8. (2012年江苏沭阳银河学校质检题)下列函数中,是二次函数的是(▲) A 、xx y 12-= B 、x x y 322+= C 、22y x y +-= D 、1+=x y 答案: B.9. (2012年江苏沭阳银河学校质检题)抛物线c bx ax y ++=2上部分点的横坐标x ,纵坐标y下列说法①抛物线与x 轴的另一个交点为(3,0),②函数的最大值为6,③抛物线的对称轴是直线x=21,④在对称轴的左侧,y 随x 的增大而增大,正确的有(▲) A 、1个 B 、2个 C 、3个 D 、4个 答案:C.10.马鞍山六中2012中考一模).二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y = a x与正比例函数y =(b +c )x在同一坐标系中的大致图象可能是( )A .B .C .D .答案:A11.(2012荆州中考模拟).将二次函数2x y =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )A.2)1(2+-=x y B.2)1(2++=x y C.2)1(2--=x y D.2)1(2-+=x y 答案:A12.(2012年南岗初中升学调研).抛物线y=一x2-2与y轴的交点坐标是( )。

2024届湖北省黄冈市初级中学中考数学适应性模拟试题含解析

2024届湖北省黄冈市初级中学中考数学适应性模拟试题含解析

2024届湖北省黄冈市初级中学中考数学适应性模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.等腰三角形的两边长分别为5和11,则它的周长为()A.21 B.21或27 C.27 D.252.下列事件中,必然事件是()A.抛掷一枚硬币,正面朝上B.打开电视,正在播放广告C.体育课上,小刚跑完1000米所用时间为1分钟D.袋中只有4个球,且都是红球,任意摸出一球是红球3.为了配合“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠,小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元,若此次小慧同学不买卡直接购书,则她需付款:A.140元B.150元C.160元D.200元4.下列二次根式中,最简二次根式的是()A B C D5.下列说法中,正确的个数共有()(1)一个三角形只有一个外接圆;(2)圆既是轴对称图形,又是中心对称图形;(3)在同圆中,相等的圆心角所对的弧相等;(4)三角形的内心到该三角形三个顶点距离相等;A.1个B.2个C.3个D.4个6.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A.49B.112C.13D.167.如图钓鱼竿AC长6m,露在水面上的鱼线BC长m,钓者想看看鱼钓上的情况,把鱼竿AC逆时针转动15°到AC ′的位置,此时露在水面上的鱼线B 'C '长度是( )A .3mB .33 mC .23 mD .4m8.如图,直角边长为2的等腰直角三角形与边长为3的等边三角形在同一水平线上,等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,设穿过时间为t ,两图形重合部分的面积为S ,则S 关于t 的图象大致为( )A .B .C .D .9.下面说法正确的个数有( )①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B=∠C ,那么△ABC 是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在△ABC 中,若∠A +∠B=∠C ,则此三角形是直角三角形.A .3个B .4个C .5个D .6个10.下列运算正确的是( )A .32()x =x 5B .55()x x -=-C .3x ·2x =6xD .32x +2 35x 5x =二、填空题(共7小题,每小题3分,满分21分)11.不等式组2x+1x {4x 3x+2>≤的解集是 ▲ . 12.抛物线y =2x 2+3x+k ﹣2经过点(﹣1,0),那么k =_____.13.Rt △ABC 中,AD 为斜边BC 上的高,若, 则AB BC= . 14.一个样本为1,3,2,2,a ,b ,c ,已知这个样本的众数为3,平均数为2,则这组数据的中位数为______.15.有公共顶点A ,B 的正五边形和正六边形按如图所示位置摆放,连接AC 交正六边形于点D ,则∠ADE 的度数为( )A .144°B .84°C .74°D .54°16.如图,把正方形铁片OABC 置于平面直角坐标系中,顶点A 的坐标为(3,0),点P (1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P 的坐标为____________________.17.如图,已知⊙O 1与⊙O 2相交于A 、B 两点,延长连心线O 1O 2交⊙O 2于点P ,联结PA 、PB ,若∠APB=60°,AP=6,那么⊙O 2的半径等于________.三、解答题(共7小题,满分69分)18.(10分)观察与思考:阅读下列材料,并解决后面的问题在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,过A 作AD ⊥BC 于D (如图(1)),则sinB=AD c ,sinC=AD b,即AD =c sin B ,AD =b sin C ,于是c sin B =b sin C ,即sin sin b c B C =,同理有:sin sin c a C A =,sin sin a b A B=,所以sin sin sin a b c A B C ==. 即:在一个三角形中,各边和它所对角的正弦的比相等在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图(2),△ABC 中,∠B =45°,∠C =75°,BC =60,则∠A = ;AC = ;(2)自从去年日本政府自主自导“钓鱼岛国有化”闹剧以来,我国政府灵活应对,现如今已对钓鱼岛执行常态化巡逻.某次巡逻中,如图(3),我渔政204船在C 处测得A 在我渔政船的北偏西30°的方向上,随后以40海里/时的速度按北偏东30°的方向航行,半小时后到达B 处,此时又测得钓鱼岛A 在的北偏西75°的方向上,求此时渔政204船距钓鱼岛A 的距离AB .(结果精确到0.01,6≈2.449)19.(5分)如图,用细线悬挂一个小球,小球在竖直平面内的A 、C 两点间来回摆动,A 点与地面距离AN =14cm ,小球在最低点B 时,与地面距离BM =5cm ,∠AOB =66°,求细线OB 的长度.(参考数据:sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)20.(8分)先化简,再求值1x x-÷(x ﹣21x x -),其中x=76. 21.(10分)在□ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF.求证:四边形BFDE 是矩形;若CF =3,BF =4,DF =5,求证:AF 平分∠DAB .22.(10分)A ,B 两地相距20km .甲、乙两人都由A 地去B 地,甲骑自行车,平均速度为10km/h ;乙乘汽车,平均速度为40km/h ,且比甲晚1.5h 出发.设甲的骑行时间为x (h )(0≤x≤2)(1)根据题意,填写下表:时间x(h)与A地的距离0.5 1.8 _____甲与A地的距离(km) 5 20乙与A地的距离(km)0 12(2)设甲,乙两人与A地的距离为y1(km)和y2(km),写出y1,y2关于x的函数解析式;(3)设甲,乙两人之间的距离为y,当y=12时,求x的值.23.(12分)已知反比例函数的图象经过三个点A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>1.(1)当y1﹣y2=4时,求m的值;(2)如图,过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的面积是8,请写出点P坐标(不需要写解答过程).24.(14分)如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣14<a<0)上,AB∥x轴,∠ABC=135°,且AB=1.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】试题分析:分类讨论:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系;当腰取11,则底边为5,根据等腰三角形的性质得到另外一边为11,然后计算周长.解:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在;当腰取11,则底边为5,则三角形的周长=11+11+5=1.故选C.考点:等腰三角形的性质;三角形三边关系.2、D【解题分析】试题解析:A. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;B. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;C. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;D. 袋中只有4个球,且都是红球,任意摸出一球是红球,是必然事件,符合题意.故选D.点睛:事件分为确定事件和不确定事件.必然事件和不可能事件叫做确定事件.3、B【解题分析】试题分析:此题的关键描述:“先买优惠卡再凭卡付款,结果节省了人民币10元”,设李明同学此次购书的总价值是人民币是x元,则有:20+0.8x=x﹣10解得:x=150,即:小慧同学不凭卡购书的书价为150元.故选B.考点:一元一次方程的应用4、C【解题分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【题目详解】A、15=55,被开方数含分母,不是最简二次根式;故A选项错误;B、0.5=22,被开方数为小数,不是最简二次根式;故B选项错误;C、5,是最简二次根式;故C选项正确;D.50=52,被开方数,含能开得尽方的因数或因式,故D选项错误;故选C.考点:最简二次根式.5、C【解题分析】根据外接圆的性质,圆的对称性,三角形的内心以及圆周角定理即可解出.【题目详解】(1)一个三角形只有一个外接圆,正确;(2)圆既是轴对称图形,又是中心对称图形,正确;(3)在同圆中,相等的圆心角所对的弧相等,正确;(4)三角形的内心是三个内角平分线的交点,到三边的距离相等,错误;故选:C.【题目点拨】此题考查了外接圆的性质,三角形的内心及轴对称和中心对称的概念,要求学生对这些概念熟练掌握.6、C【解题分析】画树状图得:∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,∴两次抽取的卡片上的数字之积为正偶数的概率是:21 63 .故选C.【题目点拨】运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.7、B【解题分析】因为三角形ABC 和三角形AB ′C ′均为直角三角形,且BC 、B ′C ′都是我们所要求角的对边,所以根据正弦来解题,求出∠CAB ,进而得出∠C ′AB ′的度数,然后可以求出鱼线B 'C '长度.【题目详解】解:∵sin ∠CAB =62BC AC == ∴∠CAB =45°.∵∠C ′AC =15°,∴∠C ′AB ′=60°.∴sin60°=''6B C =解得:B ′C ′=故选:B .【题目点拨】此题主要考查了解直角三角形的应用,解本题的关键是把实际问题转化为数学问题.8、B【解题分析】先根据等腰直角三角形斜边为2,而等边三角形的边长为3,可得等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,出现等腰直角三角形完全处于等边三角形内部的情况,进而得到S 关于t 的图象的中间部分为水平的线段,再根据当t=0时,S=0,即可得到正确图象【题目详解】根据题意可得,等腰直角三角形斜边为2,斜边上的高为1,而等边三角形的边长为3,高完全处于等边三角形内部的情况,故两图形重合部分的面积先增大,然后不变,再减小,S关于t 的图象的中间部分为水平的线段,故A ,D 选项错误;当t =0时,S =0,故C 选项错误,B 选项正确;故选:B【题目点拨】本题考查了动点问题的函数图像,根据重复部分面积的变化是解题的关键9、C【解题分析】试题分析:①∵三角形三个内角的比是1:2:3,∴设三角形的三个内角分别为x,2x,3x,∴x+2x+3x=180°,解得x=30°,∴3x=3×30°=90°,∴此三角形是直角三角形,故本小题正确;②∵三角形的一个外角与它相邻的一个内角的和是180°,∴若三角形的一个外角等于与它相邻的一个内角,则此三角形是直角三角形,故本小题正确;③∵直角三角形的三条高的交点恰好是三角形的一个顶点,∴若三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形,故本小题正确;④∵∠A=∠B=∠C,∴设∠A=∠B=x,则∠C=2x,∴x+x+2x=180°,解得x=45°,∴2x=2×45°=90°,∴此三角形是直角三角形,故本小题正确;⑤∵三角形的一个外角等于与它不相邻的两内角之和,三角形的一个内角等于另两个内角之差,∴三角形一个内角也等于另外两个内角的和,∴这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确;⑥∵三角形的一个外角等于与它不相邻的两内角之和,又一个内角也等于另外两个内角的和,由此可知这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确.故选D.考点:1.三角形内角和定理;2.三角形的外角性质.10、B【解题分析】根据幂的运算法则及整式的加减运算即可判断.【题目详解】A. ()23x =x 6,故错误;B. ()55x x -=-,正确;C. 3x ·2x =5x ,故错误;D. 32x +2 3x 不能合并,故错误,故选B.【题目点拨】此题主要考查整式的加减及幂的运算,解题的关键是熟知其运算法则.二、填空题(共7小题,每小题3分,满分21分)11、﹣1<x≤1【解题分析】解一元一次不等式组.【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,解第一个不等式得,x >﹣1,解第二个不等式得,x≤1,∴不等式组的解集是﹣1<x≤1.12、3.【解题分析】试题解析:把(-1,0)代入2232y x x k =++-得:2-3+k-2=0,解得:k=3.故答案为3.13、12【解题分析】利用直角三角形的性质,判定三角形相似,进一步利用相似三角形的面积比等于相似比的性质解决问题.【题目详解】如图,∵∠CAB=90°,且AD⊥BC,∴∠ADB=90°,∴∠CAB=∠ADB,且∠B=∠B,∴△CAB∽△ADB,∴(AB:BC)1=△ADB:△CAB,又∵S△ABC=4S△ABD,则S△ABD:S△ABC=1:4,∴AB:BC=1:1.14、1.【解题分析】解:因为众数为3,可设a=3,b=3,c未知,平均数=(1+3+1+1+3+3+c)÷7=1,解得c=0,将这组数据按从小到大的顺序排列:0、1、1、1、3、3、3,位于最中间的一个数是1,所以中位数是1,故答案为:1.点睛:本题为统计题,考查平均数、众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.15、B【解题分析】正五边形的内角是∠ABC=()521805-⨯=108°,∵AB=BC,∴∠CAB=36°,正六边形的内角是∠ABE=∠E=()621806-⨯=120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故选B.16、(6053,2).【解题分析】根据前四次的坐标变化总结规律,从而得解.【题目详解】第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,1),第五次P5(17,2),…发现点P的位置4次一个循环,∵2017÷4=504余1,P2017的纵坐标与P1相同为2,横坐标为5+3×2016=6053,∴P2017(6053,2),故答案为(6053,2).考点:坐标与图形变化﹣旋转;规律型:点的坐标.17、23【解题分析】由题意得出△ABP为等边三角形,在Rt△ACO2中,AO2=ACsin60︒即可.【题目详解】由题意易知:PO1⊥AB,∵∠APB=60°∴△ABP为等边三角形,AC=BC=3∴圆心角∠AO2O1=60°∴在Rt△ACO2中,AO2=ACsin60︒=23.故答案为23.【题目点拨】本题考查的知识点是圆的性质,解题的关键是熟练的掌握圆的性质.三、解答题(共7小题,满分69分)18、(1)60,206;(2)渔政船距海岛A的距离AB约为24.49海里.【解题分析】(1)利用题目总结的正弦定理,将有关数据代入求解即可;(2)在△ABC中,分别求得BC的长和三个内角的度数,利用题目中总结的正弦定理求AC的长即可.【题目详解】(1)由正玄定理得:∠A=60°,AC=206;故答案为60°,206;(2)如图:依题意,得BC=40×0.5=20(海里).∵CD∥BE,∴∠DCB+∠CBE=180°.∵∠DCB=30°,∴∠CBE=150°.∵∠ABE=75°,∴∠ABC=75°,∴∠A =45°.在△ABC 中,sin sin AB BC ACB A =∠, 即00sin 60sin 45AB BC =∠, 解得AB =106≈24.49(海里).答:渔政船距海岛A 的距离AB 约为24.49海里.【题目点拨】本题考查了方向角的知识,更重要的是考查了同学们的阅读理解能力,通过材料总结出学生们没有接触的知识,并根据此知识点解决相关的问题,是近几年中考的高频考点.19、15cm【解题分析】试题分析:设细线OB 的长度为xcm ,作AD ⊥OB 于D ,证出四边形ANMD 是矩形,得出AN=DM=14cm ,求出OD=x-9,在Rt △AOD 中,由三角函数得出方程,解方程即可.试题解析:设细线OB 的长度为xcm ,作AD ⊥OB 于D ,如图所示:∴∠ADM=90°,∵∠ANM=∠DMN=90°,∴四边形ANMD 是矩形,∴AN=DM=14cm ,∴DB=14﹣5=9cm ,∴OD=x ﹣9,在Rt △AOD 中,cos ∠AOD=OD AO , ∴cos66°=9x x-=0.40, 解得:x=15,∴OB=15cm .20、6【解题分析】【分析】括号内先通分进行分式加减运算,然后再与括号外的分式进行乘除运算,化简后代入x 的值进行计算即可得.【题目详解】原式=2121x x x x x--+÷ =()211x x x x -⋅- =11x -, 当x=76,原式=1716-=6. 【题目点拨】本题考查了分式的化简求值,根据所给的式子确定运算顺序、熟练应用相关的运算法则是解题的关键.21、(1)见解析(2)见解析【解题分析】试题分析:(1)根据平行四边形的性质,可得AB 与CD 的关系,根据平行四边形的判定,可得BFDE 是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA =∠FAB ,根据等腰三角形的判定与性质,可得∠DAF =∠DFA ,根据角平分线的判定,可得答案.试题分析:(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD .∵BE ∥DF ,BE =DF ,∴四边形BFDE 是平行四边形.∵DE ⊥AB ,∴∠DEB =90°,∴四边形BFDE 是矩形;(2)∵四边形ABCD 是平行四边形,∴AB ∥DC ,∴∠DFA =∠FAB .在Rt △BCF 中,由勾股定理,得BC ,∴AD =BC =DF =5,∴∠DAF =∠DFA ,∴∠DAF =∠FAB ,即AF 平分∠DAB .【题目点拨】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF =∠DFA 是解题关键.22、(1)18,2,20(2)()()()1200 1.5100 1.5;40601.52x y x x y x x ⎧≤≤⎪=≤≤=⎨-<≤⎪⎩(3)当y=12时,x 的值是1.2或1.6 【解题分析】(Ⅰ)根据路程、时间、速度三者间的关系通过计算即可求得相应答案;(Ⅱ)根据路程=速度×时间结合甲、乙的速度以及时间范围即可求得答案;(Ⅲ)根据题意,得()()100 1.530601.52x x y x x ⎧≤≤⎪=⎨-+<≤⎪⎩,然后分别将y=12代入即可求得答案. 【题目详解】(Ⅰ)由题意知:甲、乙二人平均速度分别是平均速度为10km/h 和40km/h ,且比甲晚1.5h 出发,当时间x=1.8 时,甲离开A 的距离是10×1.8=18(km ),当甲离开A 的距离20km 时,甲的行驶时间是20÷10=2(时),此时乙行驶的时间是2﹣1.5=0. 5(时),所以乙离开A 的距离是40×0.5=20(km ),故填写下表:(Ⅱ)由题意知:y 1=10x (0≤x≤1.5),y2=()()00 1.540601.52x x x ⎧≤≤⎪⎨-<≤⎪⎩; (Ⅲ)根据题意,得()()100 1.530601.52x x y x x ⎧≤≤⎪=⎨-+<≤⎪⎩, 当0≤x≤1.5时,由10x=12,得x=1.2,当1.5<x≤2时,由﹣30x+60=12,得x=1.6,因此,当y=12时,x 的值是1.2或1.6.【题目点拨】本题考查了一次函数的应用,理清题意,弄清各数量间的关系是解题的关键.23、(1)m=1;(2)点P坐标为(﹣2m,1)或(6m,1).【解题分析】(1)先根据反比例函数的图象经过点A(﹣4,﹣3),利用待定系数法求出反比例函数的解析式为y=,再由反比例函数图象上点的坐标特征得出y1==,y2==,然后根据y1﹣y2=4列出方程﹣=4,解方程即可求出m的值;(2)设BD与x轴交于点E.根据三角形PBD的面积是8列出方程••PE=8,求出PE=4m,再由E(2m,1),点P 在x轴上,即可求出点P的坐标.【题目详解】解:(1)设反比例函数的解析式为y=,∵反比例函数的图象经过点A(﹣4,﹣3),∴k=﹣4×(﹣3)=12,∴反比例函数的解析式为y=,∵反比例函数的图象经过点B(2m,y1),C(6m,y2),∴y1==,y2==,∵y1﹣y2=4,∴﹣=4,∴m=1,经检验,m=1是原方程的解,故m的值是1;(2)设BD与x轴交于点E,∵点B(2m,),C(6m,),过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,∴D(2m,),BD=﹣=,∵三角形PBD的面积是8,∴BD•PE=8,∴••PE=8,∴PE=4m,∵E(2m,1),点P在x轴上,【题目点拨】本题考查了待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征以及三角形的面积,正确求出双曲线的解析式是解题的关键.24、(1)(m,2m﹣2);(2)S△ABC =﹣82aa;(3)m的值为72或10+210.【解题分析】分析:(1)利用配方法将二次函数解析式由一般式变形为顶点式,此题得解;(2)过点C作直线AB的垂线,交线段AB的延长线于点D,由AB∥x轴且AB=1,可得出点B的坐标为(m+2,1a+2m−2),设BD=t,则点C的坐标为(m+2+t,1a+2m−2−t),利用二次函数图象上点的坐标特征可得出关于t 的一元二次方程,解之取其正值即可得出t值,再利用三角形的面积公式即可得出S△ABC的值;(3)由(2)的结论结合S△ABC=2可求出a值,分三种情况考虑:①当m>2m−2,即m<2时,x=2m−2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可求出m的值;②当2m−2≤m≤2m−2,即2≤m≤2时,x=m时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m 的值;③当m<2m−2,即m>2时,x=2m−2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值.综上即可得出结论.详解:(1)∵y=ax2﹣2amx+am2+2m﹣2=a(x﹣m)2+2m﹣2,∴抛物线的顶点坐标为(m,2m﹣2),故答案为(m,2m﹣2);(2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示,∵AB∥x轴,且AB=1,∵∠ABC=132°,∴设BD=t ,则CD=t ,∴点C 的坐标为(m+2+t ,1a+2m ﹣2﹣t ),∵点C 在抛物线y=a (x ﹣m )2+2m ﹣2上,∴1a+2m ﹣2﹣t=a (2+t )2+2m ﹣2,整理,得:at 2+(1a+1)t=0,解得:t 1=0(舍去),t 2=﹣41a a+, ∴S △ABC =12AB•C D=﹣82a a +; (3)∵△ABC 的面积为2, ∴﹣82a a+=2, 解得:a=﹣15, ∴抛物线的解析式为y=﹣15(x ﹣m )2+2m ﹣2. 分三种情况考虑:①当m >2m ﹣2,即m <2时,有﹣15(2m ﹣2﹣m )2+2m ﹣2=2, 整理,得:m 2﹣11m+39=0,解得:m 1=7﹣,m 2(舍去);②当2m ﹣2≤m≤2m ﹣2,即2≤m≤2时,有2m ﹣2=2,解得:m=72; ③当m <2m ﹣2,即m >2时,有﹣15(2m ﹣2﹣m )2+2m ﹣2=2, 整理,得:m 2﹣20m+60=0,解得:m 3=10﹣(舍去),m 1综上所述:m 的值为72或. 点睛:本题考查了二次函数解析式的三种形式、二次函数图象上点的坐标特征、等腰直角三角形、解一元二次方程以及二次函数的最值,解题的关键是:(1)利用配方法将二次函数解析式变形为顶点式;(2)利用等腰直角三角形的性质找出点C 的坐标;(3)分m <2、2≤m≤2及m >2三种情况考虑.。

2012届中考总复习适应性联考卷数学试卷

2012届中考总复习适应性联考卷数学试卷

重庆市大联考2012届中考总复习适应性联考卷(二)数 学 试 题(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案用钢笔或圆珠笔书写在答题卷上,不得在试卷上直接作答. 2.答题前将答题卷上密封线内的各项内容写清楚. 3.考试结束,由监考人员将试题和答题卷一并收回.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷...中对应的表格内. 1. 若3-x 在实数范围内有意义,则x 的取值范围是 ( )A .x >3B .x <3C .x ≥3D .x ≤3 2. 下列事件发生的概率为0的是( )A 、随意掷一枚均匀的硬币两次,至少有一次反面朝上;B 、今年冬天黑龙江会下雪;C 、随意掷两个均匀的骰子,朝上面的点数之和为1;D 、一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域。

3.如图1,已知AB 为⊙O 的弦,OC ⊥AB,垂足为C,若OA= 10,AB=16, 则弦心距OC 的长为( )A.12B.10C.8D.6 4.将一元二次方程0222=--x x配方后所得的方程是( )A .2)2(2=-x B .2)1(2=-x C .3)1(2=-x D .3)2(2=-x 5.下列命题中正确的命题有( )个 (1)等弧所对的圆周角相等。

(2)过圆心与弦所对一条弧的中点的直线必垂直于这条弦 (3)同弦所对的圆周角相等 (4)相等的圆心角所对的弧相等图1A.3B.2C.1D.06.已知两圆的半径是方程01272=+-x x 两实数根,圆心距为8,那么这两个圆的位置关系是( )A. 外离B.相交C. 内切D.外切7.下列图2案都是由字母“m ”经过变形、组合而成的,其中不是中心对称图形的是( )8.在半径为5的⊙O 中,梯形ABCD 内接于⊙O ,弦 AB//CD ,AB 、CD 分别是6、8, 则梯形ABCD 的面积为( )A.7B.49C.1或7D.7或499.如图3, 把直角△ABC 的斜边AC 放在定直线l 上,按顺时针的方向在直线l 上转动 两次,使它转到△A 2B 2C 2的位置,设AB=3,BC=1,则顶点A 运动到 点A 2的位置时,点A 所经过的路线为( ) A .(1225 +23)π B. (34 +23)π C . 2π D.3π10.如图4,△ABC 内接于⊙O ,∠A 所对弧的度数为120°. ∠ABC 、∠ACB 的 角平分线分别交于AC 、AB 于点D 、E ,CE 、BD 相交于点F.①∠BFE=60°;②BC BD =;③EF FD =;④2BF DF =.正确的序号数是( )A .①④B .①C .①③D .②③二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在答题卷...中对应的横线上. 11.()()=-=222______;3_____________。

2012年湖北省黄冈市中考数学试卷及解析

2012年湖北省黄冈市中考数学试卷及解析

2012年湖北省黄冈市中考数学试卷及解析一、选择题(本题个8个小题,每小题3分,共24分)2.(2012•黄冈)2012年5月25日有700多位来自全国各地的知名企业家聚首湖北共签约项目投资总额为909260000000元,将909260000000用科学记数法表示为表示(保留3个有效4.(2012•黄冈)如图,水平放置的圆柱体的三视图是()5.(2012•黄冈)若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD6.(2012•黄冈)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为()7.(2012•黄冈)下列说法中①若式子有意义,则x>1.②已知∠α=27°,则∠α的补角是153°.③已知x=2是方程x2﹣6x+c=0的一个实数根,则c的值为8.④在反比例函数y=中,若x>0时,y随x的增大增大,则k的取值范围是k>2.中,若8.(2012•黄冈)如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿翻折,点P的对应点为点P′.设点Q运动的时间为t秒,若四边形QPCP′为菱形,则t的值为()=,再表示出∴=,t∴===,再表示出所需要的线段长代入即可.二、填空题(本题个8个小题,每小题3分,共24分)9.(2012•黄冈)﹣的倒数是﹣3.10.(2010•崇左)分解因式:x3﹣9x=x(x+3)(x﹣3).11.(2012•黄冈)化简的结果是.+)÷=[+]=+•====12.(2012•黄冈)如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线交AC于点E,垂足为点D,连接BE,则∠EBC的度数为36°.C==7213.(2012•黄冈)已知实数x满足x+=3,则x2+的值为7.+2++=714.(2012•黄冈)如图,在梯形ABCD中,AD∥BC,AD=4,AB=CD=5,∠B=60°,则下底BC的长为9.15.(2012•黄冈)在平面直角坐标系中,△ABC的三个顶点的坐标是A(﹣2,3),B(﹣4,﹣1),C(2,0),将△ABC平移至△A1B1C1的位置,点ABC的对应点分别是A1B1C1,若点A1的坐标为(3,1).则点C1的坐标为(7,﹣2).16.(2012•黄冈)某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后缷完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货物相撞.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为(3,75);④快递车从乙地返回时的速度为90千米/时,以上4个结论正确的是①③④.三、解答题(本题个9个小题,72分)17.(2012•黄冈)解不等式组.18.(2012•黄冈)如图,在正方形ABCD中,对角线AC、BD相交于点O,E、F分别在OD、OC上,且DE=CF,连接DF、AE,AE的延长线交DF于点M.求证:AM⊥DF.19.(2012•黄冈)在一个口袋中有4个完全相同的小球,把它们分别标上1、2、3、4.小明先随机地摸出一个小球,小强再随机的摸出一个小球.记小明摸出球的标号为x,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y时小明获胜,否则小强获胜.①若小明摸出的球不放回,求小明获胜的概率.②若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.==20.(2012•黄冈)为了全面了解学生的学习、生活及家庭的基本情况,加强学校、家庭的联系,梅灿中学积极组织全体教师开展“课外访万家活动”,王老师对所在班级的全体学生进行实地家访,了解到每名学生家庭的相关信息,先从中随机抽取15名学生家庭的年收入情况,要说明理由.21.(2012•黄冈)某服装厂设计了一款新式夏装,想尽快制作8800件投入市场,服装厂有AB两个制衣间,A车间每天加工的数量是B车间的1.2倍,A、B两车间共完成一半后,A 车间出现故障停产,剩下全部由B车间单独完成,结果前后共用了20天完成,求A、B两车间每天分别能加工多少件.+=20+=2022.(2012•黄冈)如图,在△ABC中,BA=BC,以AB为直径作半圆⊙O,交AC于点D,连接DB,过点D作DE⊥BC,垂足为点E.(1)求证:DE为⊙O的切线;(2)求证:BD2=AB•BE.∴=,∴=,23.(2012•黄冈)新星小学门口有一直线马路,为方便学生过马路,交警在路口设有一定宽度的斑马线,斑马线的宽度为4米,为安全起见,规定车头距斑马线后端的水平距离不得低于2米,现有一旅游车在路口遇红灯刹车停下,汽车里司机与斑马线前后两端的视角分别为∠FAE=15°和∠FAD=30°,司机距车头的水平距离为0.8米,试问该旅游车停车是否符合上述安全标准?(E、D、C、B四点在平行于斑马线的同一直线上)参考数据:tan15°=2﹣,sin15°=,cos15°=,≈1.732,≈1.414.EB=,在BD=EB==,BD==②∴4=,即(=2,CD=224.(2012•黄冈)某科技开发公司研制出一种新型的产品,每件产品的成本为2400元,销售单价定为3000元,在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元.(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?(2)设商家一次购买这种产品x件,开发公司所获得的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围.(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获得的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获得的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)y=25.(2012•黄冈)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE 相似?若存在,求m的值;若不存在,请说明理由.m=(x+2BF==BE==±,m=+2(在抛物线上,∴EC==m=。

往年湖北省黄冈市中考数学真题及答案

往年湖北省黄冈市中考数学真题及答案

往年年湖北省黄冈市中考数学真题及答案一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共24分)1.(3分)﹣8的立方根是()A.﹣2 B.±2 C.2 D.﹣2.(3分)如果α与β互为余角,则()A.α+β=180°B.α﹣β=180° C.α﹣β=90°D.α+β=90°3.(3分)下列运算正确的是()A.x2•x3=x6B.x6÷x5=x C.(﹣x2)4=x6D.x2+x3=x54.(3分)如图所示的几何体的主视图是()A.B.C.D.5.(3分)函数y=中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠06.(3分)若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8 B.32 C.16 D.407.(3分)如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12π D.(4+4)π8.(3分)已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为()A.B.C.D.二、填空题(共7小题,每小题3分,共21分)9.(3分)计算:|﹣|= .10.(3分)分解因式:(2a+1)2﹣a2= .11.(3分)计算:﹣= .12.(3分)如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD= 度.13.(3分)当x=﹣1时,代数式÷+x的值是.14.(3分)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD= .15.(3分)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为cm2.三、解答题(本大题共10小题,满分共75分)16.(5分)解不等式组:,并在数轴上表示出不等式组的解集.17.(6分)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?18.(6分)已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.19.(6分)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.20.(7分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.21.(7分)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?22.(9分)如图,已知双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点.(1)当点C的坐标为(﹣1,1)时,A、B、D三点坐标分别是A(, ),B(, ),D(, ).(2)证明:以点A、D、B、C为顶点的四边形是平行四边形.(3)当k为何值时,▱ADBC是矩形.23.(7分)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)24.(9分)某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:居民个人当年治病所花费的医疗费医疗费的报销方法不超过n元的部分全部由医保基金承担(即全部报销)超过n元但不超过6000元的部分个人承担k%,其余部分由医保基金承担超过6000元的部分个人承担20%,其余部分由医保基金承担如果设一位居民当年治病花费的医疗费为x元,他个人实际承担的医疗费用(包括医疗费中个人承担部分和年初缴纳的医保基金)记为y元.(1)当0≤x≤n时,y=70;当n<x≤6000时,y= (用含n、k、x的式子表示).(2)表二是该地A、B、C三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值.表二:居民 A B C某次治病所花费的治疗费用x(元)400 800 1500个人实际承担的医疗费用y(元)70 190 470(3)该地居民周大爷2013年治病所花费的医疗费共32000元,那么这一年他个人实际承担的医疗费用是多少元?25.(13分)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O 出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.往年年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共24分)1.(3分)(往年•黄冈)﹣8的立方根是()A.﹣2 B.±2 C.2 D.﹣【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2.故选:A.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.(3分)(往年•黄冈)如果α与β互为余角,则()A.α+β=180°B.α﹣β=180° C.α﹣β=90°D.α+β=90°【分析】根据互为余角的定义,可以得到答案.【解答】解:如果α与β互为余角,则α+β=900.故选:D.【点评】此题主要考查了互为余角的性质,正确记忆互为余角的定义是解决问题的关键.3.(3分)(往年•黄冈)下列运算正确的是()A.x2•x3=x6B.x6÷x5=x C.(﹣x2)4=x6D.x2+x3=x5【分析】根据同底数幂的乘法和除法法则可以解答本题.【解答】解:A.x2•x3=x5,故A错误;B.x6÷x5=x,故B正确;C.(﹣x2)4=x8,故C错误;D.x2+x3不能合并,故D错误.故选:B.【点评】主要考查同底数幂相除底数不变指数相减,同底数幂相乘底数不变指数相加,熟记定义是解题的关键.4.(3分)(往年•黄冈)如图所示的几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,象一个大梯形减去一个小梯形,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.(3分)(往年•黄冈)函数y=中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠0【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣2≥0且x≠0,∴x≥2.故选:B.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.(3分)(往年•黄冈)若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8 B.32 C.16 D.40【分析】根据根与系数的关系得到α+β=﹣2,αβ=﹣6,再利用完全平方公式得到α2+β2=(α+β)2﹣2αβ,然后利用整体代入的方法计算.【解答】解:根据题意得α+β=﹣2,αβ=﹣6,所以α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=16.故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.7.(3分)(往年•黄冈)如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12π D.(4+4)π【分析】表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【解答】解:底面圆的半径为2,则底面周长=4π,∵底面半径为2cm、高为2cm,∴圆锥的母线长为4cm,∴侧面面积=×4π×4=8π;底面积为=4π,全面积为:8π+4π=12πcm2.故选:C.【点评】本题利用了圆的周长公式和扇形面积公式求解,牢记公式是解答本题的关键.8.(3分)(往年•黄冈)已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC 边于点F.点D为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为()A.B.C.D.【分析】判断出△AEF和△ABC相似,根据相似三角形对应边成比例列式求出EF,再根据三角形的面积列式表示出S与x的关系式,然后得到大致图象选择即可.【解答】解:∵EF∥BC,∴△AEF∽△ABC,∴=,∴EF=•10=10﹣2x,∴S=(10﹣2x)•x=﹣x2+5x=﹣(x﹣)2+,∴S与x的关系式为S=﹣(x﹣)2+(0<x<5),纵观各选项,只有D选项图象符合.故选:D.【点评】本题考查了动点问题函数图象,主要利用了相似三角形的性质,求出S与x的函数关系式是解题的关键,也是本题的难点.二、填空题(共7小题,每小题3分,共21分)9.(3分)(往年•黄冈)计算:|﹣|= .【分析】根据负数的绝对值等于它的相反数,可得答案案.【解答】解:|﹣|=,故答案为:.【点评】本题考查了绝对值,负数的绝对值是它的相反数.10.(3分)(往年•黄冈)分解因式:(2a+1)2﹣a2= (3a+1)(a+1).【分析】直接利用平方差公式进行分解即可.【解答】解:原式=(2a+1+a)(2a+1﹣a)=(3a+1)(a+1),故答案为:(3a+1)(a+1).【点评】此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).11.(3分)(往年•黄冈)计算:﹣= .【分析】先进行二次根式的化简,然后合并同类二次根式求解.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查了二次根式的加减法,关键是掌握二次根式的化简以及同类二次根式的合并.12.(3分)(往年•黄冈)如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD= 60 度.【分析】延长AC交BE于F,根据直角三角形两锐角互余求出∠1,再根据两直线平行,内错角相等可得∠CAD=∠1.【解答】解:如图,延长AC交BE于F,∵∠ACB=90°,∠CBE=30°,∴∠1=90°﹣30°=60°,∵AD∥BE,∴∠CAD=∠1=60°.故答案为:60.【点评】本题考查了平行线的性质,直角三角形两锐角互余的性质,熟记性质是解题的关键.13.(3分)(往年•黄冈)当x=﹣1时,代数式÷+x的值是3﹣2.【分析】将除法转化为乘法,因式分解后约分,然后通分相加即可.【解答】解:原式=•+x=x(x﹣1)+x=x2﹣x+x=x2,当x=﹣1时,原式=(﹣1)2=2+1﹣2=3﹣2.故答案为:3﹣2.【点评】本题考查了分式的化简求值,熟悉除法法则和因式分解是解题的关键.14.(3分)(往年•黄冈)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD= 4.【分析】连结OD,设⊙O的半径为R,先根据圆周角定理得到∠BOD=2∠BAD=60°,再根据垂径定理由CD⊥AB 得到DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,利用余弦的定义得cos∠EOD=cos60°=,即=,解得R=4,则OE=2,DE=OE=2,所以CD=2DE=4.【解答】解:连结OD,如图,设⊙O的半径为R,∵∠BAD=30°,∴∠BOD=2∠BAD=60°,∵CD⊥AB,∴DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,OD=R,∵cos∠EOD=cos60°=,∴=,解得R=4,∴OE=4﹣2=2,∴DE=OE=2,∴CD=2DE=4故答案为:4.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理和解直角三角形.15.(3分)(往年•黄冈)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为或5或10 cm2.【分析】因为等腰三角形腰的位置不明确,所以分(1)腰长在矩形相邻的两边上,(2)一腰在矩形的宽上,(3)一腰在矩形的长上,三种情况讨论.(1)△AEF为等腰直角三角形,直接利用面积公式求解即可;(2)先利用勾股定理求出AE边上的高BF,再代入面积公式求解;(3)先求出AE边上的高DF,再代入面积公式求解.【解答】解:分三种情况计算:(1)当AE=AF=5厘米时,∴S△AEF=AE•AF=×5×5=厘米2,(2)当AE=EF=5厘米时,如图BF===2厘米,∴S△AEF=•AE•BF=×5×2=5厘米2,(3)当AE=EF=5厘米时,如图DF===4厘米,∴S△AEF=AE•DF=×5×4=10厘米2.故答案为:,5,10.【点评】本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论.三、解答题(本大题共10小题,满分共75分)16.(5分)(往年•黄冈)解不等式组:,并在数轴上表示出不等式组的解集.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:解①得:x>3,解②得:x≥1.,则不等式组的解集是:x>3.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.17.(6分)(往年•黄冈)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?【分析】设购买1块电子白板需要x元,一台投影机需要y元,根据①买2块电子白板的钱﹣买3台投影机的钱=4000元,②购买4块电子白板的费用+3台投影机的费用=44000元,列出方程组,求解即可.【解答】解:设购买1块电子白板需要x元,一台投影机需要y元,由题意得:,解得:.答:购买一块电子白板需要8000元,一台投影机需要4000元.【点评】此题主要考查了二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,列出方程组.18.(6分)(往年•黄冈)已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.【分析】连接AD,利用SSS得到三角形ABD与三角形ACD全等,利用全等三角形对应角相等得到∠EAD=∠FAD,即AD为角平分线,再由DE⊥AB,DF⊥AC,利用角平分线定理即可得证.【解答】证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.【点评】此题考查了全等三角形的判定与性质,以及角平分线定理,熟练掌握全等三角形的判定与性质是解本题的关键.19.(6分)(往年•黄冈)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(7分)(往年•黄冈)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.【分析】(1)连接OD,由BC是⊙O的切线得出∠BCA=90°,由DE是⊙O的切线,得出ED=EC,∠ODE=90°,故可得出∠EDB=∠EBD,由此可得出结论.(2)当以点O、D、E、C为顶点的四边形是正方形时,则△DEB是等腰直角三角形,据此即可判断.【解答】(1)证明:连接OD,∵AC是直径,∠ACB=90°,∴BC是⊙O的切线,∠BCA=90°.又∵DE是⊙O的切线,∴ED=EC,∠ODE=90°,∴∠ODA+∠EDB=90°,∵OA=OD,∴∠OAD=∠ODA,又∵∠OAD+∠DBE=90°,∴∠EDB=∠EBD,∴ED=EB,∴EB=EC.(2)解:当以点O、D、E、C为顶点的四边形是正方形时,则∠DEB=90°,又∵ED=EB,∴△DEB是等腰直角三角形,则∠B=45°,∴△ABC是等腰直角三角形.【点评】本题考查了切线的性质以及切线长定理、圆周角定理,解题的关键是连接OD得垂直,构造出等腰三角形,利用“等角的余角相等解答.21.(7分)(往年•黄冈)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有200 名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?【分析】(1)喜好“核桃味”牛奶的学生人数除以它所占的百分比即可得本次被调查的学生人数;(2)用本次被调查的学生的总人数减去喜好原味、草莓味、菠萝味、核桃味的人数得出喜好香橙味的人数,补全条形统计图即可,用喜好“菠萝味”牛奶的学生人数除以总人数再乘以360°,即可得喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)用喜好草莓味的人数占的百分比减去喜好原味的人数占的百分比,再乘以该校的总人数即可.【解答】解:(1)10÷5%=200(名)答:本次被调查的学生有200名,故答案为:200;(2)200﹣38﹣62﹣50﹣10=40(名),条形统计图如下:=90°,答:喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数为90°;(3)1200×()=144(盒),答:草莓味要比原味多送144盒.【点评】本题考查的是条形统计图和扇形统计图的综合运用;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(9分)(往年•黄冈)如图,已知双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点.(1)当点C的坐标为(﹣1,1)时,A、B、D三点坐标分别是A(﹣2 , ),B( 2 , ﹣),D ( 1 , ﹣1 ).(2)证明:以点A、D、B、C为顶点的四边形是平行四边形.(3)当k为何值时,▱ADBC是矩形.【分析】(1)由C坐标,利用反比例函数的中心对称性确定出D坐标,联立双曲线y=﹣与直线y=﹣x,求出A与B坐标即可;(2)由反比例函数为中心对称图形,利用中心对称性质得到OA=OB,OC=OD,利用对角线互相平分的四边形为平行四边形即可得证;(3)由A与B坐标,利用两点间的距离公式求出AB的长,联立双曲线y=﹣与直线y=﹣kx,表示出CD的长,根据对角线相等的平行四边形为矩形,得到AB=CD,即可求出此时k的值.【解答】解:(1)∵C(﹣1,1),C,D为双曲线y=﹣与直线y=﹣kx的两个交点,且双曲线y=﹣为中心对称图形,∴D(1,﹣1),联立得:,消去y得:﹣x=﹣,即x2=4,解得:x=2或x=﹣2,当x=2时,y=﹣;当x=﹣2时,y=,∴A(﹣2,),B(2,﹣);故答案为:﹣2,,2,﹣,1,﹣1;(2)∵双曲线y=﹣为中心对称图形,且双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点,∴OA=OB,OC=OD,则以点A、D、B、C为顶点的四边形是平行四边形;(3)若▱ADBC是矩形,可得AB=CD,联立得:,消去y得:﹣=﹣kx,即x2=,解得:x=或x=﹣,当x=时,y=﹣;当x=﹣时,y=,∴C(﹣,),D(,﹣),∴CD==AB==,整理得:(4k﹣1)(k﹣4)=0,k1=,k2=4,又∵k≠,∴k=4,则当k=4时,▱ADBC是矩形.【点评】此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,一次函数与反比例函数的交点,平行四边形,矩形的判定,两点间的距离公式,以及中心图形性质,熟练掌握性质是解本题的关键.23.(7分)(往年•黄冈)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN 上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)【分析】(1)作CE⊥AB,设AE=x海里,则BE=CE=x海里.根据AB=AE+BE=x+x=100(+1),求得x 的值后即可求得AC的长;过点D作DF⊥AC于点F,同理求出AD的长;(2)作DF⊥AC于点F,根据AD的长和∠DAF的度数求线段DF的长后与100比较即可得到答案.【解答】解:(1)如图,作CE⊥AB,由题意得:∠ABC=45°,∠BAC=60°,设AE=x海里,在Rt△AEC中,CE=AE•tan60°=x;在Rt△BCE中,BE=CE=x.∴AE+BE=x+x=100(+1),解得:x=100.AC=2x=200.在△ACD中,∠DAC=60°,∠ADC=75°,则∠ACD=45°.过点D作DF⊥AC于点F,设AF=y,则DF=CF=y,∴AC=y+y=200,解得:y=100(﹣1),∴AD=2y=200(﹣1).答:A与C之间的距离AC为200海里,A与D之间的距离AD为200(﹣1)海里.(2)由(1)可知,DF=AF=×100(﹣1)≈126.3海里,∵126.3>100,所以巡逻船A沿直线AC航线,在去营救的途中没有触暗礁危险.【点评】本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系解答.24.(9分)(往年•黄冈)某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:居民个人当年治病所花费的医疗费医疗费的报销方法不超过n元的部分全部由医保基金承担(即全部报销)超过n元但不超过6000元的部分个人承担k%,其余部分由医保基金承担超过6000元的部分个人承担20%,其余部分由医保基金承担如果设一位居民当年治病花费的医疗费为x元,他个人实际承担的医疗费用(包括医疗费中个人承担部分和年初缴纳的医保基金)记为y元.(1)当0≤x≤n时,y=70;当n<x≤6000时,y= 0.01k(x﹣n)+70(n<x≤6000)(用含n、k、x的式子表示).(2)表二是该地A、B、C三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值.表二:居民 A B C某次治病所花费的治疗费用x(元)400 800 1500个人实际承担的医疗费用y(元)70 190 470(3)该地居民周大爷2013年治病所花费的医疗费共32000元,那么这一年他个人实际承担的医疗费用是多少元?【分析】(1)根据医疗报销的比例,可得答案;(2)根据医疗费用的报销费用,可得方程组,再解方程组,可得答案;(3)根据个人承担部分的费用,可得代数式,可得答案.【解答】解:(1)由题意得当0≤x≤n时,y=70;当n<x≤6000时,y=0.01k(x﹣n)+70(n<x≤6000);(2)由A、B、C三人的花销得,解得;(3)由题意得70+(6000﹣500)×40%+(32000﹣6000)×20%=70+2200+5200=7470(元).答:这一年他个人实际承担的医疗费用是7470元.【点评】本题考查了一次函数的应用,根据题意列函数解析式是解题关键.25.(13分)(往年•黄冈)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.【分析】(1)设抛物线解析式为y=ax2+bx(a≠0),然后把点A、B的坐标代入求出a、b的值,即可得解,再把函数解析式整理成顶点式形式,然后写出顶点M的坐标;(2)根据点P的速度求出OP,即可得到点P的坐标,再根据点A的坐标求出∠AOC=45°,然后判断出△POQ 是等腰直角三角形,根据等腰直角三角形的性质求出点Q的坐标即可;(3)根据旋转的性质求出点O、Q的坐标,然后分别代入抛物线解析式,求解即可;(4)求出点Q与点A重合时的t=1,点P与点C重合时的t=1.5,t=2时PQ经过点B,然后分①0<t≤1时,重叠部分的面积等于△POQ的面积,②1<t≤1.5时,重叠部分的面积等于两个等腰直角三角形的面积的差,③1.5<t<2时,重叠部分的面积等于梯形的面积减去一个等腰直角三角形的面积分别列式整理即可得解.【解答】解:(1)设抛物线解析式为y=ax2+bx(a≠0),把点A(1,﹣1),B(3,﹣1)代入得,,解得,∴抛物线解析式为y=x2﹣x,∵y=x2﹣x=(x﹣2)2﹣,∴顶点M的坐标为(2,﹣);(2)∵点P从点O出发速度是每秒2个单位长度,∴OP=2t,∴点P的坐标为(2t,0),∵A(1,﹣1),∴∠AOC=45°,∴点Q到x轴、y轴的距离都是OP=×2t=t,∴点Q的坐标为(t,﹣t);(3)∵△OPQ绕着点P按逆时针方向旋转90°,∴旋转后点O、Q的对应点的坐标分别为(2t,﹣2t),(3t,﹣t),若顶点O在抛物线上,则×(2t)2﹣×(2t)=﹣2t,解得t=(t=0舍去),∴t=时,点O(1,﹣1)在抛物线y=x2﹣x上,若顶点Q在抛物线上,则×(3t)2﹣×(3t)=﹣t,解得t=1(t=0舍去),∴t=1时,点Q(3,﹣1)在抛物线y=x2﹣x上.(4)点Q与点A重合时,OP=1×2=2,t=2÷2=1,点P与点C重合时,OP=3,t=3÷2=1.5,t=2时,OP=2×2=4,PC=4﹣3=1,此时PQ经过点B,所以,分三种情况讨论:①0<t≤1时,S=S△OPQ=×(2t)×=t2,②1<t≤1.5时,S=S△OP′Q′﹣S△AEQ′=×(2t)×﹣×(t﹣)2=2t﹣1;③1.5<t<2时,S=S梯形OABC﹣S△BGF=×(2+3)×1﹣×[1﹣(2t﹣3)]2=﹣2(t﹣2)2+=﹣2t2+8t﹣;所以,S与t的关系式为S=.。

近十年(2003-2012年)黄冈中考数学试题及答案

近十年(2003-2012年)黄冈中考数学试题及答案

三、解答题(共 17 分) 12. (6 分)解方程:
x 1x 2
6

2 1 x2
13. (6 分)已知:如图,等腰梯形 ABCD 中,AB=CD,AD∥BC,E 是梯形外一点,且
EA=ED.求证:EB=EC. 14. (5 分)现有 A,B 两个班级,每个班级各有 45 名学生参加一次测验.每名参加者可 获得 0,l,2,3,4,5,6,7,8,9 分这几种不同的分值中的一种.测试结果 A 班的 成绩如下表所示,B 班的成绩如图所示.
2 2
(D) 2 3 ) .
10. 关于 x 的方程 k x 2k 1x 1 0 有实数根,则下列结论正确的是( (A)当 k=
1 时方程两根互为相反数 2
(B)当 k=0 时方程的根是 x=-1 (D)当 k≤
(C)当 k=士 1 时方程两根互为倒数
1 时方程有实数根 4
11. 某公司员工分别住在 A,B,C 三个住宅区,A 区有 30 人,B 区有 15 人区有 10 人.三 个区在同一条直线上,位置如图所示.该公司的接送车打算在此间只设一个停靠点,为 使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在( ) . (A)A 区 (B)B 区 (C)C 区 (D)A,B 两区之间
9.把式子 x -y -x-y 分解因式的结果是_____. 10.化简 (
x x 4x ) 的结果是__________. x2 x2 2 x
11.矩形 ABCD 中,M 是 BC 的中点,且 MA⊥MD,若矩形的周长为 48cm,则矩形 ABCD 的面积 2 为___________cm . 16.如图是一种“羊头形”图案,其作法是:从正方形①开始,以它的一边为斜边,向外作 等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②′,„„,以此类 推;若正方形①的边长为 64 厘米,则正方形⑦的边长为____厘米. ③′ ②′ ④′ ① 三、解答下列各题(本大题两小题,满分 13 分) 13.(7 分)如图,已知在△ABC 中,AB=AC,∠BAC=120°,AC 的垂直平分线 EF 交 AC 于 点 E,交 BC 于点 F, 求证:BF=2CF. A E C F 14.(6 分)下表是某校初三⑴班 20 名学生某次数学测试的成绩统计表 成绩(分) 人数(人) 67 1 70 5 80 x 90 y 100 2 B ③

12年中考选择填空易错题

12年中考选择填空易错题

黄冈市2012年中考数学选择、填空易错题一、填空题。

1. 关于x 的分式方程3111m x x+=--的解为正数,则m 的取值范围是m >2 且m ≠3.2. 已知二次函数y =a (a +1)x2-(2a +1)x +1,当a 依次取1,2,…,2012时,函数的图像在x 轴上所截得的线段A 1B 1,A 2B 2,…,A 2012B 2012的长度之和为. 3.长为1,宽为a 的矩形纸片(121<<a ),如图那样折一下, 剪下一个边长等于矩形宽度的正方形(称为第一次操作); 再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩 形宽度的正方形(称为第二次操作);如此反复操作下去. 若在第n 此操作后,剩下的矩形为正方形,则操作终止. 当n =3时,a 的值为__0.6或0.75__. 4. 如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2(如图(2));以此下去···,则正方形A 4B 4C 4D 4的面积为__625__。

7. 如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时, x 的取值范围是x <-1或x >2 。

二、选择题。

第一次操作第二次操作第2题图(1)A 1B 1C 1D 1A BC D D 2A 2B 2C 2D 1C 1B 1A 1A BC D 第2题图(2)第7题图8.如图,A 、B 、C 、D 是⊙O 上的四个点,AB=AC ,AD 交BC 于点E,AE=3,ED=4,则AB 的长为( C )A 3B 23C 21D 359.如图,已知A 、B 是反比例函数k y x=(k >0,x <0)图象上的两点, BC ∥x 轴,交y 轴于点C 。

2024届湖北省黄冈市中考数学全真模拟试题含解析

2024届湖北省黄冈市中考数学全真模拟试题含解析

2024届湖北省黄冈市中考数学全真模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(共10小题,每小题3分,共30分)1.下列由左边到右边的变形,属于因式分解的是().A.(x+1)(x-1)=x2-1B.x2-2x+1=x(x-2)+1C.a2-b2=(a+b)(a-b)D.mx+my+nx+ny=m(x+y)+n(x+y)2.下列图形中,线段MN的长度表示点M到直线l的距离的是()A.B.C. D.3.半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A.3B.4C.5D.74.如图所示,点E是正方形ABCD内一点,把△BEC绕点C旋转至△DFC位置,则∠EFC的度数是( )A.90°B.30°C.45°D.60°5.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t 0 1 2 3 4 5 6 7 …h 0 8 14 18 20 20 18 14 …下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线92t ;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m. 其中正确结论的个数是()A.1 B.2 C.3 D.46.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A.2332π-B.233π-C.32π-D.3π-7.已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=6x的图象上,则y1、y2、y3的大小关系是( )A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y28.已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是()A.x<0 B.﹣1<x<1或x>2 C.x>﹣1 D.x<﹣1或1<x<2 9.下列实数中是无理数的是()A.227B.πC.9D.13-10.如图,在平面直角坐标系xOy中,△A B C'''由△ABC绕点P旋转得到,则点P的坐标为()A.(0,1)B.(1,-1)C.(0,-1)D.(1,0)二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,那么当y1>y2时,x的取值范围是_____.12.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为_____.13.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是________.14.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是__________________________.15.如图,在矩形ABCD中,过点A的圆O交边AB于点E,交边AD于点F,已知AD=5,AE=2,AF=1.如果以点D为圆心,r为半径的圆D与圆O有两个公共点,那么r的取值范围是______.16.如图,在矩形ABCD中,AB=2,AD=6,E.F分别是线段AD,BC上的点,连接EF,使四边形ABFE为正方形,若点G是AD上的动点,连接FG,将矩形沿FG折叠使得点C落在正方形ABFE的对角线所在的直线上,对应点为P,则线段AP的长为______.三、解答题(共8题,共72分)17.(8分)如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN 上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的距离.18.(8分)如图1,在直角梯形ABCD中,AB⊥BC,AD∥BC,点P为DC上一点,且AP=AB,过点C作CE⊥BP 交直线BP于E.(1) 若,求证:;(2) 若AB=BC.①如图2,当点P与E重合时,求的值;②如图3,设∠DAP的平分线AF交直线BP于F,当CE=1,时,直接写出线段AF的长.19.(8分)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB 的延长线相交于点P,弦CE平分∠ACB,交AB点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:PC=PF;(3)若tan∠ABC=43,AB=14,求线段PC的长.20.(8分)动画片《小猪佩奇》分靡全球,受到孩子们的喜爱.现有4张《小猪佩奇》角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同).姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.(1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为;(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的分方法求出恰好姐姐抽到A佩奇弟弟抽到B乔治的概率.21.(8分)如图,已知AB是圆O的直径,弦CD⊥AB,垂足H在半径OB上,AH=5,CD=45,点E在弧AD 上,射线AE与CD的延长线交于点F.(1)求圆O的半径;(2)如果AE=6,求EF的长.22.(10分)为了预防“甲型H1N1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?23.(12分)某渔业养殖场,对每天打捞上来的鱼,一部分由工人运到集贸市场按10元/斤销售,剩下的全部按3元/斤的购销合同直接包销给外面的某公司:养殖场共有30名工人,每名工人只能参与打捞与到集贸市场销售中的一项工作,且每人每天可以打捞鱼100斤或销售鱼50斤,设安排x名员工负责打捞,剩下的负责到市场销售.(1)若养殖场一天的总销售收入为y元,求y与x的函数关系式;(2)若合同要求每天销售给外面某公司的鱼至少200斤,在遵守合同的前提下,问如何分配工人,才能使一天的销售收入最大?并求出最大值.24.如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后≈≈).一位,参考数据:2 1.41,?3 1.73参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解题分析】因式分解是把一个多项式化为几个整式的积的形式,据此进行解答即可.【题目详解】解:A、B、D三个选项均不是把一个多项式化为几个整式的积的形式,故都不是因式分解,只有C选项符合因式分解的定义,故选择C.【题目点拨】本题考查了因式分解的定义,牢记定义是解题关键.2、A【解题分析】解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离.故选A.3、C【解题分析】如图所示:过点O作OD⊥AB于点D,∵OB=3,AB=4,OD⊥AB,∴BD=12AB=12×4=2,在Rt△BOD中,OD2222325OB BD-=-=故选C.4、C【解题分析】根据正方形的每一个角都是直角可得∠BCD=90°,再根据旋转的性质求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根据等腰直角三角形的性质解答.【题目详解】∵四边形ABCD是正方形,∴∠BCD=90°,∵△BEC绕点C旋转至△DFC的位置,∴∠ECF=∠BCD=90°,CE=CF,∴△CEF是等腰直角三角形,∴∠EFC=45°.故选:C.【题目点拨】本题目是一道考查旋转的性质问题——每对对应点到旋转中心的连线的夹角都等于旋转角度,每对对应边相等,故CEF∆为等腰直角三角形.5、B【解题分析】试题解析:由题意,抛物线的解析式为y =ax (x ﹣9),把(1,8)代入可得a =﹣1,∴y =﹣t 2+9t =﹣(t ﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m ,故①错误,∴抛物线的对称轴t =4.5,故②正确,∵t =9时,y =0,∴足球被踢出9s 时落地,故③正确,∵t =1.5时,y =11.25,故④错误,∴正确的有②③,故选B .6、B【解题分析】根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出△ABG ≌△DBH ,得出四边形GBHD 的面积等于△ABD 的面积,进而求出即可.【题目详解】连接BD ,∵四边形ABCD 是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB=2,∴△ABD 3∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯=23π 故选B .7、B【解题分析】分别把各点代入反比例函数的解析式,求出y 1,y 2,y 3的值,再比较出其大小即可.【题目详解】∵点A (1,y 1),B (2,y 2),C (﹣3,y 3)都在反比例函数y=6x 的图象上, ∴y 1=61=6,y 2=62=3,y 3=63-=-2, ∵﹣2<3<6,∴y 3<y 2<y 1,故选B .【题目点拨】本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟练掌握反比例函数图象上的点的坐标满足函数的解析式是解题的关键.8、B【解题分析】y <0时,即x 轴下方的部分,∴自变量x 的取值范围分两个部分是−1<x <1或x >2.故选B.9、B【解题分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【题目详解】A 、227是分数,属于有理数; B 、π是无理数;C ,是整数,属于有理数;D 、-13是分数,属于有理数;故选B.【题目点拨】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10、B【解题分析】试题分析:根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.试题解析:由图形可知,对应点的连线CC′、AA′的垂直平分线过点(0,-1),根据旋转变换的性质,点(1,-1)即为旋转中心.故旋转中心坐标是P(1,-1)故选B.考点:坐标与图形变化—旋转.二、填空题(本大题共6个小题,每小题3分,共18分)11、﹣1<x<2【解题分析】根据图象得出取值范围即可.【题目详解】解:因为直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,所以当y1>y2时,﹣1<x<2,故答案为﹣1<x<2【题目点拨】此题考查二次函数与不等式,关键是根据图象得出取值范围.12、25【解题分析】试题解析:由题意10DB CD BC =+=11·1052522ABD S BD AB =⨯=⨯⨯=扇形13、3105【解题分析】解:连接AG ,由旋转变换的性质可知,∠ABG =∠CBE ,BA =BG =5,BC =BE ,由勾股定理得,CG =22BG BC -=4, ∴DG =DC ﹣CG =1,则AG =22AD DG +=10,∵BA BGBC BE =,∠ABG =∠CBE , ∴△ABG ∽△CBE , ∴35CE BC AG AB ==, 解得,CE =3105,故答案为3105.【题目点拨】本题考查的是旋转变换的性质、相似三角形的判定和性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键.14、50(1﹣x )2=1. 【解题分析】 由题意可得, 50(1−x)²=1,故答案为50(1−x)²=1.15、105105r -<<+ 【解题分析】因为以点D 为圆心,r 为半径的圆D 与圆O 有两个公共点,则圆D 与圆O 相交,圆心距满足关系式:|R-r|<d<R+r ,求得圆D 与圆O 的半径代入计算即可. 【题目详解】连接OA 、OD ,过O 点作ON ⊥AE ,OM ⊥AF. AN=12AE=1,AM=12AF=2,MD=AD-AM=3 ∵四边形ABCD 是矩形∴∠BAD=∠ANO=∠AMO=90°, ∴四边形OMAN 是矩形 ∴OM=AN=1∴OA=22215+=,OD=221310+=∵以点D 为圆心,r 为半径的圆D 与圆O 有两个公共点,则圆D 与圆O 相交 ∴105105r -<<+【题目点拨】本题考查了圆与圆相交的条件,熟记圆与圆相交时圆的半径与圆心距的关系是关键. 16、1或1﹣2【解题分析】当点P 在AF 上时,由翻折的性质可求得PF=FC=1,然后再求得正方形的对角线AF 的长,从而可得到PA 的长;当点P 在BE 上时,由正方形的性质可知BP 为AF 的垂直平分线,则AP=PF ,由翻折的性质可求得PF=FC=1,故此可得到AP 的值. 【题目详解】 解:如图1所示:由翻折的性质可知PF=CF=1,∵ABFE为正方形,边长为2,∴AF=22.∴PA=1﹣22.如图2所示:由翻折的性质可知PF=FC=1.∵ABFE为正方形,∴BE为AF的垂直平分线.∴AP=PF=1.故答案为:1或1﹣2.【题目点拨】本题主要考查的是翻折的性质、正方形的性质的应用,根据题意画出符合题意的图形是解题的关键.三、解答题(共8题,共72分)17、1.5千米【解题分析】先根据相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性质解答即可【题目详解】在△ABC与△AMN中,305549ACAB==,151.89AMAN==,∴AC AM AB AN=,∵∠A=∠A,∴△ABC∽△ANM,∴AC AMBC MN=,即30145MN=,解得MN=1.5(千米) ,因此,M、N两点之间的直线距离是1.5千米.【题目点拨】此题考查相似三角形的应用,解题关键在于掌握运算法则18、(1)证明见解析;(2)①;②3.【解题分析】(1) 过点A作AF⊥BP于F,根据等腰三角形的性质得到BF=BP,易证Rt△ABF∽Rt△BCE,根据相似三角形的性质得到,即可证明BP=CE.(2) ①延长BP、AD交于点F,过点A作AG⊥BP于G,证明△ABG≌△BCP,根据全等三角形的性质得BG=CP,设BG=1,则PG=PC=1,BC=AB=,在Rt△ABF中,由射影定理知,AB2=BG·BF=5,即可求出BF=5,PF=5-1-1=3,即可求出的值;②延长BF、AD交于点G,过点A作AH⊥BE于H,证明△ABH≌△BCE,根据全等三角形的性质得BG=CP,设BH=BP=CE=1,又,得到PG=,BG=,根据射影定理得到AB2=BH·BG ,即可求出AB=,根据勾股定理得到,根据等腰直角三角形的性质得到.【题目详解】解:(1) 过点A作AF⊥BP于F∵AB=AP∴BF=BP,∵Rt△ABF∽Rt△BCE∴∴BP=CE.(2) ①延长BP、AD交于点F,过点A作AG⊥BP于G∵AB=BC∴△ABG≌△BCP(AAS)∴BG=CP设BG=1,则PG=PC=1∴BC=AB=在Rt△ABF中,由射影定理知,AB2=BG·BF=5∴BF=5,PF=5-1-1=3∴②延长BF、AD交于点G,过点A作AH⊥BE于H∵AB=BC∴△ABH≌△BCE(AAS)设BH=BP=CE=1∵∴PG=,BG=∵AB2=BH·BG∴AB=∴∵AF平分∠PAD,AH平分∠BAP∴∠FAH=∠BAD=45°∴△AFH为等腰直角三角形∴【题目点拨】考查等腰三角形的性质,勾股定理,射影定理,平行线分线段成比例定理等,解题的关键是作出辅助线.难度较大.19、(1)(2)证明见解析;(3)1.【解题分析】(1)由PD切⊙O于点C,AD与过点C的切线垂直,易证得OC∥AD,继而证得AC平分∠DAB;(2)由条件可得∠CAO=∠PCB,结合条件可得∠PCF=∠PFC,即可证得PC=PF;(3)易证△PAC∽△PCB,由相似三角形的性质可得到PC APPB PC,又因为tan∠ABC=43,所以可得ACBC=43,进而可得到PCPB=43,设PC=4k,PB=3k,则在Rt△POC中,利用勾股定理可得PC2+OC2=OP2,进而可建立关于k的方程,解方程求出k的值即可求出PC的长.【题目详解】(1)证明:∵PD切⊙O于点C,∴OC⊥PD,又∵AD⊥PD,∴OC∥AD,∴∠A CO=∠DAC.∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)证明:∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB为⊙O的直径,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACF=∠BCF,∴∠CAO+∠ACF=∠PCB+∠BCF,∴∠PFC=∠PCF,∴PC=PF;(3)解:∵∠PAC=∠PCB,∠P=∠P,∴△PAC∽△PCB,∴.又∵tan∠ABC=,∴,∴,设PC=4k,PB=3k,则在Rt△POC中,PO=3k+7,OC=7,∵PC2+OC2=OP2,∴(4k)2+72=(3k+7)2,∴k=6 (k=0不合题意,舍去).∴PC=4k=4×6=1.【题目点拨】此题考查了和圆有关的综合性题目,用到的知识点有:切线的性质、相似三角形的判定与性质、垂径定理、圆周角定理、勾股定理以及等腰三角形的判定与性质.20、(1)14;(2)112【解题分析】(1)直接利用求概率公式计算即可;(2)画树状图(或列表格)列出所有等可能结果,根据概率公式即可解答.【题目详解】(1)14;(2)方法1:根据题意可画树状图如下:方法2:根据题意可列表格如下:弟弟姐姐A B C DA (A,B)(A,C) (A,D)B (B,A) (B,C) (B,D)C (C,A) (C,B) (C,D)D (D,A) (D,B) (D,C)由列表(树状图)可知,总共有12种结果,每种结果出现的可能性相同,其中姐姐抽到A佩奇,弟弟抽到B乔治的结果有1种:(A,B).∴P(姐姐抽到A佩奇,弟弟抽到B乔治)1 12【题目点拨】本题考查的是用列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解决问题用到概率公式:概率=所求情况数与总情况数之比.21、(1) 圆的半径为4.5;(2) EF=32.【解题分析】(1)连接OD,根据垂径定理得:DH5O的半径为r,根据勾股定理列方程可得结论;(2)过O作OG⊥AE于G,证明△AGO∽△AHF,列比例式可得AF的长,从而得EF的长.【题目详解】(1)连接OD,∵直径AB⊥弦CD,CD=4,∴DH=CH=CD=2,在Rt△ODH中,AH=5,设圆O的半径为r,根据勾股定理得:OD2=(AH﹣OA)2+DH2,即r2=(5﹣r)2+20,解得:r=4.5,则圆的半径为4.5;(2)过O作OG⊥AE于G,∴AG=AE=×6=3,∵∠A=∠A,∠AGO=∠AHF,∴△AGO∽△AHF,∴,∴,∴AF=,∴EF=AF﹣AE=﹣6=.【题目点拨】本题考查了垂径定理,勾股定理,相似三角形的判定与性质,解答本题的关键是正确添加辅助线并熟练掌握垂径定理和相似三角形的判定与性质.22、(1)()3084{?48(8)x xyxx≤≤=>;(2)至少需要30分钟后生才能进入教室.(3)这次消毒是有效的.【解题分析】(1)药物燃烧时,设出y与x之间的解析式y=k1x,把点(8,6)代入即可,从图上读出x的取值范围;药物燃烧后,设出y 与x 之间的解析式y=2k x,把点(8,6)代入即可; (2)把y=1.6代入反比例函数解析式,求出相应的x ;(3)把y=3代入正比例函数解析式和反比例函数解析式,求出相应的x ,两数之差与10进行比较,大于或等于10就有效. 【题目详解】解:(1)设药物燃烧时y 关于x 的函数关系式为y=k 1x (k 1>0)代入(8,6)为6=8k 1 ∴k 1=34设药物燃烧后y 关于x 的函数关系式为y=2k x (k 2>0)代入(8,6)为6=2k 8, ∴k 2=48∴药物燃烧时y 关于x 的函数关系式为3y x 4=(0≤x≤8)药物燃烧后y 关于x 的函数关系式为48y x=(x >8) ∴()30x 84y 48(8)xx x ⎧≤≤⎪⎪⎨=⎪>⎪⎩(2)结合实际,令48y x=中y≤1.6得x≥30 即从消毒开始,至少需要30分钟后生才能进入教室. (3)把y=3代入3y x 4=,得:x=4 把y=3代入48y x=,得:x=16 ∵16﹣4=12所以这次消毒是有效的. 【题目点拨】现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.23、(1)y=﹣50x+10500;(2)安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元. 【解题分析】(1)根据题意可以得到y 关于x 的函数解析式,本题得以解决;(2)根据题意可以得到x 的不等式组,从而可以求得x 的取值范围,从而可以得到y 的最大值,本题得以解决. 【题目详解】(1)由题意可得,y=10×50(30﹣x)+3[100x﹣50(30﹣x)]=﹣50x+10500,即y与x的函数关系式为y=﹣50x+10500;(2)由题意可得,()()10050301005030200x xx x⎧≥-⎪⎨--≥⎪⎩,得x343≥,∵x是整数,y=﹣50x+10500,∴当x=12时,y取得最大值,此时,y=﹣50×12+10500=9900,30﹣x=18,答:安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元.【题目点拨】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用函数和不等式的性质解答.24、5.7米.【解题分析】试题分析:由题意,过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED 中,求出CE的长.试题解析:解:如答图,过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6.在Rt△ACH中,CH=AH•tan∠CAH=6tan30°=6×3233=,∵DH=1.5,∴CD=23+1.5.在Rt△CDE中,∵∠CED=60°,∴CE=23 1.55.7sin6032CD+=≈︒(米).答:拉线CE的长约为5.7米.考点:1.解直角三角形的应用(仰角俯角问题);2.锐角三角函数定义;3.特殊角的三角函数值;4.矩形的判定和性质.。

黄冈市中考数学适应性模拟试题及答案(三)

黄冈市中考数学适应性模拟试题及答案(三)

黄冈市中考数学适应性模拟试题三(考试时间120分钟满分120分)命题:巴河镇中心中学数学组 周绪国一、填空题(共8道题,每小题3分,共24分) 1、8的相反数是________。

2、因式分解:3244x x x -+==____________________________。

3、函数3x y +=中自变量x 的取值范围是_________________________。

4、设函数2y x=与1y x =-的图象的交战坐标为(a ,b ),则11a b -的值为__________.5、如图,已知正方形ABCD 的边长为12cm ,E 为CD 边上一点,DE =5cm .以点A 为中心,将△ADE 按顺时针方向旋转得△ABF ,则点E 所经过的路径长为 cm .6、已知关于x 的一次函数n mx y +=的图象如图所示,则2||m m n --可 化简为_________________.7、如图,在平面直角坐标系中有一正方形AOBC,反比例函数过正方形AOBC 对角线的交点,半径为(422-的圆内切于△ABC ,则k 的值为________。

8、如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a>2),半径为2,函数y =x 的图象被⊙P 割的弦AB 的长为3a 的值是________。

二、选择题(A ,B ,C ,D 四个答案中,有且只有一个是正确的,每小题3分,共24分) 9、下列运算正确的是( )A 、 532a a a =+ B 、 ()4222-=-a aC 、 22232a a a -=- D 、 ()()2112-=-+a a a10、如图,在直角三角形ABC 中(∠C =900),放置边长分别3,4,x 的三个正方形,则x 的值为( )A 、 5B 、 6C 、7D 、 12FED CB A第5题AOB Cxy 第7题Oxy第6题(第8题)ABB P xyy=xk y x=11、某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32.对这组数据,下列说法正确的是( ) A 、平均数为30B 、众数为29C 、中位数为31D 、极差为512、下面四个几何体中,俯视图为四边形的是( )13、如图,直径为10的⊙A 山经过点C(0,5)和点0(0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( ) A 、12 B 、34 C 、 32D 、45 14、小明从家里骑自行车到学校,每小时骑15km ,可早到10分钟,每小时骑12km 就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm ,则据题意列出的方程是( )A 、60512601015-=+x x B 、 60512601015+=-x xC 、60512601015-=-x xD 、 5121015-=+xx15、如图,Rt ⊿ABC 中AB=3,BC=4,∠B=90°,点B 、C 在两坐标轴上滑动。

2012年中考数学适应性试卷(附答案)

2012年中考数学适应性试卷(附答案)

2012年中考数学适应性试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至6页,共150分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题 共30分)注意事项:1.答第一部分前,考生务必将自己的姓名、报名号用0.5毫米的黑色签字笔填写在答题 卡上.并将条形码粘在答题卡的指定位置.2.选择题用2B 铅笔填涂在答题卡对应题目标号的位置上,其它试题用0.5毫米黑色签 字笔书写在答题卡对应框内,不得超越题框区域.在草稿纸、试卷上答题无效.3.考试结束后,监考人员将本试题卷和答题卡分别收回并装袋.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1.点(-1,2)关于原点对称的点的坐标是(A )(1,2) (B )(-1,-2) (C )(2,-1) (D )(1,-2) 2. 下列运算正确的是(A )3x 2-2x 2=1 (B )(-2a )2=-2a 2(C )(a +b )2=a 2+b 2(D )-2(a -1)=-2a +23. 如图,∠1与∠2互补,∠3=130°,则∠4的度数是 (A )40° (B )45° (C )50°(D )55°4. 在一个不透明的袋子中装有6个除颜色外完全相同的小球,其中黄球2个,红球 2个,白球2个,“从中任意摸出2个球,它们的颜色相同”,这一事件是 (A )必然事件 (B )不可能事件(C )随机事件 (D )确定事件5. 如图,一只小虫在折扇上沿O →A →B →O 路径匀速爬行,能大致描述小虫距出发点O 的距离y 与时间x 之间的函数图象是(A ) (B ) (C ) (D )dc ba 4321xxxxy y y y OOOOBAO6. 一船向东航行,上午8时到达B 处,看到有一灯塔在它的南偏东60°,距离为72海里的A 处,上午10时到达C 处,看到灯塔在它的正南方向,则这艘船航行 的速度为(A )18海里/小时 (B )318海里/小时 (C )36海里/小时 (D )336海里/小时7. 已知⊙O 的半径OA =10cm ,弦AB =16cm ,P 为弦AB 上的一个动点,则OP 的最 短距离为 (A )5cm(B )6cm (C )8cm(D )10cm8. 有一等腰梯形纸片ABCD (如图),AD ∥BC ,AD =1,BC =3,沿梯形的高DE 剪下, 由△DEC 与四边形ABED 不一定能拼成的图形是 (A )直角三角形(B )矩形(C )平行四边形 (D )正方形9. 如图,在Rt ∆ABC 中,∠C =90°,两直角边AC 、BC 的长恰是方程2x -4x +2=0 的两个不同的根,则Rt ∆ABC 的斜边上的高线CD 的长为(A (B (C (D )10. 如图,有一块△ABC 材料,BC =10,高AD =6,把它加工成一个矩形零件,使矩形的一边GH 在BC 上,其余两个顶点E 、F 分别在AB 、AC 上, 那么矩形EFHG 的周长的取值范围是 (A )020l << (B )610l << (C )1220l << (D )1226l <<H GF E D CBAED CBA D CBA2012年中考数学适应性试卷第二部分(非选择题 共120分)注意事项:1.考生需用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答,作图题 可先用铅笔画线,确认后用0.5毫米黑色墨迹签字笔描清楚,答在试题卷上无效.2.本部分共16小题,共120分.二、填空题:本大题共6小题,每小题3分,共18分.11.函数y =x 的取值范围是 .12. 正n 边形的一个外角是30°,则n = .13. 元代朱世杰所著的《算学启蒙》里有这样一道题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?” 请你回答:良马 天可以追上驽马.14. 在5,4,3,-2这四个数中,任选两个数的积作为k 的值,使反比例函数xky =的 图象在第二、四象限的概率是 . 15. 如图,在正方形网格中,点A 、B 、C 、D 都是格点,点E 是线段AC 上任意一点.如果AD =1,那么当 AE = 时,以点A 、D 、E 为顶点 的三角形与△ABC 相似.16. 如图,一系列“黑色梯形”是由x 轴、直线yx和过x 轴上的正奇数1、3、5、7、9、…所对应 的点且与y 轴平行的直线围成的.从左到右,将其 面积依次记为S 1、S 2、S 3、…、S n 、…. 则S 1= ,S n = .三、(本大题共3小题,每小题9分,共27分)17.计算:011cos30()2012---. 18. 解不等式组3(3)5134x x x x ++⎧⎪+⎨⎪⎩>≤,并写出不等式组的所有整数解. D CB Ay =3xy x1197531O19. 先化简,再求值:211)1211x xx x x x ++÷--+-(,其中负数x 的值是方程x 2-2=0的解.四、(本大题共3小题,每小题10分,共30分)20. 某校为了解九年级800名学生的体育综合素质,随机抽查了50名学生进行体育综合测试,所得成绩整理分成五组,并制成如下频数分布表和扇形统计图,请根据所提供的信息解答下列问题:频数分布表扇形统计图(1)频数分布表中的m =_ ,n =_ ;(2)样本中位数所在成绩的组别是_ ,扇形统计图中,E 组所对应的扇形圆心角的度数是_ ;(3)请你估计该校九年级的学生中,体育综合测试成绩不少于80分的大约有多少人?21. 如图,在△ABC 中,∠C =90°,∠A 、∠B 的平分线交于点D ,DE ⊥BC 于点E , DF ⊥AC 于点F , (1)求证:四边形CFDE 是正方形;(2)若AC =3,BC =4,求△ABC 的内切圆半径.22. 选做题:本题为选做题,从甲、乙两题中选做一题即可,如果两题都做,只以甲题计分.甲题:由山脚下的一点A 测得山顶D 的仰角是45°,从A 沿倾斜角为30°的山坡前进1500米到B ,再次测得山顶D 的仰角为60°,求山高CD .(结果保留根号)乙题:如图,Rt △ABO 的顶点A 是双曲线xky =与直线'(1)y x k =--+在第二象限的交点,AB ⊥x 轴于B 且S △ABO =23. (1)求这两个函数的解析式;36%30%EDCB16%A D Bxy CB A OF EDC(2)求直线与双曲线的两个交点A 、C 的坐标,并写出当x 在什么范围取值时,'y ≥y .五、(本大题共2小题,每小题10分,共20分)23. 已知:在⊙O 中,AB 是直径,AC 是弦,OE ⊥AC 于点E ,过点C 作直线FC ,使 ∠FCA =∠AOE ,交AB 的延长线于点D . (1)求证:FD 是⊙O 的切线;(2)设OC 与BE 相交于点G ,若OG =4,求⊙O半径的长;(3)在(2)的条件下,当OE =6时,求图中阴影部分的面积.(结果保留根号)24. 在锐角△ABC 中,AB =AC ,∠A 使关于x 的方程412x -sinA x +3sinA -43=0有 两个相等的实数根. (1)判断△ABC 的形状;(2)设D 为BC 上的一点,且DE ⊥AB 于E ,DF ⊥AC 于F ,若DE =m ,DF =n ,且3m =4n 和m 2+n 2=25,求AB 的长.六、(25题12分,26题13分,共25分)25. 在课外小组活动时,小伟拿来一道题(原问题)和小熊、小强交流.原问题:如图1,已知△ABC , ∠ACB =90︒ , ∠ABC =45︒,分别以AB 、BC 为边向外作△ABD 与△BCE , 且DA =DB , EB =EC ,∠ADB =∠BEC =90︒,连接DE 交AB 于点F . 探究线段DF 与EF 的数量关系.小伟同学的思路是:过点D 作DG ⊥AB 于G ,构造全等三角形,通过推理使问 题得解.小熊同学说:我做过一道类似的题目,不同的是∠ABC =30︒,∠ADB =∠BEC =60︒. 小强同学经过合情推理,提出一个猜想,我们可以把问题推广到一般情况. 请你参考小慧同学的思路,探究并解决这三位同学提出的问题: (1)写出原问题中DF 与EF 的数量关系;(2)如图2,若∠ABC =30︒,∠ADB =∠BEC =60︒,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明;(3)如图3,若∠ADB =∠BEC =2∠ABC ,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明.FD BBD FF D BA26. 如图,抛物线y =ax 2+bx +c 与x 轴交于A (x 1,0)、B (x 2,0)两点,与y 轴交于C 点,对称轴与抛物线相交于点P ,与直线BC 相交于点M ,连接PB .已知x 1、x 2 恰是方程2230x x --=的两根,且sin ∠OBC(1)求该抛物线的解析式;(2)抛物线上是否存在一点Q ,使△QMB 与△PMB 的面积相等,若存在,求点Q 的坐标;若不存在,说 明理由;(3)在第一象限、对称轴右侧的抛物线上是否存在一点R ,使△RPM 与△RMB 的面积相等,若存在,直 接写出点R 的坐标;若不存在,说明理由.xy ABCPMO。

黄冈市中考数学全真模拟试卷(二)含答案解析

黄冈市中考数学全真模拟试卷(二)含答案解析

湖北省黄冈市中考数学全真模拟试卷(二)一.选择题(共6小题,满分15分)1.已知x的取值能使|x﹣3|+|x+2|取得最小值,则所有中整数有()A.1个 B.2个 C.3个 D.4个2.(3分)下列运算正确的是()A.m6÷m2=m3B.(x+1)2=x2+1 C.(3m2)3=9m6D.2a3•a4=2a73.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④4.(3分)一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.6πB.4πC.8πD.45.(3分)小华五次跳远的成绩如下(单位:m):3.9,4.1,3.9,3.8,4.2.关于这组数据,下列说法错误的是()A.极差是0.4 B.众数是3.9 C.中位数是3.98 D.平均数是3.986.(3分)已知:圆内接四边形ABCD中,对角线AC⊥BD,AB>CD.若CD=4,则AB的弦心距为()A.B.2 C.D.二.填空题(共8小题,满分24分,每小题3分)7.(3分)计算:=.8.(3分)分解因式:3x2﹣6x2y+3xy2=.9.(3分)=.10.(3分)现在网购越来越多地成为人们的一种消费方式,刚刚过去的的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为.11.(3分)有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次运算的结果y n=(用含字母x和n的代数式表示).12.(3分)如图,E是正方形ABCD内一点,如果△ABE为等边三角形,那么∠DCE=度.13.(3分)已知圆锥的底面半径为2cm,母线长是4cm,则圆锥的侧面积是cm2(结果保留π).14.(3分)两个直角三角板如图放置,其中AC=5,BC=12,点D为斜边AB的中点.在三角板DEF绕着点D的旋转过程中,边DE与边AC始终相交于点M,边DF与边BC始终相交于点N,则线段MN的最小值为.三.解答题(共10小题,满分64分)15.(5分)解关于x的不等式组:,其中a为参数.16.(6分)如图1,在锐角△ABC中,∠ABC=45°,高线A D、BE相交于点F.(1)判断BF与AC的数量关系并说明理由;(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.17.(6分)已知x1,x2是方程2x2﹣2nx+n(n+4)=0的两根,且(x1﹣1)(x2﹣1)﹣1=,求n的值.18.(6分)甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的,问甲、乙两公司人均捐款各多少元?19.(7分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.20.(7分)如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB﹣BO﹣OP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t >0).(1)求直线AB的解析式;(2)在点P从O向A运动的过程中,求△APQ的面积S与t之间的函数关系式(不必写出t的取值范围);(3)在点E从B向O运动的过程中,完成下面问题:①四边形QBED能否成为直角梯形?若能,请求出t的值;若不能,请说明理由;②当DE经过点O时,请你直接写出t的值.21.(7分)如图,反比例函数y=(m≠0)与一次函数y=kx+b(k≠0)的图象相交于A、B两点,点A的坐标为(﹣6,2),点B的坐标为(3,n).求反比例函数和一次函数的解析式.22.(8分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.23.(12分)如图,实验数据显示,一般成年人喝半斤低度白酒后,1.5时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可以近似的用二次函数y=﹣200x2+400x刻画,1.5小时后(包括1.5小时)y与x可近似的用反比例函数y=(k>0)刻画.(1)根据上述数学模型计算;①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按照国家规定,车辆驾驶人员血液中酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早晨7:00能否驾车去上班?请说明理由.24.综合与探究:如图,抛物线y=x2﹣x﹣4与x轴交与A,B两点(点B在点A的右侧),与y 轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x 轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A,B,C的坐标.(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N.试探究m 为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.湖北省黄冈市中考数学全真模拟试卷(二)参考答案与试题解析一.选择题(共6小题,满分15分)1.【解答】解:∵已知x的取值能使|x﹣3|+|x+2|取得最小值,∴当x≥3时,有|x﹣3|+|x+2|=x﹣3+x+2=2x﹣1,∴当x=3时有最小值:2×3﹣1=5;∴当﹣2<x<3时,有|x﹣3|+|x+2|=3﹣x+x+2=5,∴其有最小值5;当x≤﹣2时,有|x﹣3|+|x+2|=3﹣x﹣x﹣2=1﹣2x,∴当x=﹣2时有最小值5,∴﹣2≤x≤3可以使|x﹣3|+|x+2|取得最小值,∴﹣1≤≤,∴所有中整数有﹣1,0,1,共3个,故选:C.2.【解答】解:A、原式=m4,不符合题意;B、原式=x2+2x+1,不符合题意;C、原式=27m6,不符合题意;D、原式=2a7,符合题意,故选:D.3.【解答】解:点E有4种可能位置.(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:D.4.【解答】解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,那么它的表面积=2π×2+π×1×1×2=6π,故选A.5.【解答】解:A、极差是4.2﹣3.8=0.4;B、3.9有2个,众数是3.9;C、从高到低排列后,为4.2,4.1,3.9,3.9,3.8.中位数是3.9;D、平均数为(3.9+4.1+3.9+3.8+4.2)÷5=3.98.故选:C.6.【解答】解:如图,设AC与BD的交点为O,过点O作GH⊥CD于G,交AB于H;作MN⊥AB于M,交CD于点N.在Rt△COD中,∠COD=90°,OG⊥CD;∴∠DOG=∠DCO;∵∠GOD=∠BOH,∠DCO=∠ABO,∴∠ABO=∠BOH,即BH=OH,同理可证,AH=OH;即H是Rt△AOB斜边AB上的中点.同理可证得,M是Rt△COD斜边CD上的中点.设圆心为O′,连接O′M,O′H;则O′M⊥CD,O′H⊥AB;∵MN⊥AB,GH⊥CD;∴O′H∥MN,OM∥GH;即四边形O′HOM是平行四边形;因此OM=O′H.由于OM是Rt△OCD斜边CD上的中线,所以OM=O′H=CD=2.故选:B.二.填空题(共8小题,满分24分,每小题3分)7.【解答】解:原式==,故答案为:8.【解答】解:原式=3x(x﹣2xy+y2),故答案为:3x(x﹣2xy+y2)9.【解答】解:∵=﹣,∴原式=(﹣)+(﹣)+…+(﹣),=1﹣,=.故答案为.10.【解答】解:67 000 000 000=6.7×1010,故答案为:6.7×1010.11.【解答】解:将y1=代入得:y2==;将y2=代入得:y3==,依此类推,第n次运算的结果y n=.故答案为:.12.【解答】解:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCD=90°,∵△ABE为等边三角形,∴AE=AB=BE,∠ABE=60°,∴∠EBC=90°﹣60°=30°,BC=BE,∴∠ECB=∠BEC=(180°﹣30°)=75°,∴∠DCE=90°﹣75°=15°.故答案为15.13.【解答】解:底面圆的半径为2,则底面周长=4π,侧面面积=×4π×4=8πcm2.14.【解答】解:当M、N分别为AC、BC的中点时,MN最小.在△ABC中,∵∠C=90°,AC=5,BC=12,∴AB==13.∵M、N分别为AC、BC的中点,∴MN=AB=.故答案为.三.解答题(共10小题,满分64分)15.【解答】解:,解不等式①得:﹣3a<5x≤1﹣3a,﹣a<x≤,解不等式②得:3a<5x≤1+3a,a<x≤,∵当﹣a=a时,a=0,当=时,a=0,当﹣a=时,a=﹣,当a=时,a=,∴当或时,原不等式组无解;当时,原不等式组的解集为:;当时,原不等式组的解集为:.16.【解答】解:(1)BF=AC,理由是:如图1,∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEF=90°,∵∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵∠AFE=∠BFD,∴∠DAC=∠EBC,在△ADC和△BDF中,∵,∴△ADC≌△BDF(AAS),∴BF=AC;(2)NE=AC,理由是:如图2,由折叠得:MD=DC,∵D E∥AM,∴AE=EC,∵BE⊥AC,∴AB=BC,∴∠ABE=∠CBE,由(1)得:△ADC≌△BDF,∵△ADC≌△ADM,∴△BDF≌△ADM,∴∠DBF=∠MAD,∵∠DBA=∠BAD=45°,∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,即∠ABE=∠BAN,∵∠ANE=∠ABE+∠BAN=2∠ABE,∠NAE=2∠NAD=2∠CBE,∴∠ANE=∠NAE=45°,∴AE=EN,∴EN=AC.17.【解答】解:∵x1、x2是方程2x2﹣2nx+n(n+4)=0的两根,∴x1+x2=﹣=n ①,x1x2==n(n+4)②,又∵(x1﹣1)(x2﹣1)﹣1=,∴x1x2﹣(x1+x2)=,把①②代入上式得n(n+4)﹣n=,化简得n2=,即n=±.又∵△=b2﹣4ac=4n2﹣4×2×n(n+4)=﹣16n,而原方程有根,∴﹣16n≥0,∴n≤0,∴n=﹣.18.【解答】解:设甲公司人均捐款x元,则乙公司人均捐款x+20元,×=解得:x=80,经检验,x=80为原方程的根,80+20=100(元)答:甲、乙两公司人均捐款分别为80元、100元.19.【解答】解:(1)10÷20%=50,所以本次抽样调查共抽取了50名学生;(2)测试结果为C等级的学生数为50﹣10﹣20﹣4=16(人);补全条形图如图所示:(3)700×=56,所以估计该中学八年级学生中体能测试结果为D等级的学生有56名;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率==.20.【解答】解:(1)在Rt△AOB中,OA=3,AB=5,由勾股定理得OB==4.∴A(3,0),B(0,4).设直线AB的解析式为y=kx+b.∴解得∴直线AB的解析式为;(2)如图1,过点Q作QF⊥AO于点F.∵AQ=OP=t,∴AP=3﹣t.由△AQF∽△ABO,得.∴=.∴QF=t,∴S=(3﹣t)•t,∴S=﹣t2+t;(3)四边形QBED能成为直角梯形.①如图2,当DE∥QB时,∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形.此时∠AQP=90°.由△APQ∽△ABO,得.∴=.解得t=;如图3,当PQ∥BO时,∵DE⊥PQ,∴DE⊥BO,四边形QBED是直角梯形.此时∠APQ=90°.由△AQP∽△ABO,得.即=.3t=5(3﹣t),3t=15﹣5t,8t=15,解得t=;(当P从A向0运动的过程中还有两个,但不合题意舍去)②当DE经过点O时,∵DE垂直平分PQ,∴EP=EQ=t,由于P与Q相同的时间和速度,∴AQ=EQ=EP=t,∴∠AEQ=∠EAQ,∵∠AEQ+∠BEQ=90°,∠EAQ+∠EBQ=90°,∴∠BEQ=∠EBQ,∴BQ=EQ,∴EQ=AQ=BQ=AB所以t=,当P从A向O运动时,过点Q作QF⊥OB于F,EP=6﹣t,即EQ=EP=6﹣t,AQ=t,BQ=5﹣t,∴FQ=(5﹣t)=3﹣t,BF=(5﹣t)=4﹣t,∴EF=4﹣BF=t,∵EF2+FQ2=EQ2,即(3﹣t)2+(t)2=(6﹣t)2,解得:t=.∴当DE经过点O时,t=或.21.【解答】解:把点A(﹣6,2)代入中,得m=﹣12.∴反比例函数的解析式为.把点B(3,n)代入中,得n=﹣4.∴B点的坐标为(3,﹣4).把点A(﹣6,2),点B(3,﹣4)分别代入y=kx+b中,得,解得.∴一次函数的解析式为y=﹣x﹣2.22.【解答】解:由题意得:BE=,AE=,∵AE﹣BE=AB=m米,∴﹣=m(米),∴CE=(米),∵DE=n米,∴CD=+n(米).∴该建筑物的高度为:(+n)米.23.【解答】解:(1)∵y=﹣200x2+400x=﹣200(x﹣1)2+200,①∴当x=1时,y取得最大值,此时y=200,答:喝酒后1时血液中的酒精含量达到最大值,最大值为200毫克/百毫升;②∵当x=5时,y=45,∴45=,得k=225,即k的值是225;(2)该驾驶员第二天早晨7:00不能驾车去上班,理由:由(1)知k=225,∴y=,∵晚上20:00到第二天早晨7:00是11个小时,∴将x=11代入y=,得y=,∵,∴该驾驶员第二天早晨7:00不能驾车去上班.24.【解答】解:(1)当y=0时,x2﹣x﹣4=0,解得x1=﹣2,x2=8,∵点B在点A的右侧,∴点A的坐标为(﹣2,0),点B的坐标为(8,0).当x=0时,y=﹣4,∴点C的坐标为(0,﹣4).(2)由菱形的对称性可知,点D的坐标为(0,4).设直线BD的解析式为y=kx+b,则,解得k=﹣,b=4.∴直线BD的解析式为y=﹣x+4.∵l⊥x轴,∴点M的坐标为(m,﹣m+4),点Q的坐标为(m,m2﹣m﹣4).如图,当MQ=DC时,四边形CQMD是平行四边形,∴(﹣m+4)﹣(m2﹣m﹣4)=4﹣(﹣4).化简得:m2﹣4m=0,解得m1=0(不合题意舍去),m2=4.∴当m=4时,四边形CQMD是平行四边形.此时,四边形CQBM是平行四边形.解法一:∵m=4,∴点P是OB的中点.∵l⊥x轴,∴l∥y轴,∴△BPM∽△BOD,∴==,∴BM=DM,∵四边形CQMD是平行四边形,∴DM CQ,∴BM CQ,∴四边形CQBM是平行四边形.解法二:设直线BC的解析式为y=k1x+b1,则,解得k1=,b1=﹣4.故直线BC的解析式为y=x﹣4.又∵l⊥x轴交BC于点N,∴x=4时,y=﹣2,∴点N的坐标为(4,﹣2),由上面可知,点M的坐标为(4,2),点Q的坐标为(4,﹣6).∴MN=2﹣(﹣2)=4,NQ=﹣2﹣(﹣6)=4,∴MN=QN,又∵四边形CQMD是平行四边形,∴DB∥CQ,∴∠3=∠4,∵在△BMN与△CQN中,,∴△BMN≌△CQN(ASA)∴BN=CN,∴四边形CQBM是平行四边形.(3)抛物线上存在两个这样的点Q,分别是Q1(﹣2,0),Q2(6,﹣4).若△BDQ为直角三角形,可能有三种情形,如答图2所示:①以点Q为直角顶点.此时以BD为直径作圆,圆与抛物线的交点,即为所求之Q点.∵P在线段EB上运动,∴﹣8≤x Q≤8,而由图形可见,在此范围内,圆与抛物线并无交点,故此种情形不存在.②以点D为直角顶点.连接AD,∵OA=2,OD=4,OB=8,AB=10,由勾股定理得:AD=,BD=,∵AD2+BD2=AB2,∴△ABD为直角三角形,即点A为所求的点Q.∴Q1(﹣2,0);③以点B为直角顶点.如图,设Q2点坐标为(x,y),过点Q2作Q2K⊥x轴于点K,则Q2K=﹣y,OK=x,BK=8﹣x.易证△Q2KB∽△BOD,∴,即,整理得:y=2x﹣16.∵点Q在抛物线上,∴y=x2﹣x﹣4.∴x2﹣x﹣4=2x﹣16,解得x=6或x=8,当x=8时,点Q2与点B重合,故舍去;当x=6时,y=﹣4,∴Q2(6,﹣4).综上所述,符合题意的点Q的坐标为(﹣2,0)或(6,﹣4).。

湖北省黄冈市中考数学模拟试卷(D卷,含解析)-人教版初中九年级全册数学试题

湖北省黄冈市中考数学模拟试卷(D卷,含解析)-人教版初中九年级全册数学试题

某某省黄冈市2016年中考数学模拟试卷(D)1.的算术平方根是()A.8 B.±8 C. D.±2.据中国电子商务研究中心监测数据显示,2016年第二季度中国轻纺城市场群的商品成交额达29600 000 000元,将29600 000 000用科学记数法表示为()×1010×1011×1010×10113.下列运算正确的是()A.3a2﹣2a2=1 B.(a2)3=a5C.a2•a4=a6D.(3a)2=6a24.如图,直线a∥b,∠1=110°,∠2=50°,则∠3的度数为()A.50° B.60° C.70° D.110°5.关于x的方程(m﹣1)x2+2x+1=0有实数根,则m的取值X围是()A.m≤2 B.m<2 C.m<3且m≠2 D.m≤3且m≠26.如图,已知正△ABC的边长为2,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是()A.B.C.D.7.计算:﹣(π﹣1)0﹣4sin45°+(﹣)﹣2=______.8.分解因式:4x3﹣16x2+16x=______.9.设x1、x2是一元二次方程x2+4x﹣3=0的两个根,2x1(x22+5x2﹣3)+a=2,则a=______.10.如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为______.11.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为______.12.一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了0.2m,则此时排水管水面宽CD等于______m.13.当1≤x≤6时,函数y=a(x﹣4)2+2﹣9a(a>0)的最大值是______.14.如图,已知A(2,2)、B(2,1),将△AOB绕着点O逆时针旋转,使点A旋转到点A′(﹣2,2)的位置,则图中阴影部分的面积为______.三.解答题(共10个小题,共78分)15.解不等式组:.16.某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元.(1)求2013年至2015年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元.17.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE 的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.18.为深化课程改革,浠水思源实验学校积极开展校本课程建设,计划成立“文学鉴赏”、“科学实验”、“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团,为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完整):浠水思源实验学校被调查学生选择社团意向统计表选择意向文学鉴赏科学实验音乐舞蹈手工编织其他所占百分比 a 35% b 10% c根据统计图表中的信息,解答下列问题:(1)求本次调查的学生总人数及a,b,c的值.(2)将条形统计图补充完整.(3)若该校共有3400名学生,试估计全校选择“科学实验”社团的学生人数.19.小明参加某网店的“翻牌抽奖”活动,如图,4X牌分别对应价值5,10,15,20(单位:元)的4件奖品.(1)如果随机翻1X牌,那么抽中20元奖品的概率为______(2)如果随机翻2X牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总值不低于30元的概率为多少?20.如图,一次函数y=﹣x+5的图象与反比例函数y=(k≠0)在第一象限的图象交于A (1,n)和B两点.(1)求反比例函数的解析式与点B坐标;(2)求△AOB的面积;(3)在第一象限内,当一次函数y=﹣x+5的值小于反比例函数y=(k≠0)的值时,写出自变量x的取值X围.21.已知:如图,AB为⊙O的直径,AB⊥AC,BC交⊙O于D,E是AC的中点,ED与AB的延长线相交于点F.(1)求证:DE为⊙O的切线.(2)求证:DF2=BF•AF.22.如图分别是吊车在吊一物品时的实物图与示意图.已知吊车底盘CD的高度为2米,支架BC的长为4米,且与地面成30°角,吊绳AB与支架BC的夹角为80°,吊臂AC与地面成70°角.(参考数据:sin10°=cos80°=0.17,cos10°=sin80°=0.98,sin20°=cos70°=0.34,tan70°=2.75,sin70°=0.94)(1)求吊绳与吊臂的长度.(2)求吊车的吊臂顶端A点距地面的高度是多少米.(精确到0.1米)23.(10分)(2012•义乌市)周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.24.(13分)(2016•黄冈模拟)如图,关于y=﹣x2+bx+c的二次函数y=﹣x2+bx+c经过点A (﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,点E在x 轴上.(1)求抛物线的解析式及顶点D的坐标;(2)在图中求一点G,使以G、A、E、C为顶点的四边形是平行四边形,请直接写出点G的坐标;(3)在抛物线A、C两点之间有一点F,使△FAC的面积最大,求该点坐标;(4)直线DE上是否存在点P到直线AD的距离与到轴的距离相等?若存在,请求出点P,若不存在,请说明理由.2016年某某省黄冈市中考数学模拟试卷(D)参考答案与试题解析1.的算术平方根是()A.8 B.±8 C. D.±【考点】算术平方根.【分析】首先得出=8,进而利用算术平方根的定义得出答案.【解答】解:∵ =8,∴的算术平方根是:.故选:C.【点评】此题主要考查了算术平方根的定义,正确算术平方根与平方根的区别是解题关键.2.据中国电子商务研究中心监测数据显示,2016年第二季度中国轻纺城市场群的商品成交额达29600 000 000元,将29600 000 000用科学记数法表示为()×1010×1011×1010×1011【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】×1010,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列运算正确的是()A.3a2﹣2a2=1 B.(a2)3=a5C.a2•a4=a6D.(3a)2=6a2【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同类项、幂的乘方、同底数幂的乘法计算即可.【解答】解:A、3a2﹣2a2=a2,错误;B、(a2)3=a6,错误;C、a2•a4=a6,正确;D、(3a)2=9a2,错误;故选C.【点评】此题考查同类项、幂的乘方、同底数幂的乘法,关键是根据法则进行计算.4.如图,直线a∥b,∠1=110°,∠2=50°,则∠3的度数为()A.50° B.60° C.70° D.110°【考点】平行线的性质.【分析】要求∠3的度数,结合图形和已知条件,先求由两条平行线所构成的同位角或内错角,再利用三角形的外角的性质就可求解.【解答】解:如图:∵∠2=∠5=50°,又∵a∥b,∴∠1=∠4=110°.∵∠4=∠3+∠5,∴∠3=110°﹣50°=60°,故选B.【点评】本题考查了三角形的外角的性质和平行线的性质;三角形的外角的性质:三角形的外角等于和它不相邻的两个内角的和;平行线的性质:两直线平行,同位角相等.5.关于x的方程(m﹣1)x2+2x+1=0有实数根,则m的取值X围是()A.m≤2 B.m<2 C.m<3且m≠2 D.m≤3且m≠2【考点】根的判别式.【分析】分二次项系数m﹣1≠0和m﹣1=0两种情况考虑,当m﹣1≠0时,根据根的判别式△≥0可得出关于m的一元一次不等式,解不等式即可得出m的取值X围;当m﹣1=0时,可得出方程有一个实数根.结合两种情况即可得出结论.【解答】解:①当m﹣1≠0,即m≠1时,∵关于x的方程(m﹣1)x2+2x+1=0有实数根,∴△=22﹣4×(m﹣1)×1=8﹣4m≥0,解得:m≤2.②当m﹣1=0,即m=1时,原方程为2x+1=0,该方程有一个实数根.综上可知:m的取值X围是m≤2.故选A.【点评】本题考查了根的判别式,解题的关键是分两种情况考虑.本题属于基础题,难度不大,解决该题型题目时,分方程为一元二次方程和一元一次方程两种情况考虑是关键.6.如图,已知正△ABC的边长为2,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意,易得△AEG、△BEF、△CFG三个三角形全等,且在△AEG中,AE=x,AG=2﹣x;可得△AEG的面积y与x的关系;进而可判断出y关于x的函数的图象的大致形状.【解答】解:根据题意,有AE=BF=CG,且正三角形ABC的边长为2,故BE=CF=AG=2﹣x;故△AEG、△BEF、△CFG三个三角形全等.在△AEG中,AE=x,AG=2﹣x.则S△AEG=AE×AG×sinA=x(2﹣x);故y=S△ABC﹣3S△AEG=﹣3×x(2﹣x)=(3x2﹣6x+4).故可得其大致图象应类似于抛物线,且抛物线开口方向向上;故选:D.【点评】本题考查动点问题的函数图象问题,用图象解决问题时,要理清图象的含义即会识图.7.计算:﹣(π﹣1)0﹣4sin45°+(﹣)﹣2= 3 .【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=2﹣1﹣4×+4=3,故答案为:3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.8.分解因式:4x3﹣16x2+16x= 4x(x﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式4x,进而利用完全平方公式分解因式得出答案.【解答】解:4x3﹣16x2+16x=4x(x2﹣4x+4)=4x(x﹣2)2.故答案为:4x(x﹣2)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.9.设x1、x2是一元二次方程x2+4x﹣3=0的两个根,2x1(x22+5x2﹣3)+a=2,则a= 8 .【考点】根与系数的关系.【分析】先根据根与系数的关系,求出x1+x2,x1•x2的值,然后化简所求代数式,把x1+x2,x1•x2的值整体代入求值即可.【解答】解:根据题意可得x1+x2=﹣=﹣4,x1•x2==﹣3,又∵2x1(x22+5x2﹣3)+a=2,∴2x1x22+10x1x2﹣6x1+a=2,﹣6x2+10x1x2﹣6x1+a=2,﹣6(x1+x2)+10x1x2+a=2,﹣6×(﹣4)+10×(﹣3)+a=2,∴a=8.故答案为:8.【点评】本题考查了根与系数的关系,一元二次方程的两个根x1、x2具有这样的关系:x1+x2=﹣,x1•x2=.10.如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为.【考点】翻折变换(折叠问题).【分析】如图,AC交EF于点O,由勾股定理先求出AC的长度,根据折叠的性质可判断出RT△EOC~RT△ABC,从而利用相似三角形的对应边成比例可求出OE,再由EF=2OE可得出EF 的长度【解答】解:如图所示,AC交EF于点O,由勾股定理知AC=2,又∵折叠矩形使C与A重合时有EF⊥AC,则Rt△AOE∽Rt△ABC,∴,∴OE=故EF=2OE=.故答案为:.【点评】此题考查了翻折变换、勾股定理及矩形的性质,难度一般,解答本题的关键是判断出Rt△AOE∽Rt△ABC,利用相似三角形的性质得出OE的长.11.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为10cm .【考点】圆锥的计算.【分析】由圆锥的几何特征,我们可得用半径为30cm,面积为300πcm2的扇形铁皮制作一个无盖的圆锥形容器,则圆锥的底面周长等于扇形的弧长,据此求得圆锥的底面圆的半径.【解答】解:设铁皮扇形的半径和弧长分别为R、l,圆锥形容器底面半径为r,则由题意得R=30,由Rl=300π得l=20π;由2πr=l得r=10cm.故答案是:10cm.【点评】本题考查的知识点是圆锥的表面积,其中根据已知制作一个无盖的圆锥形容器的扇形铁皮的相关几何量,计算出圆锥的底面半径和高,是解答本题的关键.12.一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了0.2m,则此时排水管水面宽CD等于 1.6 m.【考点】垂径定理的应用;勾股定理.【分析】先根据勾股定理求出OE的长,再根据垂径定理求出CF的长,即可得出结论.【解答】解:如图:∵AB=1.2m,OE⊥AB,OA=1m,∴OE=0.8m,∵水管水面上升了0.2m,∴OF=0.8﹣0.2=0.6m,∴CF=m,∴CD=1.6m.故答案为:1.6.【点评】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.13.当1≤x≤6时,函数y=a(x﹣4)2+2﹣9a(a>0)的最大值是 2 .【考点】二次函数的最值.【分析】直接利用二次函数的性质分析得出答案.【解答】解:由题意可得:x=4时,函数值最小,当x=1时,函数值最大,故x=1时,函数y=a(x﹣4)2+2﹣9a(a>0)的最大值是:y=9a+2﹣9a=2.故答案为:2.【点评】此题主要考查了二次函数最值求法,正确利用二次函数性质分析是解题关键.14.如图,已知A(2,2)、B(2,1),将△AOB绕着点O逆时针旋转,使点A旋转到点A′(﹣2,2)的位置,则图中阴影部分的面积为π.【考点】扇形面积的计算;坐标与图形变化-旋转.【分析】由A(2,2)使点A旋转到点A′(﹣2,2)的位置易得旋转90°,根据旋转的性质可得,阴影部分的面积等于S扇形A'OA﹣S扇形C'OC,从而根据A,B点坐标知OA=4,OC=OB=,可得出阴影部分的面积.【解答】解:∵A(2,2)、B(2,1),∴OA=4,OB=,∵由A(2,2)使点A旋转到点A′(﹣2,2),∴∠A′OA=∠B′OB=90°,根据旋转的性质可得,S=S OBC,∴阴影部分的面积等于S扇形A'OA﹣S扇形C'OC=π×42﹣π×()2=,故答案为:π.【点评】此题主要考查了扇形的面积计算及旋转的性质,解答本题的关键是根据旋转的性质得出S OB′C′=S OBC,从而得到阴影部分的表达式.三.解答题(共10个小题,共78分)15.解不等式组:.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得x>3,由②得x>1,故不等式组的解集为:x>3.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元.(1)求2013年至2015年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元.【考点】一元二次方程的应用.【分析】(1)一般用增长后的量=增长前的量×(1+增长率),2014年要投入教育经费是2500(1+x)万元,在2014年的基础上再增长x,就是2015年的教育经费数额,即可列出方程求解.(2)利用(1)中求得的增长率来求2016年该地区将投入教育经费.【解答】解:设增长率为x,根据题意2014年为2500(1+x)万元,2015年为2500(1+x)2万元.则2500(1+x)2=3025,解得x=0.1=10%,或x=﹣2.1(不合题意舍去).答:这两年投入教育经费的平均增长率为10%.(2)3025×(1+10%)=3327.5(万元).故根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费3327.5万元.【点评】本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.17.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE 的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.【考点】全等三角形的判定与性质;直角三角形斜边上的中线;菱形的判定.【分析】(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案;(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中∴△AFE≌△DBE(AAS),∴AF=BD,∴AF=DC.(2)四边形ADCF是菱形,证明:AF∥BC,AF=DC,∴四边形ADCF是平行四边形,∵AC⊥AB,AD是斜边BC的中线,∴AD=BC=DC,∴平行四边形ADCF是菱形.【点评】本题考查了全等三角形的性质和判定,平行四边形的判定,菱形的判定的应用,主要考查学生的推理能力.18.为深化课程改革,浠水思源实验学校积极开展校本课程建设,计划成立“文学鉴赏”、“科学实验”、“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团,为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完整):浠水思源实验学校被调查学生选择社团意向统计表选择意向文学鉴赏科学实验音乐舞蹈手工编织其他所占百分比 a 35% b 10% c根据统计图表中的信息,解答下列问题:(1)求本次调查的学生总人数及a,b,c的值.(2)将条形统计图补充完整.(3)若该校共有3400名学生,试估计全校选择“科学实验”社团的学生人数.【考点】条形统计图;用样本估计总体.【分析】(1)根据科学实验的人数除以科学实验所占的百分比,可得抽测人数;根据抽测人数乘以手工所占的百分比,可得手工的人数,根据相应的人数除以总人数,可得答案;(2)根据手工编织的人数、文学鉴赏的人数,可得答案;(3)根据总人数乘以科学实验所占的百分比,可得答案.【解答】(1)70÷35%=200人,手工编织的人数200×10%=20人,文学鉴赏的人数200﹣70﹣40﹣20﹣10=60,a==30%,b=20%,c==5%;(2)补全条形统计图如图;(3)3400×35%=1190人,全校选择“科学实验”社团的学生人数为1190人.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.19.小明参加某网店的“翻牌抽奖”活动,如图,4X牌分别对应价值5,10,15,20(单位:元)的4件奖品.(1)如果随机翻1X牌,那么抽中20元奖品的概率为25%(2)如果随机翻2X牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总值不低于30元的概率为多少?【考点】列表法与树状图法;概率公式.【分析】(1)随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用1除以4,求出抽中20元奖品的概率为多少即可.(2)首先应用树状图法,列举出随机翻2X牌,所获奖品的总值一共有多少种情况;然后用所获奖品总值不低于30元的情况的数量除以所有情况的数量,求出所获奖品总值不低于30元的概率为多少即可.【解答】解:(1)∵1÷4=0.25=25%,∴抽中20元奖品的概率为25%.故答案为:25%.(2),∵所获奖品总值不低于30元有4种情况:30元、35元、30元、35元,∴所获奖品总值不低于30元的概率为:4÷12==.【点评】(1)此题主要考查了概率公式,要熟练掌握,解答此题的关键是要明确:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.(2)此题还考查了列举法与树状图法求概率问题,解答此类问题的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.20.如图,一次函数y=﹣x+5的图象与反比例函数y=(k≠0)在第一象限的图象交于A (1,n)和B两点.(1)求反比例函数的解析式与点B坐标;(2)求△AOB的面积;(3)在第一象限内,当一次函数y=﹣x+5的值小于反比例函数y=(k≠0)的值时,写出自变量x的取值X围.【考点】反比例函数与一次函数的交点问题;解二元一次方程;反比例函数图象上点的坐标特征.【分析】(1)由点A在一次函数图象上,可求出点A的坐标,结合点A的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数系数k的值,从而得出反比例函数解析式;联立一次函数解析式和反比例函数解析式,解方程组即可得出结论;(2)延长AB交x轴与点C,由一次函数解析式可找出点C的坐标,通过分割图形利用三角形的面积公式即可得出结论;(3)观察函数图象,根据两函数图象的上下关系即可得出不等式的解集.【解答】(1)∵一次函数y=﹣x+5的图象过点A(1,n),∴n=﹣1+5,解得:n=4,∴点A的坐标为(1,4).∵反比例函数y=(k≠0)过点A(1,4),∴k=1×4=4,∴反比例函数的解析式为y=.联立,解得:或,∴点B的坐标为(4,1).(2)延长AB交x轴与点C,则C(5,0),如图所示.∵A(1,4),B(4,1),∴S△AO B=S△AOC﹣S△BOC=OC•y A﹣OC•y B=10﹣=.(3)观察函数图象,发现:当0<x<1或x>4时,反比例函数图象在一次函数图象上方,∴当一次函数y=﹣x+5的值小于反比例函数y=(k≠0)的值时,x的取值X围为0<x<1或x>4.【点评】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、三角形的面积公式以及解二元一次方程组,解题的关键是:(1)联立两函数解析式成二元一次方程组;(2)求出点C的坐标;(3)根据函数图象上下关系结合交点横坐标解决不等式.本题属于基础题,难度不大,解决该题型题目时,联立两函数解析式成方程组,解方程组求出交点的坐标是关键.21.已知:如图,AB为⊙O的直径,AB⊥AC,BC交⊙O于D,E是AC的中点,ED与AB的延长线相交于点F.(1)求证:DE为⊙O的切线.(2)求证:DF2=BF•AF.【考点】相似三角形的判定与性质;切线的判定.【分析】(1)连AD,OD,则∠ADB=∠ADC=90°,由直角三角形斜边上的中线性质得:EA=ED,∠EDA=∠EAD,由等腰三角形的性质得:∠ODA=∠OAD,证得∠EDO=∠EAO,即可得出结论;(2)证明:由切线的性质得:∠ODF=∠FDB+∠ODB=∠FAD+∠OBD=90°,证出∠FDB=∠FAD,∠F为公共角,得出△FDB∽△FAD,由对应边成比例即可得出结论.【解答】(1)证明:连AD,OD,如图所示:∵AB为⊙O的直径,∴∠ADB=∠ADC=90°,∵E是AC的中点,∴EA=ED,∴∠EDA=∠EAD,∵OD=OA,∴∠ODA=∠OAD,∴∠EDO=∠EAO,∵AB⊥AC,∴∠EAO=90°,∴∠EDO=90°,∴DE为⊙O的切线;(2)证明:∵DE为⊙O的切线,∴∠ODF=∠FDB+∠ODB=∠FAD+∠OBD=90°,∵OD=OB,∴∠ODB=∠OBD,∴∠FDB=∠FAD,又∵∠F为公共角,∴△FDB∽△FAD,∴=,∴DF2=BF•AF.【点评】本题考查了相似三角形的判定与性质、切线的判定与性质、直角三角形斜边上的中线性质、等腰三角形的性质等知识;熟练掌握切线的判定与性质、相似三角形的判定与性质是解决问题的关键.22.如图分别是吊车在吊一物品时的实物图与示意图.已知吊车底盘CD的高度为2米,支架BC的长为4米,且与地面成30°角,吊绳AB与支架BC的夹角为80°,吊臂AC与地面成70°角.(参考数据:sin10°=cos80°=0.17,cos10°=sin80°=0.98,sin20°=cos70°=0.34,tan70°=2.75,sin70°=0.94)(1)求吊绳与吊臂的长度.(2)求吊车的吊臂顶端A点距地面的高度是多少米.(精确到0.1米)【考点】解直角三角形的应用;互余两角三角函数的关系.【分析】过点A作AM⊥BC于M,先证明∠ABC=∠ACB,推出AB=AC,在Rt△ACM中,求出AC,再在RT△ACE中求出AE即可解决问题.【解答】解:(1)由题可知:如图,BH⊥HE,AE⊥HE,CD=2,BC=4,∠BCH=30°,∠ABC=80°,∠ACE=70°,∵∠BCH+∠ACB+∠ACE=180°,∴∠ACB=80°,∵∠ABC=80°,∴∠ABC=∠ACB,∴AC=BC.过点A作AM⊥BC于M,∴CM=BM=2.在Rt△ACM中,∵CM=2,∠ACB=80°,∴=cos∠ACB=cos80°=0.17,∴AC=,则BC、AC的长度均为米.(2)在Rt△ACE中,∵AC=,∠ACE=70°,∴=sin∠ACE=sin70°=0.94,∴AE=≈11.1.∵+2=13.1,∴可得点A到地面的距离为13.1米.【点评】本题考查解直角三角形、锐角三角函数、等腰三角形的判定和性质等知识,解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义,属于中考常考题型.23.(10分)(2012•义乌市)周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.【考点】一次函数的应用.【分析】(1)用路程除以时间即可得到速度;在甲地游玩的时间是1﹣0.5=0.5小时.(2)求得线段BC所在直线的解析式和DE所在直线的解析式后求得交点坐标即可求得被妈妈追上的时间.(3)设从妈妈追上小明的地点到乙地的路程为n(km),根据妈妈比小明早到10分钟列出有关n的方程,求得n值即可.【解答】解:(1)小明骑车速度:在甲地游玩的时间是1﹣0.5=0.5(h).(2)妈妈驾车速度:20×3=60(km/h)设直线BC解析式为y=20x+b1,把点B(1,10)代入得b1=﹣10∴y=20x﹣10设直线DE解析式为y=60x+b2,把点D(,0)代入得b2=﹣80∴y=60x﹣80…∴解得∴交点F(1.75,25).答:小明出发1.75小时(105分钟)被妈妈追上,此时离家25km.(3)方法一:设从家到乙地的路程为m(km)则点E(x1,m),点C(x2,m)分别代入y=60x﹣80,y=20x﹣10得:,∵∴∴m=30.方法二:设从妈妈追上小明的地点到乙地的路程为n(km),由题意得:∴n=5∴从家到乙地的路程为5+25=30(km).【点评】本题考查了一次函数的应用,解题的关键是根据实际问题并结合函数的图象得到进一步解题的有关信息,并从实际问题中整理出一次函数模型.24.(13分)(2016•黄冈模拟)如图,关于y=﹣x2+bx+c的二次函数y=﹣x2+bx+c经过点A (﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,点E在x 轴上.(1)求抛物线的解析式及顶点D的坐标;(2)在图中求一点G,使以G、A、E、C为顶点的四边形是平行四边形,请直接写出点G的坐标;(3)在抛物线A、C两点之间有一点F,使△FAC的面积最大,求该点坐标;(4)直线DE上是否存在点P到直线AD的距离与到轴的距离相等?若存在,请求出点P,若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把A点和C点坐标代入y=﹣x2+bx+c得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线解析式,再把解析式配成顶点式可得D点坐标;(2)易得抛物线的对称轴为直线x=﹣1,则E(﹣1,0),如图1,则AE=2,根据平行四边形的性质,利用点平移的坐标规律求G点坐标;(3)如图2,作FQ∥y轴交AC于Q,先利用待定系数法求出直线AC的解析式为y=x+3,设F(x,﹣x2﹣2x+3),则Q(x,x+3),则可表示出FQ=﹣x2﹣3x,根据三角形面积公式得到S△FAC=﹣x2﹣x,然后利用二次函数的性质求解;(4)先利用勾股定理计算出AD=2,设P(﹣1,t),则PE=PH=|t|,DP=4﹣t,再证明Rt△DHP∽Rt△DEA,利用相似比得到|t|:2=(4﹣t):2,然后讨论:当t>0时,t:2=(4﹣t):2;当t<0时,﹣t:2=(4﹣t):2,再分别解方程求出t即可得到P 点坐标.【解答】解:(1)把A(﹣3,0),C(0,3)代入y=﹣x2+bx+c得,解得,∴抛物线的解析式为y=﹣x2﹣2x+3,∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴D(﹣1,4);(2)抛物线的对称轴为直线x=﹣1,则E(﹣1,0),如图1,∴AE=2,当把C点向右平移2个单位得到G点,则四边形AEGC为平行四边形,此时G(2,3);当把C点向左平移2个单位得到G′点,则四边形AECG′为平行四边形,此时G(﹣2,3);由于点C向下平移3个单位,向左平移1个单位得到E点,则点A向下平移3个单位,向左平移1个单位得到G″点,则四边形ACEG″为平行四边形,此时G″(﹣4,﹣3),综上所述,G点坐标为(﹣2,3)或(2,3)或(﹣4,﹣3);(3)如图2,作FQ∥y轴交AC于Q,设直线AC的解析式为y=mx+n,把A(﹣3,0),C(0,3)代入得,解得,∴直线AC的解析式为y=x+3,设F(x,﹣x2﹣2x+3),则Q(x,x+3),∴FQ=﹣x2﹣2x+3﹣(x+3)=﹣x2﹣3x,∴S△FAC=•3•FQ=•(﹣x2﹣3x)=﹣x2﹣x=﹣(x+)2+,当x=﹣时,△FAC的面积最大,此时F点坐标为(﹣,);(4)存在.∵D(﹣1,4),A(﹣3,0),E(﹣1,0),∴AD==2,设P(﹣1,t),则PE=PH=|t|,DP=4﹣t,∵∠HDP=∠EDA,∴Rt△DHP∽Rt△DEA,∴PH:AE=DP:DA,即|t|:2=(4﹣t):2,当t>0时,t:2=(4﹣t):2,解得t=﹣1;当t<0时,﹣t:2=(4﹣t):2,解得t=﹣﹣1,综上所述,满足条件的P点坐标为(﹣1,﹣1)或(﹣1,﹣﹣1).。

山西省2012年中考考前适应性训练数学试题及答案

山西省2012年中考考前适应性训练数学试题及答案

23.解:(1)DE 和☉O 相切,
理由:如图 1,连接 OD,
∵BD 平分∠AEB,∴∠ABD=∠DBE,
又∵OB=OD,∴∠ABD=∠ODB.
∴∠ODB=∠DBE.∴OD∥CE,
A
∴∠ODE=∠DEC=90°,∴OD⊥DE,
∴DE 是☉O 的切线,即 DE 和相切.
(2)如图 1:∵AB 是☉O 的直径,∴∠ACB=90°,
山西省 2012 年中考考前适应性训练
数学
第一卷 选择题 (共 24 分)
一、选择题(本大题共 12 小题,每小题 2 分,共 24 分.在每个小题给出的四个选项中,只有一项符
合题目要求,请选出并在答题卡上将该项涂黑)
1、在 1 ,0,-5,-2 这四个数中,最小的数是( 3
A. 1
B.0Biblioteka 3C.-5.(第 21 题)
22.(本题 9 分)根据山西统计信息网提供的我省 2011 年农林牧渔业四个相关产业的产值情况,绘制
了如下两幅统计图.请你结合图中所给信息解答下列问题:
(1)2011 年全省农林牧渔业四个相关业的总产值为
亿元.(精确到 0.1 亿元);
(2)扇形统计图中“农林牧渔服务业”所在扇形的圆心角为
24.解:(1)由题意得:y
30
x
110 10
x
1 10
x2
41x
(2)w
30
x
110 10
x
20
30
x
110 10
10
x
110 10
1 x2 42x 710 10
1 x 2102 3700
10
∵a=- 1 <0 10
∴当 x=210 时,w 有最大值是 3700 元

赣州市2012年中考数学适应性考试试题

赣州市2012年中考数学适应性考试试题

赣州市2012年中考数学适应性考试试题一、选择题:本大题10个小题;每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、冬季的一天室内温度是8℃,室外温度是-2℃,则室内外温度的差是( )A .4℃B .6℃C .10℃D .16℃2、小马虎在下面的计算中只做对了一道题,他做对的题目是( )A .(a -b )2=a 2-b 2B .(-2a 3)2=4a 6C .a 3+a 2=2a 5D .-(a -1)=-a -13、一种病毒非常微小,其半径约为0.00000016m ,用科学记数法可以表示为( ) A .1.6×106m B .1.6×10-6m C .1.6×10-7m D .1.6×10-8m4、下列图形中是中心对称图形为( )A B C D 5、把不等式组110x x +⎧⎨-≤⎩>0 ,的解集表示在数轴上,正确的是( )A B C D6、数学老师布置10道选择题作为课堂练习,课代表将全班同学的答题情况绘制成条形统计图(如图4),根据此图可知,每位同学答对的题数所组成样本的中位数和众数分别为( )A .8,8B .8,9C .9,9D .9,87、点M (-sin 60°,cos60°)关于x 轴对称的点的坐标是( )A .12) B .(12-) C .(12) D .(-21) 8、⊙O 1与⊙O 2的半径分别为2和5,当O 1O 2=3.5时,两圆的位置关系是( ) A .外切 B .相交 C . 内切 D .内含9、一个盒子中装有标号为1,2,3,4的四张卡片,采用有放回的方式取出两张卡片,下列事件中,是必然事件的是( )-1-1 -1A .和为奇数B .和为偶数C .和大于5D .和不超过8 10、如图3,将∠BAC 沿DE 向∠BAC 内折叠,使AD 与A ’D 重合,A ’E 与AE 重合,若∠A =300,则∠1+∠2的度数为( )A 、500B 、600C 、450D 、以上都不对二、填空题:本大题8个小题;每小题3分,共24分.把答案写在题中横线上.11、抛物线y=x 2-1的顶点坐标是_______.12、已知x =-1是方程x 2+mx +1=0的一个实数根,则m 的值是______. 13、一个多边形的每个外角都等于30︒,这个多边形的内角和为_________度. 14、圆锥的母线长为8cm ,底面半径为2cm ,则圆锥的表面积为___________. 15、如图7,双曲线xky =与直线mx y =相交于A 、B 两点,B 点坐标为(-2,-3),则A 点坐标为_______________.16、A 、B 两点被池塘隔开(如下图),在AB 外选一点C ,连结AC 和BC 并分别找出其中点M 、N ,若测得MN =20m ,则A 、B 两点的距离为___________.11题图B17、如图同心圆,大⊙O 的弦AB 切小⊙O 于P ,且AB=6,则阴影部分既圆环的面积为 .18、观察下列各式:212212+=⨯, 323323+=⨯, 434434+=⨯, 545545+=⨯…想一想,什么样的两数之积等于这两数之和?设n 表示正整数,用关于n 的等式表示这个规律为三、解答题:本大题8个小题;共46分.解答应写出文字说明、证明过程或演算步骤. 19、(每小题5分,共10分)(110232007-++ (2)已知:a =2,求(1+11-a )·(a 2-1)值.20、(5分)如图,∆ABC 中,∠ABC =∠BAC =︒45,点P 在AB 上,AD ⊥CP ,BE ⊥CP ,垂足分别为D 、E ,已知DC =2,求BE 的长.P DE BCA21、(5分)△DEF 是由△ABC 绕某点旋转得到,请画出这两个图形的旋转中心.22、(5分)如图,已知弦AB 与半径相等,连结OB ,并延长使BC=OB . (1)问AC 与⊙O 有什么关系.(2)请你在⊙O 上找出一点D ,使AD=AC (自己完成作图,并证明你的结论).B CAO23、(5分)如图7,小丽在观察某建筑物AB .(1)请你根据小亮在阳光下的投影,画出建筑物AB 在阳光下的投影.(2)已知小丽的身高为1.65m ,在同一时刻测得小丽和F E D CBA建筑物AB的投影长分别为1.2m和8m,求建筑物AB的高.24、(5分)某校需要添置某种教学仪器,有两种方案:方案1:到商家购买,每件需要8元;方案2:学校自己制作,每件4元,另外需要制作工具的租用费120元.设需要仪器x件,方案1与方案2的费用分别为y1,y2(元).(1)分别写出y1,y2的函数表达式.(2)当购置仪器多少件时,两种方案的费用相同?(3)需要仪器50件,采用哪种方案便宜?请说明理由.25、(5分)右图是某班学生外出乘车、步行、骑车的人数分布直方图和扇形分布图。

湖北省黄冈中学2024届中考适应性考试数学试题含解析

湖北省黄冈中学2024届中考适应性考试数学试题含解析

湖北省黄冈中学2024届中考适应性考试数学试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列成语描述的事件为随机事件的是( )A .水涨船高B .守株待兔C .水中捞月D .缘木求鱼2.下列图案中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .3.如图,一次函数y =x ﹣1的图象与反比例函数2y x=的图象在第一象限相交于点A ,与x 轴相交于点B ,点C 在y 轴上,若AC =BC ,则点C 的坐标为( )A .(0,1)B .(0,2)C .50,2⎛⎫ ⎪⎝⎭D .(0,3)4.如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交,其顶点坐标为(,1),下列结论:①ac <1;②a+b=1;③4ac ﹣b 2=4a ;④a+b+c <1.其中正确结论的个数是( )A .1B .2C .3D .45.一次函数1y kx b =+与2y x a =+的图象如图所示,给出下列结论:①k 0<;②0a >;③当3x <时,12y y <.其中正确的有( )A.0个B.1个C.2个D.3个6.﹣18的相反数是()A.8 B.﹣8 C.18D.﹣187.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.13cm,12cm,20cm D.5cm,5cm,11cm8.将1、2、3、6按如图方式排列,若规定(m、n)表示第m排从左向右第n个数,则(6,5)与(13,6)表示的两数之积是()A.6B.6 C.2D.39.如图,平行四边形ABCD中,E,F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,tan∠ABC=34,EF=,则AB的长为()A 533B536C.1 D17210.某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是()动时间(小时) 3 3.5 4 4.5人数 1 1 2 1A .中位数是4,平均数是3.75B .众数是4,平均数是3.75C .中位数是4,平均数是3.8D .众数是2,平均数是3.8 11.计算232332x y x y xy ⋅÷的结果是( ).A .55xB .46xC .56xD .46x y12.﹣3的相反数是( )A .13- B .13 C .3- D .3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.用一个半径为10cm 半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为 .14.函数y =1x +的自变量x 的取值范围为____________.15.在□ABCD 中,按以下步骤作图:①以点B 为圆心,以BA 长为半径作弧,交BC 于点E ;②分别以A ,E 为圆心,大于12AE 的长为半径作弧,两弧交于点F ;③连接BF ,延长线交AD 于点G . 若∠AGB =30°,则∠C =_______°.163______ .172633+=________. 18.计算:21m m ++112m m++=______. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)列方程或方程组解应用题:去年暑期,某地由于暴雨导致电路中断,该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,10分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求吉普车的速度.20.(6分)观察下列各式:①()()2111x x x -+=- ②()()23111x x x x -++=-③()()324111x x x x x -+++=- 由此归纳出一般规律()()111n n x x x x --++⋅⋅⋅++=__________. 21.(6分)已知:如图,在矩形纸片ABCD 中,AB 4=,BC 3=,翻折矩形纸片,使点A 落在对角线DB 上的点F 处,折痕为DE ,打开矩形纸片,并连接EF .()1BD 的长为多少;()2求AE 的长;()3在BE 上是否存在点P ,使得PF PC +的值最小?若存在,请你画出点P 的位置,并求出这个最小值;若不存在,请说明理由.22.(8分)某电器商场销售甲、乙两种品牌空调,已知每台乙种品牌空调的进价比每台甲种品牌空调的进价高20%,用7200元购进的乙种品牌空调数量比用3000元购进的甲种品牌空调数量多2台. 求甲、乙两种品牌空调的进货价; 该商场拟用不超过16000元购进甲、乙两种品牌空调共10台进行销售,其中甲种品牌空调的售价为2500元/台,乙种品牌空调的售价为3500元/台.请您帮该商场设计一种进货方案,使得在售完这10台空调后获利最大,并求出最大利润.23.(8分)在平面直角坐标系xOy 中,若抛物线2y x bx c =++顶点A 的横坐标是1-,且与y 轴交于点()B 0,1-,点P 为抛物线上一点.()1求抛物线的表达式;()2若将抛物线2y x bx c =++向下平移4个单位,点P 平移后的对应点为Q.如果OP OQ =,求点Q 的坐标.24.(10分)在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.表示出所有可能出现的结果;小黄和小石做游戏,制定了两个游戏规则:规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢.小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.25.(10分)解方程组3{3814 x yx y-=-=26.(12分)如图,AE∥FD,AE=FD,B、C在直线EF上,且BE=CF,(1)求证:△ABE≌△DCF;(2)试证明:以A、B、D、C为顶点的四边形是平行四边形.27.(12分)如图,已知与抛物线C1过A(-1,0)、B(3,0)、C(0,-3).(1)求抛物线C1的解析式.(2)设抛物线的对称轴与x 轴交于点P,D 为第四象限内的一点,若△CPD 为等腰直角三角形,求出 D 点坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解题分析】试题解析:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选B.考点:随机事件.2、D【解题分析】分析:根据轴对称图形与中心对称图形的概念分别分析得出答案.详解:A.是轴对称图形,也是中心对称图形,故此选项错误;B.不是轴对称图形,也不是中心对称图形,故此选项错误;C.不是轴对称图形,是中心对称图形,故此选项错误;D.是轴对称图形,不是中心对称图形,故此选项正确.故选D.点睛:本题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.3、B【解题分析】根据方程组求出点A坐标,设C(0,m),根据AC=BC,列出方程即可解决问题.【题目详解】由1{2y xyx=-=,解得21xy=⎧⎨=⎩或12xy=-⎧⎨=-⎩,∴A(2,1),B(1,0),设C(0,m),∵BC=AC,∴AC2=BC2,即4+(m-1)2=1+m2,∴m=2,故答案为(0,2).本题考查了反比例函数与一次函数的交点坐标问题、勾股定理、方程组等知识,解题的关键是会利用方程组确定两个函数的交点坐标,学会用方程的思想思考问题.4、C【解题分析】①根据图象知道:a<1,c>1,∴ac<1,故①正确;②∵顶点坐标为(1/2 ,1),∴x="-b/2a" ="1/2" ,∴a+b=1,故②正确;③根据图象知道:x=1时,y=a++b+c>1,故③错误;④∵顶点坐标为(1/2 ,1),∴=1,∴4ac-b2=4a,故④正确.其中正确的是①②④.故选C5、B【解题分析】仔细观察图象,①k的正负看函数图象从左向右成何趋势即可;②a,b看y2=x+a,y1=kx+b与y轴的交点坐标;③看两函数图象的交点横坐标;④以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大.【题目详解】①∵y1=kx+b的图象从左向右呈下降趋势,∴k<0正确;②∵y2=x+a,与y轴的交点在负半轴上,∴a<0,故②错误;③当x<3时,y1>y2错误;故正确的判断是①.故选B.【题目点拨】本题考查一次函数性质的应用.正确理解一次函数的解析式:y=kx+b (k≠0)y随x的变化趋势:当k>0时,y随x 的增大而增大;当k<0时,y随x的增大而减小.6、C【解题分析】互为相反数的两个数是指只有符号不同的两个数,所以18的相反数是18,故选C.7、C根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【题目详解】A、3+4<8,不能组成三角形;B、8+7=15,不能组成三角形;C、13+12>20,能够组成三角形;D、5+5<11,不能组成三角形.故选:C.【题目点拨】本题考查了三角形的三边关系,关键是灵活运用三角形三边关系.8、B【解题分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.【题目详解】第一排1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,由此可知:(1,5)表示第1排从左向右第5,(13,1)表示第13排从左向右第1个数,可以看出奇数排最中间的一个数都是1,第13排是奇数排,最中间的也就是这排的第7个数是1,那么第1,则(1,5)与(13,1)表示的两数之积是1.故选B.9、B【解题分析】由平行四边形性质得出AB=CD,AB∥CD,证出四边形ABDE是平行四边形,得出DE=DC=AB,再由平行线得出∠ECF=∠ABC,由三角函数求出CF长,再用勾股定理CE,即可得出AB的长.【题目详解】∵四边形ABCD是平行四边形,∴AB ∥DC ,AB=CD ,∵AE ∥BD ,∴四边形ABDE 是平行四边形,∴AB=DE ,∴AB=DE=CD ,即D 为CE 中点,∵EF ⊥BC ,∴∠EFC=90°,∵AB ∥CD ,∴∠ECF=∠ABC ,∴tan ∠ECF=tan ∠ABC=34,在Rt △CFE 中,tan ∠ECF=EF CF 34,∴根据勾股定理得,,∴AB=12, 故选B .【题目点拨】本题考查了平行四边形的性质和判定、平行线的性质,三角函数的运用;熟练掌握平行四边形的性质,勾股定理,判断出AB=12CE 是解决问题的关键. 10、C【解题分析】试题解析:这组数据中4出现的次数最多,众数为4,∵共有5个人,∴第3个人的劳动时间为中位数,故中位数为:4, 平均数为:3 3.542 4.55++⨯+=3.1. 故选C .11、D【解题分析】根据同底数幂的乘除法运算进行计算.【题目详解】3x2y2 x3y2÷xy3=6x5y4÷xy3=6x4y.故答案选D.【题目点拨】本题主要考查同底数幂的乘除运算,解题的关键是知道:同底数幂相乘,底数不变,指数相加.12、D【解题分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.【题目详解】根据相反数的定义可得:-3的相反数是3.故选D.【题目点拨】本题考查相反数,题目简单,熟记定义是关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、5【解题分析】试题分析:根据图形可知圆锥的侧面展开图的弧长为2π×10÷2=10π(cm),因此圆锥的底面半径为10π÷2π=5(cm),因此圆锥的高为:=5(cm).考点:圆锥的计算14、x≥-1【解题分析】试题分析:由题意得,x+1≥0,解得x≥﹣1.故答案为x≥﹣1.考点:函数自变量的取值范围.15、120【解题分析】首先证明∠ABG=∠GBE=∠AGB=30°,可得∠ABC=60°,再利用平行四边形的邻角互补即可解决问题.【题目详解】由题意得:∠GBA=∠GBE,∵AD∥BC,∴∠AGB=∠GBE=30°,∴∠ABC=60°,∵AB∥CD,∴∠C=180°-∠ABC=120°,故答案为:120.【题目点拨】本题考查基本作图、平行四边形的性质等知识,解题的关键是熟练掌握基本知识16、2【解题分析】试题分析:设正六边形的中心是O,一边是AB,过O作OG⊥AB与G,在直角△OAG中,根据三角函数即可求得OA.解:如图所示,在Rt△AOG中,OG3,∠AOG=30°,∴OA=OG÷cos 30°3÷32=2;故答案为2.点睛:本题主要考查正多边形和圆的关系. 解题的关键在于利用正多边形的半径、边心距构造直角三角形并利用解直角三角形的知识求解.173【解题分析】3【题目详解】解:原式233【题目点拨】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 18、1.【解题分析】利用同分母分式加法法则进行计算,分母不变,分子相加.【题目详解】解:原式=12112121m m m m m +++==++. 【题目点拨】本题考查同分母分式的加法,掌握法则正确计算是本题的解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、吉普车的速度为30千米/时.【解题分析】先设抢修车的速度为x 千米/时,则吉普车的速度为1.5x 千米/时,列出方程求出x 的值,再进行检验,即可求出答案.【题目详解】解:设抢修车的速度为x 千米/时,则吉普车的速度为15x 千米/时. 由题意得:1515151.560x x -=. 解得,x=20经检验,x=20是原方程的解,并且x=20,1.5x=30都符合题意.答:吉普车的速度为30千米/时.点评:本题难度中等,主要考查学生对分式方程实际应用的综合运用.为中考常见题型,要求学生牢固掌握.注意检验.20、x n+1-1【解题分析】试题分析:观察其右边的结果:第一个是2x ﹣1;第二个是3x ﹣1;…依此类推,则第n 个的结果即可求得. 试题解析:(x ﹣1)(n x +1n x -+…x+1)=11n x +-.故答案为11n x +-.考点:平方差公式.21、(1)DB 5=;(2)AE 的长为32;(1)存在,画出点P 的位置如图1见解析,PF PC +的最小值为 5055. 【解题分析】(1)根据勾股定理解答即可; (2)设AE =x ,根据全等三角形的性质和勾股定理解答即可;(1)延长CB 到点G ,使BG =BC ,连接FG ,交BE 于点P ,连接PC ,利用相似三角形的判定和性质解答即可.【题目详解】(1)∵矩形ABCD ,∴∠DAB =90°,AD =BC =1.在Rt △ADB 中,DB 2222345AD AB =+=+=.故答案为5;(2)设AE =x .∵AB =4,∴BE =4﹣x ,在矩形ABCD 中,根据折叠的性质知:Rt △FDE ≌Rt △ADE ,∴FE =AE =x ,FD =AD =BC =1,∴BF =BD ﹣FD =5﹣1=2.在Rt △BEF 中,根据勾股定理,得FE 2+BF 2=BE 2,即x 2+4=(4﹣x )2,解得:x 32=,∴AE 的长为32; (1)存在,如图1,延长CB 到点G ,使BG =BC ,连接FG ,交BE 于点P ,连接PC ,则点P 即为所求,此时有:PC =PG ,∴PF +PC =GF .过点F 作FH ⊥BC ,交BC 于点H ,则有FH ∥DC ,∴△BFH ∽△BDC ,∴FH BF BH DC BD BC ==,即2453FH BH ==,∴8655FH BH ,==,∴GH =BG +BH 621355=+=.在Rt △GFH 中,根据勾股定理,得:GF 2222218505555GH FH =+=+=()(),即PF +PC 505 【题目点拨】本题考查了四边形的综合题,涉及了折叠的性质、勾股定理的应用、相似三角形的判定和性质等知识,知识点较多,难度较大,解答本题的关键是掌握设未知数列方程的思想.22、(1)甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;(2)当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元【解题分析】(1)设甲种品牌空调的进货价为x 元/台,则乙种品牌空调的进货价为1.2x 元/台,根据数量=总价÷单价可得出关于x 的分式方程,解之并检验后即可得出结论;(2)设购进甲种品牌空调a 台,所获得的利润为y 元,则购进乙种品牌空调(10-a )台,根据总价=单价×数量结合总价不超过16000 元,即可得出关于a 的一元一次不等式,解之即可得出a 的取值范围,再由总利润=单台利润×购进数量即可得出y 关于a 的函数关系式,利用一次函数的性质即可解决最值问题.【题目详解】(1)由(1)设甲种品牌的进价为x 元,则乙种品牌空调的进价为(1+20%)x 元,由题意,得 ()720030002120%xx =++, 解得x=1500,经检验,x=1500是原分式方程的解,乙种品牌空调的进价为(1+20%)×1500=1800(元). 答:甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;(2)设购进甲种品牌空调a 台,则购进乙种品牌空调(10-a )台,由题意,得1500a+1800(10-a )≤16000,解得 203≤a , 设利润为w ,则w=(2500-1500)a+(3500-1800)(10-a )=-700a+17000,因为-700<0,则w 随a 的增大而减少,当a=7时,w 最大,最大为12100元.答:当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元.【题目点拨】本题考查了一次函数的应用、分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价÷单价列出关于x 的分式方程;(2)根据总利润=单台利润×购进数量找出y 关于a 的函数关系式.23、()1为2y x 2x 1=+-;()2点Q 的坐标为()3,2--或()1,2-.【解题分析】()1依据抛物线的对称轴方程可求得b 的值,然后将点B 的坐标代入线22y x x c =-+可求得c 的值,即可求得抛物线的表达式;()2由平移后抛物线的顶点在x 轴上可求得平移的方向和距离,故此4QP =,然后由点QO PO =,//QP y 轴可得到点Q 和P 关于x 对称,可求得点Q 的纵坐标,将点Q 的纵坐标代入平移后的解析式可求得对应的x 的值,则可得到点Q 的坐标.【题目详解】()1抛物线2y x bx c =++顶点A 的横坐标是1-, b x 12a ∴=-=-,即b 121-=-⨯,解得b 2=. 2y x 2x c ∴=++.将()B 0,1-代入得:c 1=-,∴抛物线的解析式为2y x 2x 1=+-.()2抛物线向下平移了4个单位.∴平移后抛物线的解析式为2y x 2x 5=+-,PQ 4=.OP OQ =,∴点O 在PQ 的垂直平分线上.又QP //y 轴,∴点Q 与点P 关于x 轴对称.∴点Q 的纵坐标为2-.将y 2=-代入2y x 2x 5=+-得:2x 2x 52+-=-,解得:x 3=-或x 1=. ∴点Q 的坐标为()3,2--或()1,2-.【题目点拨】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、二次函数的平移规律、线段垂直平分线的性质,发现点Q 与点P 关于x 轴对称,从而得到点Q 的纵坐标是解题的关键.24、(1):()2,6,()2,7,()2,8,()4,6,()4,7,()4,8,()6,6,()6,7,()6,8共9种;(2)小黄要在游戏中获胜,小黄会选择规则1,理由见解析【解题分析】(1)利用列举法,列举所有的可能情况即可;(2)分别求出至少有一张是“6”和摸出的红心牌点数是黑桃牌点数的整数倍时的概率,进行选择即可.【题目详解】(1)所有可能出现的结果如下:()2,6,()2,7,()2,8,()4,6,()4,7,()4,8,()6,6,()6,7,()6,8共9种; (1)摸牌的所有可能结果总数为9,至少有一张是6的有5种可能,∴在规划1中,P (小黄赢)59=; 红心牌点数是黑桃牌点数的整倍数有4种可能, ∴在规划2中,P (小黄赢)49=. ∵5499>,∴小黄要在游戏中获胜,小黄会选择规则1. 【题目点拨】考查列举法以及概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.25、21x y =⎧⎨=-⎩【解题分析】解:由①得③ 把③代入②得把代人③得∴原方程组的解为26、(1)证明见解析;(2)证明见解析【解题分析】(1)根据平行线性质求出∠B =∠C ,等量相减求出BE =CF ,根据SAS 推出两三角形全等即可;(2)借助(1)中结论△ABE ≌△DCF ,可证出AE 平行且等于DF ,即可证出结论.证明:(1)如图,∵AB ∥CD ,∴∠B =∠C .∵BF =CE∴BE =CF∵在△ABE 与△DCF 中,,∴△ABE≌△DCF(SAS);(2)如图,连接AF、DE.由(1)知,△ABE≌△DCF,∴AE=DF,∠AEB=∠DFC,∴∠AEF=∠DFE,∴AE∥DF,∴以A、F、D、E为顶点的四边形是平行四边形.27、(1)y = x2-2x-3,(2)D1(4,-1),D2(3,- 4),D3 ( 2,- 2 )【解题分析】(1)设解析式为y=a(x-3)(x+1),把点C(0,-3)代入即可求出解析式; (2)根据题意作出图形,根据等腰直角三角形的性质即可写出坐标. 【题目详解】(1)设解析式为y=a(x-3)(x+1),把点C(0,-3)代入得-3=a×(-3)×1 解得a=1,∴解析式为y= x2-2x-3,(2)如图所示,对称轴为x=1,过D1作D1H⊥x轴,∵△CPD为等腰直角三角形,∴△OPC≌△HD1P,∴PH=OC=3,HD1=OP=1,∴D1(4,-1)过点D2F⊥y轴,同理△OPC≌△FCD2,∴FD2=3,CF=1,故D2(3,- 4)由图可知CD1与PD2交于D3,此时PD3⊥CD3,且PD3=CD3,PC=22,∴PD3=CD3=513=10故D3 ( 2,- 2 )∴D1(4,-1),D2(3,- 4),D3 ( 2,- 2 ) 使△CPD 为等腰直角三角形.【题目点拨】此题主要考察二次函数与等腰直角三角形结合的题,解题的关键是熟知二次函数的图像与性质及等腰直角三角形的性质.。

历年湖北省黄冈市中考数学试题(含答案)

历年湖北省黄冈市中考数学试题(含答案)

2016年湖北省黄冈市中考数学试卷一、选择题:本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个答案是正确的.1.(3分)(2016•黄冈)﹣2的相反数是()A.2 B.﹣2 C.D.2.(3分)(2016•黄冈)下列运算结果正确的是()A.a2+a3=a5B.a2•a3=a6C.a3÷a2=a D.(a2)3=a53.(3分)(2016•黄冈)如图,直线a∥b,∠1=55°,则∠2=()A.35°B.45°C.55°D.65°4.(3分)(2016•黄冈)若方程3x2﹣4x﹣4=0的两个实数根分别为x1,x2,则x1+x2=()A.﹣4 B.3 C.D.5.(3分)(2016•黄冈)如图,是由四个大小相同的小正方体拼成的几何体,则这个几何体的左视图是()A.B.C.D.6.(3分)(2016•黄冈)在函数y=中,自变量x的取值范围是()A.x>0 B.x≥﹣4 C.x≥﹣4且x≠0 D.x>0且x≠﹣1二、填空题:每小题3分,共24分.7.(3分)(2016•黄冈)的算术平方根是.8.(3分)(2016•黄冈)分解因式:4ax2﹣ay2=.9.(3分)(2016•黄冈)计算:|1﹣|﹣=.10.(3分)(2016•黄冈)计算(a﹣)÷的结果是.11.(3分)(2016•黄冈)如图,⊙O是△ABC的外接圆,∠AOB=70°,AB=AC,则∠ABC=.12.(3分)(2016•黄冈)需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,﹣2,+1,0,+2,﹣3,0,+1,则这组数据的方差是.13.(3分)(2016•黄冈)如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=3a.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP=.14.(3分)(2016•黄冈)如图,已知△ABC、△DCE、△FEG、△HGI是4个全等的等腰三角形,底边BC、CE、EG、GI在同一直线上,且AB=2,BC=1,连接AI,交FG于点Q,则QI=.三、解答题:共78分.15.(5分)(2016•黄冈)解不等式.16.(6分)(2016•黄冈)在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?17.(7分)(2016•黄冈)如图,在▱ABCD中,E、F分别为边AD、BC的中点,对角线AC 分别交BE,DF于点G、H.求证:AG=CH.18.(6分)(2016•黄冈)小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A、B、C三个班,他俩希望能再次成为同班同学.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人再次成为同班同学的概率.19.(8分)(2016•黄冈)如图,AB是半圆O的直径,点P是BA延长线上一点,PC是⊙O的切线,切点为C,过点B作BD⊥PC交PC的延长线于点D,连接BC.求证:(1)∠PBC=∠CBD;(2)BC2=AB•BD.20.(6分)(2016•黄冈)望江中学为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t≤20分钟的学生记为A类,20分钟<t≤40分钟的学生记为B类,40分钟<t≤60分钟的学生记为C 类,t>60分钟的学生记为D类四种.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)m=%,n=%,这次共抽查了名学生进行调查统计;(2)请补全上面的条形图;(3)如果该校共有1200名学生,请你估计该校C类学生约有多少人?21.(8分)(2016•黄冈)如图,已知点A(1,a)是反比例函数y=﹣的图象上一点,直线y=﹣与反比例函数y=﹣的图象在第四象限的交点为点B.(1)求直线AB的解析式;(2)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.22.(8分)(2016•黄冈)“一号龙卷风”给小岛O造成了较大的破坏,救灾部门迅速组织力量,从仓储D处调集救援物资,计划先用汽车运到与D在同一直线上的C、B、A三个码头中的一处,再用货船运到小岛O.已知:OA⊥AD,∠ODA=15°,∠OCA=30°,∠OBA=45°CD=20km.若汽车行驶的速度为50km/时,货船航行的速度为25km/时,问这批物资在哪个码头装船,最早运抵小岛O?(在物资搬运能力上每个码头工作效率相同,参考数据:≈1.4,≈1.7).23.(10分)(2016•黄冈)东坡商贸公司购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为p=,且其日销售量y(kg)与时间t(天)的关系如表:时间t(天) 1 3 6 10 20 40 …日销售量y118 114 108 100 80 40 …(kg)(1)已知y与t之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少?(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1kg水果就捐赠n元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.24.(14分)(2016•黄冈)如图,抛物线y=﹣与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A、点B、点C的坐标;(2)求直线BD的解析式;(3)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时,四边形CQMD 是平行四边形;(4)在点P的运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.2016年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题:本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个答案是正确的.1.(3分)(2016•黄冈)﹣2的相反数是()A.2 B.﹣2 C.D.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选A【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)(2016•黄冈)下列运算结果正确的是()A.a2+a3=a5B.a2•a3=a6C.a3÷a2=a D.(a2)3=a5【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断即可得解.【解答】解:A、a2与a3是加,不是乘,不能运算,故本选项错误;B、a2•a3=a2+3=a5,故本选项错误;C、a3÷a2=a3﹣2=a,故本选项正确;D、(a2)3=a2×3=a6,故本选项错误.故选C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.3.(3分)(2016•黄冈)如图,直线a∥b,∠1=55°,则∠2=()A.35°B.45°C.55°D.65°【分析】根据两直线平行,同位角相等可得∠1=∠3,再根据对顶角相等可得∠2的度数.【解答】解:∵a∥b,∴∠1=∠3,∵∠1=55°,∴∠3=55°,又∵∠2=∠3,∴∠2=55°,故选:C.【点评】此题主要考查了平行线的性质,关键是掌握:两直线平行,同位角相等.4.(3分)(2016•黄冈)若方程3x2﹣4x﹣4=0的两个实数根分别为x1,x2,则x1+x2=()A.﹣4 B.3 C.D.【分析】由方程的各系数结合根与系数的关系可得出“x1+x2=,x1•x2=﹣”,由此即可得出结论.【解答】解:∵方程3x2﹣4x﹣4=0的两个实数根分别为x1,x2,∴x1+x2=﹣=,x1•x2==﹣.故选D.【点评】本题考查了根与系数的关系,解题的关键是找出“x1+x2=﹣=,x1•x2==﹣”.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.5.(3分)(2016•黄冈)如图,是由四个大小相同的小正方体拼成的几何体,则这个几何体的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.(3分)(2016•黄冈)在函数y=中,自变量x的取值范围是()A.x>0 B.x≥﹣4 C.x≥﹣4且x≠0 D.x>0且x≠﹣1【分析】根据分母不能为零,被开方数是非负数,可得答案.【解答】解:由题意,得x+4≥0且x≠0,解得x≥﹣4且x≠0,故选:C.【点评】本题考查了函数自变量的取值范围,利用分母不能为零,被开方数是非负数得出不等式是解题关键.二、填空题:每小题3分,共24分.7.(3分)(2016•黄冈)的算术平方根是.【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵的平方为,∴的算术平方根为.故答案为.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.8.(3分)(2016•黄冈)分解因式:4ax2﹣ay2=a(2x+y)(2x﹣y).【分析】首先提取公因式a,再利用平方差进行分解即可.【解答】解:原式=a(4x2﹣y2)=a(2x+y)(2x﹣y),故答案为:a(2x+y)(2x﹣y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.9.(3分)(2016•黄冈)计算:|1﹣|﹣=﹣1﹣.【分析】首先去绝对值以及化简二次根式,进而合并同类二次根式即可.【解答】解:|1﹣|﹣=﹣1﹣2=﹣1﹣.故答案为:﹣1﹣.【点评】此题主要考查了实数运算,正确化简二次根式是解题关键.10.(3分)(2016•黄冈)计算(a﹣)÷的结果是a﹣b.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=•=a﹣b,故答案为:a﹣b【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.11.(3分)(2016•黄冈)如图,⊙O是△ABC的外接圆,∠AOB=70°,AB=AC,则∠ABC= 35°.【分析】先根据圆周角定理求出∠C的度数,再由等腰三角形的性质即可得出结论.【解答】解:∵∠AOB=70°,∴∠C=∠AOB=35°.∵AB=AC,∴∠ABC=∠C=35°.故答案为:35°.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.12.(3分)(2016•黄冈)需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,﹣2,+1,0,+2,﹣3,0,+1,则这组数据的方差是 2.5.【分析】先求出平均数,再利用方差的计算公式解答即可.【解答】解:平均数=,方差==2.5,故答案为:2.5【点评】本题考查了方差公式,解题的关键是牢记公式并能熟练运用,此题比较简单,易于掌握.13.(3分)(2016•黄冈)如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=3a.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP=2a.【分析】作FM⊥AD于M,则MF=DC=3a,由矩形的性质得出∠C=∠D=90°.由折叠的性质得出PE=CE=2a=2DE,∠EPF=∠C=90°,求出∠DPE=30°,得出∠MPF=60°,在Rt△MPF 中,由三角函数求出FP即可.【解答】解:作FM⊥AD于M,如图所示:则MF=DC=3a,∵四边形ABCD是矩形,∴∠C=∠D=90°.∵DC=3DE=3a,∴CE=2a,由折叠的性质得:PE=CE=2a=2DE,∠EPF=∠C=90°,∴∠DPE=30°,∴∠MPF=180°﹣90°﹣30°=60°,在Rt△MPF中,∵sin∠MPF=,∴FP===2a;故答案为:2a.【点评】本题考查了折叠的性质、矩形的性质、三角函数等知识;熟练掌握折叠和矩形的性质,求出∠DPE=30°是解决问题的关键.14.(3分)(2016•黄冈)如图,已知△ABC、△DCE、△FEG、△HGI是4个全等的等腰三角形,底边BC、CE、EG、GI在同一直线上,且AB=2,BC=1,连接AI,交FG于点Q,则QI=.【分析】由题意得出BC=1,BI=4,则=,再由∠ABI=∠ABC,得△ABI∽△CBA,根据相似三角形的性质得=,求出AI,根据全等三角形性质得到∠ACB=∠FGE,于是得到AC∥FG,得到比例式==,即可得到结果.【解答】解:∵△ABC、△DCE、△FEG是三个全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=4BC=4,∴==,=,∴=,∵∠ABI=∠ABC,∴△ABI∽△CBA;∴=,∵AB=AC,∴AI=BI=4;∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故答案为:.【点评】本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解AB∥CD ∥EF,AC∥DE∥FG是解题的关键.三、解答题:共78分.15.(5分)(2016•黄冈)解不等式.【分析】根据解一元一次不等式的步骤,先去分母,再去括号,移项合并,系数化为1即可.【解答】解:去分母得,x+1≥6(x﹣1)﹣8,去括号得,x+1≥6x﹣6﹣8,移项得,x﹣6x≥﹣6﹣8﹣1,合并同类项得,﹣5x≥﹣15.系数化为1,得x≤3.【点评】本题考查的是解一元一次不等式,解一元一次不等式的基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.16.(6分)(2016•黄冈)在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?【分析】设七年级收到的征文有x篇,则八年级收到的征文有(118﹣x)篇.结合七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,即可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设七年级收到的征文有x篇,则八年级收到的征文有(118﹣x)篇,依题意得:(x+2)×2=118﹣x,解得:x=38.答:七年级收到的征文有38篇.【点评】本题考查了一元一次方程的应用,解题的关键是列出方程(x+2)×2=118﹣x.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.17.(7分)(2016•黄冈)如图,在▱ABCD中,E、F分别为边AD、BC的中点,对角线AC 分别交BE,DF于点G、H.求证:AG=CH.【分析】根据平行四边形的性质得到AD∥BC,得出∠ADF=∠CFH,∠EAG=∠FCH,证出四边形BFDE是平行四边形,得出BE∥DF,证出∠AEG=∠CFH,由ASA证明△AEG ≌△CFH,得出对应边相等即可.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADF=∠CFH,∠EAG=∠FCH,∵E、F分别为AD、BC边的中点,∴AE=DE=AD,CF=BF=BC,∴DE∥BF,DE=BF,∴四边形BFDE是平行四边形,∴BE∥DF,∴∠AEG=∠ADF,∴∠AEG=∠CFH,在△AEG和△CFH中,,∴△AEG≌△CFH(ASA),∴AG=CH.【点评】本题考查了平行四边形的性质和判定,全等三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题的关键.18.(6分)(2016•黄冈)小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A、B、C三个班,他俩希望能再次成为同班同学.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人再次成为同班同学的概率.【分析】(1)画树状图法或列举法,即可得到所有可能的结果;(2)由(1)可知两人再次成为同班同学的概率.【解答】解:(1)画树状图如下:由树形图可知所以可能的结果为AA,AB,AC,BA,BB,BC,CA,CB,CC;(2)由(1)可知两人再次成为同班同学的概率==.【点评】本题涉及列表法和树状图法以及相关概率知识,用到的知识点为:概率=所求情况数与总情况数之比.19.(8分)(2016•黄冈)如图,AB是半圆O的直径,点P是BA延长线上一点,PC是⊙O的切线,切点为C,过点B作BD⊥PC交PC的延长线于点D,连接BC.求证:(1)∠PBC=∠CBD;(2)BC2=AB•BD.【分析】(1)连接OC,由PC为圆O的切线,利用切线的性质得到OC垂直于PC,再由BD垂直于PD,得到一对直角相等,利用同位角相等两直线平行得到OC与BD平行,进而得到一对内错角相等,再由OB=OC,利用等边对等角得到一对角相等,等量代换即可得证;(2)连接AC,由AB为圆O的直径,利用圆周角定理得到∠ACB为直角,利用两对角相等的三角形相似得到三角形ABC与三角形CBD相似,利用相似三角形对应边成比例,变形即可得证.【解答】证明:(1)连接OC,∵PC与圆O相切,∴OC⊥PC,即∠OCP=90°,∵BD⊥PD,∴∠BDP=90°,∴∠OCP=∠PDB,∴OC∥BD,∴∠BCO=∠CBD,∵OB=OC,∴∠PBC=∠BCO,∴∠PBC=∠CBD;(2)连接AC,∵AB为圆O的直径,∴∠ACB=90°,∴∠ACB=∠CDB=90°,∵∠ABC=∠CBD,∴△ABC∽△CBD,∴=,则BC2=AB•BD.【点评】此题考查了相似三角形的判定与性质,以及切线的性质,熟练掌握相似三角形的判定与性质是解本题的关键.20.(6分)(2016•黄冈)望江中学为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t≤20分钟的学生记为A类,20分钟<t≤40分钟的学生记为B类,40分钟<t≤60分钟的学生记为C 类,t>60分钟的学生记为D类四种.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)m=26%,n=14%,这次共抽查了50名学生进行调查统计;(2)请补全上面的条形图;(3)如果该校共有1200名学生,请你估计该校C类学生约有多少人?【分析】(1)根据条形统计图和扇形统计图可以求得调查的学生数和m、n的值;(2)根据(1)和扇形统计图可以求得C类学生数,从而可以将条形统计图补充完整;(3)根据扇形统计图可以求得该校C类学生的人数.【解答】解:(1)由题意可得,这次调查的学生有:20÷40%=50(人),m=13÷50×100%=26%,n=7÷50×100%=14%,故答案为:26,14,50;(2)由题意可得,C类的学生数为:50×20%=10,补全的条形统计图,如右图所示,(3)1200×20%=240(人),即该校C类学生约有240人.【点评】本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件.21.(8分)(2016•黄冈)如图,已知点A(1,a)是反比例函数y=﹣的图象上一点,直线y=﹣与反比例函数y=﹣的图象在第四象限的交点为点B.(1)求直线AB的解析式;(2)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.【分析】(1)先把A(1,a)代入反比例函数解析式求出a得到A点坐标,再解方程组得B点坐标,然后利用待定系数法求AB的解析式;(2)直线AB交x轴于点Q,如图,利用x轴上点的坐标特征得到Q点坐标,则PA﹣PB ≤AB(当P、A、B共线时取等号),于是可判断当P点运动到Q点时,线段PA与线段PB 之差达到最大,从而得到P点坐标.【解答】解:(1)把A(1,a)代入y=﹣得a=﹣3,则A(1,﹣3),解方程组得或,则B(3,﹣1),设直线AB的解析式为y=kx+b,把A(1,﹣3),B(3,﹣1)代入得,解得,所以直线AB的解析式为y=x﹣4;(2)直线AB交x轴于点Q,如图,当y=0时,x﹣4=0,解得x=4,则Q(4,0),因为PA﹣PB≤AB(当P、A、B共线时取等号),所以当P点运动到Q点时,线段PA与线段PB之差达到最大,此时P点坐标为(4,0).【点评】本题考查了反比例函数与一次函数的交点:反比例函数与一次函数的交点问题(1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.22.(8分)(2016•黄冈)“一号龙卷风”给小岛O造成了较大的破坏,救灾部门迅速组织力量,从仓储D处调集救援物资,计划先用汽车运到与D在同一直线上的C、B、A三个码头中的一处,再用货船运到小岛O.已知:OA⊥AD,∠ODA=15°,∠OCA=30°,∠OBA=45°CD=20km.若汽车行驶的速度为50km/时,货船航行的速度为25km/时,问这批物资在哪个码头装船,最早运抵小岛O?(在物资搬运能力上每个码头工作效率相同,参考数据:≈1.4,≈1.7).【分析】利用三角形外角性质计算出∠COD=15°,则CO=CD=20,在Rt△OCA中利用含30度的直角三角形三边的关系计算出OA=OC=10,CA=OA≈17,在Rt△OBA中利用等腰直角三角形的性质计算出BA=OA=10,OB=OA≈14,则BC=7,然后根据速度公式分别计算出在三个码头装船,运抵小岛所需的时间,再比较时间的大小进行判断.【解答】解:∵∠OCA=∠D+∠COD,∴∠COD=30°﹣15°=15°,∴CO=CD=20,在Rt△OCA中,∵∠OCA=30°,∴OA=OC=10,CA=OA=10≈17,在Rt△OBA中,∵∠OBA=45°,∴BA=OA=10,OB=OA≈14,∴BC=17﹣10=7,当这批物资在C码头装船,运抵小岛O时,所用时间=+=1.2(小时);当这批物资在B码头装船,运抵小岛O时,所用时间=+=1.1(小时);当这批物资在A码头装船,运抵小岛O时,所用时间=+=1.14(小时);所以这批物资在B码头装船,最早运抵小岛O.【点评】本题考查了解直角三角形:将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).23.(10分)(2016•黄冈)东坡商贸公司购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为p=,且其日销售量y(kg)与时间t(天)的关系如表:时间t(天) 1 3 6 10 20 40 …日销售量y118 114 108 100 80 40 …(kg)(1)已知y与t之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少?(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1kg水果就捐赠n元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.【分析】(1)设y=kt+b,利用待定系数法即可解决问题.(2)日利润=日销售量×每公斤利润,据此分别表示前24天和后24天的日利润,根据函数性质求最大值后比较得结论.(3)列式表示前24天中每天扣除捐赠后的日销售利润,根据函数性质求n的取值范围.【解答】解:(1)设y=kt+b,把t=1,y=118;t=3,y=114代入得到:解得,∴y=﹣2t+120.将t=30代入上式,得:y=﹣2×30+120=60.所以在第30天的日销售量是60kg.(2)设第x天的销售利润为w元.当1≤t≤24时,由题意w=(﹣2t+120)(t+30﹣20)=﹣(t﹣10)2+1250,∴t=10时w最大值为1250元.当25≤t≤48时,w=(﹣2t+120)((﹣t+48﹣20)=t2﹣116t+3360,∵对称轴x=58,a=1>0,∴在对称轴左侧w随x增大而减小,∴x=25时,w最大值=1085,综上所述第10天利润最大,最大利润为1250元.(3)设每天扣除捐赠后的日销售利润为m元.由题意m=(﹣2t+120)(t+30﹣20)﹣(﹣2t+120)n=﹣t2+(10+2n)t+1200﹣120n,∵在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,∴﹣≥24,∴n≥7.又∵n<9,∴n的取值范围为7≤n<9.【点评】此题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,针对所给条件作出初步判断后需验证其正确性,最值问题需由函数的性质求解时,正确表达关系式是关键.24.(14分)(2016•黄冈)如图,抛物线y=﹣与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A、点B、点C的坐标;(2)求直线BD的解析式;(3)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时,四边形CQMD 是平行四边形;(4)在点P的运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.【分析】(1)根据函数解析式列方程即可得到结论;(2)由点C与点D关于x轴对称,得到D(0,﹣2),解方程即可得到结论;(3)如图1所示:根据平行四边形的性质得到QM=CD,设点Q的坐标为(m,﹣m2+m+2),则M(m,m﹣2),列方程即可得到结论;(4)设点Q的坐标为(m,﹣m2+m+2),分两种情况:①当∠QBD=90°时,根据勾股定理列方程求得m=3,m=4(不合题意,舍去),②当∠QDB=90°时,根据勾股定理列方程求得m=8,m=﹣1,于是得到结论.【解答】解:(1)∵令x=0得;y=2,∴C(0,2).∵令y=0得:﹣=0,解得:x1=﹣1,x2=4.∴A(﹣1,0),B(4,0).(2)∵点C与点D关于x轴对称,∴D(0,﹣2).设直线BD的解析式为y=kx﹣2.∵将(4,0)代入得:4k﹣2=0,∴k=.∴直线BD的解析式为y=x﹣2.(3)如图1所示:∵QM∥DC,∴当QM=CD时,四边形CQMD是平行四边形.设点Q的坐标为(m,﹣m2+m+2),则M(m,m﹣2),∴﹣m2+m+2﹣(m﹣2)=4,解得:m=2,m=0(不合题意,舍去),∴当m=2时,四边形CQMD是平行四边形;(4)存在,设点Q的坐标为(m,﹣m2+m+2),∵△BDQ是以BD为直角边的直角三角形,∴①当∠QBD=90°时,由勾股定理得:BQ2+BD2=DQ2,即(m﹣4)2+(﹣m2+m+2)2+20=m2+(﹣m2+m+2+2)2,解得:m=3,m=4(不合题意,舍去),∴Q(3,2);②当∠QDB=90°时,由勾股定理得:BQ2=BD2+DQ2,即(m﹣4)2+(﹣m2+m+2)2=20+m2+(﹣m2+m+2+2)2,解得:m=8,m=﹣1,∴Q(8,﹣18),(﹣1,0),综上所述:点Q的坐标为(3,2),(8,﹣18),(﹣1,0).【点评】本题考查了二次函数综合题,涉及的知识点有:坐标轴上点的特点,待定系数法求直线的解析式,平行四边形的判定和性质,勾股定理,方程思想和分类思想的运用,综合性较强,有一定的难度.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5题第6题黄冈市2012年中考数学适应性模拟试题八(考试时间120分钟满分120分)一、选择题(A 、B 、C 、D 四个答案中,有且只有一个是正确的,每小题3分,共24分) 1.-︳-3︳的值等于 ( )A .3B .-3C .±3D .32.我们身处在自然环境中,一年接受的宇宙射线及其它天然辐射照射量约为3100微西弗(1西弗等于1000毫西弗,1毫西弗等于1000微西弗),用科学记数法可表示为( ).A .63.110⨯西弗B .33.110⨯西弗C .33.110-⨯西弗D .63.110-⨯西弗 3.如图,已知A 、B 是反比例函数k y x=(k >0,x <0)图象上的两点,BC ∥x 轴,交y 轴于点C 。

动点P 从坐标原点O 出发,沿O →A →B →C (图中“→”所示路线)匀速运动,终点为C 。

过P 作PM ⊥x 轴,PN ⊥y 轴,垂足分别为M 、N 。

设四边形OMPN 的面积为S ,P 点运动时间为t ,则S 关于t 的函数图象大致为( )4.由一些相同的小立方块搭成的几何体的三视图如图2所示,则拼成该几何体的小立方块有( ) A .3块 B .4块 C .6块 D .9块5.如图,在△ABC 中,AB =AC =10,CB =16,分别以AB 、AC 中阴影部分面积是( )A 、4850-πB 、4825-πC 、2450-πD 、24225-π6.已知:如图,O 为坐标原点,四边形OABC 为矩形,A (10,0),C (0,4),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为5的等腰三角形时,则P 点的坐标不可能是( )A P (3,4)B P (2,4)C (8,4)D (7,4)7.若不等式2x <4的解都能使关于x 的一次不等式(a -1)x <a +5成立,则a 的取值范围是( )A 1<a ≤7B a ≤7C a <1或a ≥7D a =78.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,现有下列结论:①240b ac ->②a>0 ③b>o ④c>0 ⑤9a+3b+c<0,则其中结论正确的是( ) A .2个 B. 3个 C. 4个 D.5个(第3题图)ABC DE GFO 二、填空题(共8道题,每小题3分,共24分) 9.的算术平方根是________.10.分解因式8x 2y -2y=____________________________. 11.要使式子有意义,则a 的取值范围为_____________________.12.如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数221k k y x++=的图象上。

若点A 的坐标为(-2,-2),则k 的值为_______13.如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为14.如图,在△ABC 中,点D 、E 分别是边AB 、AC 的中点DF 过EC 的中点G 并与BC 的延长线交于点F ,BE 与DF 交于点O 。

若△ADE 的面积为S ,则四边形BOGC 的面积= . 15、若不等式组⎩⎨⎧≥-≥-0035m x x 有实数解,则实数m 的取值范围是16.如图(十六)表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A ,且当钟面显示3点30分时,分针垂直于桌面,A 点距桌面的高度为10公分。

如图(十七),若此钟面显示3点45分时,A 点距桌面的高度为16公分,则钟面显示3点50分时,A 点距桌面的高度为 公分? 三、解答题(共9道大题,共72分) 17.(5分)解方程:1-x x -1=)2)(1(2+-x x18.(6分)为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如右的调查问卷(单选)。

在随机调查了本市全部5 000名司机中的部分司机后,统计整理井制作了如下的统计图:(第13题)FABCDHEG①②③④⑤根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m = ; (2)该市支持选项B 的司机大约有多少人?(3)若要从该市支持选项B 的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被选中的概率是多少?19.(7分)如图,点P 是菱形ABCD 的对角线BD 上一点.逄结CP 并延长,交AD 于F ,交BA 的延长线于E(1)求证:∠DCP=∠DAP ;(2)若AB=2,DP :PB =1:2.且PA ⊥BF .求对角线BD 的长20.(7分)甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛,⑴请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;⑵若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.21.(8分)在我县三城同创活动中.需要将A 、B 、C 三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D 、E 两地进行处理.。

已知运往D 地的数量比运往E 地的数量的2倍少l0立方来. (1) 求运往D 、E 两地的数量各是多少立方米?(2) 若A 地运往D 地a 立方米(a 为整教), B 地运往D 地30立方米.c 地运往D 地的数量小于A 地运往D 地的2倍.其余全部运往E 地.且C 地运往E 地不超过 l2立方米.则A 、C 两地运往D 、E 两地有哪几种方案?(3) 已知从A 、B 、C 三地把垃圾运往D 、E 两地处理所需费用如下表:在(2)的条件下,请说明哪种方案的总费用最少?22.如图是一座人行天桥的引桥部分的示意图,上桥通道是由两段互相平行并且与地面成37°角的楼梯AD 、BE 和一段水平平台DE 构成.已知天桥高度BC =4.8米,引桥水平跨度AC =8米.(1)求水平平台DE 的长度;(2)若与地面垂直的平台立柱MN 的高度为3米,求两段楼梯AD 与BE 的长度之比.(参考数据:取sin37°=0.60,cos37°=0.80,tan37°=0.75)A DEBCMN37°23.(8分)如图所示,AC 为⊙O 的直径,且PA ⊥AC ,BC 是⊙O 的一条弦,直线PB 交直线AC 于点D ,23D C D B D PD O==.(1)求证:直线PB 是⊙O 的切线;(2)求cos ∠BCA 的值.24.(12分)2011年长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定民农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所投资的金额与政府补(1)分别求出1y 和2y 的函数解析式;(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.25.(14分)(2011年湖南衡阳27,10分)(本题满分10分)已知抛物线217222y x m x m =-+-.(1)试说明:无论m 为何实数,该抛物线与x 轴总有两个不同的交点;(2)如图15,当抛物线的对称轴为直线x=3时,抛物线的顶点为点C .直线1y x =-与抛物线交于A 、B 两点,并与它的对称轴交于点D .①抛物线上是否存在点P 使得四边形ACPD 是正方形,若存在,求出P 点的坐标;若不存在,说明理由.②平移直线CD ,交直线AB 于点M ,交抛物线于点N ,通过怎样的平移能使得以C 、D 、M 、N 为顶点的四边形是平行四边形.ABC ODP·数学试题答案1、B2、C3、A4、B5、B6、D7、A8、B9、 10、2y(2x+1)(2x-1)11、 a≥-4且a≠5 12、1或-3 13、48cm14、74S15、m≤3516、3316+17、x=018、(1)(C选项的频数为90,正确补全条形统计图);20. (2)支持选项B的人数大约为:5000×23%=1150.(3)小李被选中的概率是:1002 115023.=…19、(1)证明:∵四边形ABCD为菱形,∴CD=AD,∠CDP=∠ADP,∴△CDP≌△ADP,∴∠DCP=∠DAP;(2)解:∵四边形ABCD为菱形,∴CD∥BA,CD=BA,∴△CPD∽△FPB,∴DP/PB=CD/BF=CP/PF=1/2,∴CD=1/2BF,CP=1/2PF,∴A为BF的中点,又∵PA⊥BF,∴PB=PF,由(1)可知,PA=CP,∴PA=1/2PB,在Rt△PAB中,PB^2=2^2+(1/2PB)^2,解得PB=三分之四根号三,则PD=三分之二根号三,∴BD=PB+PD=2/3.20、所有可能出现的情况有12种,其中甲乙两位同学组合的情况有两种,所以P(甲乙)=212=16.(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,共有3种情况选中乙的情况有一种,所以P(恰好选中乙同学)=13.21、22、解:(1)延长线段BE,与AC相交于点F,如图所示.∵AD ∥BF ,DE ∥AC , ∴四边形AFED 是平行四边形. ∴DE =AF ,∠BFC =∠A =37°. 在Rt △B C F 中,tan ∠BFC =B C C F,∴CF =tan 37B C o=4.80.75=6.4(米).∴DE =AF =AC -CF =8-6.4=1.6(米). 答:水平平台DE 的长度为1.6米.(2)延长线段DE ,交BC 于点G .∵DG ∥AC ,∴∠BGM =∠C =90°.∴四边形MNCG 是矩形,∴CG =MN =3(米). ∵BC =4.8米,所以BG =BC -CG =1.8(米). ∵DG ∥AC ,∴△BEG ∽△BFC . ∴ 1.834.88B E E G B FC F ===.∴53E F B E=.而AD =EF ,故53A DB E=.23、(1)证明:连接OB 、OP ………………………………………………………(1分)∵23D C D B D PD O== 且∠D =∠D∴△BDC ∽△PDO ∴∠DBC =∠DPO ∴BC ∥OP∴∠BCO =∠POA ∠CBO =∠BOP ∵OB =OC∴∠OCB =∠CBO ∴∠BOP =∠POA 又∵OB =OAOP =OP ∴△BOP ≌△AOP ∴∠PBO =∠PAO 又∵PA ⊥AC ∴∠PBO =90°∴直线PB 是⊙O 的切线 (2)由(1)知∠BCO =∠POA设PB a =,则2BD a = 又∵PA PB a ==∴AD = 又∵BC ∥OP∴2D C C O=∴12D C C A ==⨯=ABC ODP·ADEBCMN37° FG∴OA = ∴O P=∴cos ∠BCA =cos ∠POA24、解:(1)由题意得:①5k=2,k=52∴x y 521=②⎩⎨⎧=+=+2.34164.224b a b a ,解之得:⎪⎪⎩⎪⎪⎨⎧=-=5851b a ,∴x x y 585122+-=(2)设购Ⅱ型设备投资t 万元,购Ⅰ型设备投资(10-t )万元,共获补贴Q 万元 ∴t t y 524)10(521-=-=,t t y 585122+-=529)3(5158515242221+--=+--=+=t t t t y y Q∴当t=3时,Q 有最大值为529,此时10-t=7(万元)即投资7万元购Ⅰ型设备,投资3万元购Ⅱ型设备,共获最大补贴5.8万元.25、解:(1)抛物线217222y x m x m =-+-的△=217()4(2)22m m --⨯⨯-=(m-2)2+3.∵无论m 为何实数,(m-2)2≥0, ∴(m-2)2+3>0 ∴△>0∴无论m 为何实数,该抛物线与x 轴总有两个不同的交点. (2)①抛物线上存在点P 使得四边形ACPD 是正方形. ∵抛物线217222y x m x m =-+-的对称轴为直线x=3,∴m=3.∴抛物线的解析式为:215322y x x =-+,顶点C (3,-2)设抛物线与x 轴交于A 、E 两点 ∴A (1,0) E (5,0)设对称轴x=3与x 轴交于点Q ,则Q (3,0) ∴AQ=EQ=2∵对称轴x=3与直线1y x =-交点于点D ∴D (3,2) ∴DQ=2 ∵C (3,-2) ∴CQ=2,∴AQ=EQ= DQ= CQ=2 ∵A E ⊥CD∴四边形ACED 为正方形∴当点P 与点E 重合时,四边形ACPD 是正方形故抛物线上存在点P ,使得四边形ACPD 是正方形,P 的坐标为(5,0) ②∵以C 、D 、M 、N 为顶点的四边形是平行四边形 ∴MN=CD=4,设M (x ,x-1),则N (x,x+3)或N (x,x-5). ∵N 点在抛物线上 ∴2153322x x x +=-+或2155322x x x -=-+解得:4x =±x=5或x=3.因当x=3时,M 、N 分别与D 、C 两点重合,故当CD 通过平移,使M (4+3+)N (4+7+M (4-3-)N (4-7-M (5,4) N (5,8)时,能使得以C 、D 、M 、N 为顶点的四边形是平行四边形.∴把直线CD 向右移动(1+个单位或向左平移1)-个单位,或向右平移2个单位后,以C 、D 、M 、N 为顶点的四边形是平行四边形.。

相关文档
最新文档