(历年中考)湖北省黄冈市中考数学试题 含答案
2019-2020湖北省黄冈中学数学中考试卷(带答案)
2019-2020湖北省黄冈中学数学中考试卷(带答案)一、选择题1.如图A ,B ,C 是上的三个点,若,则等于( )A .50°B .80°C .100°D .130° 2.如图,菱形ABCD 的一边中点M 到对角线交点O 的距离为5cm ,则菱形ABCD 的周长为( )A .5cmB .10cmC .20cmD .40cm 3.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )A .2B .3C .5D .7 4.下列图形是轴对称图形的有( )A .2个B .3个C .4个D .5个5.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :y=kx+43与x 轴、y 轴分别交于A 、B ,∠OAB=30°,点P 在x 轴上,⊙P 与l 相切,当P 在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是( )A .6B .8C .10D .126.实数,,a b c 在数轴上的对应点的位置如图所示,若a b ,则下列结论中错误的是( )A .0a b +>B .0a c +>C .0b c +>D . 0ac <7.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( ) A .B .C .D . 8.方程21(2)304m x mx ---+=有两个实数根,则m 的取值范围( ) A .52m > B .52m ≤且2m ≠ C .3m ≥ D .3m ≤且2m ≠9.如图,某小区规划在一个长16m ,宽9m 的矩形场地ABCD 上,修建同样宽的小路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,如果使草坪部分的总面积为112m 2,设小路的宽为xm ,那么x 满足的方程是( )A .2x 2-25x+16=0B .x 2-25x+32=0C .x 2-17x+16=0D .x 2-17x-16=010.已知直线//m n ,将一块含30角的直角三角板ABC 按如图方式放置(30ABC ∠=︒),其中A ,B 两点分别落在直线m ,n 上,若140∠=︒,则2∠的度数为( )A .10︒B .20︒C .30D .40︒ 11.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.A .140B .120C .160D .100 12.如图,斜面AC 的坡度(CD 与AD 的比)为1:2,AC=35米,坡顶有旗杆BC ,旗杆顶端B 点与A 点有一条彩带相连.若AB=10米,则旗杆BC 的高度为( )A .5米B .6米C .8米D .(5)米二、填空题13.如图,∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形.若OA1=1,则△A n B n A n+1的边长为______.14.分解因式:x3﹣4xy2=_____.15.如图,点A在双曲线y=4x上,点B在双曲线y=kx(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为____.16.已知扇形AOB的半径为4cm,圆心角∠AOB的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________cm17.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D 恰好落在BC边上的点F处,那么cos∠EFC的值是.18.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.19.已知M、N两点关于y轴对称,且点M在双曲线12yx上,点N在直线y=﹣x+3上,设点M坐标为(a,b),则y=﹣abx2+(a+b)x的顶点坐标为.20.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC=________.三、解答题21.为响应珠海环保城市建设,我市某污水处理公司不断改进污水处理设备,新设备每小时处理污水量是原系统的1.5倍,原来处理1200m 3污水所用的时间比现在多用10小时. (1)原来每小时处理污水量是多少m 2?(2)若用新设备处理污水960m 3,需要多长时间?22.2x =600答:甲公司有600人,乙公司有500人.点睛:本题考查了分式方程的应用,关键是分析题意找出等量关系,通过设未知数并根据等量关系列出方程.23.甲乙两人做某种机械零件,已知甲每小时比乙多做4个,甲做120个所用的时间与乙做100个所用的时间相等,求甲乙两人每小时各做几个零件?24.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(020)x <<之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?25.已知点A 在x 轴负半轴上,点B 在y 轴正半轴上,线段OB 的长是方程x 2﹣2x ﹣8=0的解,tan ∠BAO=12. (1)求点A 的坐标;(2)点E 在y 轴负半轴上,直线EC ⊥AB ,交线段AB 于点C ,交x 轴于点D ,S △DOE =16.若反比例函数y=k x的图象经过点C ,求k 的值; (3)在(2)条件下,点M 是DO 中点,点N ,P ,Q 在直线BD 或y 轴上,是否存在点P ,使四边形MNPQ 是矩形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理2.D解析:D【解析】【分析】根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【点睛】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.3.C解析:C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,5,7,7,中位数为:5.故选C.考点:众数;中位数.4.C解析:C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.考点:轴对称图形.5.A解析:A【解析】试题解析:∵直线l:y=kx+43与x轴、y轴分别交于A、B,∴B(0,43),∴OB=43,在RT△AOB中,∠OAB=30°,∴OA=3OB=3×43=12,∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM=12 PA,设P (x ,0),∴PA=12-x ,∴⊙P 的半径PM=12PA=6-12x , ∵x 为整数,PM 为整数,∴x 可以取0,2,4,6,8,10,6个数,∴使得⊙P 成为整圆的点P 个数是6.故选A .考点:1.切线的性质;2.一次函数图象上点的坐标特征.6.A解析:A【解析】【分析】根据a b =,确定原点的位置,根据实数与数轴即可解答.【详解】解:a b =,∴原点在a ,b 的中间,如图,由图可得:a c <,0a c +>,0b c +<,0ac <,0a b +=,故选项A 错误,故选A .【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.7.A解析:A【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】213312x x +⎧⎨+≥-⎩<①② ∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1,在数轴上表示为:,故选A .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.8.B解析:B【解析】【分析】根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到20m -≠,30m -≥,(()214204m ∆=--⨯≥,然后解不等式组即可. 【详解】解:根据题意得 20m -≠,30m -≥,(()214204m ∆=--⨯≥, 解得m ≤52且m ≠2. 故选B .9.C解析:C【解析】解:设小路的宽度为xm ,那么草坪的总长度和总宽度应该为(16-2x )m ,(9-x )m ;根据题意即可得出方程为:(16-2x )(9-x )=112,整理得:x 2-17x +16=0.故选C .点睛:本题考查了一元二次方程的运用,弄清“草坪的总长度和总宽度”是解决本题的关键.10.B解析:B【解析】【分析】根据平行线的性质判断即可得出结论.【详解】 解:直线//m n ,21180ABC BAC ∴∠+∠∠+∠=+︒,30ABC =︒∠,90BAC ∠=︒,140∠=︒,218030904020∴∠=---︒︒=︒︒︒,故选:B .【点睛】本题考查的是平行线的性质,熟练掌握平行线的性质是解题的关键.11.B解析:B【解析】【分析】设商品进价为x元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.【详解】解:设商品的进价为x元,售价为每件0.8×200元,由题意得12.A解析:A【解析】试题分析:根据CD:AD=1:2,AC=35米可得:CD=3米,AD=6米,根据AB=10米,∠D=90°可得:BD=22=8米,则BC=BD-CD=8-3=5米.AB AD考点:直角三角形的勾股定理二、填空题13.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得解析:2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A n B n A n+1的边长为 2n-1.故答案是:2n-1.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.14.x(x+2y)(x﹣2y)【解析】分析:原式提取x再利用平方差公式分解即可详解:原式=x(x2-4y2)=x(x+2y)(x-2y)故答案为x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式解析:x(x+2y)(x﹣2y)【解析】分析:原式提取x,再利用平方差公式分解即可.详解:原式=x(x2-4y2)=x(x+2y)(x-2y),故答案为x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.12【解析】【详解】解:设点A的坐标为(a)则点B的坐标为()∵AB∥x轴AC=2CD∴∠BAC=∠ODC∵∠ACB=∠DCO∴△ACB∽△DCO∴∵OD=a则AB=2a∴点B的横坐标是3a∴3a=解析:12【解析】【详解】解:设点A的坐标为(a,4a),则点B的坐标为(ak4,4a),∵AB∥x轴,AC=2CD,∴∠BAC=∠ODC,∵∠ACB=∠DCO,∴△ACB∽△DCO,∴AB AC2 DA CD1==,∵OD=a,则AB=2a,∴点B的横坐标是3a,∴3a=ak4,解得:k=12.故答案为12.16.1【解析】试题分析:根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长和弧长公式可设圆锥的底面圆的半径为rcm根据题意得2πr=解得r=1故答案为:1点睛:本题考查了圆锥的计算:圆锥的侧面解析:1【解析】试题分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式,可设圆锥的底面圆的半径为rcm,根据题意得2πr=904180π⨯,解得r=1.故答案为:1.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°AF=AD=5根据矩形的性质得到∠EFC=∠BAF根据余弦的概念计算即可由翻转变换的性质可知∠AFE=∠D=90°AF=AD=5∴∠EF解析:.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.18.【解析】【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】共个数大于的数有个(大于);故答案为【点睛】本题考查概率的求法:如果一个事件有n种可2【解析】【分析】 根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】共6个数,大于3的数有3个,P ∴(大于3)3162==; 故答案为12. 【点睛】 本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 19.(±)【解析】【详解】∵MN 两点关于y 轴对称∴M 坐标为(ab )N 为(-ab )分别代入相应的函数中得b=①a+3=b②∴ab=(a+b )2=(a-b )2+4ab=11a+b=∴y=-x2x∴顶点坐标为解析:( ,112). 【解析】【详解】∵M 、N 两点关于y 轴对称,∴M 坐标为(a ,b ),N 为(-a ,b ),分别代入相应的函数中得,b=12a ①,a+3=b ②,∴ab=12,(a+b )2=(a-b )2+4ab=11,a+b=∴y=-12x 2,∴顶点坐标为(2b a -=244ac b a -=112),即(112). 点睛:主要考查了二次函数的性质,函数图象上点的特征和关于坐标轴对称的点的特点.解决本题的关键是掌握好对称点的坐标规律.20.【解析】【分析】连接BD 根据中位线的性质得出EFBD 且EF=BD 进而根据勾股定理的逆定理得到△BDC 是直角三角形求解即可【详解】连接BD 分别是ABAD 的中点EFBD 且EF=BD 又△BDC 是直角三角形3【解析】 【分析】连接BD ,根据中位线的性质得出EF //BD ,且EF=12BD ,进而根据勾股定理的逆定理得到△BDC 是直角三角形,求解即可.【详解】连接BD ,E F 分别是AB 、AD 的中点∴EF //BD ,且EF=12BD 4EF =8BD ∴=又8106BD BC CD ===,,∴△BDC 是直角三角形,且=90BDC ∠︒∴tanC=BD DC =86=43. 故答案为:43.三、解答题21.(1)原来每小时处理污水量是40m 2;(2)需要16小时.【解析】试题分析:()1设原来每小时处理污水量是x m 2,新设备每小时处理污水量是1.5x m 2,根据原来处理1200m 3污水所用的时间比现在多用10小时这个等量关系,列出方程求解即可. ()2根据()960 1.54016÷⨯=即可求出.试题解析:()1设原来每小时处理污水量是x m 2,新设备每小时处理污水量是1.5x m 2, 根据题意得:1200120010,1.5x x-= 去分母得:1800120015x ,-= 解得:40x =,经检验40x = 是分式方程的解,且符合题意,则原来每小时处理污水量是40m 2;(2)根据题意得:()960 1.54016÷⨯=(小时),则需要16小时.22.无23.甲每小时做24个零件,乙每小时做20个零件.【解析】【分析】设甲每小时做x 个零件,则乙每小时做(x-4)个零件,根据工作时间=工作总量÷工作效率结合甲做120个所用的时间与乙做100个所用的时间相等,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:设甲每小时做x 个零件,则乙每小时做(x ﹣4)个零件, 根据题意得:1201004x x =-, 解得:x=24, 经检验,x=24是分式方程的解,∴x ﹣4=20.答:甲每小时做24个零件,乙每小时做20个零件.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.(1)10100y x =+;(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.【解析】【分析】(1)根据图象可得:当2x =,120y =,当4x =,140y =;再用待定系数法求解即可;(2)根据这种干果每千克的利润×销售量=2090列出方程,解方程即可.【详解】解:(1)设一次函数解析式为:y kx b =+,根据图象可知:当2x =,120y =;当4x =,140y =;∴21204140k b k b +=⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩, ∴y 与x 之间的函数关系式为10100y x =+;(2)由题意得:(6040)(10100)2090x x --+=,整理得:21090x x -+=,解得:11x =.29x =,∵让顾客得到更大的实惠,∴9x =.答:商贸公司要想获利2090元,这种干果每千克应降价9元.【点睛】本题考查了一元二次方程的应用和一次函数的应用,读懂图象信息、熟练掌握待定系数法、正确列出一元二次方程是解题的关键.25.(1)(-8,0)(2)k=-19225(3)(﹣1,3)或(0,2)或(0,6)或(2,6)【解析】【分析】(1)解方程求出OB的长,解直角三角形求出OA即可解决问题;(2)求出直线DE、AB的解析式,构建方程组求出点C坐标即可;(3)分四种情形分别求解即可解决问题;【详解】解:(1)∵线段OB的长是方程x2﹣2x﹣8=0的解,∴OB=4,在Rt△AOB中,tan∠BAO=12 OBOA=,∴OA=8,∴A(﹣8,0).(2)∵EC⊥AB,∴∠ACD=∠AOB=∠DOE=90°,∴∠OAB+∠ADC=90°,∠DEO+∠ODE=90°,∵∠ADC=∠ODE,∴∠OAB=∠DEO,∴△AOB∽△EOD,∴OA OB OE OD=,∴OE:OD=OA:OB=2,设OD=m,则OE=2m,∵12•m•2m=16,∴m=4或﹣4(舍弃),∴D(﹣4,0),E(0,﹣8),∴直线DE的解析式为y=﹣2x﹣8,∵A(﹣8,0),B(0,4),∴直线AB的解析式为y=12x+4,由28142y xy x--⎧⎪⎨+⎪⎩==,解得24585xy⎧-⎪⎪⎨⎪⎪⎩==,∴C(245,85),∵若反比例函数y=kx的图象经过点C,∴k=﹣192 25.(3)如图1中,当四边形MNPQ是矩形时,∵OD=OB=4,∴∠OBD=∠ODB=45°,∴∠PNB=∠ONM=45°,∴OM=DM=ON=2,∴BN=2,PB=PN=2,∴P(﹣1,3).如图2中,当四边形MNPQ是矩形时(点N与原点重合),易证△DMQ是等腰直角三角形,OP=MQ=DM=2,P(0,2);如图3中,当四边形MNPQ是矩形时,设PM交BD于R,易知R(﹣1,3),可得P (0,6)如图4中,当四边形MNPQ是矩形时,设PM交y轴于R,易知PR=MR,可得P(2,6).综上所述,满足条件的点P坐标为(﹣1,3)或(0,2)或(0,6)或(2,6);【点睛】考查反比例函数综合题、一次函数的应用、矩形的判定和性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.。
黄冈近5年中考试题及其答案
2017年湖北省黄冈市中考数学试卷一、选择题(本题共6小题,第小题3分,共18分.每小题给出的4个选项中,有且只有一个答案是正确的)1.(3分)计算:|﹣|=()A.B.C.3 D.﹣32.(3分)下列计算正确的是()A.2x+3y=5xy B.(m+3)2=m2+9 C.(xy2)3=xy6D.a10÷a5=a53.(3分)已知:如图,直线a∥b,∠1=50°.∠2=∠3,则∠2的度数为()A.50°B.60°C.65°D.75°4.(3分)已知:如图,是一几何体的三视图,则该几何体的名称为()A.长方体B.正三棱柱C.圆锥D.圆柱5.(3分)某校10名篮球运动员的年龄情况,统计如下表:则这10名篮球运动员年龄的中位数为()A.12 B.13 C.13.5 D.146.(3分)已知:如图,在⊙O中,OA⊥BC,∠AOB=70°,则∠ADC的度数为()A.30°B.35°C.45°D.70°二、填空题(每小题3分,共24分)7.(3分)16的算术平方根是.8.(3分)分解因式:mn2﹣2mn+m=.9.(3分)计算:﹣6﹣的结果是.10.(3分)自中国提出“一带一路,合作共赢”的倡议以来,一大批中外合作项目稳步推进.其中,由中国承建的蒙内铁路(连接肯尼亚首都内罗毕和东非第一大港蒙巴萨港),是首条海外中国标准铁路,已于2017年5月31日正式投入运营,该铁路设计运力为25000000吨,将25000000吨用科学记数法表示,记作吨.11.(3分)化简:(+)•=.12.(3分)如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.13.(3分)已知:如图,圆锥的底面直径是10cm,高为12cm,则它的侧面展开图的面积是cm2.14.(3分)已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=cm.三、解答题(共10小题,满分78分)15.(5分)解不等式组.16.(6分)已知:如图,∠BAC=∠DAM,AB=AN,AD=AM,求证:∠B=∠ANM.17.(6分)已知关于x的一元二次方程x2+(2k+1)x+k2=0①有两个不相等的实数根.(1)求k的取值范围;(2)设方程①的两个实数根分别为x1,x2,当k=1时,求x12+x22的值.18.(6分)黄麻中学为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用12000元购买的科普类图书的本数与用5000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?19.(7分)我市东坡实验中学准备开展“阳光体育活动”,决定开设足球、篮球、乒乓球、羽毛球、排球等球类活动,为了了解学生对这五项活动的喜爱情况,随机调查了m名学生(每名学生必选且只能选择这五项活动中的一种).根据以上统计图提供的信息,请解答下列问题:(1)m=,n=.(2)补全上图中的条形统计图.(3)若全校共有2000名学生,请求出该校约有多少名学生喜爱打乒乓球.(4)在抽查的m名学生中,有小薇、小燕、小红、小梅等10名学生喜欢羽毛球活动,学校打算从小薇、小燕、小红、小梅这4名女生中,选取2名参加全市中学生女子羽毛球比赛,请用列表法或画树状图法,求同时选中小红、小燕的概率.(解答过程中,可将小薇、小燕、小红、小梅分别用字母A、B、C、D代表)20.(7分)已知:如图,MN为⊙O的直径,ME是⊙O的弦,MD垂直于过点E的直线DE,垂足为点D,且ME平分∠DMN.求证:(1)DE是⊙O的切线;(2)ME2=MD•MN.21.(7分)已知:如图,一次函数y=﹣2x+1与反比例函数y=的图象有两个交点A(﹣1,m)和B,过点A作AE⊥x轴,垂足为点E;过点B作BD⊥y轴,垂足为点D,且点D的坐标为(0,﹣2),连接DE.(1)求k的值;(2)求四边形AEDB的面积.22.(8分)在黄冈长江大桥的东端一处空地上,有一块矩形的标语牌ABCD(如图所示),已知标语牌的高AB=5m,在地面的点E处,测得标语牌点A的仰角为30°,在地面的点F处,测得标语牌点A的仰角为75°,且点E,F,B,C在同一直线上,求点E与点F之间的距离.(计算结果精确到0.1米,参考数据:≈1.41,≈1.73)23.(12分)月电科技有限公司用160万元,作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投入生产并进行销售.已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图所示,其中AB为反比例函数图象的一部分,BC为一次函数图象的一部分.设公司销售这种电子产品的年利润为s(万元).(注:若上一年盈利,则盈利不计入下一年的年利润;若上一年亏损,则亏损计作下一年的成本.)(1)请求出y(万件)与x(元/件)之间的函数关系式;(2)求出第一年这种电子产品的年利润s(万元)与x(元/件)之间的函数关系式,并求出第一年年利润的最大值.(3)假设公司的这种电子产品第一年恰好按年利润s(万元)取得最大值时进行销售,现根据第一年的盈亏情况,决定第二年将这种电子产品每件的销售价格x(元)定在8元以上(x>8),当第二年的年利润不低于103万元时,请结合年利润s(万元)与销售价格x(元/件)的函数示意图,求销售价格x(元/件)的取值范围.24.(14分)已知:如图所示,在平面直角坐标系xOy中,四边形OABC是矩形,OA=4,OC=3,动点P 从点C出发,沿射线CB方向以每秒2个单位长度的速度运动;同时,动点Q从点O出发,沿x轴正半轴方向以每秒1个单位长度的速度运动.设点P、点Q的运动时间为t(s).(1)当t=1s时,求经过点O,P,A三点的抛物线的解析式;(2)当t=2s时,求tan∠QPA的值;(3)当线段PQ与线段AB相交于点M,且BM=2AM时,求t(s)的值;(4)连接CQ,当点P,Q在运动过程中,记△CQP与矩形OABC重叠部分的面积为S,求S与t的函数关系式.2017年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题(本题共6小题,第小题3分,共18分.每小题给出的4个选项中,有且只有一个答案是正确的)1.(3分)(2017•黄冈)计算:|﹣|=()A.B.C.3 D.﹣3【分析】利用绝对值的性质可得结果.【解答】解:|﹣|=,故选A.【点评】本题主要考查了绝对值的性质,掌握绝对值的非负性是解答此题的关键.2.(3分)(2017•黄冈)下列计算正确的是()A.2x+3y=5xy B.(m+3)2=m2+9 C.(xy2)3=xy6D.a10÷a5=a5【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式不能合并,不符合题意;B、原式=m2+6m+9,不符合题意;C、原式=x3y6,不符合题意;D、原式=a5,符合题意,故选D【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3.(3分)(2017•黄冈)已知:如图,直线a∥b,∠1=50°.∠2=∠3,则∠2的度数为()A.50°B.60°C.65°D.75°【分析】根据平行线的性质,即可得到∠1+∠2+∠3=180°,再根据∠2=∠3,∠1=50°,即可得出∠2的度数.【解答】解:∵a∥b,∴∠1+∠2+∠3=180°,又∵∠2=∠3,∠1=50°,∴50°+2∠2=180°,∴∠2=65°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.4.(3分)(2017•黄冈)已知:如图,是一几何体的三视图,则该几何体的名称为()A.长方体B.正三棱柱C.圆锥D.圆柱【分析】根据2个相同的长方形视图可得到所求的几何体是柱体,锥体,还是球体,进而由第3个视图可得几何体的名称.【解答】解:主视图和左视图是长方形,那么该几何体为柱体,第三个视图为圆,那么这个柱体为圆柱.故选D.【点评】考查由三视图判断几何体;用到的知识点为:若三视图里有两个是长方形,那么该几何体是柱体.5.(3分)(2017•黄冈)某校10名篮球运动员的年龄情况,统计如下表:则这10名篮球运动员年龄的中位数为()A.12 B.13 C.13.5 D.14【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:10个数,处于中间位置的是13和13,因而中位数是:(13+13)÷2=13.故选B.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.6.(3分)(2017•黄冈)已知:如图,在⊙O中,OA⊥BC,∠AOB=70°,则∠ADC的度数为()A.30°B.35°C.45°D.70°【分析】先根据垂径定理得出=,再由圆周角定理即可得出结论.【解答】解:∵OA⊥BC,∠AOB=70°,∴=,∴∠ADC=∠AOB=35°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.二、填空题(每小题3分,共24分)7.(3分)(2017•黄冈)16的算术平方根是4.【分析】根据算术平方根的定义即可求出结果.【解答】解:∵42=16,∴=4.故答案为:4.【点评】此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.8.(3分)(2017•黄冈)分解因式:mn2﹣2mn+m=m(n﹣1)2.【分析】原式提取m,再利用完全平方公式分解即可.【解答】解:原式=m(n2﹣2n+1)=m(n﹣1)2,故答案为:m(n﹣1)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.9.(3分)(2017•黄冈)计算:﹣6﹣的结果是﹣6.【分析】先依据二次根式的性质,化简各二次根式,再合并同类二次根式即可.【解答】解:﹣6﹣=﹣6﹣=3﹣6﹣=﹣6故答案为:﹣6.【点评】本题主要考查了二次根式的加减法的运用,二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并.10.(3分)(2017•黄冈)自中国提出“一带一路,合作共赢”的倡议以来,一大批中外合作项目稳步推进.其中,由中国承建的蒙内铁路(连接肯尼亚首都内罗毕和东非第一大港蒙巴萨港),是首条海外中国标准铁路,已于2017年5月31日正式投入运营,该铁路设计运力为25000000吨,将25000000吨用科学记数法表示,记作 2.5×107吨.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:25000000=2.5×107.故答案为:2.5×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(3分)(2017•黄冈)化简:(+)•=1.【分析】首先计算括号內的加法,然后计算乘法即可化简.【解答】解:原式=(﹣)•=•=1.故答案为1.【点评】本题考查了分式的化简,熟练掌握混合运算法则是解本题的关键.12.(3分)(2017•黄冈)如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.【分析】根据正方形的性质,可得AB与AD的关系,∠BAD的度数,根据等边三角形的性质,可得AE 与AD的关系,∠AED的度数,根据等腰三角形的性质,可得∠AEB与∠ABE的关系,根据三角形的内角和,可得∠AEB的度数,根据角的和差,可得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.【点评】本题考查了正方形的性质和等边三角形的性质,先求出∠BAE的度数,再求出∠AEB,最后求出答案.13.(3分)(2017•黄冈)已知:如图,圆锥的底面直径是10cm,高为12cm,则它的侧面展开图的面积是65πcm2.【分析】首先利用勾股定理求得圆锥的圆锥的母线长,然后利用圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【解答】解:∵圆锥的底面直径是10cm,高为12cm,∴勾股定理得圆锥的母线长为13cm,∴圆锥的侧面积=π×13×5=65πcm2.故答案为:65π.【点评】本题考查圆锥侧面积公式的运用,掌握公式是关键.14.(3分)(2017•黄冈)已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D= 1.5 cm.【分析】先在直角△AOB中利用勾股定理求出AB==5cm,再利用直角三角形斜边上的中线等于斜边的一半得出OD=AB=2.5cm.然后根据旋转的性质得到OB1=OB=4cm,那么B1D=OB1﹣OD=1.5cm.【解答】解:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB==5cm,∵点D为AB的中点,∴OD=AB=2.5cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.5cm.故答案为1.5.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形斜边上的中线等于斜边的一半的性质以及勾股定理.三、解答题(共10小题,满分78分)15.(5分)(2017•黄冈)解不等式组.【分析】分别求出求出各不等式的解集,再求出其公共解集即可.【解答】解:解不等式①,得x<1.解不等式②,得x≥0,故不等式组的解集为0≤x<1.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(6分)(2017•黄冈)已知:如图,∠BAC=∠DAM,AB=AN,AD=AM,求证:∠B=∠ANM.【分析】要证明∠B=∠ANM,只要证明△BAD≌△NAM即可,根据∠BAC=∠DAM,可以得到∠BAD=∠NAM,然后再根据题目中的条件即可证明△BAD≌△NAM,本题得以解决.【解答】证明:∵∠BAC=∠DAM,∠BAC=∠BAD+∠DAC,∠DAM=∠DAC+∠NAM,∴∠BAD=∠NAM,在△BAD和△NAM中,,∴△BAD≌△NAM(SAS),∴∠B=∠ANM.【点评】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求结论需要的条件,利用三角形全等的性质解答.17.(6分)(2017•黄冈)已知关于x的一元二次方程x2+(2k+1)x+k2=0①有两个不相等的实数根.(1)求k的取值范围;(2)设方程①的两个实数根分别为x1,x2,当k=1时,求x12+x22的值.【分析】(1)由方程有两个不相等的实数根知△>0,列不等式求解可得;(2)将k=1代入方程,由韦达定理得出x1+x2=﹣3,x1x2=1,代入到x12+x22=(x1+x2)2﹣2x1x2可得.【解答】解:(1)∵方程有两个不相等的实数根,∴△=(2k+1)2﹣4k2=4k+1>0,解得:k>﹣;(2)当k=1时,方程为x2+3x+1=0,∵x1+x2=﹣3,x1x2=1,∴x12+x22=(x1+x2)2﹣2x1x2=9﹣2=7.【点评】本题考查了根与系数的关系及根的判别式,熟练掌握方程的根的情况与判别式的值间的关系及韦达定理是解题的关键.18.(6分)(2017•黄冈)黄麻中学为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用12000元购买的科普类图书的本数与用5000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?【分析】首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为(x+5)元,根据题意可得等量关系:用12000元购进的科普类图书的本数=用5000元购买的文学类图书的本数,根据等量关系列出方程,再解即可.【解答】解:设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为(x+5)元.根据题意,得=.解得x=.经检验,x=是原方程的解,且符合题意,则科普类图书平均每本的价格为+5=元,答:文学类图书平均每本的价格为元,科普类图书平均每本的价格为元.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意分式方程不要忘记检验.19.(7分)(2017•黄冈)我市东坡实验中学准备开展“阳光体育活动”,决定开设足球、篮球、乒乓球、羽毛球、排球等球类活动,为了了解学生对这五项活动的喜爱情况,随机调查了m名学生(每名学生必选且只能选择这五项活动中的一种).根据以上统计图提供的信息,请解答下列问题:(1)m=100,n=5.(2)补全上图中的条形统计图.(3)若全校共有2000名学生,请求出该校约有多少名学生喜爱打乒乓球.(4)在抽查的m名学生中,有小薇、小燕、小红、小梅等10名学生喜欢羽毛球活动,学校打算从小薇、小燕、小红、小梅这4名女生中,选取2名参加全市中学生女子羽毛球比赛,请用列表法或画树状图法,求同时选中小红、小燕的概率.(解答过程中,可将小薇、小燕、小红、小梅分别用字母A、B、C、D代表)【分析】(1)篮球30人占30%,可得总人数,由此可以计算出n;(2)求出足球人数=100﹣30﹣20﹣10﹣5=35人,即可解决问题;(3)用样本估计总体的思想即可解决问题.(4)画出树状图即可解决问题.【解答】解:(1)由题意m=30÷30%=100,排球占=5%,∴n=5,故答案为100,5.(2)足球=100﹣30﹣20﹣10﹣5=35人,条形图如图所示,(3)若全校共有2000名学生,该校约有2000×=400名学生喜爱打乒乓球.(4)画树状图得:∵一共有12种可能出现的结果,它们都是等可能的,符合条件的有两种,∴P(B、C两人进行比赛)==.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考查了概率公式.20.(7分)(2017•黄冈)已知:如图,MN为⊙O的直径,ME是⊙O的弦,MD垂直于过点E的直线DE,垂足为点D,且ME平分∠DMN.求证:(1)DE是⊙O的切线;(2)ME2=MD•MN.【分析】(1)求出OE∥DM,求出OE⊥DE,根据切线的判定得出即可;(2)连接EN,求出∠MDE=∠MEN,求出△MDE∽△MEN,根据相似三角形的判定得出即可.【解答】证明:(1)∵ME平分∠DMN,∴∠OME=∠DME,∵OM=OE,∴∠OME=∠OEM,∴∠DME=∠OEM,∴OE∥DM,∵DM⊥DE,∴OE⊥DE,∵OE过O,∴DE是⊙O的切线;(2)连接EN,∵DM⊥DE,MN为⊙O的半径,∴∠MDE=∠MEN=90°,∵∠NME=∠DME,∴△MDE∽△MEN,∴=,∴ME2=MD•MN【点评】本题考查了切线的判定,圆周角定理,相似三角形的性质和判定等知识点,能综合运用知识点进行推理是解此题的关键.21.(7分)(2017•黄冈)已知:如图,一次函数y=﹣2x+1与反比例函数y=的图象有两个交点A(﹣1,m)和B,过点A作AE⊥x轴,垂足为点E;过点B作BD⊥y轴,垂足为点D,且点D的坐标为(0,﹣2),连接DE.(1)求k的值;(2)求四边形AEDB的面积.【分析】(1)根据一次函数y=﹣2x+1的图象经过点A(﹣1,m),即可得到点A的坐标,再根据反比例函数y=的图象经过A(﹣1,3),即可得到k的值;(2)先求得AC=3﹣(﹣2)=5,BC=﹣(﹣1)=,再根据四边形AEDB的面积=△ABC的面积﹣△CDE 的面积进行计算即可.【解答】解:(1)如图所示,延长AE,BD交于点C,则∠ACB=90°,∵一次函数y=﹣2x+1的图象经过点A(﹣1,m),∴m=2+1=3,∴A(﹣1,3),∵反比例函数y=的图象经过A(﹣1,3),∴k=﹣1×3=﹣3;(2)∵BD⊥y轴,垂足为点D,且点D的坐标为(0,﹣2),∴令y=﹣2,则﹣2=﹣2x+1,∴x=,即B(,﹣2),∴C(﹣1,﹣2),∴AC=3﹣(﹣2)=5,BC=﹣(﹣1)=,∴四边形AEDB的面积=△ABC的面积﹣△CDE的面积=AC×BC﹣CE×CD=×5×﹣×2×1=.【点评】本题主要考查了反比例函数与一次函数交点问题,解决问题的关键是掌握:反比例函数与一次函数交点坐标同时满足反比例函数与一次函数解析式.22.(8分)(2017•黄冈)在黄冈长江大桥的东端一处空地上,有一块矩形的标语牌ABCD(如图所示),已知标语牌的高AB=5m,在地面的点E处,测得标语牌点A的仰角为30°,在地面的点F处,测得标语牌点A的仰角为75°,且点E,F,B,C在同一直线上,求点E与点F之间的距离.(计算结果精确到0.1米,参考数据:≈1.41,≈1.73)【分析】如图作FH⊥AE于H.由题意可知∠HAF=∠HFA=45°,推出AH=HF,设AH=HF=x,则EF=2x,EH=x,在Rt△AEB中,由∠E=30°,AB=5米,推出AE=2AB=10米,可得x+x=10,解方程即可.【解答】解:如图作FH⊥AE于H.由题意可知∠HAF=∠HFA=45°,∴AH=HF,设AH=HF=x,则EF=2x,EH=x,在Rt△AEB中,∵∠E=30°,AB=5米,∴AE=2AB=10米,∴x+x=10,∴x=5﹣5,∴EF=2x=10﹣10≈7.3米,答:E与点F之间的距离为7.3米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题、锐角三角函数、等腰直角三角形的性质、一元一次方程等知识,解题的关键是学会添加常用辅助线,构建方程解决问题.23.(12分)(2017•黄冈)月电科技有限公司用160万元,作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投入生产并进行销售.已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图所示,其中AB为反比例函数图象的一部分,BC为一次函数图象的一部分.设公司销售这种电子产品的年利润为s(万元).(注:若上一年盈利,则盈利不计入下一年的年利润;若上一年亏损,则亏损计作下一年的成本.)(1)请求出y(万件)与x(元/件)之间的函数关系式;(2)求出第一年这种电子产品的年利润s(万元)与x(元/件)之间的函数关系式,并求出第一年年利润的最大值.(3)假设公司的这种电子产品第一年恰好按年利润s(万元)取得最大值时进行销售,现根据第一年的盈亏情况,决定第二年将这种电子产品每件的销售价格x(元)定在8元以上(x>8),当第二年的年利润不低于103万元时,请结合年利润s(万元)与销售价格x(元/件)的函数示意图,求销售价格x(元/件)的取值范围.【分析】(1)依据待定系数法,即可求出y(万件)与x(元/件)之间的函数关系式;(2)分两种情况进行讨论,当x=8时,s max=﹣80;当x=16时,s max=﹣16;根据﹣16>﹣80,可得当每件的销售价格定为16元时,第一年年利润的最大值为﹣16万元.(3)根据第二年的年利润s=(x﹣4)(﹣x+28)﹣16=﹣x2+32x﹣128,令s=103,可得方程103=﹣x2+32x ﹣128,解得x1=11,x2=21,然后在平面直角坐标系中,画出s与x的函数图象,根据图象即可得出销售价格x(元/件)的取值范围.【解答】解:(1)当4≤x≤8时,设y=,将A(4,40)代入得k=4×40=160,∴y与x之间的函数关系式为y=;当8<x≤28时,设y=k'x+b,将B(8,20),C(28,0)代入得,,解得,∴y与x之间的函数关系式为y=﹣x+28,综上所述,y=;(2)当4≤x≤8时,s=(x﹣4)y﹣160=(x﹣4)•﹣160=﹣,∵当4≤x≤8时,s随着x的增大而增大,∴当x=8时,s max=﹣=﹣80;当8<x≤28时,s=(x﹣4)y﹣160=(x﹣4)(﹣x+28)﹣160=﹣(x﹣16)2﹣16,∴当x=16时,s max=﹣16;∵﹣16>﹣80,∴当每件的销售价格定为16元时,第一年年利润的最大值为﹣16万元.(3)∵第一年的年利润为﹣16万元,∴16万元应作为第二年的成本,又∵x>8,∴第二年的年利润s=(x﹣4)(﹣x+28)﹣16=﹣x2+32x﹣128,令s=103,则103=﹣x2+32x﹣128,解得x1=11,x2=21,在平面直角坐标系中,画出z与x的函数示意图可得:观察示意图可知,当s≥103时,11≤x≤21,∴当11≤x≤21时,第二年的年利润s不低于103万元.【点评】本题主要考查了反比例函数与二次函数的综合应用,在商品经营活动中,经常会遇到求最大利润,最大销量等问题,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义;解题时注意,依据函数图象可得函数关系式为分段函数,解决问题时需要运用分类思想以及数形结合思想进行求解.24.(14分)(2017•黄冈)已知:如图所示,在平面直角坐标系xOy中,四边形OABC是矩形,OA=4,OC=3,动点P从点C出发,沿射线CB方向以每秒2个单位长度的速度运动;同时,动点Q从点O出发,沿x轴正半轴方向以每秒1个单位长度的速度运动.设点P、点Q的运动时间为t(s).(1)当t=1s时,求经过点O,P,A三点的抛物线的解析式;(2)当t=2s时,求tan∠QPA的值;(3)当线段PQ与线段AB相交于点M,且BM=2AM时,求t(s)的值;(4)连接CQ,当点P,Q在运动过程中,记△CQP与矩形OABC重叠部分的面积为S,求S与t的函数关系式.【分析】(1)可求得P点坐标,由O、P、A的坐标,利用待定系数法可求得抛物线解析式;(2)当t=2s时,可知P与点B重合,在Rt△ABQ中可求得tan∠QPA的值;(3)用t可表示出BP和AQ的长,由△PBM∽△QAM可得到关于t的方程,可求得t的值;(4)当点Q在线段OA上时,S=S;当点Q在线段OA上,且点P在线段CB的延长线上时,由相似△CPQ=S矩形OABC﹣S△COQ﹣S△AMQ,可求得S与t的关系式;三角形的性质可用t表示出AM的长,由S=S四边形BCQM当点Q在OA的延长线上时,设CQ交AB于点M,利用△AQM∽△BCM可用t表示出AM,从而可表示,可求得答案.出BM,S=S△CBM【解答】解:(1)当t=1s时,则CP=2,∵OC=3,四边形OABC是矩形,∴P(2,3),且A(4,0),∵抛物线过原点O,∴可设抛物线解析式为y=ax2+bx,∴,解得,∴过O、P、A三点的抛物线的解析式为y=﹣x2+3x;(2)当t=2s时,则CP=2×2=4=BC,即点P与点B重合,OQ=2,如图1,∴AQ=OA﹣OQ=4﹣2=2,且AP=OC=3,∴tan∠QPA==;(3)当线段PQ与线段AB相交于点M,则可知点Q在线段OA上,点P在线段CB的延长线上,如图2,则CP=2t,OQ=t,∴BP=PC﹣CB=2t﹣4,AQ=OA﹣OQ=4﹣t,∵PC∥OA,∴△PBM∽△QAM,∴=,且BM=2AM,∴=2,解得t=3,∴当线段PQ与线段AB相交于点M,且BM=2AM时,t为3s;(4)当0≤t≤2时,如图3,由题意可知CP=2t,=×2t×3=3t;∴S=S△PCQ当2<t≤4时,设PQ交AB于点M,如图4,由题意可知PC=2t,OQ=t,则BP=2t﹣4,AQ=4﹣t,同(3)可得==,∴BM=•AM,∴3﹣AM=•AM,解得AM=,=S矩形OABC﹣S△COQ﹣S△AMQ=3×4﹣×t×3﹣×(4﹣t)×=24﹣﹣3t;∴S=S四边形BCQM当t>4时,设CQ与AB交于点M,如图5,由题意可知OQ=t,AQ=t﹣4,∵AB∥OC,∴=,即=,解得AM=,∴BM=3﹣=,=×4×=;∴S=S△BCM综上可知S=.【点评】本题为二次函数与四边形的综合应用,涉及待定系数法、矩形的性质、相似三角形的判定和性质、三角函数的定义、方程思想及分类讨论思想等知识.在(1)中求得P点坐标是解题的关键,在(2)中确定P、B重合是解题的关键,在(3)中由相似三角形的性质得到关于t的方程是解题的关键,在(4)中确定出P、Q的位置,从而确定出S为哪一部分图形的面积是解题的关键.本题为“运动型”问题,用t 和速度表示出相应线段的长度,化“动”为“静”是解这类问题的一般思路.本题考查知识点较多,综合性较强,特别是最后一问,情况较多,难度较大.2016年湖北省黄冈市中考数学试卷一、选择题:本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个答案是正确的.1.(3分)﹣2的相反数是()A.2 B.﹣2 C.D.2.(3分)下列运算结果正确的是()A.a2+a3=a5 B.a2•a3=a6 C.a3÷a2=a D.(a2)3=a53.(3分)如图,直线a∥b,∠1=55°,则∠2=()A.35°B.45°C.55°D.65°4.(3分)若方程3x2﹣4x﹣4=0的两个实数根分别为x1,x2,则x1+x2=()A.﹣4 B.3 C.D.5.(3分)如图,是由四个大小相同的小正方体拼成的几何体,则这个几何体的左视图是()A.B.C.D.6.(3分)在函数y=中,自变量x的取值范围是()A.x>0 B.x≥﹣4 C.x≥﹣4且x≠0 D.x>0且x≠﹣1二、填空题:每小题3分,共24分.7.(3分)的算术平方根是.8.(3分)分解因式:4ax2﹣ay2=.9.(3分)计算:|1﹣|﹣=.10.(3分)计算(a﹣)÷的结果是.11.(3分)如图,⊙O是△ABC的外接圆,∠AOB=70°,AB=AC,则∠ABC=.12.(3分)需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,﹣2,+1,0,+2,﹣3,0,+1,则这组数据的方差是.13.(3分)如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=3a.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP=.14.(3分)如图,已知△ABC、△DCE、△FEG、△HGI是4个全等的等腰三角形,底边BC、CE、EG、GI在同一直线上,且AB=2,BC=1,连接AI,交FG于点Q,则QI=.三、解答题:共78分.15.(5分)解不等式≥3(x﹣1)﹣4..16.(6分)在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?17.(7分)如图,在▱ABCD中,E、F分别为边AD、BC的中点,对角线AC分别交BE,DF于点G、H.求证:AG=CH.18.(6分)小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A、B、C三个班,他俩希望能再次成为同班同学.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人再次成为同班同学的概率.。
湖北省黄冈市中考数学真题及答案
湖北省黄冈市中考数学真题及答案(考试时间120分钟满分120分)第Ⅰ卷(选择题共24分)一、选择题(本题共8小题,每小题3分,共24分.每小题给出的4个选项中,有且只有一个答案是正确的)1.的相反数是()A. B.﹣6 C.6 D.﹣2.下列运算正确的是()A.m+2m=3m2 B.2m3•3m2=6m6 C.(2m)3=8m3 D.m6÷m2=m33.已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.7 B.8 C.9 D.104.甲、乙、丙、丁四位同学五次数学测验成绩统计如下表所示,如果从这四位同学中,选出一位同学参加数学竞赛.那么应选()去.甲乙丙丁平均分85 90 90 85方差50 42 50 42A.甲 B.乙 C.丙 D.丁5.下列几何体是由4个相同的小正方体搭成的,其中,主视图、左视图、俯视图都相同的是()A. B. C. D.6.在平面直角坐标系中,若点A(a,﹣b)在第三象限,则点B(﹣ab,b)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.若菱形的周长为16,高为2,则菱形两邻角的度数之比为()A.4:1 B.5:1 C.6:1 D.7:18.2020年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销,下面表示2020年初至脱销期间,该厂库存量y(吨)与时间t(天)之间函数关系的大致图象是()A. B. C. D.第Ⅱ卷(非选择题共96分)二、填空题(本题共8小题,每小题3分,共24分)9.计算=.10.已知x1,x2是一元二次方程x2﹣2x﹣1=0的两根,则=.11.若|x﹣2|+=0,则﹣xy=.12.已知:如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD =度.13.计算:÷(1﹣)的结果是.14.已知:如图,AB∥EF,∠ABC=75°,∠CDF=135°,则∠BCD=度.15.我国古代数学著作《九章算术》中有这样一个问题:”今有池方一丈,葭(注:丈,(jiā)生其中央,出水一尺.引葭赴岸,适与岸齐.问水深几何?”尺是长度单位,1丈=10尺)这段话翻译成现代汉语,即为:如图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,则水池里水的深度是尺.16.如图所示,将一个半径OA=10cm,圆心角∠AOB=90°的扇形纸板放置在水平面的一条射线OM上。
2019-2021年湖北省黄冈市中考数学试卷及答案
2019-2021年湖北省黄冈市中考数学试卷及答案·最新说明:文档整理了,2019年至2021年度,黄冈市中考数学试卷及答案内容,试卷包含了详细的题解和分析,望对老师和同学们有所帮助。
湖北省2019年初中毕业生学业水平考试(黄冈卷)数学试题卷一、选择题(本题共8小题,每小题3分,共24分.每小题给出的4个选项中,只有一项是符合题目要求的) 1.3-的绝对值是( )A .3-B .13-C .3D .2.为纪念中华人民共和国成立70周年,我市各中小学积极开展了以“祖国在我心中”为主题的各类教育活动,全市约有550 000名中小学生参加,其中数据550 000用科学记数法表示为( ) A .65.510⨯ B .55.510⨯C .45510⨯D .60.5510⨯ 3.下列运算正确的是( )A .22a a a ⋅=B .555a b ab ⋅=C .532a a a ÷=D .235a b ab +=4.若12x x ,是一元一次方程2450x x --=的两根,则12x x ⋅的值为 ( )A.5- B .5 C .4- D .4 5.已知点A 的坐标为21(,),将点A 向下平移4个单位长度,得到的点'A 的坐标是( ) A .61(,) B .21-(,) C .25(,) D .23-(,)6.如图,是有棱长都相等的四个小正方体组成的几何体。
该几何体的左视图是( )7.如图,一条公路的转弯处是一段圆弧(AB ),点O 是这段弧所在圆的圆心,40 m AB =,点C 是AB 的中点,且10 m CD =则这段弯路所在圆的半径为( )A .25 mB .24 mC .30 mD .60 m8.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家,图中x 表示时间,y 表示林茂离家的距离。
黄冈市中考数学试卷及答案解析
黄冈市初中毕业生学业水平考试数学试题 第Ⅰ卷(选择题共21 分) 一、选择题(下列各题的备选答案中,有且仅有一个答案是正确的,每小题3 分,共21 分)1.(3 分)(•黄冈)9 的平方根是( )A.±3B.±31C.3D.-3 考点:平方根.分析:根据平方根的含义和求法,可得9 的平方根是: ±9 =±3 ,据此解答即可.解答:解:9 的平方根是:±9 =±3 .故选:A .点评:此题主要考查了平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个 正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.2.(3 分)(•黄冈)下列运算结果正确的是( )A.x 6÷x 2=x 3B.(-x)-1=x1 C. (2x 3)2=4x 6 D.-2a 2·a 3=-2a 6考点:同底数幂的除法;幂的乘方与积的乘方;单项式乘单项式;负整数指数幂.分析:根据同底数幂的除法、幂的乘方、单项式的乘法计算即可.解答:解:A 、x 6÷x 2=x 4 ,错误;B 、(-x)-1=﹣x1 ,错误; C 、(2x 3)2=4x 6 ,正确;D 、-2a 2·a 3=-2a 5,错误;故选C点评:此题考查同底数幂的除法、幂的乘方、单项式的乘法,关键是根据法则进行计算.3.(3 分)(•黄冈)如图所示,该几何体的俯视图是( )考点:简单组合体的三视图.分析:根据从上面看得到的视图是俯视图,可得答案.解答:解:从上面看是一个正方形,在正方形的左下角有一个小正方形.故选:B .点评:本题考查了简单组合体的三视图,从上面看的到的视图是俯视图.4.(3 分)(•黄冈)下列结论正确的是( )A.3a 2b-a 2b=2B.单项式-x 2的系数是-1C.使式子2+x 有意义的x 的取值范围是x>-2D.若分式112+-a a 的值等于0,则a=±1 考点:二次根式有意义的条件;合并同类项;单项式;分式的值为零的条件.分析:根据合并同类项,可判断A ;根据单项式的系数是数字因数,可判断B ;根据二次根式的被开方数是非负数,可判断C ;根据分式的分子为零分母不为零,可判断D .解答:解:A 、合并同类项系数相加字母部分不变,故A 错误;B 、单项式-x 2的系数是﹣1,故B 正确;C 、式子2+x 有意义的x 的取值范围是x >﹣2 ,故C 错误;D 、分式112+-a a 的值等于0,则a=1,故D 错误; 故选:B .点评:本题考查了二次根是有意义的条件,二次根式有意义的条件是分式的分子为零分母不为零,二次根式有意义的条件是被开方数是非负数.5.(3 分)(•黄冈)如图,a ∥b,∠1=∠2,∠3=40°,则∠4 等于( )A.40°B.50°C.60°D.70°考点:平行线的性质.分析:先根据平行线的性质求出∠1+∠2 的度数,再由∠1=∠2 得出∠2 的度数,进而可得 出结论.解答:解:∵a ∥b ,∠3=40°,∴∠1+∠2=180°﹣40°=140°,∠2= ∠4 .∵∠1=∠2 ,∴∠2= 21 ×140°=70°, ∴∠4= ∠2=70°.故选D .点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.6.(3 分)(•黄冈)如图,在△ABC 中,∠C=Rt ∠,∠B=30°,边AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,CD=3,则BC 的长为( )A.6 B 36. C.9 D. 33考点:含30 度角的直角三角形;线段垂直平分线的性质.分析:根据线段垂直平分线上的点到线段两端距离相等可得AD=BD ,可得∠DAE=30°,易 得∠ADC=60°,∠CAD=30°,则AD 为∠BAC 的角平分线,由角平分线的性质得DE=CD=3 ,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2DE ,得结果.解答:解:∵DE 是AB 的垂直平分线,∴AD=BD ,∴∠DAE= ∠B=30°,∴∠ADC=60°,∴∠CAD=30°,∴AD 为∠BAC 的角平分线,∵∠C=90°,DE ⊥AB ,∴DE=CD=3 ,∵∠B=30°,∴BD=2DE=6 ,∴BC=9 ,故选C .点评:本题主要考查了垂直平分线的性质,角平分线上的点到角的两边距离相等的性质,直 角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.7.(3 分)(•黄冈)货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地.已知甲、乙两地相距180 千米,货车的速度为60 千米/小时,小汽车的速度为90 千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的函数图象是( )考点:函数的图象.分析:根据出发前都距离乙地 180 千米,出发两小时小汽车到达乙地距离变为零,再经过两 小时小汽车又返回甲地距离又为180 千米;经过三小时,货车到达乙地距离变为零,而答案.解答:解:由题意得出发前都距离乙地180 千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180 千米,经过三小时,货车到达乙地距离变为零,故C符合题意,故选:C .点评:本题考查了函数图象,理解题意并正确判断辆车与乙地的距离是解题关键.第Ⅱ卷(非选择题共99 分)二、填空题(共7 小题,每小题3 分,共21 分)8.(3 分)(•黄冈)计算:218-=_______ 考点:二次根式的加减法.菁优网版权所有 分析:先将二次根式化为最简,然后合并同类二次根式即可得出答案. 解答:解:218-=322-=22 .故答案为:2 2 .点评:本题考查二次根式的减法运算,难度不大,注意先将二次根式化为最简是关键.9.(3 分)(•黄冈)分解因式:x 3-2x 2+x=________考点:提公因式法与公式法的综合运用.分析:首先提取公因式x ,进而利用完全平方公式分解因式即可.解答: 解:x 3-2x 2+x=x (x 2 ﹣2x+1 )=x (x ﹣1)2 .故答案为:x (x ﹣1)2 .点评:此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关 键.10.(3 分)(•黄冈)若方程x 2-2x-1=0 的两根分别为x 1,x 2,则x 1+x 2-x 1x 2 的值为_________.考点:根与系数的关系.专题:计算题.分析:先根据根与系数的关系得到x 1 +x 2 =2 ,x 1 x 2 = ﹣1,然后利用整体代入的方法计算.解答:解:根据题意得x 1 +x 2 =2 ,x 1 x 2 = ﹣1,所以x 1+x 2-x 1x 2 =2 ﹣(﹣1)=3 .故答案为3 .点评:本题考查了根与系数的关系:若x 1 ,x 2 是一元二次方程ax 2 + bx + c=0 (a ≠0 )的两根时, x 1 +x 2 =a b -,x 1 x 2 = a c11.(3 分)(•黄冈)计算)1(22b a a ba b +-÷-的结果是_________.考点:分式的混合运算.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答: 解:原式= 故答案为: .点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.12.(3 分)(•黄冈)如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC交于点E,若∠CBF=20°,则∠AED 等于_________度.考点:正方形的性质;全等三角形的判定与性质.菁优网版权所有分析:根据正方形的性质得出∠BAE= ∠DAE ,再利用SAS 证明△ ABE 与△ ADE 全等,再 利用三角形的内角和解答即可.解答:解:∵正方形ABCD ,∴AB=AD ,∠BAE= ∠DAE ,在△ABE 与△ADE 中, ,∴△ABE ≌△ADE (SAS ),∴∠AEB= ∠AED ,∠ABE= ∠ADE ,∵∠CBF=20°,∴∠ABE=70°,∴∠AED= ∠AEB=180°﹣45°﹣70°=65°,故答案为:65°点评:此题考查正方形的性质,关键是根据正方形的性质得出∠BAE= ∠DAE ,再利用全等三角形的判定和性质解答.13. (3 分)(•黄冈)如图所示的扇形是一个圆锥的侧面展开图, 若∠AOB=120° , 弧AB 的长为12πcm, 则该圆锥的侧面积为_______cm 2.考点:圆锥的计算.分析:首先求得扇形的母线长,然后求得扇形的面积即可.解答:解:设AO=B0=R ,∵∠AOB=120°,弧AB 的长为12πcm ,∴ 180120R =12π,解得:R=18 ,∴圆锥的侧面积为 21lR= 21 ×12π×18=108π, 故答案为:108π.点评:本题考查了圆锥的计算,解题的关键是牢记圆锥的有关计算公式,难度不大.14. (3 分)(•黄冈)在△ ABC 中,AB=13cm,AC=20cm,BC 边上的高为12cm,则△ABC 的面积为__________cm2.考点:勾股定理.菁优网版权所有分析:此题分两种情况:∠B 为锐角或∠B 为钝角已知AB 、AC 的值,利用勾股定理即可求 出BC 的长,利用三角形的面积公式得结果.解答:解:当∠B 为锐角时(如图 1),在Rt △ABD 中,BD==5cm , 在Rt △ADC 中,CD==16cm , ∴BC=21 ,∴S △ ABC= =21 ×21×12=126cm ; 当∠B 为钝角时(如图2 ),在Rt △ABD 中,BD==5cm , 在Rt △ADC 中,CD==16cm , ∴BC=CD ﹣BD=16 ﹣5=11cm ,∴S △ ABC= = 21×11×12=66cm , 故答案为:126 或66 .点评:本题主要考查了勾股定理和三角形的面积公式,画出图形,分类讨论是解答此题的关 键.三、解答题(本大题共10 小题,满分共78 分)15.(5分)(•黄冈)解不等式组:⎪⎩⎪⎨⎧-≥-->3221312232x x x x考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:由①得,x <2 ,由②得,x≥﹣2 ,故不等式组的解集为:﹣2≤x <2 .点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(6分)(•黄冈)已知A,B两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130 元,问A,B 两件服装的成本各是多少元?考点:二元一次方程组的应用.分析:设A 服装成本为x 元,B 服装成本y 元,由题意得等量关系:①成本共500 元;②共获利 130 元,根据等量关系列出方程组,再解即可.解答:解:设A 服装成本为x 元,B 服装成本y 元,由题意得:,解得:,答:A 服装成本为300 元,B 服装成本200 元.点评:此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程组.17.(6 分)(•黄冈)已知:如图,在四边形ABCD 中,AB ∥ CD,E,F 为对角线AC 上两点,且AE=CF,DF∥BE.求证:四边形ABCD 为平行四边形.考点:平行四边形的判定;全等三角形的判定与性质.专题:证明题.分析:首先证明△AEB≌△CFD 可得AB=CD ,再由条件AB∥CD 可利用一组对边平行且相等的四边形是平行四边形证明四边形ABCD 为平行四边形.解答:证明:∵AB∥CD,∴∠DCA= ∠BAC,∵DF ∥BE,∴∠DFA= ∠BEC,∴∠AEB= ∠DFC,在△AEB 和△ CFD 中,∴△AEB≌△CFD (ASA),∴AB=CD ,∵AB∥CD,∴四边形ABCD 为平行四边形.点评:此题主要考查了平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形.18.(7分)(•黄冈)在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“ 通过”(用√表示)或“ 淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树形图列举出选手A 获得三位评委评定的各种可能的结果;(2)求选手A 晋级的概率.考点:列表法与树状图法.分析:(1)利用树状图列举出所有可能即可,注意不重不漏的表示出所有结果;(2 )列举出所有情况,让至少有两位评委给出“通过”的结论的情况数除以总情况数即为所求的概率.解答:解:(1)画出树状图来说明评委给出A 选手的所有可能结果: ;(2 )∵由上可知评委给出A 选手所有可能的结果有8 种.并且它们是等可能的,对于A 选手,晋级的可能有4 种情况,∴对于A 选手,晋级的概率是:21 . 点评:本题主要考查了树状图法求概率.树状图法可以不重不漏地列举出所有可能发生的情 况,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.19.(7 分)(•黄冈)“ 六一”儿童节前夕,蕲黄县教育局准备给留守儿童赠送一批学习用品,先对浠泉镇浠泉小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6 名,7 名,8 名,10 名,12 名这五种情形,并将统计结果绘制成了如图所示的两幅不完整的统计图.请根据上述统计图,解答下列问题:(1)该校有多少个班级?并补全条形统计图;(2)该校平均每班有多少名留守儿童?留守儿童人数的众数是多少?(3)若该镇所有小学共有60 个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.考点:条形统计图;用样本估计总体;扇形统计图;加权平均数.分析:(1)根据有7 名留守儿童班级有2 个,所占的百分比是 12.5%,即可求得班级的总 个数;(2 )利用平均数的计算公式求得每班的留守儿童数,然后根据众数的定义,就是出现次数最多的数确定留守儿童的众数;(3 )利用班级数60 乘以(2 )中求得的平均数即可.解答:解:(1)该校的班级数是:2÷ 12.5%=16 (个).则人数是8 名的班级数是:16 ﹣1 ﹣2 ﹣6 ﹣2=5 (个).; (2 )每班的留守儿童的平均数是: 161(1×6+2×7+5×8+6×10+12×2 )=9 (人),众数是 10 名;(3 )该镇小学生中,共有留守儿童60×9=540 (人).答:该镇小学生中共有留守儿童540 人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中 得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(7 分)(•黄冈)如图,在一次事演习中,蓝方在一条东西走向的公路上的A 处朝正南方向撤退,红方在公路上的B 处沿南偏西60°方向前进实施拦截.红方行驶1000 米到达C 处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D 处成功拦截蓝方.求拦截点D 处到公路的距离(结果不取近似值).考点:解直角三角形的应用-方向角问题.分析:过B 作AB 的垂线,过C 作AB 的平行线,两线交于点E ;过C 作AB 的垂线,过D作AB 的平行线,两线交于点F ,则∠E= ∠F=90°,拦截点D 处到公路的距离DA=BE+CF .解Rt △ BCE ,求出BE=21BC=21×1000=500 米;解Rt △ CDF ,求出 CF=22CD=5002 米,则DA=BE+CF=(500+5002)米. 解答:解:如图,过B 作AB 的垂线,过C 作AB 的平行线,两线交于点E ;过C 作AB 的 垂线,过D 作AB 的平行线,两线交于点F ,则∠E= ∠F=90°,拦截点D 处到公路的 距离DA=BE+CF .在Rt △ BCE 中,∵∠E=90°,∠CBE=60°,∴∠BCE=30°,∴BE=21BC=21×1000=500 米; 在Rt △ CDF 中,∵∠F=90°,∠DCF=45°,CD=AB=1000 米, ∴CF=22 CD=5002 米, ∴DA=BE+CF= (500+5002)米,故拦截点D 处到公路的距离是(500+500 2 )米.点评:本题考查了解直角三角形的应用﹣方向角问题,锐角三角函数的定义,正确理解方向 角的定义,进而作出辅助线构造直角三角形是解题的关键.21.( 8分)(•黄冈)已知:如图,在△ABC 中,AB=AC ,以AC 为直径的⊙O 交AB 于点M ,交BC 于点N ,连接AN,过点C 的切线交AB 的延长线于点P.(1)求证:∠BCP=∠BAN;(2)求证:BPCB MN AM考点:切线的性质;相似三角形的判定与性质.专题:证明题.分析:(1)由AC 为⊙O 直径,得到∠NAC+ ∠ACN=90°,由AB=AC ,得到∠BAN= ∠CAN , 根据PC 是⊙O 的切线,得到∠ACN+ ∠PCB=90°,于是得到结论.(2 )由等腰三角形的性质得到∠ABC= ∠ACB ,根据圆内接四边形的性质得到∠PBC= ∠AMN ,证出△ BPC ∽△MNA ,即可得到结论.解答:(1)证明:∵AC 为⊙O 直径,∴∠ANC=90°,∴∠NAC+ ∠ACN=90°,∵AB=AC ,∴∠BAN= ∠CAN ,∵PC 是⊙O 的切线,∴∠ACP=90°,∴∠ACN+ ∠PCB=90°,∴∠BCP= ∠CAN ,∴∠BCP= ∠BAN ;(2 )∵AB=AC ,∴∠ABC= ∠ACB ,∵∠PBC+ ∠ABC= ∠AMN+ ∠ACN=180°,∴∠PBC= ∠AMN ,由(1)知∠BCP= ∠BAN ,∴△BPC ∽△MNA ,∴BP CB MN AM . 点评:本题考查了切线的性质,等腰三角形的性质,圆周角定理,相似三角形的判定和性质, 圆内接四边形的性质,解此题的关键是熟练掌握定理.22.(8 分)(•黄冈)如图,反比例函数y=x k 的图象经过点A (-1,4),直线y=-x + b(b ≠0) 与双曲线y=x k在第二、四象限分别相交于P ,Q 两点,与x 轴、y 轴分别相交于C,D 两点.(1)求k 的值;(2)当b=-2 时,求△OCD 的面积;(3)连接OQ ,是否存在实数b,使得S △ODQ=S △OCD ? 若存在,请求出b 的值;若不存在,请说明理由.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)根据反比例函数的图象上点的坐标特征易得k= ﹣4 ;(2 )当b= ﹣2 时,直线解析式为y= ﹣x ﹣2 ,则利用坐标轴上点的坐标特征可求出C(﹣2 ,0 ),D (0,﹣2 ),然后根据三角形面积公式求解;(3 )先表示出C (b ,0 ),根据三角形面积公式,由于S △ ODQ=S △ OCD ,所以点Q 和 点C 到OD 的距离相等,则Q 的横坐标为(﹣b ,0 ),利用直线解析式可得到Q (﹣ b ,2b ),再根据反比例函数的图象上点的坐标特征得到﹣b •2b= ﹣4 ,然后解方程即可 得到满足条件的b 的值.解答: 解:(1)∵反比例函数y= xk 的图象经过点A (﹣1,4 ), ∴k= ﹣1×4= ﹣4 ;(2 )当b= ﹣2 时,直线解析式为y= ﹣x ﹣2 ,∵y=0 时,﹣x ﹣2=0 ,解得x= ﹣2 ,∴C (﹣2 ,0 ),∵当x=0 时,y= ﹣x ﹣2= ﹣2 ,∴D (0,﹣2 ),∴S △ OCD=21×2×2=2 ; (3 )存在.当y=0 时,﹣x+b=0 ,解得x=b ,则C (b ,0 ),∵S △ ODQ=S △ OCD ,∴点Q 和点C 到OD 的距离相等,而Q 点在第四象限,∴Q 的横坐标为﹣b ,当x= ﹣b 时,y= ﹣x+b=2b ,则Q (﹣b ,2b ),∵点Q 在反比例函数y= ﹣x4 的图象上, ∴﹣b •2b= ﹣4 ,解得b= ﹣2 或b=2(舍去),∴b 的值为﹣2 .点评:本题考查了反比例函数与一次函数的交点:求反比例函数与一次函数的交点坐标,把 两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了反比例函数图象上点的坐标特征和三角形面积公式.23.(10 分)(•黄冈)我市某风景区门票价格如图所示黄冈赤壁旅游公司有甲、乙两个旅行团队,计划在“五一”小黄金周期间到该景点游玩,两团队游客人数之和为120 人,乙团队人数不超过50 人.设甲团队人数为x 人,如果甲、乙两团队分别购买门票,两团队门票款之和为W 元.(1)求W 关于x 的函数关系式,并写出自变量x 的取值范围;(2)若甲团队人数不超过100 人,请说明甲、乙两团队联合购票比分别购票最多可节约多少钱;(3“) 五一”小黄金周之后,该风景区对门票价格作了如下调整:人数不超过50 人时,门票价格不变;人数超过50 人但不超过100 人时,每张门票降价a 元;人数超过100 人时,每张门票降价2a 元.在(2)的条件下,若甲、乙两个旅行团队“五一”小黄金周之后去游玩,最多可节约3400 元,求a 的值.考点:一次函数的应用;一元二次方程的应用;一元一次不等式的应用.分析:(1)根据甲团队人数为x 人,乙团队人数不超过50 人,得到x ≥70,分两种情况: ①当70≤x ≤100 时,W=70x+80 (120 ﹣x )= ﹣10x+9600,②当100<x <120 时,W=60x+80 (120 ﹣x )= ﹣20x+9600 ,即可解答;(2 )根据甲团队人数不超过100 人,所以x ≤100,由W= ﹣10x+9600,根据70≤x ≤100, 利用一次函数的性质,当x=70 时,W 最大=8900 (元),两团联合购票需120×60=7200 (元),即可解答;(3 )根据每张门票降价a 元,可得W= (70 ﹣a )x+80 (120 ﹣x )= ﹣(a+10 )x+9600 , 利用一次函数的性质,x=70 时,W 最大= ﹣70a+8900 (元),而两团联合购票需120(60 ﹣2a )=7200 ﹣240a (元),所以﹣70a+8900 ﹣(7200 ﹣240a )=3400,即可解答. 解答:解:(1)∵甲团队人数为x 人,乙团队人数不超过50 人,∴120 ﹣x ≤50,∴x ≥70,①当70≤x≤100 时,W=70x+80 (120 ﹣x )= ﹣10x+9600,②当100<x <120 时,W=60x+80 (120 ﹣x )= ﹣20x+9600 ,综上所述,W=(2 )∵甲团队人数不超过100 人,∴x≤100,∴W= ﹣10x+9600,∵70≤x≤100,∴x=70 时,W 最大=8900 (元),两团联合购票需 120×60=7200 (元),∴最多可节约8900 ﹣7200=1700 (元).(3 )∵x≤100,∴W= (70 ﹣a )x+80 (120 ﹣x )= ﹣(a+10 )x+9600 ,∴x=70 时,W 最大= ﹣70a+8900 (元),两团联合购票需 120 (60 ﹣2a )=7200 ﹣240a (元),∵﹣70a+8900 ﹣(7200 ﹣240a )=3400 ,解得:a=10 .点评:本题考查了一次函数的应用,解决本题的关键是根据题意,列出函数解析式,利用一次函数的性质求得最大值.注意确定x 的取值范围.24.(14 分)(•黄冈)如图,在矩形OABC 中,OA=5,AB=4,点D 为边AB 上一点,将△BCD 沿直线CD 折叠,使点B 恰好落在OA边上的点E 处,分别以OC,OA 所在的直线为x 轴,y 轴建立平面直角坐标系.(1)求OE 的长;(2)求经过O,D,C 三点的抛物线的解析式;(3)一动点P 从点C 出发,沿CB 以每秒2 个单位长的速度向点B 运动,同时动点Q 从E 点出发,沿EC 以每秒1 个单位长的速度向点C运动,当点P 到达点B 时,两点同时停止运动.设运动时间为t 秒,当t为何值时,DP=DQ;(4) 若点N 在(2)中的抛物线的对称轴上,点M 在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E 为顶点的四边形是平行四边形?若存在,请求出M点的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)由折叠的性质可求得CE、CO,在Rt△ COE 中,由勾股定理可求得OE,设AD=m ,在Rt△ADE 中,由勾股定理可求得m 的值,可求得D 点坐标,结合C、O 两点,利用待定系数法可求得抛物线解析式;(2 )用t 表示出CP 、BP 的长,可证明△ DBP ≌△DEQ ,可得到BP=EQ ,可求得t的值;(3 )可设出N 点坐标,分三种情况①EN 为对角线,②EM 为对角线,③EC 为对角线,根据平行四边形的性质可求得对角线的交点横坐标,从而可求得M 点的横坐标,再代入抛物线解析式可求得M 点的坐标.解答:解:(1)∵CE=CB=5,CO=AB=4,∴在Rt△ COE 中,OE==3 ,设AD=m ,则DE=BD=4 ﹣m ,∵OE=3,∴AE=5 ﹣3=2,在Rt △ADE 中,由勾股定理可得AD 2 +AE 2 =DE 2 ,即m 2 +22 = (4 ﹣m )2 ,解得m= 23 , ∴D (﹣23,﹣5 ), ∵C (﹣4 ,0 ),O (0,0 ),∴设过O 、D 、C 三点的抛物线为y=ax (x+4 ),∴﹣5= ﹣23 a (﹣23+4 ),解得a=34 , ∴抛物线解析式为y=34x (x+4 )= 34x 2 + 316x ; (2 )∵CP=2t ,∴BP=5 ﹣2t ,在Rt △ DBP 和Rt △ DEQ 中,,∴Rt △ DBP ≌Rt △ DEQ (HL ),∴BP=EQ ,∴5 ﹣2t=t ,∴t= 35 ; (3 )∵抛物线的对称为直线x= ﹣2 ,∴设N (﹣2 ,n ),又由题意可知C (﹣4 ,0 ),E (0,﹣3 ),设M (m ,y ),①当EN 为对角线,即四边形ECNM 是平行四边形时,则线段EN 的中点横坐标为= ﹣1,线段CM 中点横坐标为,∵EN ,CM 互相平分, ∴ = ﹣1,解得m=2 ,又M 点在抛物线上,∴y=34x 2 + 316x=16 , ∴M (2 ,16);②当EM 为对角线,即四边形ECMN 是平行四边形时,则线段EM 的中点横坐标为,线段CN 中点横坐标为 = ﹣3,∵EN ,CM 互相平分,∴ = ﹣3,解得m= ﹣6,又∵M 点在抛物线上,∴y= 34× (﹣6 )2 + 316× (﹣6 )=16 , ∴M (﹣6,16);③当CE 为对角线,即四边形EMCN 是平行四边形时,则M 为抛物线的顶点,即M (﹣2 ,﹣316 ). 综上可知,存在满足条件的点M ,其坐标为(2 ,16)或(﹣6,16)或(﹣2 ,﹣316 ). 点评:本题主要考查二次函数的综合应用,涉及待定系数法、全等三角形的判定和性质、折 叠的性质、 平行四边形的性质等知识点.在(1)中求得D 点坐标是解题的关键,在 (2 )中证得全等,得 到关于t 的方程是解题的关键,在(3 )中注意分类讨论思想的应用.本题考查知识点较多,综 合性较强,难度适中.。
黄冈中考数学试题及答案
黄冈中考数学试题及答案一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 下列哪个数是无理数?A. -2B. 根号3C. 0.33333D. 1/3答案:B2. 如果一个角的余角是20°,那么这个角的度数是多少?A. 70°B. 90°C. 110°D. 100°答案:A3. 已知线段AB=10cm,点C在AB上,且AC=6cm,求BC的长度。
A. 2cmB. 4cmC. 6cmD. 10cm答案:B4. 下列哪个代数式是二次根式?A. √xB. x²C. 3xD. 1/x答案:A5. 一个正数的平方根是4,这个数是多少?A. 16B. 8C. 4D. 2答案:A6. 一个数的立方是-8,这个数是多少?A. -2B. 2C. -8D. 8答案:A7. 一个数的绝对值是5,这个数可能是多少?A. 5B. -5C. 5或-5D. 都不是答案:C8. 下列哪个方程是一元一次方程?A. x² + 3 = 0B. 2x + 1 = 3x - 2C. x/2 + 3 = 5D. 3x - 5y = 0答案:C9. 一个三角形的内角和是多少度?A. 90°B. 180°C. 270°D. 360°答案:B10. 一个圆的周长是2πr,那么它的面积是多少?A. πr²B. 2πrC. πrD. r²答案:A二、填空题(本题共5小题,每小题2分,共10分。
)11. 一个数的相反数是-5,这个数是________。
答案:512. 如果一个数的平方等于25,那么这个数可能是________或________。
答案:5,-513. 一个直角三角形的两条直角边分别是3和4,那么它的斜边长是________。
答案:514. 一个数的立方根是3,那么这个数是________。
往年湖北省黄冈市中考数学真题及答案
往年年湖北省黄冈市中考数学真题及答案一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共24分)1.(3分)﹣8的立方根是()A.﹣2 B.±2 C.2 D.﹣2.(3分)如果α与β互为余角,则()A.α+β=180°B.α﹣β=180° C.α﹣β=90°D.α+β=90°3.(3分)下列运算正确的是()A.x2•x3=x6B.x6÷x5=x C.(﹣x2)4=x6D.x2+x3=x54.(3分)如图所示的几何体的主视图是()A.B.C.D.5.(3分)函数y=中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠06.(3分)若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8 B.32 C.16 D.407.(3分)如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12π D.(4+4)π8.(3分)已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为()A.B.C.D.二、填空题(共7小题,每小题3分,共21分)9.(3分)计算:|﹣|= .10.(3分)分解因式:(2a+1)2﹣a2= .11.(3分)计算:﹣= .12.(3分)如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD= 度.13.(3分)当x=﹣1时,代数式÷+x的值是.14.(3分)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD= .15.(3分)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为cm2.三、解答题(本大题共10小题,满分共75分)16.(5分)解不等式组:,并在数轴上表示出不等式组的解集.17.(6分)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?18.(6分)已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.19.(6分)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.20.(7分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.21.(7分)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?22.(9分)如图,已知双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点.(1)当点C的坐标为(﹣1,1)时,A、B、D三点坐标分别是A(, ),B(, ),D(, ).(2)证明:以点A、D、B、C为顶点的四边形是平行四边形.(3)当k为何值时,▱ADBC是矩形.23.(7分)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)24.(9分)某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:居民个人当年治病所花费的医疗费医疗费的报销方法不超过n元的部分全部由医保基金承担(即全部报销)超过n元但不超过6000元的部分个人承担k%,其余部分由医保基金承担超过6000元的部分个人承担20%,其余部分由医保基金承担如果设一位居民当年治病花费的医疗费为x元,他个人实际承担的医疗费用(包括医疗费中个人承担部分和年初缴纳的医保基金)记为y元.(1)当0≤x≤n时,y=70;当n<x≤6000时,y= (用含n、k、x的式子表示).(2)表二是该地A、B、C三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值.表二:居民 A B C某次治病所花费的治疗费用x(元)400 800 1500个人实际承担的医疗费用y(元)70 190 470(3)该地居民周大爷2013年治病所花费的医疗费共32000元,那么这一年他个人实际承担的医疗费用是多少元?25.(13分)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O 出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.往年年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共24分)1.(3分)(往年•黄冈)﹣8的立方根是()A.﹣2 B.±2 C.2 D.﹣【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2.故选:A.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.(3分)(往年•黄冈)如果α与β互为余角,则()A.α+β=180°B.α﹣β=180° C.α﹣β=90°D.α+β=90°【分析】根据互为余角的定义,可以得到答案.【解答】解:如果α与β互为余角,则α+β=900.故选:D.【点评】此题主要考查了互为余角的性质,正确记忆互为余角的定义是解决问题的关键.3.(3分)(往年•黄冈)下列运算正确的是()A.x2•x3=x6B.x6÷x5=x C.(﹣x2)4=x6D.x2+x3=x5【分析】根据同底数幂的乘法和除法法则可以解答本题.【解答】解:A.x2•x3=x5,故A错误;B.x6÷x5=x,故B正确;C.(﹣x2)4=x8,故C错误;D.x2+x3不能合并,故D错误.故选:B.【点评】主要考查同底数幂相除底数不变指数相减,同底数幂相乘底数不变指数相加,熟记定义是解题的关键.4.(3分)(往年•黄冈)如图所示的几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,象一个大梯形减去一个小梯形,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.(3分)(往年•黄冈)函数y=中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠0【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣2≥0且x≠0,∴x≥2.故选:B.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.(3分)(往年•黄冈)若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8 B.32 C.16 D.40【分析】根据根与系数的关系得到α+β=﹣2,αβ=﹣6,再利用完全平方公式得到α2+β2=(α+β)2﹣2αβ,然后利用整体代入的方法计算.【解答】解:根据题意得α+β=﹣2,αβ=﹣6,所以α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=16.故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.7.(3分)(往年•黄冈)如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12π D.(4+4)π【分析】表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【解答】解:底面圆的半径为2,则底面周长=4π,∵底面半径为2cm、高为2cm,∴圆锥的母线长为4cm,∴侧面面积=×4π×4=8π;底面积为=4π,全面积为:8π+4π=12πcm2.故选:C.【点评】本题利用了圆的周长公式和扇形面积公式求解,牢记公式是解答本题的关键.8.(3分)(往年•黄冈)已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC 边于点F.点D为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为()A.B.C.D.【分析】判断出△AEF和△ABC相似,根据相似三角形对应边成比例列式求出EF,再根据三角形的面积列式表示出S与x的关系式,然后得到大致图象选择即可.【解答】解:∵EF∥BC,∴△AEF∽△ABC,∴=,∴EF=•10=10﹣2x,∴S=(10﹣2x)•x=﹣x2+5x=﹣(x﹣)2+,∴S与x的关系式为S=﹣(x﹣)2+(0<x<5),纵观各选项,只有D选项图象符合.故选:D.【点评】本题考查了动点问题函数图象,主要利用了相似三角形的性质,求出S与x的函数关系式是解题的关键,也是本题的难点.二、填空题(共7小题,每小题3分,共21分)9.(3分)(往年•黄冈)计算:|﹣|= .【分析】根据负数的绝对值等于它的相反数,可得答案案.【解答】解:|﹣|=,故答案为:.【点评】本题考查了绝对值,负数的绝对值是它的相反数.10.(3分)(往年•黄冈)分解因式:(2a+1)2﹣a2= (3a+1)(a+1).【分析】直接利用平方差公式进行分解即可.【解答】解:原式=(2a+1+a)(2a+1﹣a)=(3a+1)(a+1),故答案为:(3a+1)(a+1).【点评】此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).11.(3分)(往年•黄冈)计算:﹣= .【分析】先进行二次根式的化简,然后合并同类二次根式求解.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查了二次根式的加减法,关键是掌握二次根式的化简以及同类二次根式的合并.12.(3分)(往年•黄冈)如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD= 60 度.【分析】延长AC交BE于F,根据直角三角形两锐角互余求出∠1,再根据两直线平行,内错角相等可得∠CAD=∠1.【解答】解:如图,延长AC交BE于F,∵∠ACB=90°,∠CBE=30°,∴∠1=90°﹣30°=60°,∵AD∥BE,∴∠CAD=∠1=60°.故答案为:60.【点评】本题考查了平行线的性质,直角三角形两锐角互余的性质,熟记性质是解题的关键.13.(3分)(往年•黄冈)当x=﹣1时,代数式÷+x的值是3﹣2.【分析】将除法转化为乘法,因式分解后约分,然后通分相加即可.【解答】解:原式=•+x=x(x﹣1)+x=x2﹣x+x=x2,当x=﹣1时,原式=(﹣1)2=2+1﹣2=3﹣2.故答案为:3﹣2.【点评】本题考查了分式的化简求值,熟悉除法法则和因式分解是解题的关键.14.(3分)(往年•黄冈)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD= 4.【分析】连结OD,设⊙O的半径为R,先根据圆周角定理得到∠BOD=2∠BAD=60°,再根据垂径定理由CD⊥AB 得到DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,利用余弦的定义得cos∠EOD=cos60°=,即=,解得R=4,则OE=2,DE=OE=2,所以CD=2DE=4.【解答】解:连结OD,如图,设⊙O的半径为R,∵∠BAD=30°,∴∠BOD=2∠BAD=60°,∵CD⊥AB,∴DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,OD=R,∵cos∠EOD=cos60°=,∴=,解得R=4,∴OE=4﹣2=2,∴DE=OE=2,∴CD=2DE=4故答案为:4.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理和解直角三角形.15.(3分)(往年•黄冈)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为或5或10 cm2.【分析】因为等腰三角形腰的位置不明确,所以分(1)腰长在矩形相邻的两边上,(2)一腰在矩形的宽上,(3)一腰在矩形的长上,三种情况讨论.(1)△AEF为等腰直角三角形,直接利用面积公式求解即可;(2)先利用勾股定理求出AE边上的高BF,再代入面积公式求解;(3)先求出AE边上的高DF,再代入面积公式求解.【解答】解:分三种情况计算:(1)当AE=AF=5厘米时,∴S△AEF=AE•AF=×5×5=厘米2,(2)当AE=EF=5厘米时,如图BF===2厘米,∴S△AEF=•AE•BF=×5×2=5厘米2,(3)当AE=EF=5厘米时,如图DF===4厘米,∴S△AEF=AE•DF=×5×4=10厘米2.故答案为:,5,10.【点评】本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论.三、解答题(本大题共10小题,满分共75分)16.(5分)(往年•黄冈)解不等式组:,并在数轴上表示出不等式组的解集.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:解①得:x>3,解②得:x≥1.,则不等式组的解集是:x>3.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.17.(6分)(往年•黄冈)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?【分析】设购买1块电子白板需要x元,一台投影机需要y元,根据①买2块电子白板的钱﹣买3台投影机的钱=4000元,②购买4块电子白板的费用+3台投影机的费用=44000元,列出方程组,求解即可.【解答】解:设购买1块电子白板需要x元,一台投影机需要y元,由题意得:,解得:.答:购买一块电子白板需要8000元,一台投影机需要4000元.【点评】此题主要考查了二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,列出方程组.18.(6分)(往年•黄冈)已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.【分析】连接AD,利用SSS得到三角形ABD与三角形ACD全等,利用全等三角形对应角相等得到∠EAD=∠FAD,即AD为角平分线,再由DE⊥AB,DF⊥AC,利用角平分线定理即可得证.【解答】证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.【点评】此题考查了全等三角形的判定与性质,以及角平分线定理,熟练掌握全等三角形的判定与性质是解本题的关键.19.(6分)(往年•黄冈)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(7分)(往年•黄冈)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.【分析】(1)连接OD,由BC是⊙O的切线得出∠BCA=90°,由DE是⊙O的切线,得出ED=EC,∠ODE=90°,故可得出∠EDB=∠EBD,由此可得出结论.(2)当以点O、D、E、C为顶点的四边形是正方形时,则△DEB是等腰直角三角形,据此即可判断.【解答】(1)证明:连接OD,∵AC是直径,∠ACB=90°,∴BC是⊙O的切线,∠BCA=90°.又∵DE是⊙O的切线,∴ED=EC,∠ODE=90°,∴∠ODA+∠EDB=90°,∵OA=OD,∴∠OAD=∠ODA,又∵∠OAD+∠DBE=90°,∴∠EDB=∠EBD,∴ED=EB,∴EB=EC.(2)解:当以点O、D、E、C为顶点的四边形是正方形时,则∠DEB=90°,又∵ED=EB,∴△DEB是等腰直角三角形,则∠B=45°,∴△ABC是等腰直角三角形.【点评】本题考查了切线的性质以及切线长定理、圆周角定理,解题的关键是连接OD得垂直,构造出等腰三角形,利用“等角的余角相等解答.21.(7分)(往年•黄冈)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有200 名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?【分析】(1)喜好“核桃味”牛奶的学生人数除以它所占的百分比即可得本次被调查的学生人数;(2)用本次被调查的学生的总人数减去喜好原味、草莓味、菠萝味、核桃味的人数得出喜好香橙味的人数,补全条形统计图即可,用喜好“菠萝味”牛奶的学生人数除以总人数再乘以360°,即可得喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)用喜好草莓味的人数占的百分比减去喜好原味的人数占的百分比,再乘以该校的总人数即可.【解答】解:(1)10÷5%=200(名)答:本次被调查的学生有200名,故答案为:200;(2)200﹣38﹣62﹣50﹣10=40(名),条形统计图如下:=90°,答:喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数为90°;(3)1200×()=144(盒),答:草莓味要比原味多送144盒.【点评】本题考查的是条形统计图和扇形统计图的综合运用;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(9分)(往年•黄冈)如图,已知双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点.(1)当点C的坐标为(﹣1,1)时,A、B、D三点坐标分别是A(﹣2 , ),B( 2 , ﹣),D ( 1 , ﹣1 ).(2)证明:以点A、D、B、C为顶点的四边形是平行四边形.(3)当k为何值时,▱ADBC是矩形.【分析】(1)由C坐标,利用反比例函数的中心对称性确定出D坐标,联立双曲线y=﹣与直线y=﹣x,求出A与B坐标即可;(2)由反比例函数为中心对称图形,利用中心对称性质得到OA=OB,OC=OD,利用对角线互相平分的四边形为平行四边形即可得证;(3)由A与B坐标,利用两点间的距离公式求出AB的长,联立双曲线y=﹣与直线y=﹣kx,表示出CD的长,根据对角线相等的平行四边形为矩形,得到AB=CD,即可求出此时k的值.【解答】解:(1)∵C(﹣1,1),C,D为双曲线y=﹣与直线y=﹣kx的两个交点,且双曲线y=﹣为中心对称图形,∴D(1,﹣1),联立得:,消去y得:﹣x=﹣,即x2=4,解得:x=2或x=﹣2,当x=2时,y=﹣;当x=﹣2时,y=,∴A(﹣2,),B(2,﹣);故答案为:﹣2,,2,﹣,1,﹣1;(2)∵双曲线y=﹣为中心对称图形,且双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点,∴OA=OB,OC=OD,则以点A、D、B、C为顶点的四边形是平行四边形;(3)若▱ADBC是矩形,可得AB=CD,联立得:,消去y得:﹣=﹣kx,即x2=,解得:x=或x=﹣,当x=时,y=﹣;当x=﹣时,y=,∴C(﹣,),D(,﹣),∴CD==AB==,整理得:(4k﹣1)(k﹣4)=0,k1=,k2=4,又∵k≠,∴k=4,则当k=4时,▱ADBC是矩形.【点评】此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,一次函数与反比例函数的交点,平行四边形,矩形的判定,两点间的距离公式,以及中心图形性质,熟练掌握性质是解本题的关键.23.(7分)(往年•黄冈)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN 上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)【分析】(1)作CE⊥AB,设AE=x海里,则BE=CE=x海里.根据AB=AE+BE=x+x=100(+1),求得x 的值后即可求得AC的长;过点D作DF⊥AC于点F,同理求出AD的长;(2)作DF⊥AC于点F,根据AD的长和∠DAF的度数求线段DF的长后与100比较即可得到答案.【解答】解:(1)如图,作CE⊥AB,由题意得:∠ABC=45°,∠BAC=60°,设AE=x海里,在Rt△AEC中,CE=AE•tan60°=x;在Rt△BCE中,BE=CE=x.∴AE+BE=x+x=100(+1),解得:x=100.AC=2x=200.在△ACD中,∠DAC=60°,∠ADC=75°,则∠ACD=45°.过点D作DF⊥AC于点F,设AF=y,则DF=CF=y,∴AC=y+y=200,解得:y=100(﹣1),∴AD=2y=200(﹣1).答:A与C之间的距离AC为200海里,A与D之间的距离AD为200(﹣1)海里.(2)由(1)可知,DF=AF=×100(﹣1)≈126.3海里,∵126.3>100,所以巡逻船A沿直线AC航线,在去营救的途中没有触暗礁危险.【点评】本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系解答.24.(9分)(往年•黄冈)某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:居民个人当年治病所花费的医疗费医疗费的报销方法不超过n元的部分全部由医保基金承担(即全部报销)超过n元但不超过6000元的部分个人承担k%,其余部分由医保基金承担超过6000元的部分个人承担20%,其余部分由医保基金承担如果设一位居民当年治病花费的医疗费为x元,他个人实际承担的医疗费用(包括医疗费中个人承担部分和年初缴纳的医保基金)记为y元.(1)当0≤x≤n时,y=70;当n<x≤6000时,y= 0.01k(x﹣n)+70(n<x≤6000)(用含n、k、x的式子表示).(2)表二是该地A、B、C三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值.表二:居民 A B C某次治病所花费的治疗费用x(元)400 800 1500个人实际承担的医疗费用y(元)70 190 470(3)该地居民周大爷2013年治病所花费的医疗费共32000元,那么这一年他个人实际承担的医疗费用是多少元?【分析】(1)根据医疗报销的比例,可得答案;(2)根据医疗费用的报销费用,可得方程组,再解方程组,可得答案;(3)根据个人承担部分的费用,可得代数式,可得答案.【解答】解:(1)由题意得当0≤x≤n时,y=70;当n<x≤6000时,y=0.01k(x﹣n)+70(n<x≤6000);(2)由A、B、C三人的花销得,解得;(3)由题意得70+(6000﹣500)×40%+(32000﹣6000)×20%=70+2200+5200=7470(元).答:这一年他个人实际承担的医疗费用是7470元.【点评】本题考查了一次函数的应用,根据题意列函数解析式是解题关键.25.(13分)(往年•黄冈)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.【分析】(1)设抛物线解析式为y=ax2+bx(a≠0),然后把点A、B的坐标代入求出a、b的值,即可得解,再把函数解析式整理成顶点式形式,然后写出顶点M的坐标;(2)根据点P的速度求出OP,即可得到点P的坐标,再根据点A的坐标求出∠AOC=45°,然后判断出△POQ 是等腰直角三角形,根据等腰直角三角形的性质求出点Q的坐标即可;(3)根据旋转的性质求出点O、Q的坐标,然后分别代入抛物线解析式,求解即可;(4)求出点Q与点A重合时的t=1,点P与点C重合时的t=1.5,t=2时PQ经过点B,然后分①0<t≤1时,重叠部分的面积等于△POQ的面积,②1<t≤1.5时,重叠部分的面积等于两个等腰直角三角形的面积的差,③1.5<t<2时,重叠部分的面积等于梯形的面积减去一个等腰直角三角形的面积分别列式整理即可得解.【解答】解:(1)设抛物线解析式为y=ax2+bx(a≠0),把点A(1,﹣1),B(3,﹣1)代入得,,解得,∴抛物线解析式为y=x2﹣x,∵y=x2﹣x=(x﹣2)2﹣,∴顶点M的坐标为(2,﹣);(2)∵点P从点O出发速度是每秒2个单位长度,∴OP=2t,∴点P的坐标为(2t,0),∵A(1,﹣1),∴∠AOC=45°,∴点Q到x轴、y轴的距离都是OP=×2t=t,∴点Q的坐标为(t,﹣t);(3)∵△OPQ绕着点P按逆时针方向旋转90°,∴旋转后点O、Q的对应点的坐标分别为(2t,﹣2t),(3t,﹣t),若顶点O在抛物线上,则×(2t)2﹣×(2t)=﹣2t,解得t=(t=0舍去),∴t=时,点O(1,﹣1)在抛物线y=x2﹣x上,若顶点Q在抛物线上,则×(3t)2﹣×(3t)=﹣t,解得t=1(t=0舍去),∴t=1时,点Q(3,﹣1)在抛物线y=x2﹣x上.(4)点Q与点A重合时,OP=1×2=2,t=2÷2=1,点P与点C重合时,OP=3,t=3÷2=1.5,t=2时,OP=2×2=4,PC=4﹣3=1,此时PQ经过点B,所以,分三种情况讨论:①0<t≤1时,S=S△OPQ=×(2t)×=t2,②1<t≤1.5时,S=S△OP′Q′﹣S△AEQ′=×(2t)×﹣×(t﹣)2=2t﹣1;③1.5<t<2时,S=S梯形OABC﹣S△BGF=×(2+3)×1﹣×[1﹣(2t﹣3)]2=﹣2(t﹣2)2+=﹣2t2+8t﹣;所以,S与t的关系式为S=.。
近十年(2003-2012年)黄冈中考数学试题及答案
⑴ 由观察所得, 班的标准差较大; ⑵ 若两班合计共有 60 人及格,问参加者最少获 分才可以及格。 四、多项选择题(本大题共两道小题,每小题 4 分,共 8 分,在每小题给出的四个选项中, 至少有一项是符合题目要求的,请把所有符合题目要求的答案的序号填入题后的括号 内,全对得 4 分;对而不全的酌情扣分;有对有错、全错或不答的均得 0 分) 15. 下列各式经过化简后与 27x 3 是同类二次根式的是( (A) ) .
21. (11 分)在全国抗击“非典”的斗争中,黄城研究所的医学专家们经过日夜奋战,终于 研制出一种治疗非典型肺炎的抗生素.据临床观察:如果成人按规定的剂量注射这种抗 生素,注射药液后每毫升血液中的含药量 y(微克)与时间 t(小时)之间的关系近似地
满足图所示的折线. ⑴ 写出注射药液后每毫升血液中含药量 y 与时间 t 之间的函数关系式及自变量的取值范 围; ⑵ 据临床观察:每毫升血液中含药量不少于 4 微克时,控制“非典”病情是有效的.如 果病人按规定的剂量注射该药液后,那么这一次注射的药液经过多长时间后控制病情开 始有效?这个有效时间有多长? ⑶ 假若某病人一天中第一次注射药液是早晨 6 点钟,问怎样安排此人从 6:00~20:00 注射药液的时间,才能使病人的治疗效果最好?
n 5 0 ,则 m=
。
,n =
,此时将 mx2 ny2 分解因式得
mx2 ny2 =
4. 顺次连结菱形四条边的中点的四边形是 5. 当 x=sin60°时,代数式
形. 。
2x 2 4x x 2 2x 4x 2 的值等于 x2 x 4x 4 2 x
Байду номын сангаас
6. 如图,把直角三角形 ABC 的斜边 AB 放在定直线 l 上,按顺时针 A 向在 l 上转动两次, 使它转到△A’’B’’C’’的位置.设 BC=1,AC= 3 ,则顶点 A 运动到点 A’’的位置时, 点 A 经过的路线与直线 l 所围成的面积是 (计算结果不取近似
黄冈市中考数学试题及答案解析()
黄冈市初中毕业生学业水平考试数 学 试 题(考试时间120分钟) 满分120分第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项,有且只有一个答案是正确的) 1. -2的相反数是A. 2B. -2C. -21D.21【考点】相反数.【分析】只有符号不同的两个数,我们就说其中一个是另一个的相反数;0的相反数是0。
一般地,任意的一个有理数a ,它的相反数是-a 。
a 本身既可以是正数,也可以是负数,还可以是零。
本题根据相反数的定义,可得答案. 【解答】解:因为2与-2是符号不同的两个数 所以-2的相反数是2.故选B.2. 下列运算结果正确的是A. a 2+a 2=a 2B. a 2·a 3=a 6C. a 3÷a 2=aD. (a 2)3=a 5【考点】合并同类项、同底数幂的乘法与除法、幂的乘方。
【分析】根据同类项合并、同底数幂的乘法与除法、幂的乘方的运算法则计算即可. 【解答】解:A. 根据同类项合并法则,a 2+a 2=2a 2,故本选项错误;B. 根据同底数幂的乘法,a 2·a 3=a 5,故本选项错误; C .根据同底数幂的除法,a 3÷a 2=a ,故本选项正确; D .根据幂的乘方,(a 2)3=a 6,故本选项错误. 故选C .3. 如图,直线a ∥b ,∠1=55°,则∠2= 1 A. 35° B. 45° C. 55° D. 65°2(第3题) 【考点】平行线的性质、对顶角、邻补角.【分析】根据平行线的性质:两直线平行同位角相等,得出∠1=∠3;再根据对顶角相等,得出∠2=∠3;从而得出∠1=∠2=55°.【解答】解:如图,∵a ∥b , ∴∠1=∠3, ∵∠1=55°, ∴∠3=55°,∴∠2=55°. 故选:C .4. 若方程3x 2-4x-4=0的两个实数根分别为x 1, x 2,则x 1+ x 2= A. -4 B. 3 C. -34 D.34【考点】一元二次方程根与系数的关系. 若x 1, x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根时,x 1+x 2= -a b ,x 1x 2=a c,反过来也成立.【分析】根据一元二次方程根与系数的关系:两根之和等于一次项系数除以二次项系数的商的相反数,可得出x 1+ x 2的值.【解答】解:根据题意,得x 1+ x 2= -a b =34.故选:D .5. 如下左图,是由四个大小相同的小正方体拼成的几何体,则这个几何体的左视图是从正面看 A B C D(第5题)【考点】简单组合体的三视图.【分析】根据“俯视图打地基,主视图疯狂盖,左视图拆违章”分析,找到从左面看所得到的图形即可;注意所有的看到的棱都应表现在左视图中. 【解答】解:从物体的左面看易得第一列有2层,第二列有1层.故选B .6. 在函数y=xx 4 中,自变量x 的取值范围是A.x >0B. x ≥-4C. x ≥-4且x ≠0D. x >0且≠-4 【考点】函数自变量的取值范围.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件。
黄冈市中考数学试题与答案
2003黄冈市中考数学试卷与答案一、填空题(每小题 3分,共18分)1. 一 4的相反数是;一 8的立方根是;9的平方根是.2. 2003年6月1日9时,举世瞩目的三峡工程正式下闸蓄水,首批4台机组率先发电,预计年内可发电5 500 000 000度,这个数用科学记数法表示,记为度. 近似数0 . 30精确到位,有个有效数字.3. 若 m —1+(JF —5)= 0 ,贝U m =, n =,此时将 mx 2 - ny 2分解因式得 mx 2 - ny 2 =。
4•顺次连结菱形四条边的中点的四边形是形.使它转到厶A'B'C'的位置•设BC = 1, AC =3,则顶点 A 运动到点A'的位置时,点A 经过的路线与直线I 所围成的面积是(计算结果不取近似、单项选择题(每小题 3分,共15 分)).(A ) (a+bf=a 2+b 2(B ) a 3+a 2=2a 5(C ) (—2x 3 f = 4x 6(D ) (-1)4=18. 在直角坐标系中,点 P (2x — 6, x — 5)在第四象限,贝U x 的取值范围是().(A ) 3v x v 5( B ) 一■ 3v x v 5 ( C ) 一■ 5 v x v 3 ( D ) 一■ 5v x v — 39. 在厶 ABC 中,AB = AC = 3, BC = 2,贝 U 6cosB 等于().(A ) 3( B ) 2 (C ) 3 3 ( D ) 2.32 210. 关于x 的方程k x 2k -1 x 0有实数根,则下列结论正确的是().(A )1当k = 时方程两根互为相反数(B )当k = 0时方程的根是x =— 1 (C )当k =士 12一 1 一时方程两根互为倒数(D )当k < 时方程有实数根411. 某公司员工分别住在 A , B , C 三个住宅区, A 区有30人,B 区有15人区有10人.三 个区在同一条直线上,位置如图所示•该公司的接送车打算在此间只设一个停靠点, 为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在 ().(A ) A 区 (B ) B 区 (C ) C 区 (D ) A , B 两区之间5.当x = sin60°时,代数式 c 2 ‘2x —4x----------- x2x 2x出的值等于。
2024年湖北黄冈中考数学试题及答案
2024年湖北黄冈中考数学试题及答案一、选择题(每小题3分,共30分)1. 在生产生活中,正数和负数都有现实意义.例如收入20元记作20+元,则支出10元记作( )A. 10+元B. 10-元C. 20+元D. 20-元2. 如图,是由4个相同的正方体组成的立方体图形,其主视图是( )A. B. C. D.3. 223x x ⋅的值是( )A. 25xB. 35xC. 26xD. 36x 4. 如图,直线AB CD ∥,已知1120∠=︒,则2∠=( )A. 50︒B. 60︒C. 70︒D. 80︒5. 不等式12x +≥的解集在数轴上表示为( )A.B. C.D.6. 下列各事件是,是必然事件的是( )A. 掷一枚正方体骰子,正面朝上恰好是3B. 某同学投篮球,一定投不中C. 经过红绿灯路口时,一定是红灯D. 画一个三角形,其内角和为180︒7. 《九章算术》中记载这样一个题:牛5头和羊2只共值10金,牛2头和羊5只共值8金,问牛和羊各值多少金?设每头牛值x 金,每只羊值y 金,可列方程为( )A. 5210258x y x y +=⎧⎨+=⎩ B. 2510528x y x y +=⎧⎨+=⎩C. 5510258x y x y +=⎧⎨+=⎩ D. 5210228x y x y +=⎧⎨+=⎩8. AB 为半圆O 的直径,点C 为半圆上一点,且50CAB ∠=︒.①以点B 为圆心,适当长为半径作弧,交,AB BC 于,D E ;②分别以DE 为圆心,大于12DE 为半径作弧,两弧交于点P ;③作射线BP ,则ABP ∠=( )A. 40︒B. 25︒C. 20︒D. 15︒9. 平面坐标系xOy 中,点A 的坐标为()4,6-,将线段OA 绕点O 顺时针旋转90︒,则点A 的对应点A '的坐标为( )A. ()4,6B. ()6,4C. ()4,6--D. ()6,4--10. 抛物线2y ax bx c =++的顶点为()1,2--,抛物线与y 轴的交点位于x 轴上方.以下结论正确的是( )A. 0a <B. 0c <C. 2a b c -+=-D. 240b ac -=二、填空题(每小题3分,共15分)11. 写一个比1-大的数______.12. 中国古代杰出的数学家祖冲之、刘徽、赵爽、秦九韶、杨辉,从中任选一个,恰好是赵爽的概率是______.13. 计算:111m m m +=++______.14. 铁的密度约为37.9kg /cm ,铁的质量()kg m 与体积()3cmV 成正比例.一个体积为310cm 的铁块,它的质量为______kg .15. DEF 等边三角形,分别延长FD DE EF ,,,到点A B C ,,,使DA EB FC ==,连接AB AC ,,BC ,连接BF 并延长交AC 于点G .若2AD DF ==,则DBF ∠=______,FG =______.为三、解答题(75分)16. 计算:()201322024-⨯-17. 已知:如图,E ,F 为□ABCD 对角线AC 上的两点,且AE =CF ,连接BE ,DF ,求证:BE =DF .18. 小明为了测量树AB 的高度,经过实地测量,得到两个解决方案:方案一:如图(1),测得C 地与树AB 相距10米,眼睛D 处观测树AB 的顶端A 的仰角为32︒:方案二:如图(2),测得C 地与树AB 相距10米,在C 处放一面镜子,后退2米到达点E ,眼睛D 在镜子C 中恰好看到树AB 的顶端A .已知小明身高1.6米,试选择一个方案求出树AB 的高度.(结果保留整数,tan320.64︒≈)19. 为促进学生全面发展,学校开展了丰富多彩的体育活动.为了解学生引体向上的训练成果,调查了七年级部分学生,根据成绩,分成了ABCD 四组,制成了不完整的统计图.分组:05A ≤<,510B ≤<,1015C ≤<,1520D ≤<.(1)A 组的人数为______:(2)七年级400人中,估计引体向上每分钟不低于10个有多少人?(3)从众数、中位数、平均数中任选一个,说明其意义.20. 一次函数y x m =+经过点()3,0A -,交反比例函数k y x=于点(),4B n .(1)求m n k ,,;(2)点C 在反比例函数k y x =第一象限的图象上,若AO OB C A S S <△△,直接写出C 的横坐标a 的取值范围.21. Rt ABC △中,90ACB ∠=︒,点O 在AC 上,以OC 为半径的圆交AB 于点D ,交AC 于点E .且BD BC =.(1)求证:AB 是O 的切线.(2)连接OB 交O 于点F,若1AD AE ==,求弧CF 长.22. 学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m ,篱笆长80m .设垂直于墙的边AB 长为x 米,平行于墙的边BC 为y 米,围成的矩形面积为2cm S .(1)求y 与,x s 与x 的关系式.的的(2)围成的矩形花圃面积能否为2750cm ,若能,求出x 的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时x 的值.23. 如图,矩形ABCD 中,,E F 分别在,AD BC 上,将四边形ABFE 沿EF 翻折,使A 对称点P 落在AB 上,B 的对称点为G PG ,交BC 于H .(1)求证:EDP PCH △∽△.(2)若P 为CD 中点,且2,3AB BC ==,求GH 长.(3)连接BG ,若P 为CD 中点,H 为BC 中点,探究BG 与AB 大小关系并说明理由.24. 如图1,二次函数23y x bx =-++交x 轴于()1,0A -和B ,交y 轴于C .(1)求b 的值.(2)M 为函数图象上一点,满足MAB ACO ∠=∠,求M 点的横坐标.(3)如图2,将二次函数沿水平方向平移,新的图象记为,L L 与y 轴交于点D ,记DC d =,记L 顶点横坐标为n .①求d 与n 的函数解析式.②记L 与x 轴围成的图象为,U U 与ABC 重合部分(不计边界)记为W ,若d 随n 增加而增加,且W 内恰有2个横坐标与纵坐标均为整数的点,直接写出n 的取值范围.的参考答案一、选择题(每小题3分,共30分)【1题答案】【答案】B【2题答案】【答案】A【3题答案】【答案】D【4题答案】【答案】B【5题答案】【答案】A【6题答案】【答案】D【7题答案】【答案】A【8题答案】【答案】C【9题答案】【答案】B【10题答案】【答案】C二、填空题(每小题3分,共15分)【11题答案】【答案】0【12题答案】【答案】1 5【13题答案】【答案】1【14题答案】【答案】79【15题答案】【答案】 ①. 30︒##30度 ②.三、解答题(75分)【16题答案】【答案】3【17题答案】【答案】证明见解析.【18题答案】【答案】树AB 的高度为8米【19题答案】【答案】(1)12 (2)180(3)见解析【20题答案】【答案】(1)3m =,1n =,4k =;(2)1a >.【21题答案】【答案】(1)见解析 (2)弧CF 的长为3π.【22题答案】【答案】(1)()8021940y x x =-≤<;2280s x x =-+(2)能,25x =(3)s 的最大值为800,此时20x =【23题答案】【答案】(1)见详解 (2)34GH =(3)AB =【24题答案】【答案】(1)2b =;(2)103m=或83m=;(3)①()()22111111n n ndn n⎧-><⎪=⎨--<<⎪⎩或;②nn≤<或11n-<≤-.的。
湖北省黄冈市中考数学试卷含答案解析
2016年湖北省黄冈市中考数学试卷一、选择题:本题共6小题,每小题3分,共18分•每小题给出的4个选项中, 有且只有一个答案是正确的.1. (3分)-2的相反数是()A. 2B.- 2 C . D.2. (3分)下列运算结果正确的是(). 235^ 2^36 — 3 2 小/2、35A. a +a =a B . a ?a =a C . a 宁a =a D. (a )=a3. (3分)如图,直线a// b,Z 1=55°,则/ 2=()A. 35°B. 45°C. 55°D. 65°4. (3分)若方程3x2- 4x- 4=0的两个实数根分别为X1, X2,则X1+X2=()A.- 4 B . 3 C. D.5. (3分)如图,是由四个大小相同的小正方体拼成的几何体,贝U这个几何体的左视图是()A. B. C. D.6. (3分)在函数丫=中,自变量x的取值范围是()A. x > 0B. x >- 4C. x >- 4 且x 工0D. x > 0 且x 工―1二、填空题:每小题3分,共24分.7. ___________________________ (3分)的算术平方根是.8. ________________________________ (3 分)分解因式:4ax2- ay2= .9. (3 分)计算:|1 - | - = ______ .10. _________________________________ (3分)计算(a-)-的结果是.11 . (3 分)如图,O0是厶ABC的外接圆,Z AOB=70 , AB=AC贝U/ABC= __12 . (3分)需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1, - 2, +1,0, +2, - 3, 0, +1,则这组数据的方差是 ___ •13. (3分)如图,在矩形ABC冲,点E、F分别在边CD BC上,且DC=3DE=3.a 将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP ________ .14. (3分)如图,已知△ ABC △ DCE △ FEG △ HGI是4个全等的等腰三角形,底边BC CE EG GI在同一直线上,且AB=2 BC=1连接AI,交FG于点Q 贝U QI= ___________ .三、解答题:共78分.15. (5分)解不等式》3 (X- 1)- 4..16. (6分)在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇17. (7分)如图,在?ABCD中, E、F分别为边AD BC的中点,对角线AC分别交BE, DF于点G H.求证:AG=CH18. (6分)小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A、B C三个班,他俩希望能再次成为同班同学.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人再次成为同班同学的概率.19. (8分)如图,AB是半圆0的直径,点P是BA延长线上一点,PC是O O的切线,切点为C,过点B作BDLPC交PC的延长线于点D,连接BC.求证:(1)Z PBC2 CBD(2)BC=AB?BD20. (6分)望江中学为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t < 20分钟的学生记为A类,20分钟V t < 40分钟的学生记为B类,40分钟V t< 60分钟的学生记为C类,t >60分钟的学生记为D类四种.将收集的数据绘制成如下两幅不完整的统计图•请根据图中提供的信息,解答下列问题:(1)m ____ % n= _______ %这次共抽查了_______ 名学生进行调查统计;(2)请补全上面的条形图;(3)如果该校共有1200名学生,请你估计该校C类学生约有多少人21. (8分)如图,已知点A (1,a)是反比例函数y=-的图象上一点,直线y= -与反比例函数y=-的图象在第四象限的交点为点 B.(1)求直线AB的解析式;(2)动点P (x, 0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.22. (8分)“一号龙卷风”给小岛O造成了较大的破坏,救灾部门迅速组织力量,从仓储D处调集救援物资,计划先用汽车运到与D在同一直线上的C、B、A 三个码头中的一处,再用货船运到小岛O.已知:OAL AD, / ODA=15,/OCA=30,/ OBA=45,CD=20km若汽车行驶的速度为50km/时,货船航行的速度为25km/时,问这批物资在哪个码头装船,最早运抵小岛O(在物资搬运能力上每个码头工作效率相同,参考数据.23. (10分)东坡商贸公司购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p (兀/kg )与时间t (天)之间的函数关系式的关系如表:为p=,且其日销售量y (kg)与时间t(天)时间t (天) 1 361020 40 …日销售量y( kg) 118 11410810080 40 …(1)已知y与t之间的变化规律符合'次函数关系,试求在第30天的日销售量一是多少(2)问哪一天的销售利润最大最大日销售利润为多少(3)在实际销售的前24天中,公司决定每销售1kg水果就捐赠n元利润(n v9)给“精准扶贫”对象.现发现:在前24 天中,每天扣除捐赠后的日销售利润随时间t 的增大而增大,求n 的取值范围.24. (14分)如图,抛物线y=-与x轴交于点A,点B,与y轴交于点C,点D 与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m 0),过点P作x轴的垂线I交抛物线于点Q.(1)求点A、点B、点C的坐标;(2)求直线BD的解析式;(3)当点P在线段OB上运动时,直线I交BD于点M试探究m为何值时,四边形CQM是平行四边形;(4)在点P的运动过程中,是否存在点Q使厶BDC是以BD为直角边的直角三角形若存在,求出点Q的坐标;若不存在,请说明理由.2016 年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题:本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个答案是正确的.1. (3分)-2的相反数是()A. 2B.- 2 C . D.【分析】根据一个数的相反数就是在这个数前面添上“-”号,求解即可.【解答】解:-2的相反数是:-(-2)=2,故选A【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)下列运算结果正确的是()2 3 5 2 3 6 3 2 2 3 5A、 a +a =a B . a ?a =a C . a 宁a =a D. (a)=a【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断即可得解.【解答】解:A a2与a3是加,不是乘,不能运算,故本选项错误;B、a2?a3=a2+3=a5,故本选项错误;C、a3* a2=a3「2=a,故本选项正确;D (a2)3=a2x3=a6,故本选项错误.故选C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,3(3分)如图,直线a// b,Z 1=55°,则/ 2=( )熟练掌握运算性质和法则是解题的关键.A.35 B.45 C.55 D.65【分析】根据两直线平行,同位角相等可得/ 1=7 3,再根据对顶角相等可得/ 2 的度数.【解答】解::a// b,•••7 仁7 3,vZ 1=55°,•7 3=55°,又vZ 2=73,•7 2=55°,故选:C.【点评】此题主要考查了平行线的性质, 关键是掌握:两直线平行, 同位角相等.4. (3分)若方程3x2- 4x- 4=0的两个实数根分别为x i, X2,则x i+X2=( )A.- 4 B . 3 C. D.【分析】由方程的各系数结合根与系数的关系可得出“X i+X2=”,由此即可得出结论.【解答】解:V方程3x2- 4x - 4=0的两个实数根分别为X i, X2,• x1+x2=- = 故选D.【点评】本题考查了根与系数的关系,解题的关键是找出“x i+x2=-=”.本题属于基础题, 难度不大, 解决该题型题目时, 根据根与系数的关系找出两根之和与两根之积是关键.5. (3 分)如图,是由四个大小相同的小正方体拼成的几何体,则这个几何体的左视图是( )A. B. C. D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6. (3分)在函数丫=中,自变量x的取值范围是( )A. x > 0B. x >- 4C. x >- 4 且x 工0D. x > 0 且x 工―1【分析】根据分母不能为零,被开方数是非负数,可得答案.【解答】解:由题意,得x+4>0且x工0,解得x>- 4且x工0,故选:C.【点评】本题考查了函数自变量的取值范围,利用分母不能为零,被开方数是非负数得出不等式是解题关键.二、填空题:每小题3分,共24分.7. (3分)的算术平方根是—.【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:•••的平方为,•••的算术平方根为.故答案为.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误. 44 (3 分)分解因式:4ax2- ay2= a (2x+y) (2x- y) .【分析】首先提取公因式a,再利用平方差进行分解即可.故答案为:a (2x+y)(2x - y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.9. (3 分)计算:|1 - | - = - 1-.【分析】首先去绝对值以及化简二次根式,进而合并同类二次根式即可.【解答】解:|1 - | -=-1 - 2=-1 -.故答案为:-1-.【点评】此题主要考查了实数运算,正确化简二次根式是解题关键.10. (3分)计算(a-)-的结果是a-b .【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=?=?=a- b,故答案为:a - b【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.11.(3 分)如图,O0是厶ABC的外接圆,/ AOB=70 , AB=AC则/ABC= 35°.【分析】先根据圆周角定理求出/ C的度数,再由等腰三角形的性质即可得出结论. 【解答】解:I/ AOB=70,•••/ C=/ AOB=35 .【解答】解:原式=a (4x2- y2)=a (2x+y) (2x- y ),••• AB=AC•••/ ABC/ C=35 .故答案为:35°.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.12. (3分)需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1, - 2, +1, 0,+2, - 3, 0,+1,则这组数据的方差是______ . 【分析】先求出平均数,再利用方差的计算公式解答即可.【解答】解:平均数=,方差==,故答案为:【点评】本题考查了方差公式,解题的关键是牢记公式并能熟练运用,此题比较简单,易于掌握.13. (3分)如图,在矩形ABC冲,点E、F分别在边CD BC上,且DC=3DE=3.a 将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP= 2a .【分析】作FM L AD于M,贝U MF=DC=3a由矩形的性质得出/ C=Z D=90 .由折叠的性质得出PE=CE=2a=2D,E Z EPF=/ C=9C°,求出/ DPE=30,得出/MPF=60,在Rt△ MPF中,由三角函数求出FP即可.【解答】解:作FMLAD于M如图所示:则MF=DC=3a•••四边形ABCD是矩形,•••/ C=/ D=9C° .v DC=3DE=3a••• CE=2a由折叠的性质得:PE=CE=2a=2DE/ EPF=/ C=9C° ,•••/ DPE=30 ,•••/ MPF=180 - 90°- 30° =60°,在Rt△ MPF中, v sin / MPF=FP===2a故答案为:2a.【点评】本题考查了折叠的性质、矩形的性质、三角函数等知识;熟练掌握折叠和矩形的性质,求出/ DPE=30是解决问题的关键.14. (3分)如图,已知△ ABC △ DCE △ FEG △ HGI是4个全等的等腰三角形, 底边BC CE EG GI在同一直线上,且AB=2 BC=1连接AI,交FG于点Q 则QI= .【分析】由题意得出BC=1 BI=4,则=,再由/ ABI=Z ABC得厶ABI s^CBA 根据相似三角形的性质得=,求出AI,根据全等三角形性质得到/ ACB2 FGE 于是得到AC// FG得到比例式==,即可得到结果.【解答】解:•••△ ABC △ DCE △ FEG是三个全等的等腰三角形,.HI=AB=2 GI=BC=1 BI=4BC=4,vZ ABI=Z ABC•••△ABI s^ CBAv AB=AC.AI=BI=4;vZ ACB Z FGE.AC// FG.QI=AI=.故答案为:.【点评】本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解AB// CD// EF, AC// DE// FG是解题的关键.、解答题:共78 分.15. (5分)解不等式》3 (X- 1)- 4..【分析】根据解一元一次不等式的步骤,先去分母,再去括号,移项合并,系数化为1 即可.【解答】解:去分母得,x+1>6 (x - 1)- 8,去括号得,x+1 >6x- 6- 8,移项得,x- 6x>- 6-8- 1,合并同类项得,-5x>- 15.系数化为1,得x<3.【点评】本题考查的是解一元一次不等式,解一元一次不等式的基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.16 .(6 分)在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118 篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少 2 篇,求七年级收到的征文有多少篇【分析】设七年级收到的征文有x 篇,则八年级收到的征文有(118- x )篇.结合七年级收到的征文篇数是八年级收到的征文篇数的一半还少 2 篇,即可列出关于x 的一元一次方程,解方程即可得出结论.【解答】解:设七年级收到的征文有x 篇,则八年级收到的征文有(118- x )篇,依题意得:(x+2)x 2=118- x,解得:x=38.答:七年级收到的征文有38篇.【点评】本题考查了一元一次方程的应用,解题的关键是列出方程(x+2)X2=118 -x.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.17. (7分)如图,在?ABCD中, E、F分别为边AD BC的中点,对角线AC分别交BE DF于点G H.求证:AG=CH【分析】根据平行四边形的性质得到AD// BC得出/ ADF" CFH / EAG M FCH 证出四边形BFDE是平行四边形,得出BE// DF,证出/ AEG" CFH由ASA证明△ AEG^^ CFH得出对应边相等即可.【解答】证明:•••四边形ABCD是平行四边形,••• AD// BC,•••/ ADF M CFH M EAG M FCH••• E、F分别为AD BC边的中点,••• AE=DE=ADCF=BF=BC••• DE// BF , DE=BF•••四边形BFDE是平行四边形,••• BE// DF,•••M AEG" ADF•••M AEG" CFH在厶AEG^P^ CFH中,,•△AEG^A CFH(ASA ,•AG=C.H【点评】本题考查了平行四边形的性质和判定全等三角形的判定与性质;熟练掌握平行四边形的判定与性质证明三角形全等是解决问题的关键.18. (6 分)小明、小林是三河中学九年级的同班同学在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A、B C三个班,他俩希望能再次成为同班同学.( 1)请你用画树状图法或列举法列出所有可能的结果;( 2)求两人再次成为同班同学的概率.【分析】 (1)画树状图法或列举法即可得到所有可能的结果;( 2)由( 1)可知两人再次成为同班同学的概率.【解答】解:( 1)画树状图如下:由树形图可知所以可能的结果为AA,AB,AC,BA,BB,BC,CA,CB,CC;(2)由( 1)可知两人再次成为同班同学的概率==.【点评】本题涉及列表法和树状图法以及相关概率知识,用到的知识点为:概率=所求情况数与总情况数之比.19. (8分)如图,AB是半圆0的直径,点P是BA延长线上一点,PC是O O的切线,切点为C,过点B作BD L PC交PC的延长线于点D,连接BC.求证:(1)Z PBC=/ CBD( 2) BC2=AB?BD【分析】(1)连接0C由PC为圆0的切线,利用切线的性质得到0C垂直于PC,再由BD垂直于PD,得到一对直角相等,利用同位角相等两直线平行得到0C与BD平行,进而得到一对内错角相等,再由0B=0C利用等边对等角得到一对角相等,等量代换即可得证;(2)连接AC,由AB为圆0的直径,禾I」用圆周角定理得到/ ACB为直角,禾U用两对角相等的三角形相似得到三角形ABC与三角形CBD相似,利用相似三角形对应边成比例,变形即可得证.【解答】证明:( 1 )连接0C,••• PC与圆0相切,•••0CL PC,即/ 0CP=90,••• BDL PD,•••/ BDP=90 ,•••/ 0CP N PDB••• 00/ BD,•••/ BC0N CBD••• 0B=0C•••/ PBC2 BC0•••/ PBC2 CBD( 2)连接AC••• AB为圆O的直径,•••/ ACB=90 ,•••/ ACB2 CDB=90 ,vZ ABC2 CBD•••△AB3A CBD贝U B C=AB?BD【点评】此题考查了相似三角形的判定与性质,以及切线的性质,熟练掌握相似三角形的判定与性质是解本题的关键.20. (6分)望江中学为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t < 20分钟的学生记为A类,20分钟V t < 40分钟的学生记为B类,40分钟V t < 60分钟的学生记为C类,t >60分钟的学生记为D类四种.将收集的数据绘制成如下两幅不完整的统计图•请根据图中提供的信息,解答下列问题:(1)m= 26 % n = 14 %这次共抽查了50名学生进行调查统计;(2)请补全上面的条形图;(3)如果该校共有1200名学生,请你估计该校C类学生约有多少人【分析】(1)根据条形统计图和扇形统计图可以求得调查的学生数和m n的值;(2)根据(1)和扇形统计图可以求得C类学生数,从而可以将条形统计图补充完整;(3)根据扇形统计图可以求得该校C类学生的人数.【解答】解:(1)由题意可得,这次调查的学生有:20- 40%=50(人),m=13^ 50 X 100%=26% n=7十50 X 100%=14%故答案为:26,14, 50;(2)由题意可得,C类的学生数为:50 X 20%=10补全的条形统计图,如右图所示,(3)1200X 20%=240(人),即该校 C 类学生约有240 人.【点评】本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件.21. (8分)如图,已知点A (1, a)是反比例函数y=-的图象上一点,直线y= -与反比例函数y=-的图象在第四象限的交点为点 B.(1)求直线AB的解析式;(2)动点P (x, 0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P 的坐标.【分析】(1)先把A (1, a)代入反比例函数解析式求出a得到A点坐标,再解方程组得B点坐标,然后利用待定系数法求AB的解析式;(2)直线AB交x轴于点Q,如图,利用x轴上点的坐标特征得到Q点坐标,则PA- PBc AB (当P、A B共线时取等号),于是可判断当P点运动到Q点时,线段PA与线段PB之差达到最大,从而得到P点坐标.【解答】解:(1)把A (1, a)代入y=-得a=-3,则A (1,- 3),解方程组得或,则B(3,- 1 ),设直线AB的解析式为y=kx+b,把A(1,- 3),B(3,- 1)代入得,解得,所以直线AB的解析式为y=x- 4;(2)直线AB交x轴于点Q,如图,当y=0 时,x - 4=0,解得x=4,则Q (4, 0),因为PA- PBc AB (当P、A B共线时取等号),所以当P点运动到Q点时,线段PA与线段PB之差达到最大,此时P点坐标为(4, 0).【点评】本题考查了反比例函数与一次函数的交点: 反比例函数与一次函数的交 点问题( 1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方 程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.22.(8 分)“一号龙卷风”给小岛 O 造成了较大的破坏,救灾部门迅速组织力 量,从仓储 D 处调集救援物资,计划先用汽车运到与 D 在同一直线上的 C 、B 、A 三个码头中的一处,再用货船运到小岛 0.已知:0A ± AD, / ODA=15,/OCA=30,/ OBA=45 , CD=20km 若汽车行驶的速度为 50km/时,货船航行的 速度为25km/时,问这批物资在哪个码头装船,最早运抵小岛 0(在物资搬运能 力上每个码头工作效率相同,参考数据.【分析】利用三角形外角性质计算出/ COD=1°,贝U CO=CD=20在Rt △ OCA 中 利用含30度的直角三角形三边的关系计算出 OA=OC=,CA=O 浜17,在Rt △ OBA 中利用等腰直角三角形的性质计算出速度公式分别计算出在三个码头装船,进行判断.【解答】 解:I/ OCA M D+/ COD•••/ COD=3° - 15° =15°, ••• CO=CD=20在 Rt △ OCA 中, V/ OCA=30 ,OA=OC=,CA=OA=1 召 17,在 Rt △ OBA 中, V / OBA=45 , .BA=OA=1, OB=O A 14,. BC=17- 10=7,当这批物资在C 码头装船,运抵小岛O 时,所用时间=+=(小时); 当这批物资在B 码头装船,运抵小岛O 时,所用时间=+=(小时); 当这批物资在A 码头装船,运抵小岛O 时,所用时间=+=(小时); 所以这批物资在B 码头装船,最早运抵小岛 O. 点评】本题考查了解直角三角形: 将实际问题抽象为数学问题 (画出平面图形, 构造出直角三角形转化为解直角三角形问题)BA=OA=1,OB=O 次 14, J 贝 BC=7 然后根据 运抵小岛所需的时间, 再比较时间的大小23. (10 分)东坡商贸公司购进某种水果的成本为20元/kg ,经过市场调研发现,这种水果在未来48天的销售单价p (兀/kg ) 与时间t (天)之间的函数关系式为p=,且其日销售量y (kg)与时间t(天) 的关系如表:时间t (天) 1 361020 40 …日销售量y(kg) 118 11410810080 40 …( 1)已知y 与t 之间的变化规律符合次函数关系,试求在第30 天的日销售量一是多少( 2)问哪一天的销售利润最大最大日销售利润为多少(3)在实际销售的前24天中,公司决定每销售1kg水果就捐赠n元利润(n v9) 给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t 的增大而增大,求n 的取值范围.【分析】(1)设y=kt+b,利用待定系数法即可解决问题.(2)日利润=日销售量X每公斤利润,据此分别表示前24天和后24天的日利润,根据函数性质求最大值后比较得结论.(3)列式表示前24天中每天扣除捐赠后的日销售利润,根据函数性质求n的取值范围.【解答】解:( 1 )设y=kt+b ,把t=1 ,y=118;t=3 ,y=114 代入得到:解得,••• y=- 2t+120 .将t=30 代入上式,得:y=- 2X 30+120=60.所以在第30 天的日销售量是60kg.(2)设第x天的销售利润为w元.当Kt <24 时,由题意w= (- 2t+120) (t+30 - 20) =-( t - 10) 2+1250, • t=10 时w 最大值为1250 元.当25< t < 48 时,w= (- 2t+120) (- t+48 - 20) =t2- 116t+3360,•••对称轴t=58,a=1>0,•••在对称轴左侧w随x增大而减小,••• t=25 时,w最大值=1085,综上所述第10 天利润最大,最大利润为1250元.(3)设每天扣除捐赠后的日销售利润为m元.由题意m=(-2t+120) (t+30 - 20)-(- 2t+120) n =- t2+ (10+2n) t+1200 -120n,•••在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,•••->,(见图中提示)•n>.又I n v9,•n的取值范围为v n v 9.【点评】此题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,针对所给条件作出初步判断后需验证其正确性,最值问题需由函数的性质求解时,正确表达关系式是关键.24. (14分)如图,抛物线y=-与x轴交于点A,点B,与y轴交于点C,点D 与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m 0),过点P作x轴的垂线I 交抛物线于点Q.(1)求点A、点B、点C的坐标;(2)求直线BD的解析式;(3)当点P在线段OB上运动时,直线I交BD于点M试探究m为何值时,四边形CQM是平行四边形;(4)在点P的运动过程中,是否存在点Q使厶BDC是以BD为直角边的直角三角形若存在,求出点Q的坐标;若不存在,请说明理由.【分析】(1)根据函数解析式列方程即可得到结论;(2)由点C与点D关于x轴对称,得到D (0,- 2),解方程即可得到结论;(3)如图1所示:根据平行四边形的性质得到QM=C P设点Q的坐标为(m -vm+m+2 ,贝U M( m, mi- 2),列方程即可得到结论;(4)设点Q的坐标为(m - m+m+2,分两种情况:①当/ QBD=90时,根据勾股定理列方程求得m=3 m=4(不合题意,舍去),②当/ QDB=90时,根据勾股定理列方程求得m=8,m=- 1,于是得到结论.【解答】解:(1);令x=0得;y=2,•-C(0, 2).•.•令y=0 得:-=0,解得:x1=- 1 ,x2=4.••• A (- 1, 0),B (4, 0).( 2);点 C 与点 D 关于x 轴对称,•-D( 0,- 2).设直线BD的解析式为y=kx - 2.;将( 4,0)代入得:4k- 2=0,二k=.•••直线BD的解析式为y=x- 2.( 3)如图 1 所示:;QM/ DC,•••当QM=CEtf,四边形CQM是平行四边形.设点Q的坐标为(m, - m i+m+2 ,贝M( m,m- 2),2•- m2+m+2-( m- 2) =4,解得:m=2 m=0(不合题意,舍去),•••当m=2时,四边形CQM是平行四边形;(4)存在,设点Q的坐标为(m, - m l+m+2,•••△ BDQ是以BD为直角边的直角三角形,•①当/ QBD=90时,由勾股定理得:BQ2+BD2=DQ2,即(m- 4) 2+ (- m+m+2 2+20=r r+ (- m+m+2+2),解得:m=3 m=4(不合题意,舍去),•-Q(3, 2);②当/ QDB=90时,由勾股定理得:BQ2=BD2+DQ2,即( m- 4)2+(- m2+m+2)2=20+m2+ ( - m2+m+2+2)2,解得:m=8,m=- 1,••• Q(8,- 18), (- 1, 0),综上所述:点Q的坐标为(3, 2), (8,- 18), (- 1, 0).【点评】本题考查了二次函数综合题,涉及的知识点有:坐标轴上点的特点,待定系数法求直线的解析式, 平行四边形的判定和性质, 勾股定理, 方程思想和分类思想的运用,综合性较强,有一定的难度.。
湖北省黄冈市中考数学试题及答案
湖北省黄冈市中考数学试题及答案第一部分:选择题1. 某班级有60名学生,其中男生占总人数的60%。
那么女生人数是多少?A) 12人B) 18人C) 24人D) 36人答案:D2. 若一颗鸡蛋的重量为y(克),则18颗该鸡蛋的总重量是多少?A) 18y克B) 18/y克C) 18+y克D) 18-y克答案:A3. 若2x + 3 = 4 - x,则x的值为多少?A) -1B) -0.5C) 0D) 1答案:A4. 某图书馆购进了100本图书,其中的60%是故事书,20%是科普书,剩下的是其他类型的图书。
求其他类型的图书数量。
A) 20本B) 30本C) 40本D) 50本答案:B5. 若m = 3n + 2,且m和n都是整数,求n的四倍数加上3的结果。
A) 7B) 8C) 9D) 10答案:B第二部分:填空题6. 25 * 45 = ________答案:11257. 根据下列计算,填写符号(>,<,=):2/5 ____ 4/10答案:=8. 若x + 2 = 6,则x的值为 ________答案:49. 若一个有色长方形的宽度为3cm,长度为4cm,则它的面积为________答案:12cm²10. 一个倒三角形有6个黑色小方块,上层小方块比下层小方块少2个,那么倒三角形底层有多少小方块?答案:7个第三部分:解答题11. 小明一共有20颗糖果,小红有他两倍的糖果数。
他们两个加起来一共有多少颗糖果?解答:小红的糖果数是小明的两倍,所以小红有20 * 2 = 40颗糖果。
他们两个加起来一共有20 + 40 = 60颗糖果。
12. 如果一条直径为10cm的圆,求它的周长和面积。
解答:半径 = 直径 / 2 = 10 / 2 = 5cm周长= 2πr = 2 * 3.14 * 5 = 31.4cm面积= πr² = 3.14 * 5² = 78.5cm²13. 某个蔬菜市场上,西红柿每公斤6元,黄瓜每根2元。
湖北黄冈-初中毕业考试数学试题解析版
湖北省黄冈市中考数学试卷一、填空题(共8小题,每小题3分,满分24分)1、(2011•随州)﹣的倒数是﹣2.考点:倒数。
分析:根据倒数的定义直接解答即可.解答:解:∵(﹣)×(﹣2)=1,∴﹣的倒数是﹣2.点评:本题考查倒数的基本概念,即若两个数的乘积是1,我们就称这两个数互为倒数.属于基础题.2、(2011•随州)分解因式:8a2﹣2=2(2a+1)(2a﹣1).考点:提公因式法与公式法的综合运用。
分析:先提取公因式2,再根据平方差公式进行二次分解即可求得答案.解答:解:8a2﹣2,=2(4a2﹣1),=2(2a+1)(2a﹣1).故答案为:2(2a+1)(2a﹣1).点评:本题考查了提公因式法,公式法分解因式.注意分解要彻底.3、(2011•随州)要使式子有意义,则a的取值范围为a≥﹣2且a≠0.考点:二次根式有意义的条件。
专题:计算题。
分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:a+2≥0且a≠0,解得:a≥﹣2且a≠0.故答案为:a≥﹣2且a≠0.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.4、(2011•随州)如图:点A在双曲线上,AB丄x轴于B,且△AOB 的面积S△AOB=2,则k=﹣4.考点:反比例函数系数k的几何意义。
专题:探究型。
分析:先根据反比例函数图象所在的象限判断出k的符号,再根据S△AOB=2求出k的值即可.解答:解:∵反比例函数的图象在二、四象限,∴k<0,∵S△AOB=2,∴|k|=4,∴k=﹣4.故答案为:﹣4.点评:本题考查的是反比例系数k的几何意义,即在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.5、(2011•鄂州)如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为28.考点:平移的性质。
湖北省黄冈市中考数学试卷及答案
湖北省黄冈市中考数学试卷及答案(考题时间120分钟 满分120分)一、填空题(共10道题,每小题3分,共30分)1.2的平方根是_________.2.分解因式:x 2-x =__________.3.函数31x y x -=+的自变量x 的取值范围是__________________. 4.如图,⊙O 中,MAN 的度数为320°,则圆周角∠MAN =____________.第4题图 第5题图 5.如图,在等腰梯形ABCD 中,AC ⊥BD ,AC =6cm ,则等腰梯形ABCD 的面积为_____cm 2.6.通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a 元后,再次下调了20%,现在收费标准是每分钟b 元,则原收费标准每分钟是_______元.7.如图是由棱长为1的正方体搭成的积木三视图,则图中棱长为1的正方体的个数是______.主视图 左视图 俯视图第7题8.已知,1,2,_______.b a ab a b a b=-==+则式子= 9.如图矩形纸片ABCD ,AB =5cm ,BC =10cm ,CD 上有一点E ,ED =2cm ,AD 上有一点P ,PD =3cm ,过P 作PF ⊥AD 交BC 于F ,将纸片折叠,使P 点与E 点重合,折痕与PF 交于Q 点,则PQ 的长是____________cm.10.将半径为4cm 的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时,圆柱的底面半径是___________cm.第9题图 第10题图二、选择题(A ,B ,C ,D 四个答案中,有且只有一个是正确的,每小题3分,共18分)11.下列运算正确的是( )A .1331-÷=B .2a a =C .3.14 3.14ππ-=-D .326211()24a b a b = 12.化简:211()(3)31x x x x +-•---的结果是( ) A .2 B .21x - C .23x - D .41x x -- 13.在△ABC 中,∠C =90°,sinA =45,则tanB = ( ) A .43 B .34 C .35 D .45 14.若函数22(2)2x x y x ⎧+=⎨⎩ ≤ (x>2),则当函数值y =8时,自变量x 的值是( )A .±6B .4C .±6或4D .4或-615.如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA =CQ 时,连PQ 交AC 边于D ,则DE 的长为( )A .13B .12C .23D .不能确定第15题图16.已知四条直线y =kx -3,y =-1,y =3和x =1所围成的四边形的面积是12,则k 的值为( )A .1或-2B .2或-1C .3D .4三、解答题(共9道大题,共72分)17.(6分)解不等式组110334(1)1x x +⎧-⎪⎨⎪--<⎩≥18.(6分)如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE 交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由。
历年湖北省黄冈市中考数学试题(含答案)
2016年湖北省黄冈市中考数学试卷一、选择题:本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个答案是正确的.1.(3分)(2016•黄冈)﹣2的相反数是()A.2 B.﹣2 C.D.2.(3分)(2016•黄冈)下列运算结果正确的是()A.a2+a3=a5B.a2•a3=a6C.a3÷a2=a D.(a2)3=a53.(3分)(2016•黄冈)如图,直线a∥b,∠1=55°,则∠2=()A.35°B.45°C.55°D.65°4.(3分)(2016•黄冈)若方程3x2﹣4x﹣4=0的两个实数根分别为x1,x2,则x1+x2=()A.﹣4 B.3 C.D.5.(3分)(2016•黄冈)如图,是由四个大小相同的小正方体拼成的几何体,则这个几何体的左视图是()A.B.C.D.6.(3分)(2016•黄冈)在函数y=中,自变量x的取值范围是()A.x>0 B.x≥﹣4 C.x≥﹣4且x≠0 D.x>0且x≠﹣1二、填空题:每小题3分,共24分.7.(3分)(2016•黄冈)的算术平方根是.8.(3分)(2016•黄冈)分解因式:4ax2﹣ay2=.9.(3分)(2016•黄冈)计算:|1﹣|﹣=.10.(3分)(2016•黄冈)计算(a﹣)÷的结果是.11.(3分)(2016•黄冈)如图,⊙O是△ABC的外接圆,∠AOB=70°,AB=AC,则∠ABC=.12.(3分)(2016•黄冈)需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,﹣2,+1,0,+2,﹣3,0,+1,则这组数据的方差是.13.(3分)(2016•黄冈)如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=3a.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP=.14.(3分)(2016•黄冈)如图,已知△ABC、△DCE、△FEG、△HGI是4个全等的等腰三角形,底边BC、CE、EG、GI在同一直线上,且AB=2,BC=1,连接AI,交FG于点Q,则QI=.三、解答题:共78分.15.(5分)(2016•黄冈)解不等式.16.(6分)(2016•黄冈)在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?17.(7分)(2016•黄冈)如图,在▱ABCD中,E、F分别为边AD、BC的中点,对角线AC 分别交BE,DF于点G、H.求证:AG=CH.18.(6分)(2016•黄冈)小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A、B、C三个班,他俩希望能再次成为同班同学.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人再次成为同班同学的概率.19.(8分)(2016•黄冈)如图,AB是半圆O的直径,点P是BA延长线上一点,PC是⊙O的切线,切点为C,过点B作BD⊥PC交PC的延长线于点D,连接BC.求证:(1)∠PBC=∠CBD;(2)BC2=AB•BD.20.(6分)(2016•黄冈)望江中学为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t≤20分钟的学生记为A类,20分钟<t≤40分钟的学生记为B类,40分钟<t≤60分钟的学生记为C 类,t>60分钟的学生记为D类四种.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)m=%,n=%,这次共抽查了名学生进行调查统计;(2)请补全上面的条形图;(3)如果该校共有1200名学生,请你估计该校C类学生约有多少人?21.(8分)(2016•黄冈)如图,已知点A(1,a)是反比例函数y=﹣的图象上一点,直线y=﹣与反比例函数y=﹣的图象在第四象限的交点为点B.(1)求直线AB的解析式;(2)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.22.(8分)(2016•黄冈)“一号龙卷风”给小岛O造成了较大的破坏,救灾部门迅速组织力量,从仓储D处调集救援物资,计划先用汽车运到与D在同一直线上的C、B、A三个码头中的一处,再用货船运到小岛O.已知:OA⊥AD,∠ODA=15°,∠OCA=30°,∠OBA=45°CD=20km.若汽车行驶的速度为50km/时,货船航行的速度为25km/时,问这批物资在哪个码头装船,最早运抵小岛O?(在物资搬运能力上每个码头工作效率相同,参考数据:≈1.4,≈1.7).23.(10分)(2016•黄冈)东坡商贸公司购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为p=,且其日销售量y(kg)与时间t(天)的关系如表:时间t(天) 1 3 6 10 20 40 …日销售量y118 114 108 100 80 40 …(kg)(1)已知y与t之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少?(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1kg水果就捐赠n元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.24.(14分)(2016•黄冈)如图,抛物线y=﹣与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A、点B、点C的坐标;(2)求直线BD的解析式;(3)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时,四边形CQMD 是平行四边形;(4)在点P的运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.2016年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题:本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个答案是正确的.1.(3分)(2016•黄冈)﹣2的相反数是()A.2 B.﹣2 C.D.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选A【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)(2016•黄冈)下列运算结果正确的是()A.a2+a3=a5B.a2•a3=a6C.a3÷a2=a D.(a2)3=a5【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断即可得解.【解答】解:A、a2与a3是加,不是乘,不能运算,故本选项错误;B、a2•a3=a2+3=a5,故本选项错误;C、a3÷a2=a3﹣2=a,故本选项正确;D、(a2)3=a2×3=a6,故本选项错误.故选C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.3.(3分)(2016•黄冈)如图,直线a∥b,∠1=55°,则∠2=()A.35°B.45°C.55°D.65°【分析】根据两直线平行,同位角相等可得∠1=∠3,再根据对顶角相等可得∠2的度数.【解答】解:∵a∥b,∴∠1=∠3,∵∠1=55°,∴∠3=55°,又∵∠2=∠3,∴∠2=55°,故选:C.【点评】此题主要考查了平行线的性质,关键是掌握:两直线平行,同位角相等.4.(3分)(2016•黄冈)若方程3x2﹣4x﹣4=0的两个实数根分别为x1,x2,则x1+x2=()A.﹣4 B.3 C.D.【分析】由方程的各系数结合根与系数的关系可得出“x1+x2=,x1•x2=﹣”,由此即可得出结论.【解答】解:∵方程3x2﹣4x﹣4=0的两个实数根分别为x1,x2,∴x1+x2=﹣=,x1•x2==﹣.故选D.【点评】本题考查了根与系数的关系,解题的关键是找出“x1+x2=﹣=,x1•x2==﹣”.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.5.(3分)(2016•黄冈)如图,是由四个大小相同的小正方体拼成的几何体,则这个几何体的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.(3分)(2016•黄冈)在函数y=中,自变量x的取值范围是()A.x>0 B.x≥﹣4 C.x≥﹣4且x≠0 D.x>0且x≠﹣1【分析】根据分母不能为零,被开方数是非负数,可得答案.【解答】解:由题意,得x+4≥0且x≠0,解得x≥﹣4且x≠0,故选:C.【点评】本题考查了函数自变量的取值范围,利用分母不能为零,被开方数是非负数得出不等式是解题关键.二、填空题:每小题3分,共24分.7.(3分)(2016•黄冈)的算术平方根是.【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵的平方为,∴的算术平方根为.故答案为.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.8.(3分)(2016•黄冈)分解因式:4ax2﹣ay2=a(2x+y)(2x﹣y).【分析】首先提取公因式a,再利用平方差进行分解即可.【解答】解:原式=a(4x2﹣y2)=a(2x+y)(2x﹣y),故答案为:a(2x+y)(2x﹣y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.9.(3分)(2016•黄冈)计算:|1﹣|﹣=﹣1﹣.【分析】首先去绝对值以及化简二次根式,进而合并同类二次根式即可.【解答】解:|1﹣|﹣=﹣1﹣2=﹣1﹣.故答案为:﹣1﹣.【点评】此题主要考查了实数运算,正确化简二次根式是解题关键.10.(3分)(2016•黄冈)计算(a﹣)÷的结果是a﹣b.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=•=a﹣b,故答案为:a﹣b【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.11.(3分)(2016•黄冈)如图,⊙O是△ABC的外接圆,∠AOB=70°,AB=AC,则∠ABC= 35°.【分析】先根据圆周角定理求出∠C的度数,再由等腰三角形的性质即可得出结论.【解答】解:∵∠AOB=70°,∴∠C=∠AOB=35°.∵AB=AC,∴∠ABC=∠C=35°.故答案为:35°.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.12.(3分)(2016•黄冈)需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,﹣2,+1,0,+2,﹣3,0,+1,则这组数据的方差是 2.5.【分析】先求出平均数,再利用方差的计算公式解答即可.【解答】解:平均数=,方差==2.5,故答案为:2.5【点评】本题考查了方差公式,解题的关键是牢记公式并能熟练运用,此题比较简单,易于掌握.13.(3分)(2016•黄冈)如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=3a.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP=2a.【分析】作FM⊥AD于M,则MF=DC=3a,由矩形的性质得出∠C=∠D=90°.由折叠的性质得出PE=CE=2a=2DE,∠EPF=∠C=90°,求出∠DPE=30°,得出∠MPF=60°,在Rt△MPF 中,由三角函数求出FP即可.【解答】解:作FM⊥AD于M,如图所示:则MF=DC=3a,∵四边形ABCD是矩形,∴∠C=∠D=90°.∵DC=3DE=3a,∴CE=2a,由折叠的性质得:PE=CE=2a=2DE,∠EPF=∠C=90°,∴∠DPE=30°,∴∠MPF=180°﹣90°﹣30°=60°,在Rt△MPF中,∵sin∠MPF=,∴FP===2a;故答案为:2a.【点评】本题考查了折叠的性质、矩形的性质、三角函数等知识;熟练掌握折叠和矩形的性质,求出∠DPE=30°是解决问题的关键.14.(3分)(2016•黄冈)如图,已知△ABC、△DCE、△FEG、△HGI是4个全等的等腰三角形,底边BC、CE、EG、GI在同一直线上,且AB=2,BC=1,连接AI,交FG于点Q,则QI=.【分析】由题意得出BC=1,BI=4,则=,再由∠ABI=∠ABC,得△ABI∽△CBA,根据相似三角形的性质得=,求出AI,根据全等三角形性质得到∠ACB=∠FGE,于是得到AC∥FG,得到比例式==,即可得到结果.【解答】解:∵△ABC、△DCE、△FEG是三个全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=4BC=4,∴==,=,∴=,∵∠ABI=∠ABC,∴△ABI∽△CBA;∴=,∵AB=AC,∴AI=BI=4;∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故答案为:.【点评】本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解AB∥CD ∥EF,AC∥DE∥FG是解题的关键.三、解答题:共78分.15.(5分)(2016•黄冈)解不等式.【分析】根据解一元一次不等式的步骤,先去分母,再去括号,移项合并,系数化为1即可.【解答】解:去分母得,x+1≥6(x﹣1)﹣8,去括号得,x+1≥6x﹣6﹣8,移项得,x﹣6x≥﹣6﹣8﹣1,合并同类项得,﹣5x≥﹣15.系数化为1,得x≤3.【点评】本题考查的是解一元一次不等式,解一元一次不等式的基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.16.(6分)(2016•黄冈)在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?【分析】设七年级收到的征文有x篇,则八年级收到的征文有(118﹣x)篇.结合七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,即可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设七年级收到的征文有x篇,则八年级收到的征文有(118﹣x)篇,依题意得:(x+2)×2=118﹣x,解得:x=38.答:七年级收到的征文有38篇.【点评】本题考查了一元一次方程的应用,解题的关键是列出方程(x+2)×2=118﹣x.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.17.(7分)(2016•黄冈)如图,在▱ABCD中,E、F分别为边AD、BC的中点,对角线AC 分别交BE,DF于点G、H.求证:AG=CH.【分析】根据平行四边形的性质得到AD∥BC,得出∠ADF=∠CFH,∠EAG=∠FCH,证出四边形BFDE是平行四边形,得出BE∥DF,证出∠AEG=∠CFH,由ASA证明△AEG ≌△CFH,得出对应边相等即可.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADF=∠CFH,∠EAG=∠FCH,∵E、F分别为AD、BC边的中点,∴AE=DE=AD,CF=BF=BC,∴DE∥BF,DE=BF,∴四边形BFDE是平行四边形,∴BE∥DF,∴∠AEG=∠ADF,∴∠AEG=∠CFH,在△AEG和△CFH中,,∴△AEG≌△CFH(ASA),∴AG=CH.【点评】本题考查了平行四边形的性质和判定,全等三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题的关键.18.(6分)(2016•黄冈)小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A、B、C三个班,他俩希望能再次成为同班同学.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人再次成为同班同学的概率.【分析】(1)画树状图法或列举法,即可得到所有可能的结果;(2)由(1)可知两人再次成为同班同学的概率.【解答】解:(1)画树状图如下:由树形图可知所以可能的结果为AA,AB,AC,BA,BB,BC,CA,CB,CC;(2)由(1)可知两人再次成为同班同学的概率==.【点评】本题涉及列表法和树状图法以及相关概率知识,用到的知识点为:概率=所求情况数与总情况数之比.19.(8分)(2016•黄冈)如图,AB是半圆O的直径,点P是BA延长线上一点,PC是⊙O的切线,切点为C,过点B作BD⊥PC交PC的延长线于点D,连接BC.求证:(1)∠PBC=∠CBD;(2)BC2=AB•BD.【分析】(1)连接OC,由PC为圆O的切线,利用切线的性质得到OC垂直于PC,再由BD垂直于PD,得到一对直角相等,利用同位角相等两直线平行得到OC与BD平行,进而得到一对内错角相等,再由OB=OC,利用等边对等角得到一对角相等,等量代换即可得证;(2)连接AC,由AB为圆O的直径,利用圆周角定理得到∠ACB为直角,利用两对角相等的三角形相似得到三角形ABC与三角形CBD相似,利用相似三角形对应边成比例,变形即可得证.【解答】证明:(1)连接OC,∵PC与圆O相切,∴OC⊥PC,即∠OCP=90°,∵BD⊥PD,∴∠BDP=90°,∴∠OCP=∠PDB,∴OC∥BD,∴∠BCO=∠CBD,∵OB=OC,∴∠PBC=∠BCO,∴∠PBC=∠CBD;(2)连接AC,∵AB为圆O的直径,∴∠ACB=90°,∴∠ACB=∠CDB=90°,∵∠ABC=∠CBD,∴△ABC∽△CBD,∴=,则BC2=AB•BD.【点评】此题考查了相似三角形的判定与性质,以及切线的性质,熟练掌握相似三角形的判定与性质是解本题的关键.20.(6分)(2016•黄冈)望江中学为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t≤20分钟的学生记为A类,20分钟<t≤40分钟的学生记为B类,40分钟<t≤60分钟的学生记为C 类,t>60分钟的学生记为D类四种.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)m=26%,n=14%,这次共抽查了50名学生进行调查统计;(2)请补全上面的条形图;(3)如果该校共有1200名学生,请你估计该校C类学生约有多少人?【分析】(1)根据条形统计图和扇形统计图可以求得调查的学生数和m、n的值;(2)根据(1)和扇形统计图可以求得C类学生数,从而可以将条形统计图补充完整;(3)根据扇形统计图可以求得该校C类学生的人数.【解答】解:(1)由题意可得,这次调查的学生有:20÷40%=50(人),m=13÷50×100%=26%,n=7÷50×100%=14%,故答案为:26,14,50;(2)由题意可得,C类的学生数为:50×20%=10,补全的条形统计图,如右图所示,(3)1200×20%=240(人),即该校C类学生约有240人.【点评】本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件.21.(8分)(2016•黄冈)如图,已知点A(1,a)是反比例函数y=﹣的图象上一点,直线y=﹣与反比例函数y=﹣的图象在第四象限的交点为点B.(1)求直线AB的解析式;(2)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.【分析】(1)先把A(1,a)代入反比例函数解析式求出a得到A点坐标,再解方程组得B点坐标,然后利用待定系数法求AB的解析式;(2)直线AB交x轴于点Q,如图,利用x轴上点的坐标特征得到Q点坐标,则PA﹣PB ≤AB(当P、A、B共线时取等号),于是可判断当P点运动到Q点时,线段PA与线段PB 之差达到最大,从而得到P点坐标.【解答】解:(1)把A(1,a)代入y=﹣得a=﹣3,则A(1,﹣3),解方程组得或,则B(3,﹣1),设直线AB的解析式为y=kx+b,把A(1,﹣3),B(3,﹣1)代入得,解得,所以直线AB的解析式为y=x﹣4;(2)直线AB交x轴于点Q,如图,当y=0时,x﹣4=0,解得x=4,则Q(4,0),因为PA﹣PB≤AB(当P、A、B共线时取等号),所以当P点运动到Q点时,线段PA与线段PB之差达到最大,此时P点坐标为(4,0).【点评】本题考查了反比例函数与一次函数的交点:反比例函数与一次函数的交点问题(1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.22.(8分)(2016•黄冈)“一号龙卷风”给小岛O造成了较大的破坏,救灾部门迅速组织力量,从仓储D处调集救援物资,计划先用汽车运到与D在同一直线上的C、B、A三个码头中的一处,再用货船运到小岛O.已知:OA⊥AD,∠ODA=15°,∠OCA=30°,∠OBA=45°CD=20km.若汽车行驶的速度为50km/时,货船航行的速度为25km/时,问这批物资在哪个码头装船,最早运抵小岛O?(在物资搬运能力上每个码头工作效率相同,参考数据:≈1.4,≈1.7).【分析】利用三角形外角性质计算出∠COD=15°,则CO=CD=20,在Rt△OCA中利用含30度的直角三角形三边的关系计算出OA=OC=10,CA=OA≈17,在Rt△OBA中利用等腰直角三角形的性质计算出BA=OA=10,OB=OA≈14,则BC=7,然后根据速度公式分别计算出在三个码头装船,运抵小岛所需的时间,再比较时间的大小进行判断.【解答】解:∵∠OCA=∠D+∠COD,∴∠COD=30°﹣15°=15°,∴CO=CD=20,在Rt△OCA中,∵∠OCA=30°,∴OA=OC=10,CA=OA=10≈17,在Rt△OBA中,∵∠OBA=45°,∴BA=OA=10,OB=OA≈14,∴BC=17﹣10=7,当这批物资在C码头装船,运抵小岛O时,所用时间=+=1.2(小时);当这批物资在B码头装船,运抵小岛O时,所用时间=+=1.1(小时);当这批物资在A码头装船,运抵小岛O时,所用时间=+=1.14(小时);所以这批物资在B码头装船,最早运抵小岛O.【点评】本题考查了解直角三角形:将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).23.(10分)(2016•黄冈)东坡商贸公司购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为p=,且其日销售量y(kg)与时间t(天)的关系如表:时间t(天) 1 3 6 10 20 40 …日销售量y118 114 108 100 80 40 …(kg)(1)已知y与t之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少?(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1kg水果就捐赠n元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.【分析】(1)设y=kt+b,利用待定系数法即可解决问题.(2)日利润=日销售量×每公斤利润,据此分别表示前24天和后24天的日利润,根据函数性质求最大值后比较得结论.(3)列式表示前24天中每天扣除捐赠后的日销售利润,根据函数性质求n的取值范围.【解答】解:(1)设y=kt+b,把t=1,y=118;t=3,y=114代入得到:解得,∴y=﹣2t+120.将t=30代入上式,得:y=﹣2×30+120=60.所以在第30天的日销售量是60kg.(2)设第x天的销售利润为w元.当1≤t≤24时,由题意w=(﹣2t+120)(t+30﹣20)=﹣(t﹣10)2+1250,∴t=10时w最大值为1250元.当25≤t≤48时,w=(﹣2t+120)((﹣t+48﹣20)=t2﹣116t+3360,∵对称轴x=58,a=1>0,∴在对称轴左侧w随x增大而减小,∴x=25时,w最大值=1085,综上所述第10天利润最大,最大利润为1250元.(3)设每天扣除捐赠后的日销售利润为m元.由题意m=(﹣2t+120)(t+30﹣20)﹣(﹣2t+120)n=﹣t2+(10+2n)t+1200﹣120n,∵在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,∴﹣≥24,∴n≥7.又∵n<9,∴n的取值范围为7≤n<9.【点评】此题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,针对所给条件作出初步判断后需验证其正确性,最值问题需由函数的性质求解时,正确表达关系式是关键.24.(14分)(2016•黄冈)如图,抛物线y=﹣与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A、点B、点C的坐标;(2)求直线BD的解析式;(3)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时,四边形CQMD 是平行四边形;(4)在点P的运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.【分析】(1)根据函数解析式列方程即可得到结论;(2)由点C与点D关于x轴对称,得到D(0,﹣2),解方程即可得到结论;(3)如图1所示:根据平行四边形的性质得到QM=CD,设点Q的坐标为(m,﹣m2+m+2),则M(m,m﹣2),列方程即可得到结论;(4)设点Q的坐标为(m,﹣m2+m+2),分两种情况:①当∠QBD=90°时,根据勾股定理列方程求得m=3,m=4(不合题意,舍去),②当∠QDB=90°时,根据勾股定理列方程求得m=8,m=﹣1,于是得到结论.【解答】解:(1)∵令x=0得;y=2,∴C(0,2).∵令y=0得:﹣=0,解得:x1=﹣1,x2=4.∴A(﹣1,0),B(4,0).(2)∵点C与点D关于x轴对称,∴D(0,﹣2).设直线BD的解析式为y=kx﹣2.∵将(4,0)代入得:4k﹣2=0,∴k=.∴直线BD的解析式为y=x﹣2.(3)如图1所示:∵QM∥DC,∴当QM=CD时,四边形CQMD是平行四边形.设点Q的坐标为(m,﹣m2+m+2),则M(m,m﹣2),∴﹣m2+m+2﹣(m﹣2)=4,解得:m=2,m=0(不合题意,舍去),∴当m=2时,四边形CQMD是平行四边形;(4)存在,设点Q的坐标为(m,﹣m2+m+2),∵△BDQ是以BD为直角边的直角三角形,∴①当∠QBD=90°时,由勾股定理得:BQ2+BD2=DQ2,即(m﹣4)2+(﹣m2+m+2)2+20=m2+(﹣m2+m+2+2)2,解得:m=3,m=4(不合题意,舍去),∴Q(3,2);②当∠QDB=90°时,由勾股定理得:BQ2=BD2+DQ2,即(m﹣4)2+(﹣m2+m+2)2=20+m2+(﹣m2+m+2+2)2,解得:m=8,m=﹣1,∴Q(8,﹣18),(﹣1,0),综上所述:点Q的坐标为(3,2),(8,﹣18),(﹣1,0).【点评】本题考查了二次函数综合题,涉及的知识点有:坐标轴上点的特点,待定系数法求直线的解析式,平行四边形的判定和性质,勾股定理,方程思想和分类思想的运用,综合性较强,有一定的难度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年湖北省黄冈市中考数学试卷一、选择题:本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个答案是正确的.1.(3分)(2016•黄冈)﹣2的相反数是()A.2 B.﹣2 C.D.2.(3分)(2016•黄冈)下列运算结果正确的是()A.a2+a3=a5B.a2•a3=a6C.a3÷a2=a D.(a2)3=a53.(3分)(2016•黄冈)如图,直线a∥b,∠1=55°,则∠2=()A.35°B.45°C.55°D.65°4.(3分)(2016•黄冈)若方程3x2﹣4x﹣4=0的两个实数根分别为x1,x2,则x1+x2=()A.﹣4 B.3 C.D.5.(3分)(2016•黄冈)如图,是由四个大小相同的小正方体拼成的几何体,则这个几何体的左视图是()A.B.C.D.6.(3分)(2016•黄冈)在函数y=中,自变量x的取值范围是()A.x>0 B.x≥﹣4 C.x≥﹣4且x≠0 D.x>0且x≠﹣1二、填空题:每小题3分,共24分.7.(3分)(2016•黄冈)的算术平方根是.8.(3分)(2016•黄冈)分解因式:4ax2﹣ay2=.9.(3分)(2016•黄冈)计算:|1﹣|﹣=.10.(3分)(2016•黄冈)计算(a﹣)÷的结果是.11.(3分)(2016•黄冈)如图,⊙O是△ABC的外接圆,∠AOB=70°,AB=AC,则∠ABC=.12.(3分)(2016•黄冈)需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,﹣2,+1,0,+2,﹣3,0,+1,则这组数据的方差是.13.(3分)(2016•黄冈)如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=3a.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP=.14.(3分)(2016•黄冈)如图,已知△ABC、△DCE、△FEG、△HGI是4个全等的等腰三角形,底边BC、CE、EG、GI在同一直线上,且AB=2,BC=1,连接AI,交FG于点Q,则QI=.三、解答题:共78分.15.(5分)(2016•黄冈)解不等式.16.(6分)(2016•黄冈)在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?17.(7分)(2016•黄冈)如图,在▱ABCD中,E、F分别为边AD、BC的中点,对角线AC 分别交BE,DF于点G、H.求证:AG=CH.18.(6分)(2016•黄冈)小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A、B、C三个班,他俩希望能再次成为同班同学.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人再次成为同班同学的概率.19.(8分)(2016•黄冈)如图,AB是半圆O的直径,点P是BA延长线上一点,PC是⊙O的切线,切点为C,过点B作BD⊥PC交PC的延长线于点D,连接BC.求证:(1)∠PBC=∠CBD;(2)BC2=AB•BD.20.(6分)(2016•黄冈)望江中学为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t≤20分钟的学生记为A类,20分钟<t≤40分钟的学生记为B类,40分钟<t≤60分钟的学生记为C 类,t>60分钟的学生记为D类四种.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)m=%,n=%,这次共抽查了名学生进行调查统计;(2)请补全上面的条形图;(3)如果该校共有1200名学生,请你估计该校C类学生约有多少人?21.(8分)(2016•黄冈)如图,已知点A(1,a)是反比例函数y=﹣的图象上一点,直线y=﹣与反比例函数y=﹣的图象在第四象限的交点为点B.(1)求直线AB的解析式;(2)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.22.(8分)(2016•黄冈)“一号龙卷风”给小岛O造成了较大的破坏,救灾部门迅速组织力量,从仓储D处调集救援物资,计划先用汽车运到与D在同一直线上的C、B、A三个码头中的一处,再用货船运到小岛O.已知:OA⊥AD,∠ODA=15°,∠OCA=30°,∠OBA=45°CD=20km.若汽车行驶的速度为50km/时,货船航行的速度为25km/时,问这批物资在哪个码头装船,最早运抵小岛O?(在物资搬运能力上每个码头工作效率相同,参考数据:≈1.4,≈1.7).23.(10分)(2016•黄冈)东坡商贸公司购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为p=,且其日销售量y(kg)与时间t(天)的关系如(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1kg水果就捐赠n元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.24.(14分)(2016•黄冈)如图,抛物线y=﹣与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A、点B、点C的坐标;(2)求直线BD的解析式;(3)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时,四边形CQMD 是平行四边形;(4)在点P的运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.2016年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题:本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个答案是正确的.1.(3分)(2016•黄冈)﹣2的相反数是()A.2 B.﹣2 C.D.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选A【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)(2016•黄冈)下列运算结果正确的是()A.a2+a3=a5B.a2•a3=a6C.a3÷a2=a D.(a2)3=a5【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断即可得解.【解答】解:A、a2与a3是加,不是乘,不能运算,故本选项错误;B、a2•a3=a2+3=a5,故本选项错误;C、a3÷a2=a3﹣2=a,故本选项正确;D、(a2)3=a2×3=a6,故本选项错误.故选C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.3.(3分)(2016•黄冈)如图,直线a∥b,∠1=55°,则∠2=()A.35°B.45°C.55°D.65°【分析】根据两直线平行,同位角相等可得∠1=∠3,再根据对顶角相等可得∠2的度数.【解答】解:∵a∥b,∴∠1=∠3,∵∠1=55°,∴∠3=55°,又∵∠2=∠3,∴∠2=55°,故选:C.【点评】此题主要考查了平行线的性质,关键是掌握:两直线平行,同位角相等.4.(3分)(2016•黄冈)若方程3x2﹣4x﹣4=0的两个实数根分别为x1,x2,则x1+x2=()A.﹣4 B.3 C.D.【分析】由方程的各系数结合根与系数的关系可得出“x1+x2=,x1•x2=﹣”,由此即可得出结论.【解答】解:∵方程3x2﹣4x﹣4=0的两个实数根分别为x1,x2,∴x1+x2=﹣=,x1•x2==﹣.故选D.【点评】本题考查了根与系数的关系,解题的关键是找出“x1+x2=﹣=,x1•x2==﹣”.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.5.(3分)(2016•黄冈)如图,是由四个大小相同的小正方体拼成的几何体,则这个几何体的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.(3分)(2016•黄冈)在函数y=中,自变量x的取值范围是()A.x>0 B.x≥﹣4 C.x≥﹣4且x≠0 D.x>0且x≠﹣1【分析】根据分母不能为零,被开方数是非负数,可得答案.【解答】解:由题意,得x+4≥0且x≠0,解得x≥﹣4且x≠0,故选:C.【点评】本题考查了函数自变量的取值范围,利用分母不能为零,被开方数是非负数得出不等式是解题关键.二、填空题:每小题3分,共24分.7.(3分)(2016•黄冈)的算术平方根是.【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵的平方为,∴的算术平方根为.故答案为.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.8.(3分)(2016•黄冈)分解因式:4ax2﹣ay2=a(2x+y)(2x﹣y).【分析】首先提取公因式a,再利用平方差进行分解即可.【解答】解:原式=a(4x2﹣y2)=a(2x+y)(2x﹣y),故答案为:a(2x+y)(2x﹣y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.9.(3分)(2016•黄冈)计算:|1﹣|﹣=﹣1﹣.【分析】首先去绝对值以及化简二次根式,进而合并同类二次根式即可.【解答】解:|1﹣|﹣=﹣1﹣2=﹣1﹣.故答案为:﹣1﹣.【点评】此题主要考查了实数运算,正确化简二次根式是解题关键.10.(3分)(2016•黄冈)计算(a﹣)÷的结果是a﹣b.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=•=a﹣b,故答案为:a﹣b【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.11.(3分)(2016•黄冈)如图,⊙O是△ABC的外接圆,∠AOB=70°,AB=AC,则∠ABC= 35°.【分析】先根据圆周角定理求出∠C的度数,再由等腰三角形的性质即可得出结论.【解答】解:∵∠AOB=70°,∴∠C=∠AOB=35°.∵AB=AC,∴∠ABC=∠C=35°.故答案为:35°.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.12.(3分)(2016•黄冈)需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,﹣2,+1,0,+2,﹣3,0,+1,则这组数据的方差是 2.5.【分析】先求出平均数,再利用方差的计算公式解答即可.【解答】解:平均数=,方差==2.5,故答案为:2.5【点评】本题考查了方差公式,解题的关键是牢记公式并能熟练运用,此题比较简单,易于掌握.13.(3分)(2016•黄冈)如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=3a.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP=2a.【分析】作FM⊥AD于M,则MF=DC=3a,由矩形的性质得出∠C=∠D=90°.由折叠的性质得出PE=CE=2a=2DE,∠EPF=∠C=90°,求出∠DPE=30°,得出∠MPF=60°,在Rt△MPF 中,由三角函数求出FP即可.【解答】解:作FM⊥AD于M,如图所示:则MF=DC=3a,∵四边形ABCD是矩形,∴∠C=∠D=90°.∵DC=3DE=3a,∴CE=2a,由折叠的性质得:PE=CE=2a=2DE,∠EPF=∠C=90°,∴∠DPE=30°,∴∠MPF=180°﹣90°﹣30°=60°,在Rt△MPF中,∵sin∠MPF=,∴FP===2a;故答案为:2a.【点评】本题考查了折叠的性质、矩形的性质、三角函数等知识;熟练掌握折叠和矩形的性质,求出∠DPE=30°是解决问题的关键.14.(3分)(2016•黄冈)如图,已知△ABC、△DCE、△FEG、△HGI是4个全等的等腰三角形,底边BC、CE、EG、GI在同一直线上,且AB=2,BC=1,连接AI,交FG于点Q,则QI=.【分析】由题意得出BC=1,BI=4,则=,再由∠ABI=∠ABC,得△ABI∽△CBA,根据相似三角形的性质得=,求出AI,根据全等三角形性质得到∠ACB=∠FGE,于是得到AC∥FG,得到比例式==,即可得到结果.【解答】解:∵△ABC、△DCE、△FEG是三个全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=4BC=4,∴==,=,∴=,∵∠ABI=∠ABC,∴△ABI∽△CBA;∴=,∵AB=AC,∴AI=BI=4;∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故答案为:.【点评】本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解AB∥CD ∥EF,AC∥DE∥FG是解题的关键.三、解答题:共78分.15.(5分)(2016•黄冈)解不等式.【分析】根据解一元一次不等式的步骤,先去分母,再去括号,移项合并,系数化为1即可.【解答】解:去分母得,x+1≥6(x﹣1)﹣8,去括号得,x+1≥6x﹣6﹣8,移项得,x﹣6x≥﹣6﹣8﹣1,合并同类项得,﹣5x≥﹣15.系数化为1,得x≤3.【点评】本题考查的是解一元一次不等式,解一元一次不等式的基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.16.(6分)(2016•黄冈)在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?【分析】设七年级收到的征文有x篇,则八年级收到的征文有(118﹣x)篇.结合七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,即可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设七年级收到的征文有x篇,则八年级收到的征文有(118﹣x)篇,依题意得:(x+2)×2=118﹣x,解得:x=38.答:七年级收到的征文有38篇.【点评】本题考查了一元一次方程的应用,解题的关键是列出方程(x+2)×2=118﹣x.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.17.(7分)(2016•黄冈)如图,在▱ABCD中,E、F分别为边AD、BC的中点,对角线AC 分别交BE,DF于点G、H.求证:AG=CH.【分析】根据平行四边形的性质得到AD∥BC,得出∠ADF=∠CFH,∠EAG=∠FCH,证出四边形BFDE是平行四边形,得出BE∥DF,证出∠AEG=∠CFH,由ASA证明△AEG ≌△CFH,得出对应边相等即可.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADF=∠CFH,∠EAG=∠FCH,∵E、F分别为AD、BC边的中点,∴AE=DE=AD,CF=BF=BC,∴DE∥BF,DE=BF,∴四边形BFDE是平行四边形,∴BE∥DF,∴∠AEG=∠ADF,∴∠AEG=∠CFH,在△AEG和△CFH中,,∴△AEG≌△CFH(ASA),∴AG=CH.【点评】本题考查了平行四边形的性质和判定,全等三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题的关键.18.(6分)(2016•黄冈)小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A、B、C三个班,他俩希望能再次成为同班同学.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人再次成为同班同学的概率.【分析】(1)画树状图法或列举法,即可得到所有可能的结果;(2)由(1)可知两人再次成为同班同学的概率.【解答】解:(1)画树状图如下:由树形图可知所以可能的结果为AA,AB,AC,BA,BB,BC,CA,CB,CC;(2)由(1)可知两人再次成为同班同学的概率==.【点评】本题涉及列表法和树状图法以及相关概率知识,用到的知识点为:概率=所求情况数与总情况数之比.19.(8分)(2016•黄冈)如图,AB是半圆O的直径,点P是BA延长线上一点,PC是⊙O的切线,切点为C,过点B作BD⊥PC交PC的延长线于点D,连接BC.求证:(1)∠PBC=∠CBD;(2)BC2=AB•BD.【分析】(1)连接OC,由PC为圆O的切线,利用切线的性质得到OC垂直于PC,再由BD垂直于PD,得到一对直角相等,利用同位角相等两直线平行得到OC与BD平行,进而得到一对内错角相等,再由OB=OC,利用等边对等角得到一对角相等,等量代换即可得证;(2)连接AC,由AB为圆O的直径,利用圆周角定理得到∠ACB为直角,利用两对角相等的三角形相似得到三角形ABC与三角形CBD相似,利用相似三角形对应边成比例,变形即可得证.【解答】证明:(1)连接OC,∵PC与圆O相切,∴OC⊥PC,即∠OCP=90°,∵BD⊥PD,∴∠BDP=90°,∴∠OCP=∠PDB,∴OC∥BD,∴∠BCO=∠CBD,∵OB=OC,∴∠PBC=∠BCO,∴∠PBC=∠CBD;(2)连接AC,∵AB为圆O的直径,∴∠ACB=90°,∴∠ACB=∠CDB=90°,∵∠ABC=∠CBD,∴△ABC∽△CBD,∴=,则BC2=AB•BD.【点评】此题考查了相似三角形的判定与性质,以及切线的性质,熟练掌握相似三角形的判定与性质是解本题的关键.20.(6分)(2016•黄冈)望江中学为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t≤20分钟的学生记为A类,20分钟<t≤40分钟的学生记为B类,40分钟<t≤60分钟的学生记为C 类,t>60分钟的学生记为D类四种.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)m=26%,n=14%,这次共抽查了50名学生进行调查统计;(2)请补全上面的条形图;(3)如果该校共有1200名学生,请你估计该校C类学生约有多少人?【分析】(1)根据条形统计图和扇形统计图可以求得调查的学生数和m、n的值;(2)根据(1)和扇形统计图可以求得C类学生数,从而可以将条形统计图补充完整;(3)根据扇形统计图可以求得该校C类学生的人数.【解答】解:(1)由题意可得,这次调查的学生有:20÷40%=50(人),m=13÷50×100%=26%,n=7÷50×100%=14%,故答案为:26,14,50;(2)由题意可得,C类的学生数为:50×20%=10,补全的条形统计图,如右图所示,(3)1200×20%=240(人),即该校C类学生约有240人.【点评】本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件.21.(8分)(2016•黄冈)如图,已知点A(1,a)是反比例函数y=﹣的图象上一点,直线y=﹣与反比例函数y=﹣的图象在第四象限的交点为点B.(1)求直线AB的解析式;(2)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.【分析】(1)先把A(1,a)代入反比例函数解析式求出a得到A点坐标,再解方程组得B点坐标,然后利用待定系数法求AB的解析式;(2)直线AB交x轴于点Q,如图,利用x轴上点的坐标特征得到Q点坐标,则PA﹣PB ≤AB(当P、A、B共线时取等号),于是可判断当P点运动到Q点时,线段PA与线段PB 之差达到最大,从而得到P点坐标.【解答】解:(1)把A(1,a)代入y=﹣得a=﹣3,则A(1,﹣3),解方程组得或,则B(3,﹣1),设直线AB的解析式为y=kx+b,把A(1,﹣3),B(3,﹣1)代入得,解得,所以直线AB的解析式为y=x﹣4;(2)直线AB交x轴于点Q,如图,当y=0时,x﹣4=0,解得x=4,则Q(4,0),因为PA﹣PB≤AB(当P、A、B共线时取等号),所以当P点运动到Q点时,线段PA与线段PB之差达到最大,此时P点坐标为(4,0).【点评】本题考查了反比例函数与一次函数的交点:反比例函数与一次函数的交点问题(1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.22.(8分)(2016•黄冈)“一号龙卷风”给小岛O造成了较大的破坏,救灾部门迅速组织力量,从仓储D处调集救援物资,计划先用汽车运到与D在同一直线上的C、B、A三个码头中的一处,再用货船运到小岛O.已知:OA⊥AD,∠ODA=15°,∠OCA=30°,∠OBA=45°CD=20km.若汽车行驶的速度为50km/时,货船航行的速度为25km/时,问这批物资在哪个码头装船,最早运抵小岛O?(在物资搬运能力上每个码头工作效率相同,参考数据:≈1.4,≈1.7).【分析】利用三角形外角性质计算出∠COD=15°,则CO=CD=20,在Rt△OCA中利用含30度的直角三角形三边的关系计算出OA=OC=10,CA=OA≈17,在Rt△OBA中利用等腰直角三角形的性质计算出BA=OA=10,OB=OA≈14,则BC=7,然后根据速度公式分别计算出在三个码头装船,运抵小岛所需的时间,再比较时间的大小进行判断.【解答】解:∵∠OCA=∠D+∠COD,∴∠COD=30°﹣15°=15°,∴CO=CD=20,在Rt△OCA中,∵∠OCA=30°,∴OA=OC=10,CA=OA=10≈17,在Rt△OBA中,∵∠OBA=45°,∴BA=OA=10,OB=OA≈14,∴BC=17﹣10=7,当这批物资在C码头装船,运抵小岛O时,所用时间=+=1.2(小时);当这批物资在B码头装船,运抵小岛O时,所用时间=+=1.1(小时);当这批物资在A码头装船,运抵小岛O时,所用时间=+=1.14(小时);所以这批物资在B码头装船,最早运抵小岛O.【点评】本题考查了解直角三角形:将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).23.(10分)(2016•黄冈)东坡商贸公司购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为p=,且其日销售量y(kg)与时间t(天)的关系如(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1kg水果就捐赠n元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.【分析】(1)设y=kt+b,利用待定系数法即可解决问题.(2)日利润=日销售量×每公斤利润,据此分别表示前24天和后24天的日利润,根据函数性质求最大值后比较得结论.(3)列式表示前24天中每天扣除捐赠后的日销售利润,根据函数性质求n的取值范围.【解答】解:(1)设y=kt+b,把t=1,y=118;t=3,y=114代入得到:解得,∴y=﹣2t+120.将t=30代入上式,得:y=﹣2×30+120=60.所以在第30天的日销售量是60kg.(2)设第x天的销售利润为w元.当1≤t≤24时,由题意w=(﹣2t+120)(t+30﹣20)=﹣(t﹣10)2+1250,∴t=10时w最大值为1250元.当25≤t≤48时,w=(﹣2t+120)((﹣t+48﹣20)=t2﹣116t+3360,∵对称轴x=58,a=1>0,∴在对称轴左侧w随x增大而减小,∴x=25时,w最大值=1085,综上所述第10天利润最大,最大利润为1250元.(3)设每天扣除捐赠后的日销售利润为m元.由题意m=(﹣2t+120)(t+30﹣20)﹣(﹣2t+120)n=﹣t2+(10+2n)t+1200﹣120n,∵在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,∴﹣≥24,∴n≥7.又∵n<9,∴n的取值范围为7≤n<9.【点评】此题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,针对所给条件作出初步判断后需验证其正确性,最值问题需由函数的性质求解时,正确表达关系式是关键.24.(14分)(2016•黄冈)如图,抛物线y=﹣与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A、点B、点C的坐标;(2)求直线BD的解析式;(3)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时,四边形CQMD 是平行四边形;(4)在点P的运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.【分析】(1)根据函数解析式列方程即可得到结论;(2)由点C与点D关于x轴对称,得到D(0,﹣2),解方程即可得到结论;(3)如图1所示:根据平行四边形的性质得到QM=CD,设点Q的坐标为(m,﹣m2+m+2),则M(m,m﹣2),列方程即可得到结论;(4)设点Q的坐标为(m,﹣m2+m+2),分两种情况:①当∠QBD=90°时,根据勾股定理列方程求得m=3,m=4(不合题意,舍去),②当∠QDB=90°时,根据勾股定理列方程求得m=8,m=﹣1,于是得到结论.【解答】解:(1)∵令x=0得;y=2,∴C(0,2).∵令y=0得:﹣=0,解得:x1=﹣1,x2=4.∴A(﹣1,0),B(4,0).(2)∵点C与点D关于x轴对称,∴D(0,﹣2).设直线BD的解析式为y=kx﹣2.∵将(4,0)代入得:4k﹣2=0,∴k=.∴直线BD的解析式为y=x﹣2.(3)如图1所示:∵QM∥DC,∴当QM=CD时,四边形CQMD是平行四边形.设点Q的坐标为(m,﹣m2+m+2),则M(m,m﹣2),∴﹣m2+m+2﹣(m﹣2)=4,解得:m=2,m=0(不合题意,舍去),∴当m=2时,四边形CQMD是平行四边形;(4)存在,设点Q的坐标为(m,﹣m2+m+2),∵△BDQ是以BD为直角边的直角三角形,∴①当∠QBD=90°时,由勾股定理得:BQ2+BD2=DQ2,即(m﹣4)2+(﹣m2+m+2)2+20=m2+(﹣m2+m+2+2)2,解得:m=3,m=4(不合题意,舍去),∴Q(3,2);②当∠QDB=90°时,由勾股定理得:BQ2=BD2+DQ2,即(m﹣4)2+(﹣m2+m+2)2=20+m2+(﹣m2+m+2+2)2,解得:m=8,m=﹣1,∴Q(8,﹣18),(﹣1,0),综上所述:点Q的坐标为(3,2),(8,﹣18),(﹣1,0).【点评】本题考查了二次函数综合题,涉及的知识点有:坐标轴上点的特点,待定系数法求直线的解析式,平行四边形的判定和性质,勾股定理,方程思想和分类思想的运用,综合性较强,有一定的难度.。