(精品)九年级数学下册教案26.2 实际问题与反比例函数教学设计1

合集下载

26.2实际问题与反比例函数(教案)初中数学人教版九年级下册

26.2实际问题与反比例函数(教案)初中数学人教版九年级下册

第二十六章反比例函数26.2实际问题与反比例函数教案教学目标:1.根据实际问题中的条件确定反比例函数的解析式2.通过所列的反比例函数解析式解决实际问题3.在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型教学重点:1.根据实际问题中的条件确定反比例函数的解析式2.通过所列的反比例函数解析式解决实际问题教学难点:通过所列的反比例函数解析式解决实际问题教学过程:一、复习提问,引入新课教师提出问题:我们已经学习了反比例函数的定义、图象和性质,回顾一次函数、二次函数的学习过程,接下来我们应该探究什么?类比一次函数、二次函数的学习过程,引出如何应用反比例函数解决实际问题.二、探究新知探究一:市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500 m2,施工队施工时应该向地下掘进多深?(3)当施工队按(2)中的计划掘进到地下15 m时,公司临时改变计划,把储存室的深度改为15 m.相应地,储存室的底面积应改为多少?(结果保留小数点后两位)思考:(1)圆柱的体积公式是什么?(2)该探究题中包含哪些量?哪些是常量?哪些是变量?你能写出S与d的关系式吗?你能从函数的角度来解释这个关系式吗?(3)把储存室的底面积S定为500m2,从函数角度来看,你怎么理解?把储存室的深度改为15m又是什么意思呢?解:(1)∵V S d=⋅∴410VSd d ==(2)∵底面积S定为500 m2∴410 500d=∴20d=(3)∵深度改为15 m∴410666.6715S=≈答:(1)函数关系式为410Sd =;(2)当S定为500 m2时,应掘进20m;(3)当深度改为15m时,底面积应改为约666.67 m2.总结:应用反比例函数解决实际问题的一般步骤:①仔细审题,确定变量和常量;②适当方法,得到函数解析式;③根据已知,代入求出未知量;④结合所求,写出实际问题答案.探究二:码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,平均卸货速度v(单位:吨/天)与卸货天数t(单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,要求船上的货物不超过5天卸载完毕,那么平均每天至少要卸载多少吨?解:(1)∵308240v t⋅=⨯=∴240 vt =(2)∵要求船上的货物不超过5天卸载完毕∴2405 tv=≤∴48v≥答:(1)函数关系式为240tv =;(2)平均每天至少要卸载48吨.师生活动:学生独立思考,教师适时提问,在这个问题中常量是什么?变量是什么?是否符合反比例函数的模型,如果是反比例函数,那么其比例系数是什么?在此基础上,学生写出平均卸货速度v(单位:吨/天)与卸货天数t之间的函数关系式.教师引导学生从函数角度出发,该如何理解“不超过5天卸载完毕”,并进行讨论,寻求解决问题的方法.学生交流展示,教师对学生中出现的不同解法给予点评,并规范书写过程.三、例题练习例题1小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂分别为1200 N 和0.5 m.(助力×阻力臂=动力×动力臂)(1)动力F 与动力臂l 有怎样的函数关系?当动力臂为1.5 m 时,撬动石头至少需要多大的力?(2)若想使动力F 不超过题(1)中所用力的一半,则动力臂l 至少要加长多少?解:(1)∵12000.5600Fl=⨯=∴600 Fl =∵动力臂为1.5m∴6004001.5F==(2)∵动力F 不超过所用力的一半∴6004002002Fl=≤=∴3l≥∴3 1.5 1.5-=答:(1)撬动石头至少需要400 N 的力;(2)动力臂 l 至少要加长 1.5 m.例题2一个用电器的电阻是可调节的,其范围为 110~220 Ω.已知电压为 220 V.2()U P R= (1)功率 P 与电阻 R 有怎样的函数关系?(2)这个用电器功率的范围是多少?解:(1)∵220U = ∴2220P R= (2)∵110220R ≤≤ ∴2220110220P≤≤ ∴220440P ≤≤答:(1)函数关系式为:2220P R=; (2)这个用电器功率的范围是 220~440 W.目的:让学生进一步体会数学建模思想,并用反比例函数解决实际问题.四、课后练习1.某城市市区人口x 万人,市区绿地面积50万平方米,平均每人拥有绿地y 平方米,则y 与x 之间的函数表达式为( )A.50y x =+B.50y x =C.50y x =D.50x y =解析:由城市市区人口x 万人,市区绿地面积50万平方米, 则平均每人拥有绿地50y x=. 故选:C.2.根据物理学知识,在压力不变的情况下,某物体承受的压强(Pa)p 是它的受力面积()2m S 的反比例函数,其函数图象如图所示,当20.25m S =时,该物体承受的压强p 的值为________Pa .答案:4002.根据物理学知识,在压力不变的情况下,某物体承受的压强(Pa)p 是它的受力面积()2m S 的反比例函数,其函数图象如图所示,当20.25m S =时,该物体承受的压强p 的值为________Pa .3.某型号汽车行驶时功率一定,行驶速度v (单位:m/s )与所受阻力F (单位:N )是反比例函数关系,其图象如图所示.若该型号汽车在某段公路上行驶时速度4. 在质量不变的情况下,某物体的密度()3kg /m ρ与体积()3V m 成反比例,其函数图象如图所示,解答下列问题:(1)试确定ρ与V 之间的函数表达式;(2)当310m V =时,求物体的密度.6(0)V V =>. ()30.6kg /m =. 解析:(1)设ρ与V 之间的函数表达式为, 将的坐标代入,与之间的函数表达式为. (2)当时, 物体的密度 . 六、小结今天我们学习了哪些知识?1.能够根据实际问题中的条件确定反比例函数的解析式2.通过所列的反比例函数解析式解决实际问题七、板书设计实际问题与反比例函数应用反比例函数解决实际问题的一般步骤: ①仔细审题,确定变量和常量;(0)k V V ρ=>(3,2)A ρ==6k ∴=ρ∴V 6(0)V Vρ=>310m V =()360.6kg /m 10ρ==②适当方法,得到函数解析式;③根据已知,代入求出未知量;④结合所求,写出实际问题答案.。

(名师整理)数学九年级下册第26章《26.2实际问题与反比例函数》优秀教案

(名师整理)数学九年级下册第26章《26.2实际问题与反比例函数》优秀教案

26.2实际问题与反比例函数(1)教案体验反比例函数是有效地描述现实世界的重要手段假设两人经过的路程一样,自行车和公交车的速度保持不且自行车速度小于公交车速度.你能找出两人返回时【教师指导】易错提醒一般地,建立函数解析式有以下两种方法:(1)待定系数法:若题目提供的信息中明确此函数为反比例函数,则可设出反比例函数解析式为y=(k≠0),然后求)进而求出函数解析式某自来水公司计划新建一个容积为(2)四、【教后反思】本节课讨论了反比例函数的某些应用,在这些实际应用中,备课时根据“高效课堂”的四大板块进行,注意到与学生的实际生活相联系,切实发生在学生的身边的某些实际情境,并且注意用函数观点来处理问题或对问题的解决用函数做出某种解释,用以加深对函数的认识,并突出知识之间的内在联系。

本节的主要内容是让学生逐步形成用函数的观点处理问题意识,体验数形结合的思想方法.教学时,能够达到三维目标的要求,突出重点把握难点。

能够让学生经历数学知识的应用过程,关注对问题的分析过程,让学生自己利用已经具备的知识分析实例.用函数的观点处理实际问题的关键在于分析实际情境,建立函数模型,并进一步提出明确的数学问题,注意分析的过程,即将实际问题置于已有的知识背景之中,用数学知识重新理解(这是什么?可以看成什么?),让学生逐步学会用数学的眼光考察实际问题.同时,在解决问题的过程中,要充分利用函数的图象,渗透数形结合的思想.具体分析本节课,首先简单的用几分钟时间回顾一下反比例函数的基本理论,“学习理论是为了服务于实践”的一句话,打开了本节课的课题,过渡自然。

本节课用函数的观点处理实际问题,主要围绕着面积、体积这样的实际问题,通过在压力一定的条件下冰面压强与面积的关系,圆柱体储气罐,矩形在面积一定的情形下矩形的长与宽的关系这几个例题,认识到反比例函数与实际问题的关系,在讲解这几个例子的时候,创设了学生熟悉的情境,这样更能引起学生的兴趣,使学生更积极地参与到教学中来,因为情境熟悉,也能快速地与学生产生共鸣。

数学人教版九年级下册26.2实际问题与反比例函数教学设计(推荐5篇)

数学人教版九年级下册26.2实际问题与反比例函数教学设计(推荐5篇)

数学人教版九年级下册26.2实际问题与反比例函数教学设计(推荐5篇)第一篇:数学人教版九年级下册26.2 实际问题与反比例函数教学设计26.2 实际问题与反比例函数教学设计【设计理念】在很多人的印象中,数学除了繁琐的计算、抽象的符号就是让人头疼的几何证明。

实际上数学是一门具有丰富内容并且与现实世界联系非常密切的学科。

本节就体现了反比例函数是解决实际问题的有效的数学模型的思想。

教师创设问题情境,激发学生探究实际问题的兴趣,引发学生思考,体验数学知识的实用性。

让学生经历“问题情境→建立模型→拓展应用”的过程,培养学生善于发现问题、积极参与学习的能力,培养学生的数学应用意识,充分开发学生的潜能。

【教材分析】本节课选自义务教育课程标准实验教科书《数学》(人教版)八年级下册第十七章第二节“实际问题与反比例函数”的第一节。

在前面学习了反比例函数的概念及函数的图象和性质的基础上,使学生进一步体验反比例函数在现实世界中的无处不在,以及如何应用反比例函数的知识解决现实世界中的实际问题。

虽然教科书在本节安排了四个现实生活中的问题,但我们却采用了自编的关于教师上班的路程问题,因为这个问题是全校师生所熟悉的亲身经历的事件,这样能让学生真正体验到数学知识来源于实际生活又反过来服务实际生活这种数学建模思想。

同时又通过问题的内容加深学生与教师的情感,培养学生的感恩意识,更重要的是通过让学生举出一个生活中的反比例函数应用的事例培养学生的语言表达能力及与人合作的意识。

【学情分析】学生已经有了反比例函数的概念及其图象与性质这些知识基础,另外在小学也学过反比例,并且上学期已经学习了正比例函数、一次函数,因此学生已经有了一定的知识准备。

但由于所教学生都是农村学生,信息掌握程度不高,知识面较窄,语言表达能力较差,因此,本节课教师更换了例题,使学生从身边事物入手,真正体会到数学知识来源于生活,有一种亲切感。

在学习中要让学生经历实践、思考、表达与交流的过程,给学生留下充足的时间来活动,不断引导学生利用数学知识来解决实际问题。

九年级数学下册-26.2实际问题与反比例函数(1)教案

九年级数学下册-26.2实际问题与反比例函数(1)教案

26.2实际问题与反比例函数(1)教案一、【教材分析】二、【教学流程】自主探究[探究]探究1:市煤气公司要在地下修建一个容积为104 m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下掘进多深?(3)当施工队按(2)中的计划掘进到地下15m时,碰上了坚硬的岩石.为了节约建设资金,储存室的底面积应改为多少才能满足需要(保留两位小数)?探究2:码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度v(单位:吨/天)与卸货时间t(单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5日内卸载完毕,那么平均每天至少要卸多少吨货物?(1)问首先要弄清此题中各数量间的关系,容积为104,底面积是S,深度为d,满足基本公式:圆柱的体积=底面积×高,由题意知S是函数,d是自变量,改写后所得的函数关系式是反比例函数的形式.(2)问实际上是已知函数S的值,求自变量d的取值,(3)问则是与(2)相反.根据装货速度×装货时间=货物的总量,可以求出轮船装载货物的总量;再根据卸货速度=货物的总量÷卸货时间,得到v与t的函数式.计算,一学期(按150天计算)刚好用完.若每天的耗煤量为x吨,那么这批煤能维持y天.(1)则y与x之间有怎样的函数关系?(2)画函数图象(3)若每天节约0.1吨,则这批煤能维持多少天?系,体会数形结合及转化的思想方法.补偿提高1. 在□ABCD中,AB=4cm,BC=1cm,E是CD边上一动点,AE、BC的延长线交于点F,设DE=x(cm),BF=y(cm).则y与x之间的函数关系式为 ____________,并写出自变量x的取值范围为____________.2.设∆ABC中BC边的长为x(cm),BC上的高AD为y(cm).已知y关于x的函数图象过点(3,4).⑴求y关于x的函数解析式和∆ABC 的面积.⑵画出函数的图象,并利用图象,求当2<x<8时y的取值范围.三角形的一边长与这边的高成反比.利用函数图像求y取值范围.小结通过本节课的学习你有什么收获?1. 知识小结:面积一定时,矩形的长与宽成反比;面积一定时,三角形的一边长与这边的高成反比;体积一定时,柱体的底面积与高成反比等.建立反比例函数模型解决实际问题时,要注意自变量的取值范围.2. 思想方法小结──深刻领会函数解析式与函数图象之间的联系,体会数形结合及三、【板书设计】四、【教后反思】本节课讨论了反比例函数的某些应用,在这些实际应用中,备课时根据“高效课堂”的四大板块进行,注意到与学生的实际生活相联系,切实发生在学生的身边的某些实际情境,并且注意用函数观点来处理问题或对问题的解决用函数做出某种解释,用以加深对函数的认识,并突出知识之间的内在联系。

九年级数学下册《实际问题与反比例函数》教案、教学设计

九年级数学下册《实际问题与反比例函数》教案、教学设计
4.掌握反比例函数的图像变换规律,能够画出图像,分析图像所反映的实际问题。
(二)过程与方法
在本章节的教学过程中,学生将通过以下过程与方法提高数学素养:
1.通过小组合作、讨论的方式,培养学生发现问题、分析问题、解决问题的能力。
2.利用实际问题引入反比例函数,让学生体会数学与现实生活的联系,提高数学应用意识。
1.学生在数学思维和逻辑推理方面的个体差异,针对不同层次的学生进行分层教学,使全体学生都能在原有基础上得到提高。
2.培养学生将实际问题转化为数学模型的意识,引导学生从生活实例中发现反比例关系,提高学生运用数学知识解决实际问题的能力。
3.注重激发学生的学习兴趣,鼓励学生积极参与课堂讨论,培养学生主动探究、合作交流的学习习惯。
4.针对学生在解决实际问题时可能出现的困惑,教师应及时给予指导,帮助学生建立信心,克服困难,提高解决问题的能力。
5.注重培养学生的数形结合思想,引导学生通过观察、分析反比例函数图像,深入理解反比例函数的性质,为后续学习打下坚实基础。
三、教学重难点和教学设想
(一)教学重难点
1.重点:反比例函数的定义、性质及其在实际问题中的应用。
2.引导:很好,这就是我们今天要学习的反比例函数。反比例函数是描述两个变量成反比关系的数学模型。那么,什么是反比例函数呢?它有哪些性质?我们又该如何应用它来解决实际问题呢?
(二)讲授新知
在这一环节,我将引导学生探究反比例函数的定义、性质和应用。
1.定义:反比例函数是一种特殊类型的函数,其一般形式为y = k/x(k≠0)。其中,x和y是两个变量,k是常数。
2.难点:将实际问题抽象为反比例函数模型,运用反比例函数解决实际问题。
(二)教学设想
1.教学方法:

人教版九年级数学下册第26章教案:26.2实际问题与反比例函数

人教版九年级数学下册第26章教案:26.2实际问题与反比例函数
3.培养学生的逻辑推理和数学抽象素养,使学生能够从实际问题中抽象出反比例函数关系,运用逻辑推理进行问题求解;
4.培养学生的数学建模素养,通过构建反比例函数模型,让学生体会数学在解决实际问题中的价值和作用;
5.培养学生的团队协作和交流能力,鼓励学生在解决问题过程中进行讨论、分享观点,提高解决问题的效率。
3.重点难点解析:在讲授过程中,我会特别强调反比例函数的定义和图像这两个重点。对于难点部分,比如反比例函数在实际问题中的应用,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与反比例函数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如测量不同速度下的时间,来演示反比例函数的基本原理。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解反比例函数的基本概念。反比例函数是形如f(x) = k/x (k ≠ 0)的函数,它在实际问题中有着广泛的应用。它是描述反比关系的重要数学工具,可以帮助我们解决生活中的许多问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了反比例函数在计算速度、密度等实际问题中的应用,以及它如何帮助我们解决问题。
d.解决实际问题时,合理选择变量和参数。
举例解释:
-图像与实际问题的联系:如速度与时间的关系,速度越大,所需时间越短,图像上表现为x轴靠近原点的部分;
-模型构建难点:在确定反比例关系时,需要注意变量的取值范围,避免出现不符合实际的情况;
-图像分析:如双曲线的渐近线,在实际问题中代表什么含义,如何影响问题的解答;
c.实际问题求解,利用反比例函数建立模型;
d.反比例函数在实际问题中的图像分析;

人教版数学九年级下册26.2《实际问题与反比例函数》教学设计

人教版数学九年级下册26.2《实际问题与反比例函数》教学设计

人教版数学九年级下册26.2《实际问题与反比例函数》教学设计一. 教材分析人教版数学九年级下册第26.2节《实际问题与反比例函数》是本册教材中的一个重要内容。

本节内容主要让学生了解反比例函数在实际问题中的应用,通过解决实际问题,培养学生运用数学知识解决实际问题的能力。

教材通过丰富的实例,引导学生认识反比例函数的实际意义,感受数学与生活的紧密联系。

二. 学情分析九年级的学生已经学习了反比例函数的基本知识,对反比例函数的定义、性质有一定的了解。

但学生在解决实际问题时,往往不能将数学知识与实际问题有效结合,对反比例函数在实际问题中的应用还不够熟练。

因此,在教学本节内容时,要注重培养学生的实际问题解决能力,引导学生运用反比例函数解决实际问题。

三. 教学目标1.了解反比例函数在实际问题中的应用,感受数学与生活的紧密联系。

2.能够运用反比例函数解决实际问题,提高学生的实际问题解决能力。

3.培养学生的合作交流能力,提高学生的数学素养。

四. 教学重难点1.反比例函数在实际问题中的应用。

2.如何将实际问题转化为反比例函数问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中发现数学规律。

2.利用合作交流的方式,让学生在讨论中解决问题,提高学生的合作能力。

3.通过实例讲解,让学生感受反比例函数在实际问题中的应用。

六. 教学准备1.准备与反比例函数实际问题相关的实例。

2.准备多媒体教学设备,如投影仪、计算机等。

3.准备学生分组讨论所需的学习材料。

七. 教学过程1.导入(5分钟)利用一个实际问题引入本节课的内容,如“一辆汽车以60km/h的速度行驶,行驶1小时,行驶的路程是多少?”引导学生思考实际问题与反比例函数的关系。

2.呈现(10分钟)呈现几个与反比例函数实际问题相关的实例,如“一个长方形的面积是24cm²,长是8cm,求宽是多少?”让学生尝试解决这些问题,体会反比例函数在实际问题中的应用。

人教版数学九年级下册26.2实际问题与反比例函数反比例函数在物理学中的应用教学设计

人教版数学九年级下册26.2实际问题与反比例函数反比例函数在物理学中的应用教学设计
二、学情分析
九年级下册的学生已经具备了一定的数学基础,掌握了正比例函数、一次函数等基本函数的概念及其应用。在此基础上,他们对反比例函数的学习将更加顺利。然而,学生对反比例函数在物理学中的应用可能还较为陌生,需要教师在教学过程中加以引导。此外,学生在解决实际问题时,可能会遇到以下困难:
1.不能熟练地将实际问题转化为数学模型;
4.巩固练习,提升能力
设计具有梯度的练习题,让学生独立完成,巩固所学知识。同时,鼓励学生尝试将反比例函数应用于其他物理问题,提高解决问题的能力。
5.总结反思,拓展延伸
在课程尾声,教师引导学生总结反比例函数的性质和应用,反思学习过程中的收获与不足。此外,可布置一道拓展题,让学生在课后继续思考,培养其自主学习能力。
2.在运用反比例函数解决物理问题时,对公式的理解不够深入;
3.部分学生对小组合作、讨论等学习方式不够适应。
针对以上学情,教师应关注以下几点:
1.注重激发学生的兴趣,引导他们发现反比例函数在物理学中的广泛应用;
2.通过实例分析,帮助学生理解反比例函数与物理现象之间的关系,提高数学建模能力;
3.鼓励学生积极参与小组合作、讨论,培养团队协作意识,提高解决问题的能力;
(五)总结归纳
1.教师引导学生回顾本节课所学内容,总结反比例函数的定义、性质及其在物理学中的应用。
2.学生分享学习收获,反思学习过程中遇到的困难和解决方法。
3.教师对学生的表现给予肯定,强调反比例函数在实际问题中的应用价值,鼓励学生在课后继续探索反比例函数的相关知识。
五、作业布置
为了巩固本节课所学知识,提升学生对反比例函数的理解和应用能力,特布置以下作业:
(二)过程与方法
1.通过小组合作、讨论、探究的方式,培养学生主动发现问题的能力;

数学人教版九年级下册26.2 实际问题与反比例函数(一)教学设计

数学人教版九年级下册26.2 实际问题与反比例函数(一)教学设计

26.2 实际问题与反比例函数(一)教学设计教学目标知识与技能1、能灵活运用反比例函数的知识解决实际问题。

2、经历“实际问题——建立模型——拓展应用”的过程发展学生分析问题,解决问题的能力。

过程与方法经历观察、分析讨论法,交流的过程,逐步提高从实际问题中变量之间的关系,建立反比例函数模型的过程,认识反比例函数性质的应用方法。

情感态度与价值观1、从现实情境中提出问题,提高“用数学”的意识。

2、体验反比例函数是有效地描述现实世界的重要手段,体验数学的实用性,提高学数学的兴趣。

重点运用反比例函数的意义和性质解决实际问题。

难点从实际问题中寻找变量之间的关系,建立数学模型,教学时注意分析过程,渗透转化的数学思想。

教学过程第一步;提问引入创设情景活动一:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全,迅速通过这片湿地,他们沿着路线铺了若干块木板,构筑成一条临时通道,从而顺利完成的任务的情境。

(1)当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强P(Pa)将如何变化?(2)如果人和木板反湿地的压力合计600N,那么P是S 的反比例函数吗?为什么?(3)如果人和木板对湿地的压力合计为600N,那么当木板面积为0.2m2时,压强是多少?活动二:某煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室。

(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500 m2,施工队施工时应该向下掘进多深?(3)当施工队施工的计划掘进到地下15m时,碰到了岩石,为了节约资金,公司临时改设计,把储存室的深改为15m,相应的,储存室的底面积改为多少才能满足需要。

(保留两位小数)?第二步:应用举例巩固提高例1近视眼镜的度数y(度)与焦距x(m)成反比例,已知400•度近视眼镜镜片的焦距为0.25m.(1)试求眼镜度数y与镜片焦距x之间的函数关系式;(2)求1 000度近视眼镜镜片的焦距.【分析】把实际问题转化为求反比例函数的解析式的问题.解:(1)设y=kx,把x=0.25,y=400代入,得400=0.25k,所以,k=400×0.25=100,即所求的函数关系式为y=100x.(2)当y=1 000时,1000=100x,解得=0.1m.例2如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)写出此函数的解析式;(3)若要6h排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量是5 000m3,那么水池中的水将要多少小时排完?【分析】当蓄水总量一定时,每小时的排水量与排水所用时间成反比例.解:(1)因为当蓄水总量一定时,每小时的排水量与排水所用时间成反比例,•所以根据图象提供的信息可知此蓄水池的蓄水量为:4 000×12=48 000(m3).(2)因为此函数为反比例函数,所以解析式为:V=48000t;(3)若要6h排完水池中的水,那么每小时的排水量为:V=480006=8000(m3);(4)如果每小时排水量是5 000m3,那么要排完水池中的水所需时间为:t=480006=8000(m3)备选例题(2005年中考·四川)制作一种产品,需先将材料加热到达60℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,设该材料加热时,温度y与时间x完成一次函数关系;停止加热进行操作时,温度y与时间x•成反比例关系(如图所示).已知该材料在操作加工前的温度为15℃,加热5•分钟后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?【答案】(1)将材料加热时的关系式为:y=9x+15(0≤x≤5),•停止加热进行操作时的关系式为y=300x(x>5);(2)20分钟.第三步:课堂练习:1.A、B两城市相距720千米,一列火车从A城去B城.(1)火车的速度v(千米/时)和行驶的时间t(时)之间的函数关系是v=720t.(2)若到达目的地后,按原路匀速原回,并要求在3小时内回到A城,则返回的速度不能低于 240千米/小时.2.有一面积为60的梯形,其上底长是下底长的13,若下底长为x,高为y,则y与x的函数关系是 y=90x.3.(2005年中考·长沙)已知矩形的面积为10,则它的长y与宽x之间的关系用图象大致可表示为(A)4.下列各问题中,两个变量之间的关系不是反比例函数的是(C)A.小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的关系B.菱形的面积为48cm2,它的两条对角线的长为y(cm)与x(cm)的关系 C.一个玻璃容器的体积为30L时,所盛液体的质量m与所盛液体的体积V 之间的关系D.压力为600N时,压强p与受力面积S之间的关系5.面积为2的△ABC,一边长为x,这边上的高为y,则y与x•的变化规律用图象表示大致是(C)开放探究6.为了预防流行性感冒,某学校对教室采用药熏消毒法进行消毒.已知,•药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,•药物燃烧后,y与x成反比例(如图所示).现测得药物8分钟燃毕,此室内空气中每立方米的含药量为6毫克,请你根据题中所提供的信息,解答下列问题:(1)药物燃烧时y关于x的函数关系式为: y=34x ,自变量的取值范围是: 0<x<•8 ;药物燃烧后y与x的函数关系式为: y=48x;(2)研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过 30 分钟后,学生才能回到教室;(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10•分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?【答案】有效,因为燃烧时第4分钟含药量开始高于3毫克,当到第16分钟含药量开始低于3毫克,这样含药量不低于3毫克的时间共有16-4=12分钟,故有效.总结反思,拓展升华1.学会把实际问题转化为数学问题,•充分体现数学知识来源于实际生活又服务于实际生活这一原理.2.能用函数的观点分析、解决实际问题,•让实际问题中的量的关系在数学模型中相互联系,并得到解决.。

人教版数学九年级下册26.2实际问题与反比例函数(第2课时)优秀教学案例

人教版数学九年级下册26.2实际问题与反比例函数(第2课时)优秀教学案例
3.采用多元化的评价方式,如口头评价、书面评价、同伴评价等,全面、客观地评价学生的综合能力。
4.重视评价的激励作用,通过表扬、鼓励等方式,激发学生学习数学的热情和信心。
四、教学内容与过程
(一)导入新课
1.教师以一个简单的实际问题导入新课:“同学们,假设我们班要组织一次郊游活动,已知车辆的速度是固定的,请问我们如何计算在不同时间能够到达的地点?这个问题与我们今天要学习的反比例函数有什么关系呢?”通过这个问题,引导学生回顾反比例函数的基本概念。
(二)过程与方法
1.通过小组合作、讨论交流等形式,培养学生主动探究、合作学习的良好习惯。
2.学会在解决实际问题的过程中,运用画图、列表、计算等方法,分析反比例函数的变化规律,培养解决问题的策略。
3.引导学生从实际问题中提炼出反比例函数模型,提高学生将实际问题转化为数学问题的能力。
4.在教学过程中,注重培养学生的数学思维能力,让学生在思考、探索中掌握反比例函数的知识。
2.针对不同层次的学生,设计难易适度的问题,使每个学生都能在解决问题的过程中获得成就感,提高他们的自信心。
3.引导学生通过问题解决,总结反比例函数的性质和应用,提高他们归纳、总结的能力。
(三)小组合作
小组合作是本节课的重要教学策略,旨在培养学生团队合作精神和解决问题的能力。
1.将学生分成若干小组,每组4-6人,确保每个小组成员在知识、能力等方面具有一定的互补性。
2.创设趣味性问题情景,如“一个神秘的数学森林,每前进一步,距离目的地就减少一半,请问同学们如何用数学知识描述这个现象?”通过这些问题,激发学生的好奇心,引导他们主动探究反比例函数的奥秘。
(二)问题导向
本节课以问题为导向,引导学生通过解决问题来学习反比例函数的知识。

人教版九年级数学下册:26.2《实际问题与反比例函数》说课稿1

人教版九年级数学下册:26.2《实际问题与反比例函数》说课稿1

人教版九年级数学下册:26.2 《实际问题与反比例函数》说课稿1一. 教材分析人教版九年级数学下册第26.2节《实际问题与反比例函数》是本册教材中的重要内容。

本节内容通过引入实际问题,让学生了解反比例函数的定义,掌握反比例函数的性质,并能够运用反比例函数解决实际问题。

本节内容分为两个部分:一是反比例函数的定义及其性质;二是反比例函数在实际问题中的应用。

在第一部分中,学生需要理解反比例函数的定义,掌握反比例函数的性质,包括图像、单调性、奇偶性等。

在第二部分中,学生需要能够将实际问题转化为反比例函数问题,并运用反比例函数解决实际问题。

二. 学情分析九年级的学生已经掌握了函数的基本概念和性质,具备了一定的函数知识基础。

但是,对于反比例函数的理解和应用,学生可能还存在一定的困难。

因此,在教学过程中,教师需要通过生动的实例和实际问题,引导学生理解反比例函数的定义和性质,并能够运用反比例函数解决实际问题。

三. 说教学目标1.知识与技能目标:学生能够理解反比例函数的定义,掌握反比例函数的性质,包括图像、单调性、奇偶性等;学生能够将实际问题转化为反比例函数问题,并运用反比例函数解决实际问题。

2.过程与方法目标:通过实际问题的引入和解决,培养学生的观察能力、思考能力和解决问题的能力。

3.情感态度与价值观目标:培养学生对数学的兴趣和好奇心,培养学生的团队合作意识和克服困难的勇气。

四. 说教学重难点1.教学重点:反比例函数的定义及其性质,反比例函数在实际问题中的应用。

2.教学难点:反比例函数的性质的理解和应用,将实际问题转化为反比例函数问题的方法的掌握。

五. 说教学方法与手段本节课采用讲授法、引导法、讨论法、实例教学法等教学方法。

同时,利用多媒体教学手段,如PPT、教学软件等,展示反比例函数的图像和实际问题的数据,帮助学生更好地理解和掌握反比例函数的性质和应用。

六. 说教学过程1.导入:通过一个实际问题,引导学生思考反比例函数的概念。

人教版(广西版)九年级数学下册教案:26.2 实际问题与反比例函数

人教版(广西版)九年级数学下册教案:26.2  实际问题与反比例函数

人教版(广西版)九年级数学下册教案:26.2 实际问题与反比例函数一. 教材分析人教版(广西版)九年级数学下册第26.2节“实际问题与反比例函数”的内容,是在学生学习了反比例函数的基本概念、图象和性质的基础上进行教学的。

本节内容通过实例让学生了解反比例函数在实际生活中的应用,培养学生的数学应用意识,提高学生解决实际问题的能力。

教材通过生活中的实例,引导学生利用反比例函数的知识解决实际问题,感受数学与生活的紧密联系。

二. 学情分析九年级的学生已经学习了反比例函数的基本知识,对反比例函数的概念、图象和性质有了初步的了解。

但在解决实际问题时,部分学生可能会对将实际问题转化为数学模型感到困难。

因此,在教学本节内容时,需要关注学生的认知差异,引导学生将实际问题与数学知识相结合,提高学生解决实际问题的能力。

三. 教学目标1.了解反比例函数在实际生活中的应用,培养学生的数学应用意识。

2.提高学生解决实际问题的能力。

3.引导学生感受数学与生活的紧密联系,激发学生学习数学的兴趣。

四. 教学重难点1.重点:反比例函数在实际问题中的应用。

2.难点:将实际问题转化为反比例函数的数学模型。

五. 教学方法采用问题驱动的教学方法,通过生活实例引导学生自主探究、合作交流,将实际问题转化为反比例函数的数学模型。

在教学过程中,注重启发学生思考,培养学生解决问题的能力。

六. 教学准备1.准备与反比例函数相关的实际问题实例。

2.准备多媒体教学设备,如投影仪、计算机等。

七. 教学过程1.导入(5分钟)利用多媒体展示反比例函数在实际生活中的应用实例,如商场打折、比例尺等,引导学生回顾反比例函数的知识,激发学生学习兴趣。

2.呈现(10分钟)呈现与反比例函数相关的实际问题,如货物运输、广告宣传等,让学生尝试解决这些问题。

在解决问题的过程中,引导学生发现实际问题与反比例函数之间的联系。

3.操练(10分钟)让学生分组讨论,将实际问题转化为反比例函数的数学模型。

九年级下册数学 26.2实际问题与反比例函数(1)教学案(新人教版九年级下)

九年级下册数学 26.2实际问题与反比例函数(1)教学案(新人教版九年级下)
2、学生通过当堂检测,找到自己当堂的问题,并用两种颜色的笔做好修改,注释和笔记等
3、学生自主查看翻阅资料,复习总结以及相互讨论不理解或者更深层次的数学问题。
【总结提炼,知识升华】
1、本节课你的收获是什么?
2、你的疑难问题解决了吗?
3、你对自己在本节课的表现评价(优、良、一般、差)
【课后训练,巩固拓展】
家庭作业P1623及练习册
【教学反思】
自主归纳总结如何用反比例函数解决有关实际问题并总结应该注意的地方.
学生独立思考并完成,通过练习进一步巩固中心对称的相关知识
通过当堂检测,找到学生自己当堂的问题,并用两种颜色的笔做好修改,注释和笔记等
教学互动设计
方法导引【自Βιβλιοθήκη 学习,基础过关】一、复习巩固
列函数关系式表示下列数量关系
1、京沈高速公路全长658km,汽车沿京沈高速公路从沈阳驶往北京,则汽车行完全程所需时间t(h)与行驶的平均速度v(km/h)之间的函数关系式为
2、完成某项任务可获得500元报酬,考虑由x人完成这项任务,试写出人均报酬y(元)与人数x(人)之间的函数关系式
(3)当x=3cm时,求y的值
2.一场暴雨过后,一洼地存雨水20m3,如果将雨水全部排完需t分钟,排水量为a m3/min,且排水时间为5~10min
(1)试写出t与a的函数关系式,并指出a的取值范围;
(2)当排水量为3m3/min时,排水的时间需要多长?
(3):当排水时间4.5分钟时,每分钟排水量多少?
五、我的疑惑:
(学生自主写出自己的疑惑,各小组组长收集,整理和分析这些疑惑,把这些疑惑传递给老师,老师一并把有意义的疑惑呈现给所有同学。)
提示:以上内容为学生独立完成的预习内容。要求:上课前组长(或者科代表)把各个小组成员的疑惑交给老师查看。

九年级数学下册第二十六章反比例函数26.2实际问题与反比例函数教案(新版)新人教版

九年级数学下册第二十六章反比例函数26.2实际问题与反比例函数教案(新版)新人教版

26.2 实际问题与反比例函数【教学目标】知识技能目标:1.能够根据实际问题情景建立反比例函数的模型.2.能灵活运用反比例函数的意义和性质解决生活实际问题.过程性目标:1.通过探究生活中的实际问题,让学生体会数学建模思想的构建.2.通过探究反比例函数解决实际问题,体会数学知识的现实意义,提高分析问题、解决问题的能力,培养数学应用意识.情感态度目标:1.通过将反比例函数性质灵活应用于实际,让学生体会学习数学的价值,从而提高学生学习数学的兴趣.2.通过小组合作交流,提高合作意识,培养创新精神.3.让学生体会数学知识与现实世界的联系.【重点难点】重点:从实际问题中建立反比例函数模型,运用反比例函数的意义和性质解决实际问题.难点:根据具体实际问题情景建立反比例函数的模型.【教学过程】一、创设情境问题1:(1)反比例函数的定义是________________.(2)反比例函数的图象是__________,当k>0时,__________;当k<0时,________________.(3)待定系数法求反比例函数解析式的步骤:________________.问题2:公元前3世纪,有一位科学家说了这样一句名言:“给我一个支点,我可以撬动地球!”你们知道这位科学家是谁吗?这里蕴含什么样的原理呢?杠杆原理:阻力×阻力臂=动力×动力臂问题3:电学知识告诉我们,用电器的功率P(单位:W)、两端的电压U(单位:V)以及用电器的电阻R(单位:Ω)有如下关系:PR=U2.这个关系也可写为P=,或R=.二、探索归纳例1:市煤气公司要在地下修建一个容积为104 m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500 m2,施工队施工时应该向地下掘进多深?(3)当施工队按(2)中的计划掘进到地下15 m时,公司临时改变计划,把储存室的深度改为15 m.相应地,储存室的底面积应改为多少(结果保留小数点后两位)?解:(1)根据圆柱的体积公式,得Sd=104,所以S关于d的函数解析式为S=.(2)把S=500代入S=,得500=,解得d=20(m).答:如果把储存室的底面积定为500 m2,施工时应向地下掘进20 m深.(3)根据题意,把d=15代入S=,得S=,解得S≈666.67(m2).答:当储存室的深度为15 m时,底面积应改为666.67 m2.例2:码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,平均卸货速度v(单位:吨/天)与卸货天数t之间有怎样的函数关系?(2)由于遇到紧急情况,要求船上的货物不超过5天卸载完毕,那么平均每天至少要卸载多少吨?解:(1)设轮船上的货物总量为k吨,根据已知条件得k=30×8=240,所以v关于t的函数解析式为v=.(2)把t=5代入v=,得v==48(吨/天).∴如果全部货物恰好用5天卸载完,那么平均每天卸载48吨.∵对于函数v=,当t>0时,t越小,v越大.∴若货物不超过5天卸载完,则平均每天至少要卸载48吨.例3:小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂分别为1 200 N和0.5 m.(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5 m时,撬动石头至少需要多大的力?(2)若想使动力F不超过题(1)中所用力的一半,则动力臂l至少要加长多少?解:(1)根据“杠杆原理”,得F l=1 200×0.5,所以F关于l的函数解析式为F=.当l=1.5 m时,F==400(N).对于函数F=,当l=1.5 m时,F=400 N,此时杠杆平衡.因此,撬动石头至少需要400 N的力.(2)当F=400×=200时,由200=得l==3(m),3-1.5=1.5(m).对于函数F=,当l>0时,l越大,F越小.因此,若想用力不超过400 N的一半,则动力臂至少要加长1.5 m.例4:一个用电器的电阻是可调节的,其范围为110~220 Ω.已知电压为220 V,这个用电器的电路图如图所示.(1)功率P与电阻R有怎样的函数关系?(2)这个用电器功率的范围是多少?解:(1)根据电学知识,当U=220时,得P=.(2)根据反比例函数的性质可知,电阻越大,功率越小.把电阻R最小值=110代入P=,得P最大值==440(W);把电阻R最大值=220代入P=,得P最小值==220(W);因此用电器功率的范围为220~440 W.追问:想一想为什么收音机的音量、某些台灯的亮度以及电风扇的转速可以调节.三、新知应用1.如图,某玻璃器皿制造公司要制造一种容积为1 L(1 L=1 dm3)的圆锥形漏斗.(1)漏斗口的面积S(单位:dm2)与漏斗的深度d有怎样的函数关系?(2)如果漏斗口的面积为100 cm2,则漏斗的深为多少?答案:(1)S=(2)30 cm2.一司机驾驶汽车从甲地去乙地,他以80 km/h的平均速度用6 h到达目的地.(1)当他按原路匀速返回时,汽车的速度v与时间t有怎样的函数关系?(2)如果该司机必须在4 h之内回到甲地,那么返程时的平均速度不能小于多少?答案:(1)v=(2)120 km/h3.新建成的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5×103 m2.(1)所需的瓷砖块数n与每块瓷砖的面积S(单位:m2)有怎样的函数关系?(2)为了使住宅楼的外观更漂亮,建筑师决定采用灰、白和蓝三种颜色的瓷砖,每块瓷砖的面积都是80 cm2,且灰、白、蓝瓷砖使用数量的比为2∶2∶1,需要三种瓷砖各多少块?答案:(1)n=(2)250 000块,250 000块,125 000块四、检测反馈1.已知甲、乙两地相距s(单位:km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(单位:h)关于行驶速度v(单位:km/h)的函数图象是( )答案:C2.在某一电路中,电源电压U保持不变,电流I(A)与电阻R(Ω)之间的函数关系如图所示.(1)写出I与R之间的函数解析式.(2)结合图象回答当电路中的电流不超过12 A时,电路中电阻R的取值范围是多少Ω?答案:(1)I=(2)电阻R大于或等于3 Ω3.密闭容器内有一定质量的二氧化碳,当容器的体积V(单位:m3)变化时,气体的密度ρ(单位:kg/m3)也会随之变化.已知密度ρ与体积V是反比例函数关系,它的图象如图所示.(1)求密度ρ关于体积V的函数解析式.(2)求V=9 m3时,二氧化碳的密度ρ.答案:(1)ρ=(2)1.1 kg/m3五、课堂小结1.知识小结:面积一定时,矩形的长与宽成反比;面积一定时,三角形的一边长与这边的高成反比;体积一定时,柱体的底面积与高成反比等.建立反比例函数模型解决实际问题时,要注意自变量的取值范围.2.思想方法小结──深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法.六、板书设计课题:26.2 实际问题与反比例函数例1 例3实际问题数学模型例2 例4(反比例函数)。

九年级数学下册 26.2 实际问题与反比例函数教案1 (新版)新人教版

九年级数学下册 26.2 实际问题与反比例函数教案1 (新版)新人教版

26.2实际问题与反比例函数
运用反比例函数的概念和性质解决实际问题。

在运用反比例函数解决实际问题的过程中,进一步体会数学建模思
学应用意识,在“实际问题—建立模型—拓展应用”的高学生学习数学的兴趣,同时也培养了学生合作交流的意识。

学生思考、回顾正比例函数、一次函数及二次函数的研究过二.探究新知
市煤气公司要在地下修建一个容积为
(单位:的函数关系?
)中的计划掘进到地
)这个问题可以转化为数学问题吗?需要用到哪些知识?
②能否利用函数模型解释实际问题中的现象;
要求船上的货物不超过少要卸载多少吨。

人教版数学九年级下册26.2《实际问题与反比例函数(1)》参考教案

人教版数学九年级下册26.2《实际问题与反比例函数(1)》参考教案

26.2 实际问题与反比例函数〔1〕教学目标一、知识与技能1.能灵活列反比例函数表达式解决一些实际问题.2.能综合利用几何、方程、反比例函数的知识解决一些实际问题.二、过程与方法1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题.2.体会数学与现实生活的严密联系,增强应用意识,提高运用代数方法解决问题的能力.三、情感态度与价值观1.积极参与交流,并积极发表意见.2.体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进展交流的重要工具.教学重点掌握从实际问题中建构反比例函数模型.教学难点从实际问题中寻找变量之间的关系.关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想.教学过程一、创设问题情境,引入新课活动1问题:某校科技小组进展野外考察,途中遇到一片十几米宽的烂泥湿地,为了平安,迅速通过这片湿地,他们沿着前进路线铺垫了假设干块木板,构筑成一条临时通道,从而顺利完成了任务的情境.(1)请你解释他们这样做的道理.(2)当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?(3)如果人和木板对湿地的压力合计600N,那么:①用含S的代数式表示P,P是S的反比例函数吗?为什么?②2时,压强是多少?③如果要求压强不超过6000Pa,木板面积至少要多大?④在直角坐标系中,作出相应的函数图象.⑤请利用图象对(2)(3)作出直观解释,并与同伴交流.设计意图:展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的学习兴趣.师生行为:学生分四个小组进展探讨、交流.领会实际问题的数学煮义,体会数与形的统一.教师可以引导、启发学生解决实际问题.在此活动中,教师应重点关注学生:①能灵活列反比例函数表达式解决一些实际问题;②能积极地与小组成员合作交流;③是否有强烈的求知欲.生:在物理中,我们曾学过,当人和木板对湿地的压力一定时,随着木板面积S的增大,人和木板对地面的压强p将减小.生:在(3)中,①p=(S>0)p是S的反比例函数;②2时.p=3000Pa;③2;那么,为什么作图象在第一象限作呢?因为在物理学中,S>0,p>0.④图象如下列图师:从此活动中,我们可以发现,生活中存在着大量的反比例函数的现实.从这节课开场我们就来学习“17.2实际问题与反比例函数〞,你会发现有了反比例函数,很多实际问题解决起来会很方便.二、讲授新课活动2[例1]市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下挖进多深?(3)当施工队按(2)中的方案挖进到地下15m时,碰上了坚硬的岩石,为了节约建立资金,公司临时改变方案把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(保存两位小数).设计意图:让学生体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进展交流的重要工具,此活动让学生从实际问题中寻找变量之间的关系.而关键是充分运用反比例函数分析实际情况,建立函数模型,并且利用函数的性质解决实际问题.师生行为:先由学生独立思考,然后小组内合作交流,教师和学生最后合作完成此活动.在此活动中,教师有重点关注:①能否从实际问题中抽象出函数模型;②能否利用函数模型解释实际问题中的现象;③能否积极主动的阐述自己的见解.生:我们知道圆柱的容积是底面积×深度,而现在容积一定为104m3,所以S·d=104.变形就可得到底面积S与其深度d的函数关系,即S=.所以储存室的底面积S是其深度d的反比例函数.生:根据函数S=,我们知道给出一个d的值就有唯一的S的值和它相对应,反过来,知道S的一个值,也可求出d的值.题中告诉我们“公司决定把储存室的底面积5定为500m2,即S=500m2,〞施工队施工时应该向下挖进多深,实际就是求当S=500m2时,d=?m.根据S=,得500=,解得d=20.即施工队施工时应该向下挖进20米.生:当施工队按(2)中的方案挖进到地下15m时,碰上了坚硬的岩石.为了节约建立资金,公司临时改变方案,把储存室的深度改为15m,即d=15m,相应的储存室的底面积应改为多少才能满足需要;即当d=15m,S=?m2呢?根据S=,把d=15代入此式子,得S=≈666.67.2才能满足需要.师:大家完成的很好.当我们把这个“煤气公司修建地下煤气储存室〞的问题转化成反比例函数的数学模型时,后面的问题就变成了函数值求相应自变量的值或自变量的值求相应的函数值,借助于方程,问题变得迎刃而解,三、稳固提高活动3练习:如图,某玻璃器皿制造公司要制造一种窖积为1升(1升=1立方分米)的圆锥形漏斗.(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?(2)如果漏斗口的面积为100厘米2,那么漏斗的深为多少?设计意图:让学生进一步体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进展交流的重要工具,更进一步鼓励学生学习数学的欲望.师生行为:由两位学生板演,其余学生在练习本上完成,教师可巡视学生完成情况,对“学困生〞要提供一定的帮助,此活动中,教师应重点关注:①学生能否顺利建立实际问题的数学模型;②学生能否积极主动地参与数学活动,体验用数学模型解决实际问题的乐趣;③学生能否注意到单位问题.生:解:(1)根据圆锥体的体积公式,我们可以设漏斗口的面积为Scm,漏斗的深为dcm,那么容积为1升=l立方分米=1000立方厘米.所以,S·d=1000,S=.(2)根据题意把S=100cm2代入S=,中,得100=,d=30(cm).所以如果漏斗口的面积为100cm2,那么漏斗的深为30cm.活动4练习:(1)某矩形的面积为20cm2,写出其长y与宽x之间的函数表达式.(2)当矩形的长为12cm时,求宽为多少?当矩形的宽为4cm,求其长为多少?(3)如果要求矩形的长不小于8cm,其宽至多要多少?设计意图:进一步让学生体会从实际问题中建立函数模型的过程,即将实际问题置于已有的知识背景之中,然后用数学知识重新理解这是什么?可以看成什么?师生行为由学生独立完成,教师根据学生完成情况及时给予评价.生:解:(1)根据矩形的面积公式,我们可以得到20=xy.所以y=,即长y与宽x之间的函数表达式为y=.(2)当矩形的长为12cm时求宽为多少?即求当y=12cm时,x=?cm,那么把y=12cm代入y=中得12=,解得x=(cm).当矩形的宽为4cm,求长为多少?即当x=4cm时,y=?cm,那么把x=4cm代入y=中,有y==5(cm).所以当矩形的长为12cm时,宽为cm;当矩形的宽为4cm时,其长为5cm.(3)y=此反比例函数在第一象限y随x的增大而减小,如果矩形的长不小于8cm,即y≥8cm,所以≥8cm,因为x>0,所以20≥8x.x≤(cm).即宽至多是m.四、课时小结本节课是用函数的观点处理实际问题,并且是蕴含着体积、面积这样的实际问题,而解决这些问题,关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么?可以是什么?逐步形成考察实际问题的能力,在解决问题时,应充分利用函数的图象,渗透数形结合的思想.。

26.2 实际问题与反比例函数(第1课时)(教学设计)九年级数学下册(人教版)

26.2 实际问题与反比例函数(第1课时)(教学设计)九年级数学下册(人教版)

26.2 实际问题与反比例函数(第1课时) 1.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力. 2.能够通过分析实际问题中变量之间的关系,建立反比例函数模型解决问题,进一步提高运用函数图象、性质解决问题的综合能力.3.能够根据实际问题确定自变量的取值范围.能够通过分析实际问题中变量之间的关系,建立反比例函数模型解决问题,进一步提高运用函数图象、性质解决问题的综合能力.能够通过分析实际问题中变量之间的关系,建立反比例函数模型解决问题,进一步提高运用函数图象、性质解决问题的综合能力.知识回顾 1.用待定系数法求反比例函数解析式的一般步骤是什么?【答案】(1)设:设反比例函数的解析式为k y x=(k ≠0). (2)列:把已知x 与y 的一对对应值同时代入k y x =(k ≠0)中,得到关于k 的方程. (3)解:解方程,求出k 的值.(4)写:将求出的k 的值代入所设解析式中,即得到所求反比例函数的解析式.2.一般地,反比例函数k y x=的图象是双曲线,它具有哪些性质? 【答案】(1)当k >0时,双曲线的两支分别位于第一、第三象限,在每一个象限内,y 随x 的增大而减小;(2)当k <0时,双曲线的两支分别位于第二、第四象限,在每一个象限内,y 随x 的教学目标 教学重点 教学难点 教学过程增大而增大.【设计意图】回顾学过的反比例函数的相关知识,为下文讲解实际问题与反比例函数作铺垫.新知探究一、新课导入【问题】拉面又叫甩面、扯面、抻面,是中国城乡独具风味的一种传统面食.如果要把体积为15 cm3的面团做成拉面,你能写出面条的总长度y(单位:cm)关于面条粗细(横截面积)S(单位:cm2)的函数关系式吗?【师生活动】教师先引导学生写出答案,然后追问:你还能举出我们在日常生活、生产或学习中具有反比例函数关系的实例吗?【答案】15(0) y Sx>【设计意图】让学生体会生活中的实际问题与反比例函数的紧密联系,为下文展开实际问题与反比例函数的探究作铺垫.二、典例精讲【例1】一张正方形的纸片,剪去两个一样的小矩形得到一个“E”形图案,如图所示.设小矩形的长和宽分别为x,y,剪去部分的面积为20,若2≤x≤10,则y与x的函数图象是().A.B.C.D.【师生活动】教师引导学生分析解题思路和需要注意的地方:先根据面积公式确定函数的解析式,再由自变量的取值范围确定图象的端点,注意实际问题中的反比例函数的图象可能只是双曲线的一部分.【答案】A【解析】因为剪去的两个小矩形全等,所以它们的面积都是10,即xy=10,故10yx=,所以y是x的反比例函数.由于2≤x≤10,因此函数图象应是双曲线中处在第一象限的分支上的一部分,从而排除选项B,D.当x=2时,y=5;当x=10时,y=1,故函数图象的两个端点为(2,5),(10,1).故选A.【设计意图】通过例1,让学生掌握几何图形中反比例函数问题的解决方法.【例2】市煤气公司要在地下修建一个容积为104 m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500 m2,施工队施工时应该向地下掘进多深?(3)当施工队按(2)中的计划掘进到地下15 m时,公司临时改变计划,把储存室的深度改为15 m.相应地,储存室的底面积应改为多少(结果保留小数点后两位)?【师生活动】学生代表板书作答,教师和其他学生补充纠正,然后教师讲解知识点.【答案】解:(1)根据圆柱的体积公式,得Sd=104,∴S关于d的函数解析式为410Sd =.(2)把S=500代入410Sd=,得500=410d,解得d=20(m).如果把储存室的底面积定为500 m2,施工时应向地下掘进20 m深.(3)根据题意,把d=15代入S=410d,得S=41015,解得S≈666.67(m2).当储存室的深度为15 m时,底面积应改为666.67 m2.【新知】用反比例函数解决实际问题的一般步骤:(1)审:审清题意,找出问题中的常量、变量(有时以图象的形式给出),并理清常量与变量之间的关系.(2)设:根据常量与变量之间的关系,设出函数解析式,待定系数用字母表示.(3)列:由题目中的已知条件列出方程(组),求出待定系数.(4)写:写出函数解析式,并注意自变量的取值范围.(5)解:运用函数的解析式和相关性质解决实际问题.【设计意图】通过例2,让学生分析实际问题中变量之间的关系,建立反比例函数模型解决问题,进一步提高运用函数性质解决问题的能力.【例3】码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,平均卸货速度v (单位:吨/天)与卸货天数t 之间有怎样的函数关系?(2)由于遇到紧急情况,要求船上的货物不超过5天卸载完毕,那么平均每天至少要卸载多少吨?【师生活动】教师引导学生分析:根据“平均装货速度×装货天数=货物的总量”, 可以求出轮船装载货物的总量;再根据“平均卸货速度=货物的总量÷卸货天数”,得到v 关于t 的函数解析式.【答案】解:(1)设轮船上的货物总量为k 吨,根据已知条件得k =30×8=240, ∴v 关于t 的函数解析式为240v t =. (2)把t =5代入240v t =,得240485v ==(吨/天). 从结果可以看出,如果全部货物恰好用5天卸载完,那么平均每天卸载48吨.对于函数240v t=,当t >0时,t 越小,v 越大.这样若货物不超过5天卸载完,则平均每天至少要卸载48吨.【归纳】建立反比例函数的解析式的两种方法:(1)待定系数法:若题目提供的信息中明确此函数为反比例函数,则可设反比例函数的解析式为(0)k y k x=≠,然后求出k 的值; (2)列方程法:若题目所给的信息中变量之间的函数关系不明确,则通常列出关于函数(y )和自变量(x )的方程,通过变形得到反比例函数的解析式.【设计意图】通过例3,让学生分析实际问题中变量之间的关系,建立反比例函数模型解决问题,了解建立反比例函数的解析式的两种方法.【例4】如图,某玻璃器皿制造公司要制造一种容积为1 L (1 L =1 dm 3)的圆锥形漏斗.(1)漏斗口的面积S(单位:dm2)与漏斗的深d(单位:dm)有怎样的函数关系?(2)如果漏斗口的面积为100 cm2,那么漏斗的深为多少?【师生活动】小组讨论后学生代表作答,教师补充.【答案】解:(1)由题意得113Sd=,故3Sd=.(2)∵漏斗口的面积为100 cm2,100 cm2=1 dm2,∴31d=,∴d=3 dm.【新知】常见的典型数量关系:【设计意图】通过例4,让学生掌握实际问题与反比例函数中常见的典型数量关系.课堂小结板书设计一、用反比例函数解决实际问题的一般步骤二、建立反比例函数的解析式的两种方法三、常见的典型数量关系课后任务完成教材第15页练习第2,3题.。

人教版(广西版)九年级数学下册教学设计:26.2 实际问题与反比例函数

人教版(广西版)九年级数学下册教学设计:26.2  实际问题与反比例函数

人教版(广西版)九年级数学下册教学设计:26.2 实际问题与反比例函数一. 教材分析人教版(广西版)九年级数学下册第26.2节“实际问题与反比例函数”是本册教材中的重要内容。

本节内容通过实际问题引入反比例函数的概念,使学生了解反比例函数在实际生活中的应用,培养学生的数学应用能力。

教材通过丰富的例题和练习,让学生掌握反比例函数的定义、图像和性质,提高学生的数学思维能力。

二. 学情分析九年级的学生已经学习了函数的基本概念和一次函数、二次函数的知识,对函数的概念和图像有了一定的认识。

但学生在解决实际问题时,往往不能将数学知识与实际问题有效地结合起来,对于反比例函数的理解和应用还有一定的困难。

因此,在教学过程中,教师需要关注学生的认知基础,通过实例引导学生理解反比例函数的实际意义,提高学生解决实际问题的能力。

三. 教学目标1.知识与技能:让学生理解反比例函数的概念,掌握反比例函数的定义、图像和性质,能够运用反比例函数解决实际问题。

2.过程与方法:通过实际问题引入反比例函数,培养学生从实际问题中抽象出数学模型的能力,提高学生的数学应用能力。

3.情感态度与价值观:让学生体验数学与生活的紧密联系,培养学生对数学的兴趣和自信心,树立克服困难的勇气。

四. 教学重难点1.重点:反比例函数的概念、图像和性质。

2.难点:反比例函数在实际问题中的应用。

五. 教学方法1.情境教学法:通过实际问题引入反比例函数,激发学生的学习兴趣,培养学生从实际问题中抽象出数学模型的能力。

2.引导发现法:在教学过程中,教师引导学生观察、思考、发现反比例函数的定义、图像和性质,培养学生的数学思维能力。

3.实践操作法:让学生通过实际问题,运用反比例函数解决问题,提高学生的数学应用能力。

六. 教学准备1.教材、教参:教师要熟悉教材内容,了解学生的学习需求,准备相关的教学资料。

2.课件:制作课件,帮助学生直观地理解反比例函数的概念、图像和性质。

3.练习题:准备适量的练习题,巩固学生对反比例函数的理解和应用。

初中数学九年级下册《实际问题中的反比例函数》教案

初中数学九年级下册《实际问题中的反比例函数》教案

26.2 实际问题与反比例函数第1课时实际问题中的反比例函数1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题;(重点) 2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.(难点)一、情境导入小明和小华相约早晨一起骑自行车从A镇出发前往相距20km的B镇游玩,在返回时,小明依旧以原来的速度骑自行车,小华则乘坐公交车返回A镇.假设两人经过的路程一样,自行车和公交车的速度保持不变,且自行车速度小于公交车速度.你能找出两人返回时间与所乘交通工具速度间的关系吗?二、合作探究探究点:实际问题与反比例函数【类型一】反比例函数在路程问题中的应用王强家离工作单位的距离为3600米,他每天骑自行车上班时的速度为v米/分,所需时间为t分钟.(1)速度v与时间t之间有怎样的函数关系?(2)若王强到单位用15分钟,那么他骑车的平均速度是多少?(3)如果王强骑车的速度最快为300米/分,那他至少需要几分钟到达单位?解析:(1)根据速度、时间和路程的关系即可写出函数的关系式;(2)把t=15代入函数的解析式,即可求得速度;(3)把v=300代入函数解析式,即可求得时间.解:(1)速度v与时间t之间是反比例函数关系,由题意可得v=3600t;(2)把t=15代入函数解析式,得v=360015=240.故他骑车的平均速度是240米/分;(3)把v=300代入函数解析式得3600t=300,解得t=12.故他至少需要12分钟到达单位.方法总结:解决问题的关键要掌握路程、速度和时间的关系.变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型二】反比例函数在工程问题中的应用在某河治理工程施工过程中,某工程队接受一项开挖水渠的工程,所需天数y(天)与每天完成的工程量x(m/天)的函数关系图象如图所示.(1)请根据题意,求y 与x 之间的函数表达式;(2)若该工程队有2台挖掘机,每台挖掘机每天能够开挖水渠15米,问该工程队需用多少天才能完成此项任务?(3)如果为了防汛工作的紧急需要,必须在一个月内(按30天计算)完成任务,那么每天至少要完成多少米?解析:(1)将点(24,50)代入反比例函数解析式,即可求得反比例函数的解析式;(2)用工作效率乘以工作时间即可得到工作量,然后除以工作效率即可得到工作时间;(3)工作量除以工作时间即可得到工作效率.解:(1)设y =k x.∵点(24,50)在其图象上,∴k =24×50=1200,所求函数表达式为y =1200x; (2)由图象可知共需开挖水渠24×50=1200(m),2台挖掘机需要工作1200÷(2×15)=40(天);(3)1200÷30=40(m),故每天至少要完成40m.方法总结:解决问题的关键是掌握工作量、工作效率和工作时间之间的关系.变式训练:见《学练优》本课时练习“课堂达标训练” 第4题【类型三】 利用反比例函数解决利润问题某商场出售一批进价为2元的贺卡,在销售中发现此商品的日售价x (元)与销售量y (张)之间有如下关系:x (元)3 4 5 6 y (张) 20 15 12 10(1)猜测并确定y 与x (2)当日销售单价为10元时,贺卡的日销售量是多少张?(3)设此卡的利润为W 元,试求出W 与x 之间的函数关系式,若物价部门规定此卡的销售单价不能超过10元,试求出当日销售单价为多少元时,每天获得的利润最大并求出最大利润.解析:(1)要确定y 与x 之间的函数关系式,通过观察表中数据,可以发现x 与y 的乘积是相同的,都是60,所以可知y 与x 成反比例,用待定系数法求解即可;(2)代入x =10求得y 的值即可;(3)首先要知道纯利润=(日销售单价x -2)×日销售数量y ,这样就可以确定W 与x 的函数关系式,然后根据销售单价最高不超过10元,就可以求出获得最大日销售利润时的日销售单价x .解:(1)从表中数据可知y 与x 成反比例函数关系,设y =k x(k 为常数,k ≠0),把点(3,20)代入得k =60,∴y =60x; (2)当x =10时,y =6010=6,∴日销售单价为10元时,贺卡的日销售量是6张;(3)∵W =(x -2)y =60-120x ,又∵x ≤10,∴当x =10时,W 取最大值,W 最大=60-12010=48(元).方法总结:本题考查了根据实际问题列反比例函数的关系式及求最大值,解答此类题目的关键是准确理解题意.变式训练:见《学练优》本课时练习“课后巩固提升”第6题【类型四】 反比例函数的综合应用如图所示,制作某种食品的同时需将原材料加热,设该材料温度为y ℃,从加热开始计算的时间为x 分钟.据了解,该材料在加热过程中温度y 与时间x 成一次函数关系.已知该材料在加热前的温度为4℃,加热一段时间使材料温度达到28℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y 与时间x 成反比例函数关系.已知第12分钟时,材料温度是14℃.(1)分别求出该材料加热和停止加热过程中y 与x 的函数关系式(写出x 的取值范围);(2)根据该食品制作要求,在材料温度不低于12℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理的时间为多少分钟? 解析:(1)首先根据题意,材料加热时,温度y 与时间x 成一次函数关系;停止加热进行操作时,温度y 与时间x 成反比例函数关系.将题中数据代入可求得两个函数的关系式;(2)把y =12代入y =4x +4得x =2,代入y =168x得x =14,则对该材料进行特殊处理所用的时间为14-2=12(分钟).解:(1)设加热停止后反比例函数表达式为y =k 1x ,∵y =k 1x过(12,14),得k 1=12×14=168,则y =168x ;当y =28时,28=168x,解得x =6.设加热过程中一次函数表达式为y =k 2x +b ,由图象知y =k 2x +b 过点(0,4)与(6,28),∴⎩⎪⎨⎪⎧b =4,6k 2+b =28,解得⎩⎪⎨⎪⎧k 2=4,b =4,∴y =⎩⎪⎨⎪⎧4+4x (0≤x ≤6),168x(x >6); (2)当y =12时,y =4x +4,解得x =2.由y =168x,解得x =14,所以对该材料进行特殊处理所用的时间为14-2=12(分钟).方法总结:现实生活中存在大量成反比例函数关系的两个变量,解答此类问题的关键是首先确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.变式训练:见《学练优》本课时练习“课后巩固提升”第4题三、板书设计1.反比例函数在路程问题中的应用;2.反比例函数在工程问题中的应用;3.利用反比例函数解决利润问题;4.反比例函数与一次函数的综合应用.本节课是用函数的观点处理实际问题,关键在于分析实际情境,建立函数模型,并进一步明确数学问题.将实际问题置于已有的知识背景之中,用数学知识重新解释“这是什么”,使学生逐步形成考察实际问题的能力.在解决问题时,应充分利用函数的图象,渗透数形结合的思想.数学选择题解题技巧1、排除法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实际问题与反比例函数目标认知学习目标1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程.2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.重点掌握从实际问题中建构反比例函数模型.难点从实际问题中寻找变量之间的关系.知识要点梳理知识点一:反比例函数的应用在实际生活问题中,应用反比例函数知识解题,关键是建立函数模型.即列出符合题意的反比例函数解析式,然后根据反比例函数的性质求解.知识点二:反比例函数在应用时的注意事项1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题.2.针对一系列相关数据探究函数自变量与因变量近似满足的函数关系.3.列出函数关系式后,要注意自变量的取值范围.知识点三:综合性题目的类型1.与物理学知识相结合:如杠杆问题、电功率问题等.2.与其他数学知识相结合:如反比例函数与一次函数的交点形成的直角三角形或矩形的面积.规律方法指导本节课研究了反比例函数的概念、图象和性质.这一节是本章的重要内容,重点介绍反比例函数在现实世界中无处不在,以及如何应用反比例函数的知识解决现实世界中的实际问题.学生要学会从现实生活常见的问题中抽象出数学问题,这样可以更好地认识反比例函数概念的实际背景,体会数学与实际的关系,即学生能深刻认识数学理论来源于实际又反过来服务实际这一认识论的方法.经典例题透析经典例题透析类型一:反比例函数与一次函数相结合1.如图1所示,一次函数的图象与反比例函数的图象交于M、N两点.(1)求反比例函数和一次函数的解析式;(2)根据图象,写出使反比例函数的值大于一次函数的值的x的取值范围.思路点拨:求一次函数解析式必须有两个点的坐标.由于M、N都在反比例函数图象上,由反比例函数定义得,从而求出M点的坐标.再由待定系数法求出一次函数解析式.根据数形结合的思想,求出反比例的图象在一次函数图象上方时x的取值范围.解析:(1)∵M、N在反比例函数上设一次函数解析式为则,解得故一次函数的解析式为图1(2)由图象可知,当时,反比例函数的值大于一次函数的值.总结升华:(1)综合运用一次函数和反比例函数求解两种函数解析式,往往仍用待定系数法.(2)能通过观察图像得到所求信息是解决这类问题的关键。

举一反三:【变式】已知反比例函数的图象与一次函数的图象交于A(2,1)。

(1)分别求出这两个函数的解析式;(2)试判断A点关于坐标原点的对称点与两个函数图象的关系。

【答案】(1)因为点A(2,1)在反比例函数和一次函数的图象上,所以=2×1=2,1=×2-1,解得:,=1.所以,反比例函数的解析式为:;一次函数解析式为:.(2)点A(2,1)关于坐标原点的对称点是A′(-2,-1).把A′点的横坐标代入反比例函数解析式得,所以,点A′在反比例函数图象上.把A′点的横坐标代入一次函数解析式得,y=-2-1=-3,所以,点A′不在一次函数图象上.类型二:反比例函数与三角形或四边形面积问题2. 如图2所示,A为反比例函数图象上的一点,AB垂直于x轴,垂足为B.若△AOB的面积为3,则反比例函数的解析式是什么?思路点拨:因为点A在反比例函数第二象限的图象上,所以,由三角形面积公式可求得k,从而求出反比例函数解析式.解析:∵函数图象分布在第二、四象限∴k<0设A点坐标为(x,y),则∴反比例函数的解析式为.总结升华:反比例函数的图象有这样一个重要性质:如图3,P(x,y)是反比例函数的图象上的一点,过点P分别向x轴、y轴作垂线,垂足分别为M、N,连接OP,则可得矩形、三角形等基本图形的面积如下:(1)(2)举一反三:【变式1】如图4,反比例函数与一次函数的图象相交于A、B两点。

(1)求A、B两点的坐标;(2)求△AOB的面积。

【答案】(1)解方程组得所以A、B两点的坐标为A(-2,4),B(4,-2)(2)因为与y轴交点D的坐标是(0,2),所以,所以【变式2】如图5,和的图象与的图象分别交于第一象限内的两点A,C,过A,C分别向x轴作垂线,垂足分别为B,D,若直角三角形AOB与直角三角形COD的面积分别为,求与有什么关系?【答案】:设点A的坐标为(),则在,所以同理可得。

所以。

类型三:反比例函数与实际问题相结合3. 一人站在平放在湿地上的木板上,当人和木板对湿地的压力一定时,随着木板面积的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地地面的压力为600N,回答下列问题:(1)用含S的代数式表示p,p是S的反比例函数吗?为什么?(2)当木板面积为0.2m2时,压强是多少?(3)如果要求压强不超过6000Pa,木板面积至少要多大?(4)画出相应的函数图象.思路点拨:根据两个变量之间关系确定两个变量之间的函数关系式,首先要判断它属于哪一类函数,然后根据实际意义并注意自变量的取值范围,进而作出正确的函数的图象.解析:随着木板面积变小(大),压强p(Pa)将变大(小).(1),所以p是S的反比例函数,符合反比例函数的定义.(2),所以面积为时,压强是.(3)若压强,解得,故木板面积至少要.(4)函数图象如下图6所示:总结升华:解决反比例函数与实际问题相结合的问题,要理解问题的实际意义及与之相关的数学知识和物理知识.反比例函数是解决现实世界反比例关系的有力工具.举一反三:【变式1】要求取消市场上使用杆秤的呼声越来越高.原因在于,一些不法商贩在卖货时将秤砣挖空,或更换较小秤砣,使砣变轻,从而欺骗顾客.(1)如图7、8所示,对于同一物体,哪个用了较轻的秤砣?(2)在称同一物体时,秤砣到支点的距离y与所用秤砣质量x之间满足_____________关系.(3)当砣变轻时,称得的物体变重,这正好符合哪个函数的哪些性质?图7图8分析:设重物的质量为G(定值),重物的受力点到支点的距离为(定值),图7、图8中、分别表示秤砣的受力点到支点的距离,根据杠杆原理得:物体的质量(G)与阻力臂()的乘积等于秤砣的受力点到支点的距离(或)与秤砣质量(x)的乘积.解:(1)∵∴.故图7中的秤砣较轻(2)∴y与x满足反比例函数关系(3)符合反比例函数“在第一象限内,y随x的增大而减小”的性质.【变式2】某玻璃器皿制造公司要制造一种容积为1升(1升=1立方分米)的圆锥形漏斗,如右下图.(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?解:(1)根据圆锥体的体积公式,我们可以设漏斗口的面积为Scm,,漏斗的深为dcm,则容积为1升=l立方分米=1000立方厘米.所以,S·d=1000,S=.(2)根据题意把S=100cm2代入S=,中,得100=.d=30(cm).所以如果漏斗口的面积为100cm2,则漏斗的深为30cm.学习成果测评基础达标1.如果双曲线经过点(2,-1),那么m=_____________.2.己知反比例函数(x>0),y随x 的增大而增大,则m的取值范围是____________.3.在同一直角坐标系中,函数y=kx-k与(k≠0)的图象大致是().4.如果变阻器两端电压不变,那么通过变阻器的电流y与电阻x的函数关系图象大致是().A B C D5.如图1,在直角坐标系中,直线与双曲线在第一象限交于点A,与轴交于点C,AB⊥轴,垂足为B,且.(1)求的值;(2)若△ABC的面积是,求线段AB的长度?6.已知一次函数的图象与双曲线交于点(,),且过点(,),(1)求该一次函数的解析式;(2)描出函数草图,根据图象写出使一次函数的值大于反比例函数的值的的取值范围.能力提升1.已知:(,)和(,)是双曲线上两点,当<<0时,与的大小关系是_____________.2.给出下列函数:(1)y=2x; (2)y=-2x+1; (3)y=(x>0) (4)y=(x<0)其中,y随x的增大而减小的函数是().A.(1),(2)B.(1),(3)C.(2),(4)D.(2),(3)3.设双曲线y=与直线y=-x+1相交于点A、B,O 为坐标原点,则∠AOB是().A.锐角B.直角C.钝角D.锐角或钝角4.在直角坐标系中,直线y=x与函数y=(x>0)的图象相交于点A,设点A的坐标为(x,y),那么长为x,宽为y的矩形面积和周长分别为().A.4,8 B.8,12C.4,6D.8,65. 在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其图象如图1所示.(1) 求p与S之间的函数关系式;(2) 求当S=0.5 m2时物体承受的压强p.6.如图2,A为双曲线上一点,过A作AC⊥x轴,垂足为C,且.(1)求该反比例函数解析式;(2)若点(-1, ),(-3, )在双曲线上,试比较、的大小.图1图27. 如图3,已知一次函数的图象与反比例函数的图象交于A、B 两点,且点A的横坐标和点B的纵坐标都是,求:(1)一次函数的解析式;(2)△AOB的面积.综合探究1.在一个可以改变容积的密闭容器内,装有一定质量m的某种气体,当改变容积V时,气体的密度也随之改变.与V在一定范围内满足,它的图象如图1所示,则该气体的质量m为().A. 1.4kgB. 5kgC. 6.4kgD. 7kg2. 反比例函数,当时,y随x的增大而增大,则m的值是().A. B. 小于的实数 C. D. 13. 一辆汽车往返于甲、乙两地之间,如果汽车以50千米/时的平均速度从甲地出发,则经过6小时可到达乙地.(1)甲、乙两地相距多少千米?(2)如果汽车把速度提高到v(千米/时)那么从甲地到乙地所用时间t(小时)将怎样变化?(3)写出t与v之间的函数关系式;(4)因某种原因,这辆汽车需在5小时内从甲地到达乙地,则此时汽车的平均速度至少应是多少?(5)已知汽车的平均速度最大可达80千米/时,那么它从甲地到乙地最快需要多长时间? 答案与解析基础达标1.–2(提示:考察反比例函数的定义)2.m<1(提示:考察反比例函数的基本性质)3.D(提示:分k>0,k<0进行讨论)4.B (提示:应用物理学的知识:U=I×R)5.(1)2(提示:因为A点在反比例函数的图像上所以三角形的面积= m值的一半,所以m=2)(2)1+(提示:借助△AOC的面积求值)6.(1)y=–x+1(提示:先求m的值,再求一次函数的解析式)(2)(图略)x<–1或0<x<2(提示:由题意得,,即,则或.)能力提升1.<(提示:本题反比例函数的解析式为,k=-5<0,基本性质是:在各自象限内y随x的增大而增大)2.D(提示:综合考察集中函数图像的性质)3.D (提示:k>0时交点在第一象限,夹角为锐角;k<0时交点在二、四象限,夹角为钝角)4.A (提示:根据图像和解析式先求出A点的坐标,再求周长和面积)5.解:(1)设所求函数解析式为p=k/s,把(0.25,1000)代入解析式,得1000=k/0.25, 解得k=250∴所求函数解析式为p=250/s(s>0)(2)当s=0.5时,p=500(Pa)6. 分析:本题意在考查反比例函数解析式的求法以及利用反比例函数的性质解题.注意本题虽然求不出点A的坐标,但由△AOC的面积可求出k的值.解:(1)设所求函数解析式为y=k/x, A点坐标为(x,y)∴OC=x,AC=y∵=OC·AC=xy=2 即xy=4∴k=xy=4∴所求的函数解析式为y=4/x(2)∵k=4>0,所以在每个象限内y随x的增大而减小.∵-1>-3,∴y1<y27. 分析:本题意在考查函数图象上的点的坐标与函数解析式之间的的关系以及平面直角坐标系中几何图形面积的求法,要注意的是一次函数解析式的关键是求出A、B两点的坐标,而A、B两点又在双曲线上,因此它们的坐标满足反比例函数解析式;在第(2)小题中,知道A、B两点的坐标就可知道它们分别到x轴、y轴的距离.解:(1)当x=-2时,代入得y=4当y=-2时,x=4∴A点坐标为(-2,4),B点坐标为(4,-2).将它们分别代入y=kx+b得:∴所求直线AB的解析式为y=-x+2(2)设直线AB与y轴交于点C,则C点坐标为(0,2).∴OC=2=×2×∣-2∣+ ×2×4=6综合探究1. D(提示:由题意知,当V=5时,,故,故选D.)2. C(提示:由题意,得,故,当时,y随x的增大而增大,,因此舍去.故,选C.)3.本题可以通过计算解决以上问题,也可以根据函数的图象对问题进行解释,通过两种方法的比较,可以加深对这类问题的理解.解:(1)50×6=300(千米);(2)t将减小;(3)t=;(4)由题意可知≤5,∴v≥60(千米/时);(5)t==3.75(小时).。

相关文档
最新文档