2017年河北省石家庄市裕华区中考数学一模试卷
河北省初2017-2018学年初三数学一模试题及答案
河北省九年级综合练习(一)数学试卷 2017.5学校 班级 姓名 考号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1. 实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最小的是A .aB .bC .cD .d2.京津冀一体化是由京津唐工业基地的概念发展而来,涉及到的人口总数约为90 000 000人.将90 000 000用科学记数法表示应为 A .80.910⨯B .7910⨯C .69010⨯D .6910⨯3.右图是某个几何体的三视图,该几何体是A .棱柱B .圆锥C .球D .圆柱4.如图,直线l 1∥l 2,若∠1=70°,∠2=60°,则∠3的度数为 A .40° B .50°C .60°D .70°5.一个试验室在0:00—4:00的温度T (单位:℃)与时间t (单位:h)的 函数关系的图象如图所示,在0:00—2:00保持恒温,在2:00—4:00 匀速升温,则开始升温后试验室每小时升高的温度为 A .5℃B .10℃C .20℃D .40℃6. 《九章算术》是我国古代的数学名著,书中的“折竹抵地”问题: 今有竹高一丈,末折抵地,去本三尺.问折者高几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部3尺远, 问折断处离地面的高度是多少? 设折断后离地面的高度为x 尺,则可列方程为A .223(10)x x -=- B .2223(10)x x -=- C .223(10)x x +=- D .2223(10)x x +=- 7.小军为了解同学们的课余生活,设计了如下的调查问卷(不完整):他准备在“①看课外书,②体育活动,③看电视,④踢足球,⑤看小说”中选取三个作为该问题的备选答案,选取合理的是A. ①②③B. ①④⑤C.②③④D.②④⑤8. 如图,广场中心的菱形花坛ABCD 的周长是40米,∠A =60°,则A ,C 两点之间的距离为A.5米B. C.10米D.9.某班25名同学在一周内做家务劳动时间如图所示, 则做家务劳动时间的众数和中位数分别是A .2和1.5B .1.5和1.5C .2和2.5D .1.75和210.如图1,在△ABC 中,AB =BC ,AC =m ,D ,E 分别是AB ,BC 边的中点,点P 为AC 边上的一个动点,连接PD ,PB ,PE .设AP =x ,图1中某条线段长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是A .PDB .PBC .PED .PC图1图2二、填空题(本题共18分,每小题3分) 11. 因式分解:2363m m+ = .12. 某水果公司购进10 000kg 苹果,公司想知道苹果的损坏率,从所有苹果中随机抽取若干进行统计,部分结果如下表:估计这批苹果损坏的概率为 (结果保留小数点后一位),损坏的苹果约有 kg .13. 如图,⊙O 是△ABC 的外接圆,∠ACO =45°,则∠B 的度数为 .14.某同学看了下面的统计图说:“这幅图显示,从2015年到2016年A 市常住人口大幅增加.”你认为这位同学的说法是否合理?答: (填“合理”或“不合理”),你的理由是 .15. 如图,图中的四边形都是矩形,根据图形,写出一个正确的等式: .第14题图第15题图16.阅读下面材料:在数学课上,老师提出如下问题:小红的作法如下:老师说:“小红的作法正确.”请回答:小红的作图依据是_________________________.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:101()(2)22sin 60.2π---++︒18. 已知2210x x --=. 求代数式2(1)(4)(2)(2)x x x x x -+-+-+的值.19. 解不等式组311),3 1.2x x x x -+⎧⎪⎨-<-⎪⎩≤2(20.如图,四边形ABCD 中,AB ∥DC ,AE ,DF 分别是∠BAD ,∠ADC 的平分线,AE ,DF 交于点O . 求证:AE ⊥DF .21.“五·一”假期的某天,小明、小东两人同时分别从家出发骑共享单车到奥林匹克公园,已知小明家到公园的路程为15km ,小东家到公园的路程为12km ,小明骑车的平均速度比小东快3.5km/h ,结果两人同时到达公园.求小东从家骑车到公园的平均速度.的垂直平分线.22.在平面直角坐标系xOy 中,直线12y x b =+与双曲线4y x=的一个交点为(,2)A m , 与y 轴分别交于点B . (1)求m 和b 的值;(2)若点C 在y 轴上,且△ABC 的面积是2,请直接写出点C23.如图,在△ABC 中,AB =AC ,AD 是BC 边的中线,过点A 作BC 的平行线,过点B 作AD 的平行线,两线交于点E .(1)求证:四边形ADBE 是矩形; (2)连接DE ,交AB 于点O ,若BC =8,AO =25, 求cos ∠AED 的值.24. 阅读下列材料:2017年3月29日,习主席来到了北京市朝阳区将台乡参加首都义务植树活动,他指出爱绿护绿是每个公民的职责,造林绿化是功在当代、利在千秋的事业.首都北京一直致力于创造绿色低碳的良好生态环境,着力加大城区规划建绿. 2013年,城市绿化覆盖率达到46.8%,森林覆盖率为40%,园林绿地面积67048公顷.2014年,城市绿化覆盖率比上年提高0.6个百分点,森林覆盖率为41%.2015年,城市绿化覆盖率达到48.4%,森林覆盖率为41.6%,生态环境进一步提升,园林绿地面积达到81305公顷.2016年,城市绿化覆盖率达到48.1%,森林覆盖率为42.3%,园林绿地面积比上年增加408公顷. 根据以上材料解答下列问题:(1)2016年首都北京园林绿地面积为 公顷;(2)用统计表将2013-2016年首都北京城市绿化覆盖率、森林覆盖率表示出来.25.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,点D 在AB 上,以BD 为直径的⊙O 切AC于点E ,连接DE 并延长,交BC 的延长线于点F .(1) 求证:△BDF 是等边三角形; (2) 连接AF 、DC ,若BC =3,写出求四边形AFCD 面积的思路.26. 有这样一个问题:探究函数()262y x =-的图象与性质.小华根据学习函数的经验,对函数()262y x =-的图象与性质进行了探究.下面是小华的探究过程,请补充完整: (1)函数()262y x =-的自变量x 的取值范围是 ;求m 的值;(3)如下图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)结合函数的图象,写出该函数的一条性质: .27.在平面直角坐标系中xOy 中,抛物线2211222y x mx m m =-++-的顶点在x 轴上. (1)求抛物线的表达式;(2)点Q 是x 轴上一点,①若在抛物线上存在点P ,使得∠POQ =45°,求点P 的坐标; ②抛物线与直线y =2交于点E ,F (点E 在点F 的左侧),将此抛物线在点E ,F (包含点E 和点F )之间的部分沿x 轴平移n 个单位后得到的图象记为G ,若在图象G 上存在点P ,使得∠POQ =45°,求n 的取值范围.28.在△ABC 中,∠ACB =90°,AC <BC ,点D 在AC 的延长线上,点E 在BC 边上,且BE =AD , (1) 如图1,连接AE ,DE ,当∠AEB =110°时,求∠DAE 的度数;(2) 在图2中,点D 是AC 延长线上的一个动点,点E 在BC 边上(不与点C 重合),且BE =AD ,连接AE ,DE ,将线段AE 绕点E 顺时针旋转90°得到线段EF ,连接BF ,DE . ①依题意补全图形; ②求证:BF =DE .图1图229. 在平面直角坐标系xOy 中,点A 的坐标为(0,m ),且m ≠0,点B 的坐标为(n ,0),将线段AB 绕点B 旋转90°,分别得到线段B P 1,B P 2,称点P 1,P 2为点A 关于点B 的“伴随点”,图1为点A 关于点B 的“伴随点”的示意图.(1)已知点A (0,4),①当点B 的坐标分别为(1,0),(-2,0)时,点A 关于点B 的“伴随点”的坐标分别为 ; ②点(x ,y )是点A 关于点B 的“伴随点”,直接写出y 与x 之间的关系式;(2)如图2,点C 的坐标为(-3,0),以C 为圆心, 2 为半径作圆,若在⊙C 上存在点A 关于点B 的“伴随点”,直接写出点A 的纵坐标m 的取值范围.图1北京市朝阳区九年级综合练习(一)数学试卷评分标准及参考答案2017.5二、填空题(本题共18分,每小题3分)11. ()231m-.12. 0.1;1000.13. 45°.14. 不合理;答案不惟一,如:所增加的2.4万与2170.5万相比,体现不了“大幅度”.15. 答案不惟一,如:2()()x a x b x ax bx ab++=+++16.到线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式=2122-+=3.18.解:原式=2222144x x x x x-++-+-=2363x x--.∵x2-2x-1=0,∴2363x x--23(21)x x=--=.19.解:原不等式组为311)312x xxx-+⎧⎪⎨-<-⎪⎩≤2(①②解不等式①,得x£3.解不等式②,得 1.x>-∴原不等式组的解集为13x-<≤.20.证明:∵AB∥DC,∴∠BAD +∠ADC =180°.∵AE ,DF 分别是∠BAD ,∠ADC 的角平分线, ∴∠EAD =21∠BAD ,∠FDA =21∠ADC. ∴∠EAD +∠FDA =90°. ∴∠AOD =90°.∴AE ⊥DF .21.解:设小东从家骑车到公园的平均速度为x km/h . 由题意,得15123.5x x=+.解得 14x =.经检验,14x =是原方程的解,且符合题意.答:小东从家骑车到公园的平均速度为14km/h .22.解:(1)∵点A (m ,2)在双曲线4y x =上,∴2m =.∵点A (2,2)直线12y x b =+上, ∴1b =. (2)(0,3),(0,-1). 23. 证明:(1)∵AE ∥BC ,BE ∥AD ,∴四边形ADBE 是平行四边形. ∵AB =AC ,AD 是BC 边的中线, ∴AD ⊥BC . 即∠ADB =90°.∴四边形ADCE 为矩形. (2)∵在矩形ADCE 中, AO =25, ∴DE =AB = 5. ∵D 是BC 的中点, ∴AE=DB=4∴在Rt △ABD 中,cos ∠ABD =45BD AB =.24.解:(1)81713(2)统计表如下:2013—2016年首都北京城市绿化覆盖率、森林覆盖率统计表25.(1)证明:连接OE .∵AC 切⊙O 于点E ,∴ÐOEA =90°.∵ÐA =30°,ÐACB =90°,∴ÐAOE =60°,ÐB =60° .∵OD OE =,∴ÐODE =ÐOED =60°.∴F B ODE ∠=∠=∠.∴△BDF 是等边三角形.(2)解:如图,作DH ⊥AC 于点H .①由∠ACB =90°,∠BAC =30°,BC =3,可求AB ,AC 的长;②由∠AEO =90°,∠OAE =30°,可知AO =2OE ,可求AD ,DB ,DH 的长;③由(1)可知BF =BD ,可求CF 的长;④由AC ,DH ,CF 的长可求四边形AFCD 的面积.26.解:(1)x ≠2(2)当x =7时,y =625. ∴625m =.(3)该函数的图象如下图所示:(4)答案不唯一,如:函数图象关于直线x =2对称.27.解:(1)222111-2()2222y x mx m m x m m =++-=-+-. 由题意,可得m -2=0.∴2m =.∴21(2)2y x =-. (2)①由题意得,点P 是直线y x =与抛物线的交点. ∴21-222x x x =+.解得 13x =23x =.∴P 点坐标为(3或 (3.②当E 点移动到点(2,2)时,n =2.当F 点移动到点(-2,2)时,n =-6.由图象可知,符合题意的n 的取值范围是26-≤≤n .28.(1)解:∵ÐAEB =110°,ÐACB =90°,∴ÐDAE =20°.(2)①补全图形,如图所示.②证明:由题意可知∠AEF =90°,EF =AE .∵∠ACB =90°,∴∠AEC +∠BEF =∠AEC +∠DAE =90°.∴∠BEF =∠DAE .∵BE=AD,∴△EBF≌△ADE.∴DE=BF.29.解:(1)①(-3,-1),(5,1).(-6,2),(2,-2).②y=x-4或y=-x-4.(2)-5≤m≤-1或1≤m≤5说明:各解答题的其他正确解法请参照以上标准给分.备用图图2。
河北石家庄市裕华区二十七中 2017年九年级数学中考模拟试卷(含答案)
2017年九年级数学中考模拟试卷一、选择题:1.计算1-(-2)的正确结果是( )A.-2B.-1C.1D.32.下列计算正确的是()A.5a﹣2a=3B.(2a2)3=6a6C.3a•(﹣2a)4=48a5D.a3+2a=2a23.下列图形中,既是轴对称图形又是中心对称图形的有( )A.4个B.3个C.2个D.1个4.下列说法:①若a≠0,m,n是任意整数,则a m.a n=a m+n;②若a是有理数,m,n是整数,且mn>0,则(a m)n=a mn;③若a≠b且ab≠0,则(a+b)0=1;④若a是自然数,则a﹣3.a2=a﹣1.其中,正确的是()A.① B.①② C.②③④ D.①②③④5.已知一次函数y=kx+5和y=k/x+7,假设k>0且k/<0,则这两个一次函数图象的交点在( )A.第一象限B.第二象限C.第三象限D.第四象限6.如图,将正方形OABC放在平面直角坐标系中,O是原点,若点A的坐标为(1,),则点C坐标为( )A.(,1)B.(-1, )C.(-,1)D.(-,-1)7.如果,则()8.小强用8块棱长为3 cm的小正方体,搭建了一个如图所示的积木,下列说法中不正确的是( )A.从左面看这个积木时,看到的图形面积是27cm2B.从正面看这个积木时,看到的图形面积是54cm2C.从上面看这个积木时,看到的图形面积是45cm2D.分别从正面、左面、上面看这个积木时,看到的图形面积都是72cm29.一个正多边形的每个外角都等于36°,那么它是()A.正六边形 B.正八边形 C.正十边形 D.正十二边形10.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8B.6C.4D.211.若a、b为有理数,a>0,b<0,且|a|<|b|,那么a、b、-a、-b的大小关系是( )A.b<-a<-b<aB.b<-b<-a<aC.b<-a<a<-bD.-a<-b<b<a12.九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为xkm/h,则所列方程正确的是()A. =﹣B. =﹣20C. =+D. =+2013.如图,Rt△MBC中,∠MCB=90°,点M在数轴﹣1处,点C在数轴1处,MA=MB,BC=1,则数轴上点A对应的数是()A.+1B.﹣+1C.﹣﹣lD.﹣114.已知m,n是方程x2-2x-1=0的两实数根,则+的值为( )A.-2B.-C.D.215.如图,已知AD∥BC,AC与BD相交于点O,点G是BD的中点,过G作GE∥BC交AC于点E,如果AD=1,BC=3,GE:BCA.1:2B.1:3C.1:4D.2:316.二次函数y=ax2+bx+c(a,b,c下列结论:①ac<0;②当x>1时,y ax2+(b-1)x+c=0的一个根;④当-1<x<3时,ax2+(b-1)x+c>0.其中正确的个数为( )A.4个 B.3个 C.2个 D.1个二、填空题:17.一个数的算术平方根是3,这个数是 .18.若ab=3,a﹣2b=5,则a2b﹣2ab2的值是.19.为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据《科学》中光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子放在离树底(B)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,则树(AB)的高度约为________米(精确到0.1米)。
2017年河北中考数学一模考试
2017年河北中考数学一模考试————————————————————————————————作者:————————————————————————————————日期:2017年河北省中考数学一模试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共16小题,共42.0分)1.下列所给图形是中心对称图形但不是轴对称图形的是()A. B. C. D.2.下列计算正确的是()A.-2+|-2|=0B.20÷3=0C.42=8D.2÷3×13=23.有一种圆柱体茶叶筒如图所示,则它的主视图是()A. B. C. D.4.已知点P(x+3,x-4)在x轴上,则x的值为()A.3B.-3C.-4D.45.如图,DE是△ABC的中位线,若BC=8,则DE的长为()A.2B.4C.6D.86.2016年4月6日22:20某市某个观察站测得:空气中PM2.5含量为每立方米23μg,1g=1000000μg,则将23μg用科学记数法表示为()A.2.3×10-7gB.23×10-6gC.2.3×10-5gD.2.3×10-4g7.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的()A.中位数B.众数C.平均数D.方差8.如果代数式-2a+3b+8的值为18,那么代数式9b-6a+2的值等于()A.28B.-28C.32D.-329.父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的13,儿子露出水面的高度是他自身身高的17,父子二人的身高之和为3.2米.若设爸爸的身高为x米,儿子的身高为y米,则可列方程组为()A.{x+y=3.2(1+17)x=(1+13)y B.{x+y=3.2(1−17)x=(1−13)y C.{x+y=3.213x=17y D.{x+y=3.2(1−13)x=(1−17)y10.已知a=√2,b=√3,则√18=()A.2aB.abC.a2bD.ab2则图中阴影部分的周长为()A.11B.16C.19D.2212.数学课上,老师让学生尺规作图画R t△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径13.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰R t△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A. B. C. D.14.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=()A.12B.8C.4D.315.如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果AEEC =35,那么ACAB等于()A.3 5B.53C.85D.3216.如图,在平面直角坐标系中,直线y=-3x+3与x轴、y 轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线y=kx(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1B.2C.3D.417.函数y=√1−2x的自变量x的取值范围是______ .1+x18.如图,m∥n,直角三角板ABC的直角顶点C在两直线之间,两直角边与两直线相交所形成的锐角分别为α、β,则α+β=______ .19.如图,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜边AB上中线CD,得到第1个三角形ACD;DE⊥BC于点E,作R t△BDE斜边DB上中线EF,得到第2个三角形DEF;依次作下去…则第1个三角形的面积等于______ ,第n个三角形的面积等于______ .三、计算题(本大题共1小题,共8.0分)20.在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2-(9-1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.四、解答题(本大题共6小题,共60.0分)21.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AB=CD,请你再添加个条件,使得AE=DF,并说明理.22.如图,在平面直角坐标系中,一次函数y=kx+b(m≠0)的图象交于点A(3,与反比例函数y=mx1),且过点B(0,-2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.23.阅读对话,解答问题:(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;(2)求在(a,b)中使关于x的一元二次方程x2-ax+2b=0有实数根的概率.24.如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2√2,求BC的长.25.某手机店销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元.(1)求每部A型手机和B型手机的销售利润分别为多少元?(2)该商店计划一次购进两种型号的手机共110部,其中A型手机的进货量不超过B 型手机的2倍.设购进B型手机n部,这110部手机的销售总利润为y元.①求y关于n的函数关系式;②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.26.如图,已知抛物线的方程C1:y=-1(x+2)(x-m)m(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.。
2017年河北省石家庄四十二中中考一模数学试卷(解析版)
2017年河北省石家庄四十二中中考数学一模试卷一、选择题(本大题共16个小题,共42分)1.(3分)在﹣3,﹣1,1,3四个数中,比﹣2小的数是()A.﹣3B.﹣1C.1D.32.(3分)下列图形中,能确定∠1>∠2的是()A.B.C.D.3.(3分)下列运算正确的是()A.a6÷a3=a2B.3a﹣a=3C.(﹣a)2•a3=a5D.(a2)3=a54.(3分)某几何体的主视图和左视图如图所示,则该几何体可能是()A.长方体B.圆锥C.圆柱D.球5.(3分)已知点M(1﹣2m,m﹣1)在第四象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.6.(3分)据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为()千米.A.5.5×106B.5.5×107C.55×106D.0.55×1087.(3分)化简的结果是()A.B.C.x+1D.x﹣18.(3分)估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间9.(3分)任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形D.△EHF为等腰三角形10.(3分)公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18B.x2﹣3x+16=0C.(x﹣1)(x﹣2)=18D.x2+3x+16=011.(2分)如图,点A是量角器直径的一个端点,点B在半圆周上,点P在上,点Q在AB上,且PB=PQ.若点P对应140°(40°),则∠PQB的度数为()A.65°B.70°C.75°D.80°12.(2分)如图,圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,则r的值为()A.3B.6C.3πD.6π13.(2分)如图,在Rt△ABC中,CA=CB=2,M为CA的中点,在AB上存在一点P,连接PC、PM,则△PMC周长的最小值是()A.B.C.+1D.+114.(2分)如图中的图①、②、③所示,阴影部分面积的大小关系正确的是()A.①>②>③B.③>②>①C.②>③>①D.①=②=③15.(2分)用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A.2n+1B.n2﹣1C.n2+2n D.5n﹣2 16.(2分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c >0;④若点A(﹣3,y1),点B(﹣12,y2),点C(72,y3)在该函数图象上,则y1<y3<y2;⑤若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2,其中正确的结论有()A.2个B.3个C.4个D.5个二、填空题(本大题共3个小题,共10分)17.(3分)若2(a+3)的值与4互为相反数,则a的值为.18.(3分)已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y=图象上的概率是.19.(4分)在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A,如图所示依次作正方形A1B1C1O正方形A2B2C2C1﹣1,…使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B1的坐标是,B n 的坐标是.三、解答题(本大题共7个小题,共68分)20.(9分)计算:2sin45°﹣3﹣2+(﹣)0+|﹣2|+.21.(9分)由几个相同的边长为1的小立方块搭成的几何体的俯视图如图所示.方格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸中分别画出这个几何体的正视图和左视图.(2)根据三视图,请你求出这个组合几何体的表面积(包括底面积).22.(9分)某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:根据图中提供的信息,解答下列问题:(1)a = ,b = ;(2)该校八年级学生共有600人,则该年级参加足球活动的人数约 人;(3)该班参加乒乓球活动的5位同学中,有3位男同学(A ,B ,C )和2位女同学(D ,E ),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.23.(9分)如图,▱ABCD 中,AB =2,AD =1,∠ADC =60°,将▱ABCD 沿过点A 的直线l 折叠,使点D 落到AB 边上的点D ′处,折痕交CD 边于点E .(1)求证:四边形BCED ′是菱形;(2)若点P 是直线l 上的一个动点,请计算PD ′+PB 的最小值.24.(10分)如图,已知A (﹣4,0.5),B (﹣1,2)是一次函数y =ax +b 与反比例函数(m <0)图象的两个交点,AC ⊥x 轴于C ,BD ⊥y 轴于D .(1)根据图象直接回答:在第二象限内,当x 取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m 的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.25.(10分)如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)26.(12分)如图,在坐标系xOy中,已知D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,动点P从O点出发,沿x轴以每秒1个单位长度的速度向右运动,运动时间为t秒.(1)当t为何值时,PC∥DB;(2)当t为何值时,PC⊥BC;(3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值.2017年河北省石家庄四十二中中考数学一模试卷参考答案与试题解析一、选择题(本大题共16个小题,共42分)1.(3分)在﹣3,﹣1,1,3四个数中,比﹣2小的数是()A.﹣3B.﹣1C.1D.3【解答】解:∵|﹣3|=3,|﹣2|=2,∴比﹣2小的数是:﹣3.故选:A.2.(3分)下列图形中,能确定∠1>∠2的是()A.B.C.D.【解答】解:A、∠1=∠2,故本选项错误;B、∠1>∠2,故本选项正确;C、∠1=∠2,故本选项错误;D、∠1=∠2,故本选项错误.故选:B.3.(3分)下列运算正确的是()A.a6÷a3=a2B.3a﹣a=3C.(﹣a)2•a3=a5D.(a2)3=a5【解答】解:A、a6÷a3=a3,本选项错误;B、3a﹣a=2a,本选项错误;C、(﹣a)2•a3=a2•a3=a5,本选项正确;D、(a2)3=a6,本选项错误,故选:C.4.(3分)某几何体的主视图和左视图如图所示,则该几何体可能是()A.长方体B.圆锥C.圆柱D.球【解答】解:∵如图所示几何体的主视图和左视图,∴该几何体可能是圆柱体.故选:C.5.(3分)已知点M(1﹣2m,m﹣1)在第四象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.【解答】解:由点M(1﹣2m,m﹣1)在第四象限,得1﹣2m>0,m﹣1<0.解得m<,故选:B.6.(3分)据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为()千米.A.5.5×106B.5.5×107C.55×106D.0.55×108【解答】解:火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为5.5×107千米,故选:B.7.(3分)化简的结果是()A.B.C.x+1D.x﹣1【解答】解:原式=÷=•=,故选:A.8.(3分)估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【解答】解:∵2<<3,∴3<+1<4,∴+1在3和4之间.故选:C.9.(3分)任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形D.△EHF为等腰三角形【解答】解:A、正确.∵EG=EH,∴△EGH是等腰三角形.B、错误.∵EG=GF,∴△EFG是等腰三角形,若△EFG是等边三角形,则EF=EG,显然不可能.C、正确.∵EG=EH=HF=FG,∴四边形EHFG是菱形.D、正确.∵EH=FH,∴△EFH是等腰三角形.故选:B.10.(3分)公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18B.x2﹣3x+16=0C.(x﹣1)(x﹣2)=18D.x2+3x+16=0【解答】解:设原正方形的边长为xm,依题意有(x﹣1)(x﹣2)=18,故选:C.11.(2分)如图,点A是量角器直径的一个端点,点B在半圆周上,点P在上,点Q在AB上,且PB=PQ.若点P对应140°(40°),则∠PQB的度数为()A.65°B.70°C.75°D.80°【解答】解:∵点P对应140°,∴∠ABP=70°,∵PB=PQ,∴∠PQB=∠ABP=70°,故选:B.12.(2分)如图,圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,则r的值为()A.3B.6C.3πD.6π【解答】解:∵圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,∴2πr=×2π×10,解得r=6.故选:B.13.(2分)如图,在Rt△ABC中,CA=CB=2,M为CA的中点,在AB上存在一点P,连接PC、PM,则△PMC周长的最小值是()A.B.C.+1D.+1【解答】解:作点C关于直线AB的对称点D,连接DM交AB于点P,此时△PCM周长最小.∵CA=CB,∠ACB=90°,∴∠BAC=∠B=∠BAD=45°,在RT△ADM中,∵∠DAM=90°,AD=2,AM=1,∴DM==,∴此时△PCM的周长为PC+PM+CM=PM+PD+CM=+1.故选:C.14.(2分)如图中的图①、②、③所示,阴影部分面积的大小关系正确的是()A.①>②>③B.③>②>①C.②>③>①D.①=②=③【解答】解:①当x=0时,y=1;当y=0时,x=1,∴S=×1×1=;②∵点在反比例函数y=的图象上,∴S=k=×3=;③由点(1,0)、(3,0)、(0,3)利用待定系数法求出抛物线解析式为y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1),∴S=×(3﹣1)×|﹣1|=1.∵<1<,∴②>③>①.故选:C.15.(2分)用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A.2n+1B.n2﹣1C.n2+2n D.5n﹣2【解答】解:∵第1个图形中,小正方形的个数是:22﹣1=3;第2个图形中,小正方形的个数是:32﹣1=8;第3个图形中,小正方形的个数是:42﹣1=15;…∴第n个图形中,小正方形的个数是:(n+1)2﹣1=n2+2n+1﹣1=n2+2n;故选:C.16.(2分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c >0;④若点A(﹣3,y1),点B(﹣12,y2),点C(72,y3)在该函数图象上,则y1<y3<y2;⑤若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2,其中正确的结论有()A.2个B.3个C.4个D.5个【解答】解:①正确.∵﹣=2,∴4a+b=0.故正确.②错误.∵x=﹣3时,y<0,∴9a﹣3b+c<0,∴9a+c<3b,故(2)错误.③正确.由图象可知抛物线经过(﹣1,0)和(5,0),∴,解得,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵a<0,∴8a+7b+2c>0,故③正确.④错误,∵点A(﹣3,y1)、点B(﹣12,y2)、点C(72,y3),∵点C离对称轴的距离远,B其次,A最近,∴y1>y2>y3,故④错误.⑤正确.∵a<0,∴(x+1)(x﹣5)=﹣3/a>0,即(x+1)(x﹣5)>0,故x<﹣1或x>5,故⑤正确.∴正确的有三个,故选:B.二、填空题(本大题共3个小题,共10分)17.(3分)若2(a+3)的值与4互为相反数,则a的值为﹣5.【解答】解:由题意,得2(a+3)+4=0,解得a=﹣5,故答案为:﹣5.18.(3分)已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y=图象上的概率是.【解答】解:∵﹣1×1=﹣1,2×2=4,×=1,(﹣5)×(﹣)=1,∴2个点的坐标在反比例函数y=图象上,∴在反比例函数y=图象上的概率是2÷4=.故答案为:.19.(4分)在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A,如图所示依次作正方形A1B1C1O正方形A2B2C2C1﹣1,…使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B1的坐标是(1,1),B n的坐标是(2n﹣1,2n﹣1)(n为正整数).【解答】解:观察,发现:A1(1,0),A2(2,1),A3(4,3),A4(8,7),…,∴A n(2n﹣1,2n﹣1﹣1)(n为正整数).观察图形可知:B1(1,1);点B n是线段∁n A n+1的中点,∴点B n的坐标是(2n﹣1,2n﹣1).故答案为:(1,1),(2n﹣1,2n﹣1)(n为正整数).三、解答题(本大题共7个小题,共68分)20.(9分)计算:2sin45°﹣3﹣2+(﹣)0+|﹣2|+.【解答】解:原式=2×﹣+1+2﹣+=3.21.(9分)由几个相同的边长为1的小立方块搭成的几何体的俯视图如图所示.方格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸中分别画出这个几何体的正视图和左视图.(2)根据三视图,请你求出这个组合几何体的表面积(包括底面积).【解答】解:(1)图形如下所示(2)几何体的表面积为:(3+4+5)×2=24.22.(9分)某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:根据图中提供的信息,解答下列问题:(1)a=16,b=17.5;(2)该校八年级学生共有600人,则该年级参加足球活动的人数约90人;(3)该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.【解答】解:(1)a=5÷12.5%×40%=16,5÷12.5%=7÷b%,∴b=17.5,故答案为:16,17.5;(2)600×[6÷(5÷12.5%)]=90(人),故答案为:90;(3)如图,∵共有20种等可能的结果,两名同学恰为一男一女的有12种情况,∴则P(恰好选到一男一女)==.23.(9分)如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P是直线l上的一个动点,请计算PD′+PB的最小值.【解答】证明:(1)∵将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,∴∠DAE=∠D′AE,∠DEA=∠D′EA,∠D=∠AD′E,∵DE∥AD′,∴∠DEA=∠EAD′,∴∠DAE=∠EAD′=∠DEA=∠D′EA,∴∠DAD′=∠DED′,∴四边形DAD′E是平行四边形,∴DE=AD′,∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,∴CE=D′B,CE∥D′B,∴四边形BCED′是平行四边形;∵AD=AD′,∵AB=2,AD=1,∴AD=AD′=BD′=CE=BC=1,∴▱BCED′是菱形,(2)∵四边形DAD′E是菱形,∴D与D′关于AE对称,连接BD交AE于P,则BD的长即为PD′+PB的最小值,过D作DG⊥BA于G,∵CD∥AB,∴∠DAG=∠CDA=60°,∵AD=1,∴AG=,DG=,∴BG=,∴BD==,∴PD′+PB的最小值为.24.(10分)如图,已知A(﹣4,0.5),B(﹣1,2)是一次函数y=ax+b与反比例函数(m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.【解答】解:(1)当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)把A(﹣4,0.5),B(﹣1,2)代入y=kx+b得,,解得,所以一次函数解析式为y=x+;把B(﹣1,2)代入,得m=﹣1×2=﹣2;(3)连接PC、PD,如图,设P点坐标为(t,t+).∵△PCA和△PDB面积相等,∴••(t+4)=•1•(2﹣t﹣),解得t=﹣,∴P点坐标为(﹣,).25.(10分)如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)【解答】解:(1)由题意得:,解得:,∴抛物线的解析式为:y=x2﹣4x﹣5;(2)∵对称轴为直线x=2,A(﹣1,0),∴B(5,0),当x=0时,y=﹣5,∴C(0,﹣5),(3)∵∠BOC=90°,∴BC是过O,B,C三点的圆的直径,由题意得:OB=5,OC=5,由勾股定理得;BC==5,S=π•=π,答:过O,B,C三点的圆的面积为π.26.(12分)如图,在坐标系xOy中,已知D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,动点P从O点出发,沿x轴以每秒1个单位长度的速度向右运动,运动时间为t秒.(1)当t为何值时,PC∥DB;(2)当t为何值时,PC⊥BC;(3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值.【解答】解:(1)∵D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,∴DC=5,OC=4,OB=3,∵DC⊥y轴,x轴⊥y轴,∴DC∥BP,∵PC∥DB,∴四边形DBPC是平行四边形,∴DC=BP=5,∴OP=5﹣3=2,2÷1=2,即当t为2秒时,PC∥BD;(2)∵PC⊥BC,x轴⊥y轴,∴∠COP=∠COB=∠BCP=90∴,∴∠PCO+∠BCO=90°,∠CPO+∠PCO=90°,∴∠CPO=∠BCO,∴△PCO∽△CBO,∴=,∴=,∴OP=,÷1=,即当t为秒时,PC⊥BC;(3)设⊙P的半径是R,分为三种情况:①当⊙P与直线DC相切时,如图1,过P作PM⊥DC交DC延长线于M,则PM=OC=4=OP,4÷1=4,即t=4;②如图2,当⊙P与BC相切时,∵∠BOC=90°,BO=3,OC=4,由勾股定理得:BC=5,∵∠PMB=∠COB=90°,∠CBO=∠PBM,∴△COB∽△PMB,∴=,∴=,R=12,12÷1=12,即t=12秒;③根据勾股定理得:BD==2,如图3,当⊙P与DB相切时,∵∠PMB=∠DAB=90°,∠ABD=∠PBM,∴△ADB∽△MPB,∴=,∴=,R=6+12;(6+12)÷1=6+12,即t=(6+12)秒.。
2017年河北省石家庄市裕华区精英中学中考数学模拟试卷
2017年河北省石家庄市裕华区精英中学中考数学模拟试卷一.选择题:1.(3分)如图,数轴上的点A所表示的数为k,化简|k|+|1﹣k|的结果为()A.1 B.2k﹣1 C.2k+1 D.1﹣2k2.(3分)若(x﹣2)(x2+ax+b)的积中不含x的二次项和一次项,则a和b的值()A.a=0;b=2 B.a=2;b=0 C.a=﹣1;b=2 D.a=2;b=43.(3分)下列四个图案中,属于中心对称图形的是()A.B.C. D.4.(3分)化简的结果是()A.B.a C.a﹣1 D.5.(3分)如图,已知矩形OABC,A(4,0),C(0,3),动点P从点A出发,沿A﹣B﹣C﹣O的路线勻速运动,设动点P的运动时间为t,△OAP的面积为S,则下列能大致反映S与t之间关系的图象是()A.B.C.D.6.(3分)任意四边形ABCD各边的中点分别是E,F,G,H,若对角线AC,BD的长都为20cm ,则四边形EFGH 的周长是( )A .80cmB .40cmC .20cmD .10cm7.(3分)若代数式有意义,则x 的取值范围是( )A .x >1且x ≠2B .x ≥1C .x ≠2D .x ≥1且x ≠28.(3分)如图,在一密闭的圆柱形玻璃杯中装一半的水,水平放置时,水面的形状是( )A .圆B .长方形C .椭圆D .平行四边形9.(3分)如图,AD 是△ABC 的中线,CE 是△ACD 的中线,DF 是△CDE 的中线,如果△DEF 的面积是2,那么△ABC 的面积为( )A .12B .14C .16D .1810.(3分)如图,△ABC 的三边AB 、BC 、AC 的长分别12,18,24,O 是△ABC 三条角平分线的交点,则S △OAB :S △OBC :S △OAC =( )A .1:1:1B .1:2:3C .2:3:4D .3:4:511.(3分)如图,数轴上点M 所表示的数可能是( )A .1.5B .﹣1.6C .﹣2.6D .﹣3.412.(3分)某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件才能按时交货,则x 应满足的方程为( )A.B.=C.D.13.(3分)由线段a、b、c组成的三角形不是直角三角形的是()A.a=7,b=24,c=25 B.a=,b=4,c=5C.a=,b=1,c= D.a=,b=,c=14.(3分)关于x的一元二次方程ax2﹣x+1=0有实数根,则a的取值范围是()A.a≤且a≠0 B.a≤C.a≥且a≠0 D.a≥15.(3分)如图,D是△ABC一边BC上一点,连接AD,使△ABC∽△DBA的条件是()A.AC:BC=AD:BD B.AC:BC=AB:AD C.AB2=CD•BC D.AB2=BD•BC 16.(3分)矩形ABCD中,AD=8cm,AB=6cm.动点E从点C开始沿边CB向点B以2cm/s的速度运动,动点F从点C同时出发沿边CD向点D以1cm/s的速度运动至点D停止.如图可得到矩形CFHE,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:cm2),则y与x之间的函数关系用图象表示大致是下图中的()A.B.C.D.二、填空题:17.(3分)一个数的立方根是4,那么这个数的平方根是.18.(3分)分解因式:x2﹣4(x﹣1)=.19.(3分)如图,AD=DF=FB,DE∥FG∥BC,则SⅠ:SⅡ:SⅢ=.三、解答题20.计算:(1)(﹣2)3÷+3×|1﹣(﹣2)2|(2)﹣12﹣(﹣)÷×[﹣2+(﹣3)2].21.如图,点A,B,C,D在一条直线上,△ABF≌△DCE.你能得出哪些结论?(请写出三个以上的结论)22.已知,如图,△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF是正三角形.23.某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的长沙﹣我最喜爱的长沙小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图:请根据所给信息解答以下问题:(1)请补全条形统计图;(2)若全校有2000名同学,请估计全校同学中最喜爱“臭豆腐”的同学有多少人?(3)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为四种小吃的序号A、B、C、D,随机地摸出一个小球然后放回,再随机地摸出一个小球,请用列表或画树形图的方法,求出恰好两次都摸到“A”的概率.24.A市和B市分别有库存的某联合收割机12台和6台,现决定开往C市10台和D市8台,已知从A市开往C市、D市的油料费分别为每台400元和800元,从B市开往C市和D市的油料费分别为每台300元和500元.(1)设B市运往C市的联合收割机为x台,求运费w关于x的函数关系式.(2)若总运费不超过9000元,问有几种调运方案?(3)求出总运费最低的调运方案,并求出最低运费.25.如图,贵阳市某中学数学活动小组在学习了“利用三角函数测高”后.选定测量小河对岸一幢建筑物BC的高度.他们先在斜坡上的D处,测得建筑物顶的仰角为30°.且D离地面的高度DE=5m.坡底EA=10m,然后在A处测得建筑物顶B的仰角是50°,点E,A,C在同一水平线上,求建筑物BC的高.(结果保留整数)26.如图1,在Rt△ABC中,∠C=90°,BC=8厘米,点D在AC上,CD=3厘米.点P、Q分别由A、C两点同时出发,点P沿AC方向向点C匀速移动,速度为每秒k厘米,行完AC全程用时8秒;点Q沿CB方向向点B匀速移动,速度为每秒1厘米.设运动的时间为x秒(0<x<8),△DCQ的面积为y1平方厘米,△PCQ 的面积为y2平方厘米.(1)求y1与x的函数关系,并在图2中画出y1的图象;(2)如图2,y2的图象是抛物线的一部分,其顶点坐标是(4,12),求点P的速度及AC的长;(3)在图2中,点G是x轴正半轴上一点0<OG<6,过G作EF垂直于x轴,分别交y1、y2的图象于点E、F.①说出线段EF的长在图1中所表示的实际意义;②当0<x<6时,求线段EF长的最大值.2017年河北省石家庄市裕华区精英中学中考数学模拟试卷参考答案与试题解析一.选择题:1.(3分)如图,数轴上的点A所表示的数为k,化简|k|+|1﹣k|的结果为()A.1 B.2k﹣1 C.2k+1 D.1﹣2k【解答】解:由数轴可知:k>1,∴k>0,1﹣k<0.∴|k|+|1﹣k|=k﹣1+k=2k﹣1.故选B.2.(3分)若(x﹣2)(x2+ax+b)的积中不含x的二次项和一次项,则a和b的值()A.a=0;b=2 B.a=2;b=0 C.a=﹣1;b=2 D.a=2;b=4【解答】解:∵(x﹣2)(x2+ax+b)=x3+ax2+bx﹣2x2﹣2ax﹣2b=x3+(a﹣2)x2+(b ﹣2a)x﹣2b,又∵积中不含x的二次项和一次项,∴,解得a=2,b=4.故选D.3.(3分)下列四个图案中,属于中心对称图形的是()A.B.C. D.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选:D.4.(3分)化简的结果是()A.B.a C.a﹣1 D.【解答】解:=×=a.故选B.5.(3分)如图,已知矩形OABC,A(4,0),C(0,3),动点P从点A出发,沿A﹣B﹣C﹣O的路线勻速运动,设动点P的运动时间为t,△OAP的面积为S,则下列能大致反映S与t之间关系的图象是()A.B.C.D.【解答】解:设点P的运动速度为a(a为定值),当点P在AB上时,S=×at×4=2at,当点P在BC上时,S=×3×4=6,当点P在CO上时,S=×(10﹣at)×4=20﹣2at,则能大致反映S与t之间关系的图象是A选项中的图象,故选:A.6.(3分)任意四边形ABCD各边的中点分别是E,F,G,H,若对角线AC,BD 的长都为20cm,则四边形EFGH的周长是()A.80cm B.40cm C.20cm D.10cm【解答】解:∵E,F,G,H,是四边形ABCD各边中点,∴HG=AC,EF=AC,GF=HE=BD,∴四边形EFGH的周长是HG+EF+GF+HE=(AC+AC+BD+BD)=×(20+20+20+20)=40(cm).故选:B.7.(3分)若代数式有意义,则x的取值范围是()A.x>1且x≠2 B.x≥1 C.x≠2 D.x≥1且x≠2【解答】解:由分式及二次根式有意义的条件可得:x﹣1≥0,x﹣2≠0,解得:x≥1,x≠2,故选:D.8.(3分)如图,在一密闭的圆柱形玻璃杯中装一半的水,水平放置时,水面的形状是()A.圆B.长方形C.椭圆D.平行四边形【解答】解:由水平面与圆柱的底面垂直,得水面的形状是矩形.故选:B .9.(3分)如图,AD 是△ABC 的中线,CE 是△ACD 的中线,DF 是△CDE 的中线,如果△DEF 的面积是2,那么△ABC 的面积为( )A .12B .14C .16D .18【解答】解:∵DF 是△CDE 的中线,∴S △CDE =2S △DEF ,∵CE 是△ACD 的中线,∴S △ACD =2S △CDE =4S △DEF ,∵AD 是△ABC 的中线,∴S △ABC =2S △ACD =8S △DEF ,∵△DEF 的面积是2,∴S △ABC =2×8=16.故选C .10.(3分)如图,△ABC 的三边AB 、BC 、AC 的长分别12,18,24,O 是△ABC 三条角平分线的交点,则S △OAB :S △OBC :S △OAC =( )A .1:1:1B .1:2:3C .2:3:4D .3:4:5【解答】解:∵O 是△ABC 三条角平分线的交点,AB 、BC 、AC 的长分别12,18,24,∴S △OAB :S △OBC :S △OAC =AB :OB :AC=12:18:24=2:3:4.故选C.11.(3分)如图,数轴上点M所表示的数可能是()A.1.5 B.﹣1.6 C.﹣2.6 D.﹣3.4【解答】解:设M表示的数为x,由数轴可知:﹣3<x<﹣2,M可能是﹣2.6,故选(C)12.(3分)某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为()A.B.=C.D.【解答】解:因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:,根据“因客户要求提前5天交货”,用原有完成时间减去提前完成时间,可以列出方程:.故选:D.13.(3分)由线段a、b、c组成的三角形不是直角三角形的是()A.a=7,b=24,c=25 B.a=,b=4,c=5C.a=,b=1,c= D.a=,b=,c=【解答】解:解:A、72+242=252,符合勾股定理的逆定理,是直角三角形;B、42+52=()2,符合勾股定理的逆定理,是直角三角形;C、12+()2=()2,符合勾股定理的逆定理,是直角三角形;D、()2+()2≠()2,不符合勾股定理的逆定理,不是直角三角形.故选D.14.(3分)关于x的一元二次方程ax2﹣x+1=0有实数根,则a的取值范围是()A.a≤且a≠0 B.a≤C.a≥且a≠0 D.a≥【解答】解:∵关于x的一元二次方程ax2﹣x+1=0有实数根,∴△≥0且a≠0,∴(﹣1)2﹣4a≥0且a≠0,∴a≤且a≠0,故选:A.15.(3分)如图,D是△ABC一边BC上一点,连接AD,使△ABC∽△DBA的条件是()A.AC:BC=AD:BD B.AC:BC=AB:AD C.AB2=CD•BC D.AB2=BD•BC【解答】解:∵∠B=∠B,∴当时,△ABC∽△DBA,当AB2=BD•BC时,△ABC∽△DBA,故选D.16.(3分)矩形ABCD中,AD=8cm,AB=6cm.动点E从点C开始沿边CB向点B以2cm/s的速度运动,动点F从点C同时出发沿边CD向点D以1cm/s的速度运动至点D停止.如图可得到矩形CFHE,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:cm2),则y与x之间的函数关系用图象表示大致是下图中的()A.B.C.D.【解答】解:此题在读懂题意的基础上,分两种情况讨论:当x≤4时,y=6×8﹣(x•2x)=﹣2x2+48,此时函数的图象为抛物线的一部分,它的最上点抛物线的顶点(0,48),最下点为(4,16);当4<x≤6时,点E停留在B点处,故y=48﹣8x=﹣8x+48,此时函数的图象为直线y=﹣8x+48的一部分,它的最上点可以为(4,16),它的最下点为(6,0).结合四个选项的图象知选A项.故选:A.二、填空题:17.(3分)一个数的立方根是4,那么这个数的平方根是±8.【解答】解:设这个数为x,则根据题意可知=4,解得x=64;即64的平方根为±8.故答案为±8.18.(3分)分解因式:x2﹣4(x﹣1)=(x﹣2)2.【解答】解:x2﹣4(x﹣1)=x2﹣4x+4=(x﹣2)2.故答案为:(x﹣2)2.19.(3分)如图,AD=DF=FB,DE∥FG∥BC,则SⅠ:SⅡ:SⅢ=1:3:5.【解答】解:∵DE∥FG∥BC,∴△ADE∽△AFG∽△ABC,∵AD=DF=FB,∴AD:AF:AB=1:2:3,∴S△ADE :S△AFG:S△ABC=1:4:9,∴SⅠ:SⅡ:SⅢ=1:3:5.三、解答题20.计算:(1)(﹣2)3÷+3×|1﹣(﹣2)2|(2)﹣12﹣(﹣)÷×[﹣2+(﹣3)2].【解答】解:(1)原式=﹣8×+3×3=﹣10+9=﹣1;(2)原式=﹣1+×3×7=﹣1+3.5=2.5.21.如图,点A,B,C,D在一条直线上,△ABF≌△DCE.你能得出哪些结论?(请写出三个以上的结论)【解答】解:∵△ABF≌△DCE∴∠BAF=∠CDE,∠AFB=∠DEC,∠ABF=∠DCE,AB=DC,BF=CE,AF=DE;∴AF∥ED,AC=BD,BF∥CE.22.已知,如图,△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF是正三角形.【解答】解:∵△ABC为等边三角形,且AD=BE=CF,∴AE=BF=CD,又∵∠A=∠B=∠C=60°,∴△ADE≌△BEF≌△CFD(SAS),∴DF=ED=EF,∴△DEF是等边三角形.23.某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的长沙﹣我最喜爱的长沙小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图:请根据所给信息解答以下问题:(1)请补全条形统计图;(2)若全校有2000名同学,请估计全校同学中最喜爱“臭豆腐”的同学有多少人?(3)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为四种小吃的序号A、B、C、D,随机地摸出一个小球然后放回,再随机地摸出一个小球,请用列表或画树形图的方法,求出恰好两次都摸到“A”的概率.【解答】解:(1)根据题意得:喜欢“唆螺”人数为:50﹣(14+21+5)=10(人),补全统计图,如图所示:(2)根据题意得:2000××100%=560(人),则估计全校同学中最喜爱“臭豆腐”的同学有560人;(3)列表如下:所有等可能的情况有16种,其中恰好两次都摸到“A”的情况有1种,则P=.24.A市和B市分别有库存的某联合收割机12台和6台,现决定开往C市10台和D市8台,已知从A市开往C市、D市的油料费分别为每台400元和800元,从B市开往C市和D市的油料费分别为每台300元和500元.(1)设B市运往C市的联合收割机为x台,求运费w关于x的函数关系式.(2)若总运费不超过9000元,问有几种调运方案?(3)求出总运费最低的调运方案,并求出最低运费.【解答】解:(1)由题意可得,w=400(10﹣x)+800(2+x)+300x+500(6﹣x)=200x+8600.由解得0≤x≤6.(2)由题意200x+8600≤9000,解得x≤2,∴x=0或1或2,∴有三种调运方案:①B市运往C市的联合收割机为0台,B市运往D市的联合收割机为6台,A市运往C市的联合收割机为10台,A市运往D市的联合收割机为2台;②B市运往C市的联合收割机为1台,B市运往D市的联合收割机为5台,A市运往C市的联合收割机为9台,A市运往D市的联合收割机为3台;③B市运往C市的联合收割机为2台,B市运往D市的联合收割机为4台,A市运往C市的联合收割机为8台,A市运往D市的联合收割机为4台;(3)∵w=200x+8600,∵200>0,∴w随x的增大而增大,∵0≤x≤6,∴x=0时,w最小,最小值为8600元.25.如图,贵阳市某中学数学活动小组在学习了“利用三角函数测高”后.选定测量小河对岸一幢建筑物BC的高度.他们先在斜坡上的D处,测得建筑物顶的仰角为30°.且D离地面的高度DE=5m.坡底EA=10m,然后在A处测得建筑物顶B的仰角是50°,点E,A,C在同一水平线上,求建筑物BC的高.(结果保留整数)【解答】解:过点D作DH⊥BC于点M,如图所示:则四边形DHCE是矩形,DH=EC,DE=HC,设建筑物BC的高度为xm,则BH=(x﹣5)m,在Rt△DHB中,∠BDH=30°,∴DH=(x﹣5),AC=EC﹣EA=(x﹣5)﹣10,在Rt△ACB中,∠BAC=50°,tan∠BAC=,∴x=tan50°•[(x﹣5)],解得:x≈21,答:建筑物BC的高约为21m.26.如图1,在Rt△ABC中,∠C=90°,BC=8厘米,点D在AC上,CD=3厘米.点P、Q分别由A、C两点同时出发,点P沿AC方向向点C匀速移动,速度为每秒k厘米,行完AC全程用时8秒;点Q沿CB方向向点B匀速移动,速度为每秒1厘米.设运动的时间为x秒(0<x<8),△DCQ的面积为y1平方厘米,△PCQ 的面积为y2平方厘米.(1)求y1与x的函数关系,并在图2中画出y1的图象;(2)如图2,y2的图象是抛物线的一部分,其顶点坐标是(4,12),求点P的速度及AC的长;(3)在图2中,点G是x轴正半轴上一点0<OG<6,过G作EF垂直于x轴,分别交y1、y2的图象于点E、F.①说出线段EF的长在图1中所表示的实际意义;②当0<x<6时,求线段EF长的最大值.=•CQ•CD,CD=3,CQ=x,【解答】解:(1)∵S△DCQ∴y1=x(0<x<8).图象如图所示;=•CQ•CP,CP=8k﹣xk,CQ=x,(2)S△PCQ∴y2=×(8k﹣kx)•x=﹣kx2+4kx.∵抛物线顶点坐标是(4,12),∴﹣k•42+4k•4=12.解得k=.则点P的速度每秒厘米,AC=12厘米;(3)①观察图象,知线段的长EF=y2﹣y1,表示△PCQ与△DCQ的面积差(或△PDQ面积).②由(2)得y2=﹣x2+6x.∴EF=﹣x2+6x﹣x=﹣x2+x=﹣(x2﹣6x+9)+=﹣(x﹣3)2+,∵二次项系数小于0,∴在0<x<6范围,当x=3时,EF=最大.。
河北省石家庄中考数学一模试卷(含解析)
2017年河北省石家庄四十二中中考数学一模试卷一、选择题(本大题共16个小题,共42分)1.在﹣3,﹣1,1,3四个数中,比﹣2小的数是()A.﹣3 B.﹣1 C.1 D.32.下列图形中,能确定∠1>∠2的是()A.B.C.D.3.下列运算正确的是()A.a6÷a3=a2B.3a﹣a=3 C.(﹣a)2•a3=a5D.(a2)3=a54.某几何体的主视图和左视图如图所示,则该几何体可能是()A.长方体B.圆锥 C.圆柱 D.球5.已知点M(1﹣2m,m﹣1)在第四象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.6.据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为()千米.A.5.5×106B.5.5×107C.55×106D.0.55×1087.化简的结果是()A. B. C.x+1 D.x﹣18.估计+1的值()A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间9.任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形D.△EHF为等腰三角形10.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18 B.x2﹣3x+16=0 C.(x﹣1)(x﹣2)=18 D.x2+3x+16=011.如图,点A是量角器直径的一个端点,点B在半圆周上,点P在上,点Q在AB上,且PB=PQ.若点P对应140°(40°),则∠PQB的度数为()A.65° B.70° C.75° D.80°12.如图,圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,则r的值为()A.3 B.6 C.3πD.6π13.如图,在Rt△ABC中,CA=CB=2,M为CA的中点,在AB上存在一点P,连接PC、PM,则△PMC 周长的最小值是()A.B.C. +1 D. +114.如图中的图①、②、③所示,阴影部分面积的大小关系正确的是()A.①>②>③B.③>②>①C.②>③>①D.①=②=③15.用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A.2n+1 B.n2﹣1 C.n2+2n D.5n﹣216.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④若点A(﹣3,y1),点B(﹣12,y2),点C(72,y3)在该函数图象上,则y1<y3<y2;⑤若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2,其中正确的结论有()A.2个B.3个C.4个D.5个二、填空题(本大题共3个小题,共10分)17.若2(a+3)的值与4互为相反数,则a的值为.18.已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y=图象上的概率是.19.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A,如图所示依次作正方形A1B1C1O正方形A2B2C2C1﹣1,…使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B1的坐标是,B n的坐标是.三、解答题(本大题共7个小题,共68分)20.计算:2sin45°﹣3﹣2+(﹣)0+|﹣2|+.21.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图所示.方格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸中分别画出这个几何体的正视图和左视图.(2)根据三视图,请你求出这个组合几何体的表面积(包括底面积).22.某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:八年级2班参加球类活动人数统计表项目篮球足球乒乓球排球羽毛球人数 a 6 5 7 6根据图中提供的信息,解答下列问题:(1)a= ,b= ;(2)该校八年级学生共有600人,则该年级参加足球活动的人数约人;(3)该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.23.如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D落到AB 边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P是直线l上的一个动点,请计算PD′+PB的最小值.24.如图,已知A(﹣4,0.5),B(﹣1,2)是一次函数y=ax+b与反比例函数(m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.25.如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A 的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)26.如图,在坐标系xOy中,已知D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,动点P从O点出发,沿x轴以每秒1个单位长度的速度向右运动,运动时间为t秒.(1)当t为何值时,PC∥DB;(2)当t为何值时,PC⊥BC;(3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值.2017年河北省石家庄四十二中中考数学一模试卷参考答案与试题解析一、选择题(本大题共16个小题,共42分)1.在﹣3,﹣1,1,3四个数中,比﹣2小的数是()A.﹣3 B.﹣1 C.1 D.3【考点】有理数大小比较.【分析】利用两个负数,绝对值大的其值反而小,进而得出答案.【解答】解:∵|﹣3|=3,|﹣2|=2,∴比﹣2小的数是:﹣3.故选:A.【点评】此题主要考查了有理数比较大小,正确把握两负数比较大小的方法是解题关键.2.下列图形中,能确定∠1>∠2的是()A.B.C.D.【考点】三角形的外角性质;对顶角、邻补角;平行线的性质;圆周角定理.【分析】根据对顶角相等对选项A进行判断;根据三角形外角性质对选项B进行判断;根据平行线的性质和对顶角相等对选项C进行判断;根据圆周角定理对选项D进行判断.【解答】解:A、∠1=∠2,故本选项错误;B、∠1>∠2,故本选项正确;C、∠1=∠2,故本选项错误;D、∠1=∠2,故本选项错误.故选B.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了对顶角、平行线的性质、三角形外角性质.3.下列运算正确的是()A.a6÷a3=a2B.3a﹣a=3 C.(﹣a)2•a3=a5D.(a2)3=a5【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【专题】计算题.【分析】A、利用同底数幂的除法法则计算得到结果,即可作出判断;B、合并同类项得到结果,即可作出判断;C、利用积的乘方运算法则计算,再利用同底数幂的乘法法则计算得到结果,即可作出判断;D、利用幂的乘方运算法则计算得到结果,即可作出判断.【解答】解:A、a6÷a3=a3,本选项错误;B、3a﹣a=2a,本选项错误;C、(﹣a)2•a3=a2•a3=a5,本选项正确;D、(a2)3=a6,本选项错误,故选C【点评】此题考查了同底数幂的除法,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.4.某几何体的主视图和左视图如图所示,则该几何体可能是()A.长方体B.圆锥 C.圆柱 D.球【考点】由三视图判断几何体.【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形,根据该几何体的主视图和左视图都是长方形,可得该几何体可能是圆柱体.【解答】解:∵如图所示几何体的主视图和左视图,∴该几何体可能是圆柱体.故选C.【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力,掌握常见几何体的三视图是解题的关键.5.已知点M(1﹣2m,m﹣1)在第四象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;点的坐标.【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,可得答案.【解答】解:由点M(1﹣2m,m﹣1)在第四象限,得1﹣2m>0,m﹣1<0.解得m<,故选B.【点评】本题考查了在数轴上表示不等式的解集,点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).6.据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为()千米.A.5.5×106B.5.5×107C.55×106D.0.55×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为5.5×107千米,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.化简的结果是()A. B. C.x+1 D.x﹣1【考点】分式的混合运算.【专题】计算题;分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=÷=•=,故选A【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.8.估计+1的值()A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间【考点】估算无理数的大小.【分析】直接利用已知无理数得出的取值范围,进而得出答案.【解答】解:∵2<<3,∴3<+1<4,∴+1在3和4之间.故选:C.【点评】此题主要考查了估算无理数大小,正确得出的取值范围是解题关键.9.任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形D.△EHF为等腰三角形【考点】作图—基本作图;线段垂直平分线的性质.【分析】根据等腰三角形的定义、菱形的定义、等边三角形的定义一一判断即可.【解答】解:A、正确.∵EG=EH,∴△EGH是等腰三角形.B、错误.∵EG=GF,∴△EFG是等腰三角形,若△EFG是等边三角形,则EF=EG,显然不可能.C、正确.∵EG=EH=HF=FG,∴四边形EHFG是菱形.D、正确.∵EH=FH,∴△EFH是等腰三角形.故选B.【点评】本题考查线段的垂直平分线的性质、作图﹣基本作图、等腰三角形的定义等知识,解题的关键是灵活一一这些知识解决问题,属于中考常考题型.10.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18 B.x2﹣3x+16=0 C.(x﹣1)(x﹣2)=18 D.x2+3x+16=0【考点】由实际问题抽象出一元二次方程.【分析】可设原正方形的边长为xm,则剩余的空地长为(x﹣1)m,宽为(x﹣2)m.根据长方形的面积公式方程可列出.【解答】解:设原正方形的边长为xm,依题意有(x﹣1)(x﹣2)=18,故选C.【点评】本题考查了由实际问题抽象出一元二次方程的知识,应熟记长方形的面积公式.另外求得剩余的空地的长和宽是解决本题的关键.11.如图,点A是量角器直径的一个端点,点B在半圆周上,点P在上,点Q在AB上,且PB=PQ.若点P对应140°(40°),则∠PQB的度数为()A.65° B.70° C.75° D.80°【考点】圆周角定理.【分析】根据圆周角定理求出∠ABP=70°,根据等腰三角形的性质解答即可.【解答】解:∵点P对应140°,∴∠ABP=70°,∵PB=PQ,∴∠PQB=∠ABP=70°,故选:B.【点评】本题考查的是圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.12.如图,圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,则r的值为()A.3 B.6 C.3πD.6π【考点】圆锥的计算.【分析】直接根据弧长公式即可得出结论.【解答】解:∵圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,∴2πr=×2π×10,解得r=6.故选B.【点评】本题考查的是圆锥的计算,熟记弧长公式是解答此题的关键.13.如图,在Rt△ABC中,CA=CB=2,M为CA的中点,在AB上存在一点P,连接PC、PM,则△PMC 周长的最小值是()A.B.C. +1 D. +1【考点】轴对称﹣最短路线问题.【分析】作点C关于直线AB的对称点D,连接DM交AB于点P,此时△PCM周长最小,根据△PCM周长=PC+PM+CM=PD+PM+CM,求出DM即可解决问题.【解答】解:作点C关于直线AB的对称点D,连接DM交AB于点P,此时△PCM周长最小.∵CA=CB,∠ACB=90°,∴∠BAC=∠B=∠BAD=45°,在RT△ADM中,∵∠DAM=90°,AD=2,AM=1,∴DM==,∴此时△PCM的周长为PC+PM+CM=PM+PD+CM=+1.故选C.【点评】本题考查轴对称﹣最短问题,勾股定理等知识,解题的关键是利用轴对称找到点P位置,属于中考常考题型.14.如图中的图①、②、③所示,阴影部分面积的大小关系正确的是()A.①>②>③B.③>②>①C.②>③>①D.①=②=③【考点】抛物线与x轴的交点;一次函数图象上点的坐标特征;反比例函数系数k的几何意义.【分析】根据图①中直线的解析式找出直线与坐标轴的交点坐标,结合三角形的面积公式即可得出S的值;根据图②中反比例函数的解析式结合反比例函数系数k的几何意义即可得出S的值;根据图③中点的坐标利用待定系数法找出函数解析式,由此得出顶点坐标,再根据三角形的面积公式找出S的值.综上即可得出结论.【解答】解:①当x=0时,y=1;当y=0时,x=1,∴S=×1×1=;②∵点在反比例函数y=的图象上,∴S=k=×3=;③由点(1,0)、(3,0)、(0,3)利用待定系数法求出抛物线解析式为y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1),∴S=×(3﹣1)×|﹣1|=1.∵<1<,∴②>③>①.故选C.【点评】本题考查了抛物线与x轴的交点、一次函数图象上点的坐标特征以及反比例函数系数k的几何意义,根据三角形的面积公式求出3个图中阴影部分的面积是解题的关键.15.用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A.2n+1 B.n2﹣1 C.n2+2n D.5n﹣2【考点】规律型:图形的变化类.【分析】由第1个图形中小正方形的个数是22﹣1、第2个图形中小正方形的个数是32﹣1、第3个图形中小正方形的个数是42﹣1,可知第n个图形中小正方形的个数是(n+1)2﹣1,化简可得答案.【解答】解:∵第1个图形中,小正方形的个数是:22﹣1=3;第2个图形中,小正方形的个数是:32﹣1=8;第3个图形中,小正方形的个数是:42﹣1=15;…∴第n个图形中,小正方形的个数是:(n+1)2﹣1=n2+2n+1﹣1=n2+2n;故选:C.【点评】本题主要考查图形的变化规律,解决此类题目的方法是:从变化的图形中发现不变的部分和变化的部分及变化部分的特点是解题的关键.16.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④若点A(﹣3,y1),点B(﹣12,y2),点C(72,y3)在该函数图象上,则y1<y3<y2;⑤若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2,其中正确的结论有()A.2个B.3个C.4个D.5个【考点】抛物线与x轴的交点;二次函数图象与系数的关系.【分析】①正确.根据对称轴公式计算即可.②错误,利用x=﹣3时,y<0,即可判断.③正确.由图象可知抛物线经过(﹣1,0)和(5,0),列出方程组求出a、b即可判断.④错误.利用函数图象即可判断.⑤正确.利用二次函数与二次不等式关系即可解决问题.【解答】解:①正确.∵﹣ =2,∴4a+b=0.故正确.②错误.∵x=﹣3时,y<0,∴9a﹣3b+c<0,∴9a+c<3b,故(2)错误.③正确.由图象可知抛物线经过(﹣1,0)和(5,0),∴,解得,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵a<0,∴8a+7b+2c>0,故③正确.④错误,∵点A(﹣3,y1)、点B(﹣,y2)、点C(,y3),∵3.5﹣2=1.5,2﹣(﹣0.5)=2.5,∴1.5<2.5∴点C离对称轴的距离近,∴y3>y2,∵a<0,﹣3<﹣0.5<2,∴y1<y2∴y1<y2<y3,故④错误.⑤正确.∵a<0,∴(x+1)(x﹣5)=﹣3/a>0,即(x+1)(x﹣5)>0,故x<﹣1或x>5,故⑤正确.∴正确的有三个,故选B.【点评】本题考查抛物线和x轴交点的问题以及二次函数与系数关系,灵活掌握二次函数的性质是解决问题的关键,学会利用图象信息解决问题,属于中考常考题型.二、填空题(本大题共3个小题,共10分)17.若2(a+3)的值与4互为相反数,则a的值为﹣5 .【考点】相反数.【分析】根据相反数的意义,可得答案.【解答】解:由题意,得2(a+3)+4=0,解得a=﹣5,故答案为:﹣5.【点评】本题考查了相反数,利用相反数的意义是解题关键.18.已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y=图象上的概率是.【考点】概率公式;反比例函数图象上点的坐标特征.【分析】先判断四个点的坐标是否在反比例函数y=图象上,再让在反比例函数y=图象上点的个数除以点的总数即为在反比例函数y=图象上的概率,依此即可求解.【解答】解:∵﹣1×1=﹣1,2×2=4,×=1,(﹣5)×(﹣)=1,∴2个点的坐标在反比例函数y=图象上,∴在反比例函数y=图象上的概率是2÷4=.故答案为:.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.19.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A,如图所示依次作正方形A1B1C1O正方形A2B2C2C1﹣1,…使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B1的坐标是(1,1),B n的坐标是(2n﹣1,2n﹣1)(n为正整数).【考点】一次函数图象上点的坐标特征;规律型:点的坐标.【分析】根据一次函数图象上点的坐标特征找出A1、A2、A3、A4的坐标,结合图形即可得知点B n是线段C n A n+1的中点,由此即可得出点B n的坐标.【解答】解:观察,发现:A1(1,0),A2(2,1),A3(4,3),A4(8,7),…,∴A n(2n﹣1,2n﹣1﹣1)(n为正整数).观察图形可知:B1(1,1);点B n是线段C n A n+1的中点,∴点B n的坐标是(2n﹣1,2n﹣1).故答案为:(1,1),(2n﹣1,2n﹣1)(n为正整数).【点评】本题考查了一次函数图象上点的坐标特征以及规律型中点的坐标的变化,根据点的坐标的变化找出变化规律“A n(2n﹣1,2n﹣1﹣1)(n为正整数)”是解题的关键.三、解答题(本大题共7个小题,共68分)20.计算:2sin45°﹣3﹣2+(﹣)0+|﹣2|+.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用特殊角的三角函数值,零指数幂、负整数指数幂法则,绝对值的代数意义,以及算术平方根定义计算即可得到结果.【解答】解:原式=2×﹣+1+2﹣+=3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图所示.方格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸中分别画出这个几何体的正视图和左视图.(2)根据三视图,请你求出这个组合几何体的表面积(包括底面积).【考点】作图﹣三视图.【分析】(1)主视图有2列,每列小正方形数目分别为1,3;左视图有2列,每列小正方形数目分别为3,2;(2)上下共有2×3个正方形;左右共有5个正方形;前后共有4个正方形.【解答】解:(1)图形如下所示(2)几何体的表面积为:(3+4+5)×2=24.【点评】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意应有顺序的找去找组成几何体的表面积.22.某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:八年级2班参加球类活动人数统计表项目篮球足球乒乓球排球羽毛球人数 a 6 5 7 6根据图中提供的信息,解答下列问题:(1)a= 16 ,b= 17.5 ;(2)该校八年级学生共有600人,则该年级参加足球活动的人数约90 人;(3)该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.【考点】列表法与树状图法;用样本估计总体;扇形统计图.【分析】(1)首先求得总人数,然后根据百分比的定义求解;(2)利用总数乘以对应的百分比即可求解;(3)利用列举法,根据概率公式即可求解.【解答】解:(1)a=5÷12.5%×40%=16,5÷12.5%=7÷b%,∴b=17.5,故答案为:16,17.5;(2)600×[6÷(5÷12.5%)]=90(人),故答案为:90;(3)如图,∵共有20种等可能的结果,两名同学恰为一男一女的有12种情况,∴则P(恰好选到一男一女)==.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D落到AB 边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P是直线l上的一个动点,请计算PD′+PB的最小值.【考点】平行四边形的性质;菱形的判定;轴对称﹣最短路线问题;翻折变换(折叠问题).【分析】(1)利用翻折变换的性质以及平行线的性质得出∠DAE=∠EAD′=∠DEA=∠D′E A,进而利用平行四边形的判定方法得出四边形DAD′E是平行四边形,进而求出四边形BCED′是平行四边形,根据折叠的性质得到AD=AD′,然后又菱形的判定定理即可得到结论;(2)由四边形DAD′E是平行四边形,得到▱DAD′E是菱形,推出D与D′关于AE对称,连接BD交AE于P,则BD的长即为PD′+PB的最小值,过D作DG⊥BA于G,解直角三角形得到AG=,DG=,根据勾股定理即可得到结论.【解答】证明:(1)∵将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,∴∠DAE=∠D′AE,∠DEA=∠D′EA,∠D=∠AD′E,∵DE∥AD′,∴∠DEA=∠EAD′,∴∠DAE=∠EAD′=∠DEA=∠D′EA,∴∠DAD′=∠DED′,∴四边形DAD′E是平行四边形,∴DE=AD′,∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,∴CE=D′B,CE∥D′B,∴四边形BCED′是平行四边形;∵AD=AD′,∵AB=2,AD=1,∴AD=AD′=BD′=CE=BC=1,∴▱BCED′是菱形,(2)∵四边形DAD′E是菱形,∴D与D′关于AE对称,连接BD交AE于P,则BD的长即为PD′+PB的最小值,过D作DG⊥BA于G,∵CD∥AB,∴∠DAG=∠CDA=60°,∵AD=1,∴AG=,DG=,∴BG=,∴BD==,∴PD′+PB的最小值为.【点评】本题考查了平行四边形的性质,最短距离问题,勾股定理,菱形的判定和性质,正确的作出辅助线是解题的关键.24.(2016•石家庄二模)如图,已知A(﹣4,0.5),B(﹣1,2)是一次函数y=ax+b与反比例函数(m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)观察函数图象得到当﹣4<x<﹣1时,一次函数图象都在反比例函数图象上方;(2)先利用待定系数法求一次函数解析式,然后把B点坐标代入可计算出m的值;(3)设P点坐标为(t, t+),利用三角形面积公式可得到••(t+4)=•1•(2﹣t﹣),解方程得到t=﹣,从而可确定P点坐标.【解答】解:(1)当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)把A(﹣4,0.5),B(﹣1,2)代入y=kx+b得,,解得,所以一次函数解析式为y=x+;把B(﹣1,2)代入,得m=﹣1×2=﹣2;(3)连接PC、PD,如图,设P点坐标为(t, t+).∵△PCA和△PDB面积相等,∴••(t+4)=•1•(2﹣t﹣),解得t=﹣,∴P点坐标为(﹣,).【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.25.如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A 的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)【考点】抛物线与x轴的交点;待定系数法求二次函数解析式.【分析】(1)利用待定系数法求抛物线的解析式;(2)由对称性可直接得出B(5,0),当x=0时,代入抛物线的解析式可得与y轴交点C的坐标;(3)根据90°所对的弦是直径可知:过O,B,C三点的圆的直径是线段BC,利用勾股定理求BC的长,代入圆的面积公式可以求得面积.【解答】解:(1)由题意得:,解得:,∴抛物线的解析式为:y=x2﹣4x﹣5;(2)∵对称轴为直线x=2,A(﹣1,0),∴B(5,0),当x=0时,y=﹣5,∴C(0,﹣5),(3)∵∠BOC=90°,∴BC是过O,B,C三点的圆的直径,由题意得:OB=5,OC=5,由勾股定理得;BC==5,S=π•=π,答:过O,B,C三点的圆的面积为π.【点评】本题考查了利用待定系数法求抛物线的解析式和抛物线与两坐标轴的交点,明确令x=0时,求抛物线与y轴的交点;令y=0时,求抛物线与x轴的交点;同时要想求过O,B,C三点的圆的面积就要先求圆的半径可直径,根据圆周角定理可以解决这个问题,从而使问题得以解决.26.(12分)(2013•湘潭)如图,在坐标系xOy中,已知D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,动点P从O点出发,沿x轴以每秒1个单位长度的速度向右运动,运动时间为t秒.(1)当t为何值时,PC∥DB;(2)当t为何值时,PC⊥BC;(3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值.【考点】相似形综合题.【专题】压轴题.【分析】(1)过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,求出DC=5,OC=4,OB=3,根据四边形DBPC是平行四边形求出DC=BP=5,求出OP=2即可;(2)证△PCO∽△CBO,得出=,求出OP=即可;(3)设⊙P的半径是R,分为三种情况:①当⊙P与直线DC相切时,过P作PM⊥DC交DC延长线于M,求出PM、OP的长即可;②当⊙P与BC相切时,根据△COB∽△PBM得出=,求出R=12即可;③当⊙P与DB相切时,证△ADB∽△MPB得出=,求出R即可.【解答】解:(1)∵D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,∴DC=5,OC=4,OB=3,∵DC⊥y轴,x轴⊥y轴,∴DC∥BP,∵PC∥DB,∴四边形DBPC是平行四边形,∴DC=BP=5,∴OP=5﹣3=2,2÷1=2,即当t为2秒时,PC∥BD;(2)∵PC⊥BC,x轴⊥y轴,∴∠COP=∠COB=∠BCP=90∴,∴∠PCO+∠B CO=90°,∠CPO+∠PCO=90°,∴∠CPO=∠BCO,∴△PCO∽△CBO,∴=,∴=,∴OP=,÷1=,即当t为秒时,PC⊥BC;(3)设⊙P的半径是R,分为三种情况:①当⊙P与直线DC相切时,如图1,过P作PM⊥DC交DC延长线于M,。
2017石家庄市一模理科数学试题及答案
2017届石家庄市高中毕业班第一次模拟考试试卷数学(理科)B 卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}|05A x x =≤≤,{}*|12B x N x =∈-≤,则A B = ( ) A .{}|13x x ≤≤ B .{}|03x x ≤≤ C .{}0,1,2,3D .{}1,2,32.若z 是复数,121iz i-=+,则z z ⋅=( )A B C .1 D .523.下列说法错误的是( ) A .回归直线过样本点的中心(,)x yB .两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1C .对分类变量X 与Y ,随机变量2K 的观测值k 越大,则判断“X 与Y 有关系”的把握程度越小 D .在回归直线方程 0.20.8y x =+中,当解释变量x 每增加1个单位时,预报变量 y 平均增加0.2个单位 4.函数()31xf x e x =--(e 为自然对数的底数)的图象大致是( )5.函数()sin()f x A x ωϕ=+(0A >,0ω>)的最小正周期为π,其图象关于直线3x π=对称,则||ϕ的最小值为( )A .12π B .6π C .56π D .512π6.已知三个向量a ,b ,c 共面,且均为单位向量,0a b ⋅= ,则||a b c +-的取值范围是( )A .1⎤⎦B .⎡⎣C .D .1,1⎤⎦7.某几何体的三视图如图所示(在如图的网格线中,每个小正方形的边长为1),则该几何体的表面积为( )A .48B .54C .64D .608.已知函数()f x 在(1,)-+∞上单调,且函数(2)y f x =-的图象关于1x =对称,若数列{}n a 是公差不为0的等差数列,且5051()()f a f a =,则{}n a 的前100项的和为( ) A .200-B .100-C .0D .50-9.祖暅是南北朝时代的伟大科学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现有以下四个几何体:图①是从圆柱中挖出一个圆锥所得的几何体;图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为( )A .①②B .①③C .②④D .①④10.已知x ,y 满足约束条件20,220,220,x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩若20x y k ++≥恒成立,则直线20x y k ++=被圆22(1)(2)25x y -+-=截得的弦长的最大值为( )A .10B.C.D.11.已知过抛物线22(0)y px p =>的焦点F 的直线与抛物线交于A ,B 两点,且3AF FB =,抛物线的准线l 与x 轴交于点C ,1AA l ⊥于点1A ,若四边形1AACF的面积为则准线l 的方程为( ) A.x =B.x =-C .2x =- D .1x =-12.已知函数()ln f x ax e x =+与2()ln x g x x e x=-的图象有三个不同的公共点,其中e 为自然对数的底数,则实数a 的取值范围为( ) A .a e <-B .1a >C .a e >D .3a <-或1a >第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知命题p :n N ∀∈,22nn <,则p ⌝为 .14.程序框图如图所示,若输入0s =,10n =,0i =,则输出的s 为 .15.已知1F 、2F 分别为双曲线22221x y a b-=(0a >,0b >)的左、右焦点,点P 为双曲线右支上一点,M 为12PF F ∆的内心,满足1212MPF MPF MF F S S S λ∆∆∆=+,若该双曲线的离心率为3,则λ= (注:1MPF S ∆、2MPF S ∆、12MF F S ∆分别为1MPF ∆、2MPF ∆、12MF F ∆的面积). 16.已知数列{}n a 中,1a a =,1386n n a a n +=++,若{}n a 为递增数列,则实数a 的取值范围为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.在ABC ∆中,内角A ,B ,C 的对边分别是a ,b ,c ,且sin sin sin C a bA B a c+=--.(Ⅰ)求角B 的大小;(Ⅱ)点D 满足2BD BC =,且线段3AD =,求2a c +的最大值.18.在四棱锥S ABCD -中,底面ABCD 为平行四边形,60DBA ∠=︒,30SAD ∠=︒,AD SD ==,4BA BS ==.(Ⅰ)证明:BD ⊥平面SAD ; (Ⅱ)求二面角A SB C --的余弦值.19.人耳的听力情况可以用电子测听器检测,正常人听力的等级为0-25db (分贝),并规定测试值在区间(0,5]为非常优秀,测试值在区间(5,10]为优秀.某班50名同学都进行了听力测试,所得测试值制成频率分布直方图:(Ⅰ)现从听力等级为(0,10]的同学中任意抽取出4人,记听力非常优秀的同学人数为X ,求X 的分布列与数学期望; (Ⅱ)在(Ⅰ)中抽出的4人中任选一人参加一个更高级别的听力测试,测试规则如下:四个音叉的发生情况不同,由强到弱的次序分别为1,2,3,4.测试前将音叉随机排列,被测试的同学依次听完后给四个音叉按发音的强弱标出一组序号1a ,2a ,3a ,4a (其中1a ,2a ,3a ,4a 为1,2,3,4的一个排列).若Y 为两次排序偏离程度的一种描述,1234|1||2||3||4|Y a a a a =-+-+-+-,求2Y ≤的概率.20.已知椭圆C :2212x y +=的左顶点为A ,右焦点为F ,O 为原点,M ,N 是y 轴上的两个动点,且MF NF ⊥,直线AM 和AN 分别与椭圆C 交于E ,D 两点.(Ⅰ)求MFN ∆的面积的最小值; (Ⅱ)证明:E ,O ,D 三点共线.21.已知函数2()1ln(1)f x x a x =-+-,a R ∈.(Ⅰ)若函数()f x 为定义域上的单调函数,求实数a 的取值范围; (Ⅱ)若函数()f x 存在两个极值点1x ,2x ,且12x x <,证明:1221()()f x f x x x >. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系,将曲线1C 上的每一个点的横坐标保持不变,纵坐标缩短为原来的12,得到曲线2C ,以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,1C 的极坐标方程为2ρ=. (Ⅰ)求曲线2C 的参数方程;(Ⅱ)过原点O 且关于y 轴对称的两条直线1l 与2l 分别交曲线2C 于A 、C 和B 、D ,且点A 在第一象限,当四边形ABCD 的周长最大时,求直线1l 的普通方程.23.选修4-5:不等式选讲已知函数()|24|||f x x x a =++-.(Ⅰ)当2a <-时,()f x 的最小值为1,求实数a 的值; (Ⅱ)当()|4|f x x a =++时,求x 的取值范围.2017届石家庄市高中毕业班第一次模拟考试试卷数学(理科)B 卷答案一、选择题1-5:DDCDB 6-10:ADBDB 11、12:AB 二、填空题13.0n N ∃∈,0202nn ≥ 14.1024 15.1316.7a >- 三、解答题 17.解:(Ⅰ)∵sin sin sin C a b A B a c +=--,由正弦定理得c a ba b a c+=--,∴()()()c a c a b a b -=+-, 即222a cb ac +-=,又∵2222cos a c b ac B +-=, ∴1cos 2B =, ∵(0,)B π∈,∴3B π=.(Ⅱ)在ABC ∆中由余弦定理知:222(2)22cos603c a a c +-⋅⋅⋅︒=, ∴2(2)932a c ac +-=⋅,∵ 222()2a c ac +≤, ∴223(2)9(2)4a c a c +-≤+,即2(2)36a c +≤,当且仅当2a c =,即32a =,3c =时取等号,所以2a c +的最大值为6.18.(Ⅰ)证明:在ABD ∆中,sin sin AB ADADB DBA=∠∠,由已知60DBA ∠=︒,AD =4BA =,解得sin 1ADB ∠=,所以90ADB ∠=︒,即AD BD ⊥,可求得2BD =. 在SBD ∆中,∵SD =4BS =,2BD =, ∴222DB SD BS +=,∴SD BD ⊥,∵BD ⊄平面SAD ,SD AD D = ,∴BD ⊥平面SAD .(Ⅱ)过D 作直线l 垂直于AD ,以D 为坐标原点,以DA 为x 轴,以DB 为y 轴,以l 为z 轴,建立空间直角坐标系. ∵由(Ⅰ)可知,平面SAD ⊥平面ABCD ,∴S 在平面ABCD 上的投影一定在AD 上,过S 作SE AD ⊥于E ,则DE =,3SE =,则(S ,易求A ,(0,2,0)B,(C -,则3)SB =-,3)SA =-,(3)SC =-,设平面SBC 的法向量1(,,)n x y z =,230,230,y z y z +-=+-=⎪⎩解得1(0,3,2)n =-- .同理可求得平面SAB的法向量2(1n =,∴1212cos ||||n n n n θ⋅===⋅19.解:(Ⅰ)X 的可能取值为:0,1,2,3,4.4641015(0)210C P X C ===,134641080(1)210C C P X C ===,224641090(2)210C C P X C ===,314641024(3)210C C P X C ===, 444101(4)210C P X C ===, X 的分布列为:X 01234P15210 80210 90210 242101210158090241()01234 1.621021**********E X =⨯+⨯+⨯+⨯+⨯=.(Ⅱ)序号1a ,2a ,3a ,4a 的排列总数为4424A =种,当0Y =时,11a =,22a =,33a =,44a =.当1234|1||2||3||4|2Y a a a a =-+-+-+-=时,1a ,2a ,3a ,4a 的取值为11a =,22a =,34a =,43a =;11a =,23a =,32a =,44a =;12a =,21a =,33a =,44a =.故41(2)246P Y ≤==. 20.解:(Ⅰ)设(0,)M m ,(0,)N n ,∵MF NF ⊥,可得1mn =-,11||||||22AMFN S AF MN MN ==, ∵222||||||2||||MN MF NF MF NF =+≥⋅,当且仅当||||MF NF =时等号成立. ∴min ||2MN =, ∴min 1()||12MFN S MN ==, ∴四边形AMFN 的面积的最小值为1.(Ⅱ)∵(A ,(0,)M m ,∴直线AM的方程为y x m =+,由22,22,y x m x y ⎧=+⎪⎨⎪+=⎩得2222(1)2(1)0m x x m +++-=,由222(1)1E m x m -=+,得E x =同理可得D x =∵1m n ⋅=-,∵221()11()1D m x m⎤-⎥⎣⎦=+=② 故由①②可知:E D x x =-, 代入椭圆方程可得22E D y y =∵MF NF ⊥,故M ,N 分别在x 轴两侧,E D y y =-, ∴E DE Dy y x x =,∴E ,O ,D 三点共线.21.解:(Ⅰ)函数()f x 的定义域为(,1)-∞,由题意222'()2,111a x x a f x x x x x-+-=-=<--, 224(2)()48a a ∆=---=-.①若480a ∆=-≤,即12a ≥,则2220x x a -+-≤恒成立, 则()f x 在(,1)-∞上为单调减函数;②若480a ∆=->,即12a <,方程2220x x a -+-=的两根为112x =,212x =,当1(,)x x ∈-∞时,'()0f x <,所以函数()f x 单调递减,当11(,)2x x ∈时,'()0f x >,所以函数()f x 单调递增,不符合题意. 综上,若函数()f x 为定义域上的单调函数,则实数a 的取值范围为1(,)2+∞. (Ⅱ)因为函数()f x 有两个极值点,所以'()0f x =在1x <上有两个不等的实根, 即2220x x a -+-=在1x <有两个不等的实根1x ,2x ,于是102a <<,12121,,2x x a x x +=⎧⎪⎨=⎪⎩且满足11(0,)2x ∈,21(,1)2x ∈, 211111*********()1ln(1)(1)(1)2ln(1)(1)2ln(1)f x x a x x x x x x x x x x x x -+--++-===-++-, 同理可得22221()(1)2ln(1)f x x x x x =-++-. 122111222222221()()2ln(1)2ln(1)212(1)ln 2ln(1)f x f x x x x x x x x x x x x x x -=-+---=-+---, 令()212(1)ln 2ln(1)g x x x x x x =-+---,1(,1)2x ∈.[]22'()2ln (1)1x g x x x x x =--++-,1(,1)2x ∈, ∵1(1)4x x -<,∴[]2ln (1)0x x -->, 又1(,1)2x ∈时,201x x x 2+>-,∴'()0g x >,则()g x 在1(,1)2x ∈上单调递增, 所以1()()02g x g >=,即1221()()0f x f x x x ->,得证. 22.解:(Ⅰ)2214x y +=,2cos sin x y θθ=⎧⎨=⎩(θ为参数).(Ⅱ)设四边形ABCD 的周长为l ,设点(2cos ,sin )A q q ,8cos 4sin l θθ=+))θθθϕ=+=+,且cos ϕ=,sin ϕ= 所以,当22k πθϕπ+=+(k Z ∈)时,l 取最大值,此时22k πθπϕ=+-,所以,2cos 2sin θϕ==,sin cos θϕ==此时,A ,1l 的普通方程为14y x =.23.解:(Ⅰ)当2a <-时,函数34,,()|24|||4,2,34, 2.x a x a f x x x a x a a x x a x -+-<⎧⎪=++-=---≤≤-⎨⎪-+>-⎩可知,当2x =-时,()f x 的最小值为(2)21f a -=--=,解得3a =-. (Ⅱ)因为()|24||||(24)()||4|f x x x a x x a x a =++-≥+--=++, 当且仅当(24)()0x x a +-≤时,()|4|f x x a =++成立, 所以,当2a <-时,x 的取值范围是{}|2x a x ≤≤-; 当2a =-时,x 的取值范围是{}2-;当2a >-时,x 的取值范围是{}|2x x a -≤≤.。
精选河北省石家庄市裕华区中考数学一模试卷((有详细答案))
河北省石家庄市裕华区中考数学一模试卷一.选择题(共16小题,满分42分)1.我市2018年的最高气温为39℃,最低气温为零下7℃,则计算2018年温差列式正确的()A.(+39)﹣(﹣7)B.(+39)+(+7)C.(+39)+(﹣7) D.(+39)﹣(+7)2.已知有理数a,b,c在数轴上对应的位置如图所示,化简|b﹣c|﹣|c﹣a|()A.b﹣2c+a B.b﹣2c﹣a C.b+a D.b﹣a3.李老师给同学们出了一道单项式与多项式相乘的题目:﹣3x2(2x﹣[]+1)=﹣6x3+6x2y﹣3x2,那么“[]”里应当是()A.﹣y B.﹣2y C.2y D.2xy4.书店、学校、食堂在平面上分别用A、B、C来表示,书店在学校的北偏西30°,食堂在学校的南偏东15°,则平面图上的∠ABC的度数应该是()A.65°B.35°C.165°D.135°5.下列运算结果正确的是()A.=﹣9 B.C.D.6.如图,在△ABC中,点D在边BA的延长线上,∠ABC的平分线和∠DAC的平分线相交于点M,若∠BAC=80°,∠C=60°,则∠M的大小为()A.20°B.25°C.30°D.35°7.小明的妈妈春节前去市场买了3公斤葡萄和2公斤苹果,花了8元钱,春节后,再去市场买这两种水果,由于葡萄每公斤提价5角钱,苹果每公斤降价3角钱,买7公斤葡萄和5公斤苹果共花了21元,则春节后购物时,(葡萄,苹果)每公斤的价格分别是多少元()A.(2.5,0.7)B.(2,1)C.(2,1.3)D.(2.5,1)8.图中四个阴影的三角形中与△ABC相似的是()A.B.C.D.9.在只有15人参加的演讲比赛中,参赛选手的成绩各不相同,若选手要想知道自己是否进入前8名,只需要了解自己的成绩以及全部成绩的()A.平均数B.中位数C.众数D.以上都不对10.如图所示,在△ABC中,内角∠BAC与外角∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,连接CP.下列结论:①∠ACB=2∠APB;②S△PAC :S△PAB=AC:AB;③BP垂直平分CE;④∠PCF=∠CPF.其中,正确的有()A.1个B.2个C.3个D.4个11.在学校组织的实践活动中,小新同学用纸板制作了一个圆锥模型,它的底面半径为1,高为2,则这个圆锥的侧面积是()A.4πB.3πC.2πD.2π12.对于函数y=﹣2x+5,下列表述:①图象一定经过(2,﹣1);②图象经过一、二、四象限;③与坐标轴围成的三角形面积为12.5;④x每增加1,y的值减少2;⑤该图象向左平移1个单位后的函数表达式是y=﹣2x+4,正确的是()A.①③B.②⑤C.②④D.④⑤13.下列条件中不能判定三角形全等的是()A.两角和其中一角的对边对应相等B.三条边对应相等C.两边和它们的夹角对应相等D.三个角对应相等14.函数y=﹣与y=mx﹣m(m≠0)在同一平面直角坐标系中的大致图象是()A.B.C.D.15.已知△ABC中,AB<AC<BC.求作:一个圆的圆心O,使得O在BC上,且圆O与AB、AC皆相切,下列作法正确的是()A .作BC 的中点OB .作∠A 的平分线交BC 于O 点C .作AC 的中垂线,交BC 于O 点D .过A 作AD ⊥BC ,交BC 于O 点16.如图1,等边△ABD 与等边△CBD 的边长均为2,将△ABD 沿AC 方向向右平移k 个单位到△A ′B ′D ′的位置,得到图2,则下列说法正确的是( )①阴影部分的周长为4;②当k =时,图中阴影部分为正六边形; ③当k =时,图中阴影部分的面积是.A .①B .①②C .①③D .①②③二.填空题(共3小题,满分10分)17.因式分解:9a 3b ﹣ab = . 18.如图,点A ,B 为定点,直线l ∥AB ,P 是l 上一动点,点M ,N 分别为PA ,PB 的中点,对于下列各值:①线段MN 的长;②△PAB 的周长;③△PMN 的面积;④直线MN 与AB 之间的距离;⑤∠APB 的大小.其中会随点P 的移动而发生变化的是 (填序号).19.如图,已知直线l :y =﹣x +4,在直线l 上取点B 1,过B 1分别向x 轴,y 轴作垂线,交x 轴于A 1,交y轴于C 1,使四边形OA 1B 1C 1为正方形;在直线l 上取点B 2,过B 2分别向x 轴,A 1B 1作垂线,交x 轴于A 2,交A 1B 1于C 2,使四边形A 1A 2B 2C 2为正方形;按此方法在直线l 上顺次取点B 3,B 4,…,B n ,依次作正方形A 2A 3B 3C 3,A 3A 4B 4C 4,…,A n ﹣1A n B n ∁n ,则A 3的坐标为 ,B 5的坐标为 .三.解答题(共7小题,满分68分)20.设A=÷(a﹣)(1)化简A;(2)当a=3时,记此时A的值为f(3);当a=4时,记此时A的值为f(4);…解关于x的不等式:﹣≤f(3)+f(4)+…+f(11),并将解集在数轴上表示出来.21.在围棋盒中有x颗黑色棋子和y颗白色棋子,从盒中随机取出一个棋子,它是黑色棋子的概率是.(1)试写出y与x的函数解析式;(2)若往盒子中再放入10颗黑色棋子,则取得黑色棋子的概率变为,求x与y的值.22.现代社会对保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)是将字母表A、B、C、…、Y、Z这26个字母依次对应1、2、3、…、25、26这26个自然数,加密的过程是这样的:将明文字母对应的数字设为x,将加密后的密文字母对应的数字设为y,当1≤x≤8时,y=3x;当9≤x≤17时,y=3x﹣25;当18≤x≤26时,y=3x﹣53.如:D对应为4,经过加密4→4×3=12,12对应L,即D变为L;又如K对应11,经过加密11→3×11﹣25=8,8对应H,即K变为H.(1)按上述方法将明文Y译为密文.(2)若按上述方法译成的密文为YUAN,请找出它的明文.A B C D E F G H I J K L M1 2 3 4 5 6 7 8 9 10 11 12 13N O P Q R S T U V W X Y Z14 15 16 17 18 19 20 21 22 23 24 25 2623.如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B 在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:BC是⊙O的切线;(3)在(2)的条件下,求证:四边形ABCD是菱形.25.某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x 的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?26.问题发现.(1)如图①,Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB边上任意一点,则CD的最小值为.(2)如图②,矩形ABCD中,AB=3,BC=4,点M、点N分别在BD、BC上,求CM+MN的最小值.(3)如图③,矩形ABCD中,AB=3,BC=4,点E是AB边上一点,且AE=2,点F是BC边上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG、CG,四边形AGCD的面积是否存在最小值,若存在,求这个最小值及此时BF的长度.若不存在,请说明理由.河北省石家庄市裕华区中考数学一模试卷参考答案与试题解析一.选择题(共16小题,满分42分)1.【分析】根据题意列出算式即可.【解答】解:根据题意得:(+39)﹣(﹣7),故选:A.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.2.【分析】观察数轴,可知:c<0<b<a,进而可得出b﹣c>0、c﹣a<0,再结合绝对值的定义,即可求出|b﹣c|﹣|c﹣a|的值.【解答】解:观察数轴,可知:c<0<b<a,∴b﹣c>0,c﹣a<0,∴|b﹣c|﹣|c﹣a|=b﹣c﹣(a﹣c)=b﹣a.故选:D.【点评】本题考查了数轴以及绝对值,由数轴上a、b、c的位置关系结合绝对值的定义求出|b﹣c|﹣|c ﹣a|的值是解题的关键.3.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:(﹣6x3+6x2y﹣3x2)÷(﹣3x2)﹣2x﹣1=2x﹣2y+1﹣2x﹣1=﹣2y,故选:B.【点评】此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.4.【分析】首先根据叙述作出A、B、C的相对位置,然后根据角度的和差计算即可.【解答】解:∠ABD=90°﹣30°=60°,则∠ABC=60°+90°+15°=165°.故选:C.【点评】本题考查了方向角的定义,理解方向角的定义,作出A、B、C的相对位置是解决本题的关键.5.【分析】直接利用二次根式的性质以及二次根式除法运算法则计算得出答案.【解答】解:A、=9,故此选项错误;B、(﹣)2=2,正确;C、÷=,故此选项错误;D、=5,故此选项错误;故选:B.【点评】此题主要考查了二次根式的性质以及二次根式除法运算,正确掌握运算法则是解题关键.6.【分析】根据三角形的内角和定理列式计算即可求出∠ABC=40°,再根据角平分线的定义求出∠ABM,∠CAM,然后利用三角形的内角和定理求出∠M即可.【解答】解:∵∠BAC=80°,∠C=60°,∴∠ABC=40°,∵∠ABC的平分线和∠DAC的平分线相交于点M,∴∠ABM=20°,∠CAM=,∴∠M=180°﹣20°﹣50°﹣80°=30°,故选:C.【点评】本题考查了角平分线的性质,三角形的内角和定理,角平分线的定义,熟记定理和概念是解题的关键.7.【分析】等量关系为:3×春节前葡萄的价格+2×春节前苹果的价格=8;7×春节后葡萄的价格+5×春节后苹果的价格=21,把相关数值代入计算即可.【解答】解:设春节后购物时,(葡萄,苹果)每公斤的价格分别是x元,y元.,解得.故选:A.【点评】考查二元一次方程组的应用;根据总价得到两个等量关系是解决本题的关键.8.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:由勾股定理得:AB=,BC=2,AC=,∴AB:BC:AC=1::,A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比:1::,图中的三角形(阴影部分)与△ABC相似;C、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选:B.【点评】此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.9.【分析】此题是中位数在生活中的运用,知道自己的成绩以及全部成绩的中位数就可知道自己是否进入前8名.【解答】解:15名参赛选手的成绩各不相同,第8名的成绩就是这组数据的中位数,所以选手知道自己的成绩和中位数就可知道自己是否进入前8名.故选:B .【点评】此题考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.10.【分析】利用角平分线的性质以及已知条件对①②③④进行一一判断,从而求解.【解答】解:∵PA 平分∠CAB ,PB 平分∠CBE ,∴∠PAB =∠CAB ,∠PBE =∠CBE ,∵∠CBE =∠CAB +∠ACB ,∠PBE =∠PAB +∠APB ,∴∠ACB =2∠APB ;故①正确;过P 作PM ⊥AB 于M ,PN ⊥AC 于N ,PS ⊥BC 于S ,∴PM =PN =PS ,∴PC 平分∠BCD ,∵S △PAC :S △PAB =(AC •PN ):(AB •PM )=AC :AB ;故②正确;∵BE =BC ,BP 平分∠CBE∴BP 垂直平分CE (三线合一),故③正确;∵PG ∥AD ,∴∠FPC =∠DCP∵PC 平分∠DCB ,∴∠DCP =∠PCF ,∴∠PCF =∠CPF ,故④正确.故选:D .【点评】此题综合性较强,主要考查了角平分线的性质和定义,平行线的性质,线段的垂直平分线的判定,等腰三角形的性质等.11.【分析】根据圆锥的侧面积公式计算即可得到结果.【解答】解:根据题意得:S =π×1×=3π,故选:B .【点评】此题考查了圆锥的计算,熟练掌握圆锥的侧面积公式是解本题的关键.12.【分析】利用一次函数的性质逐个分析判断,把x =2代入代入y =﹣2x +5,求出y =1≠﹣1,所以①不正确;根据k =﹣2<0,b =5>0,可知②正确;图象与坐标轴围成的三角形的面积=×5×=6.25,所以③不正确;与解析式可知,x每增加1个单位y的值减小2,所以④正确;函数向左平移1个单位的解析式为:y=﹣2(x+1)+5整理得y=﹣2x+3,所以不正确.【解答】解:①把x=2代入代入y=﹣2x+5,得y=1≠﹣1,所以①不正确;②∵k=﹣2<0,b=5>0,∴图象经过一、二、四象限,所以②正确;③图象与坐标轴围成的三角形的面积=×5×=6.25,所以③不正确;④x每增加1个单位y的值减小2,所以④正确;⑤函数向左平移1个单位的解析式为:y=﹣2(x+1)+5整理得y=﹣2x+3,所以不正确.故选:C.【点评】本题考查了一次函数图象与几何变换,一次函数的性质,一次函数图象上点的坐标特征,综合性较强,难度适中.13.【分析】要逐个对选项进行验证,根据各个选项的已知条件结合三角形全等的判定方法进行判定,其中D满足AAA时不能判断三角形全等的.【解答】解:A、两角和其中一角的对边对应相等是全等三角形,符合AAS,故C不符合题意;B、三条边对应相等的三角形是全等三角形,符合SSS,故A不符合题意;C、两边和它们的夹角对应相等的三两个角形是全等三角形,符合SAS,故C不符合题意;D、三个角对应相等,AAA不能判断两个三角形全等,故符合题意.故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.【分析】先根据反比例函数的性质判断出m的取值,再根据一次函数的性质判断出m取值,二者一致的即为正确答案.【解答】解:A、由双曲线在一、三象限,得m<0.由直线经过一、二、四象限得m<0.正确;B、由双曲线在二、四象限,得m>0.由直线经过一、四、三象限得m>0.错误;C、由双曲线在一、三象限,得m<0.由直线经过一、四、三象限得m>0.错误;D、由双曲线在二、四象限,得m>0.由直线经过二、三、四象限得m<0.错误.故选:A.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,重点是注意系数m的取值.15.【分析】根据角平分线的性质,即角平分线上的点到角两边的距离相等,即可求解.【解答】解:根据角平分线上的点到角两边的距离相等,则要使圆O与AB、AC都相切,只需作∠A的平分线交BC于O点.故选:B.【点评】考查了作图﹣复杂作图,切线的性质.本题较简单,关键是熟悉角平分线的性质.16.【分析】根据等边三角形的性质以及平移的性质,即可得到OM+MN+NR+GR+EG+OE=A′D′+CD=2+2=4;根据A′F=,即可得到MO≠MN,进而得出阴影部分不是正六边形;阴影部分的面积=△A′B′D′的面积﹣△A′MN的面积﹣△OD′E的面积﹣△RGB′的面积,据此进行计算即可.【解答】解:∵两个等边△ABD,△CBD的边长均为2,将△ABD沿AC方向向右平移到△A′B′D′的位置,∴A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′,∴OM+MN+NR+GR+EG+OE=A′D′+CD=2+2=4,故①正确;∵k=,∴A′F=,∴A′M=A′F÷cos30°=1,MN=1.∴MO=(2﹣1)=.∴MO≠MN,∴阴影部分不是正六边形,故②错误;阴影部分的面积=△A′B′D′的面积﹣△A′MN的面积﹣△OD′E的面积﹣△RGB′的面积=×(22﹣12﹣2×()2]=,故③正确,故选:C.【点评】本题主要考查了等边三角形的性质以及平移的性质的运用,解决问题的关键是依据平移的距离,得到小等边三角形的边长及面积.二.填空题(共3小题,满分10分)17.【分析】原式提取公因式后,利用平方差公式分解即可.【解答】解:原式=ab(9a2﹣1)=ab(3a+1)(3a﹣1).故答案为:ab(3a+1)(3a﹣1)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.【分析】根据三角形的中位线定理,平行线的性质即可一一判断;【解答】解:∵l∥AB,∴△PAB的面积不变,∵PM=MA,PN=NB,∴MN=AB,∵AB的长为定值,∴MN的长不变,△PMN的面积不变,直线MN与AB之间的距离不变,故答案为②⑤.【点评】本题考查三角形的中位线定理、平行线的性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.【分析】先根据直线y=﹣x+4计算与两坐标轴的交点可得:OE=OF=4,因为△EOF是等腰直角三角形,所以得△B1C1E是等腰直角三角形,再由正方形的边长相等得:C1是OE的中点,同理得:C2是A1B1的中点,C3是A2B2的中点,…,所以可得所求各点的坐标.【解答】解:当x=0,y=4,当y=0时,﹣x+4=0,x=4,∴OE=OF=4,∴△EOF是等腰直角三角形,∴∠C1EF=45°∴△B1C1E是等腰直角三角形,∴B1C1=EC1,∵四边形OA1B1C1为正方形,∴OC1=C1B1=EC1=2,∴B1(2,2),A1(2,0),同理可得:C2是A1B1的中点,∴B2(2+1=3,1),A2(3,0),B 3(2+1+=,),A3(,0),B 4(+=,),A4(,0),B5(+=,).故答案为:(,0),(,).【点评】本题是一次函数和正方形性质的应用,主要考查了一次函数图象上点的坐标特征,做题时要注意数形结合思想的运用,依次找出点的坐标计算规律,利用规律解决问题.三.解答题(共7小题,满分68分)20.【分析】(1)根据分式的运算法则即可求出答案.(2)先将f(3)+f(4)+…+f(11)进行化简,然后利用一元一次不等式的解法即可求出答案.【解答】解:(1)A=÷=•=(2)由f(a)=∴f(3)+f(4)+…+f(11)=﹣+﹣+……+﹣=﹣=∴﹣≤解得x≤4∴原不等式的解集是x≤4在数轴上表示:【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则以及不等式的解法,本题属于中等题型.21.【分析】(1)根据概率的求法:在围棋盒中有x颗黑色棋子和y颗白色棋子,共x+y颗棋子,如果它是黑色棋子的概率是,有=成立.化简可得y与x的函数关系式;(2)若往盒中再放进10颗黑色棋子,在盒中有10+x+y颗棋子,则取得黑色棋子的概率变为,结合(1)的条件,可得,然后求出x,y的值即可.【解答】解:(1)由题意得=,解得:y=x,答:y与x的函数解析式是y=x;(2)根据题意,可得,解方程组可求得:,则x的值是15,y的值是25.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.22.【分析】(1)由表知“Y”对应的数字x=25,将其代入y=3x﹣53计算,再由表可得对应字母;(2)先根据表格找到字母对应的数字,即y的值,找到合适的解析式求出对应的x的值,从而得出其对应的明文字母,据此可得.【解答】解:(1)“Y”对应的数字x=25,则y=3×25﹣53=22,所以明文Y对应密文是V;(2)Y对应数字为25,当3x﹣53=25时,x=26,对应明文为Z;U对应数字为21,当2x=21时,x=7,对应明文为G;A对应数字为1,当3x﹣53=1时,x=18,对应明文为R;N对应数字为14,当3x﹣25=14时,x=13,对应明文为M;所以密文为YUAN的对应明文为ZGRM.【点评】本题主要考查数字的变化类,解题的关键理解明文与密文之间的转化关系及解方程和求代数式的值的能力.23.【分析】(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;(2)先确定出B(4,),D(4,),进而求出点P的坐标,再求出A,C坐标,最后用AC=BD,即可得出结论.【解答】解:(1)①如图1,∵m=4,∴反比例函数为y=,当x=4时,y=1,∴B(4,1),当y=2时,∴2=,∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴,∴,∴直线AB的解析式为y=﹣x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y=得,x=,由y=得,x=,∴PA=4﹣=,PC=﹣4=,∴PA=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,记AC,BD的交点为P,∴BD=AC当x=4时,y==,y==∴B(4,),D(4,),∴P(4,),∴A(,),C(,)∵AC=BD,∴﹣=﹣,∴m+n=32【点评】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.24.【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)根据等腰三角形的性质得到∠3=∠COD=∠DEO=60°,根据平行线的性质得到∠4=∠1,根据全等三角形的性质得到∠CBO=∠CDO=90°,于是得到结论;(3)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD 即可.【解答】解:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴∠BOC=∠DOC=60°,在△CDO与△CBO中,,∴△CDO≌△CBO(SAS),∴∠CBO=∠CDO=90°,∴OB⊥BC,∴BC是⊙O的切线;(3)∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE(AAS),∴AB=CD,∴四边形ABCD是平行四边形,∴∠DAE=∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴▱ABCD是菱形.【点评】此题主要考查了切线的性质,同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出△ABO≌△CDE是解本题的关键.25.【分析】(1)根据“总利润=单件利润×销售量”列出函数解析式,由“确保盈利”可得x的取值范围.(2)将所得函数解析式配方成顶点式可得最大值.【解答】解:(1)根据题意得y=(70﹣x﹣50)(300+20x)=﹣20x2+100x+6000,∵70﹣x﹣50>0,且x≥0,∴0≤x<20;(2)∵y=﹣20x2+100x+6000=﹣20(x﹣)2+6125,∴当x=时,y取得最大值,最大值为6125,答:当降价2.5元时,每星期的利润最大,最大利润是6125元.【点评】本题主要考查二次函数的应用,解题的关键是根据题意确定相等关系,并据此列出函数解析式.26.【分析】(1)根据点到直线的距离最小,再用三角形的面积即可得出结论;(2)先根据轴对称确定出点M和N的位置,再利用面积求出CF,进而求出CE,最后用三角函数即可求出CM+MN的最小值;(3)先确定出EG⊥AC时,四边形AGCD的面积最小,再用锐角三角函数求出点G到AC的距离,最后用面积之和即可得出结论,再用相似三角形得出的比例式求出CF即可求出BF.【解答】解:(1)如图①,过点C作CD⊥AB于D,根据点到直线的距离垂线段最小,此时CD最小,在Rt△ABC中,AC=3,BC=4,根据勾股定理得,AB=5,∵AC×BC=AB×CD,∴CD==,故答案为;(2)如图②,作出点C关于BD的对称点E,过点E作EN⊥BC于N,交BD于M,连接CM,此时CM+MN=EN最小;∵四边形ABCD是矩形,∴∠BCD=90°,CD=AB=3,根据勾股定理得,BD=5,∵CE⊥BC,∴BD×CF=BC×CD,∴CF==,由对称得,CE=2CF=,在Rt△BCF中,cos∠BCF==,∴sin∠BCF=,在Rt△CEN中,EN=CE sin∠BCE==;即:CM+MN的最小值为;(3)如图3,∵四边形ABCD是矩形,∴CD=AB=3,AD=BC=4,∠ABC=∠D=90°,根据勾股定理得,AC=5,∵AB=3,AE=2,∴点F在BC上的任何位置时,点G始终在AC的下方,设点G到AC的距离为h,∵S 四边形AGCD =S △ACD +S △ACG =AD ×CD +AC ×h =×4×3+×5×h =h +6,∴要四边形AGCD 的面积最小,即:h 最小,∵点G 是以点E 为圆心,BE =1为半径的圆上在矩形ABCD 内部的一部分点,∴EG ⊥AC 时,h 最小,由折叠知∠EGF =∠ABC =90°,延长EG 交AC 于H ,则EH ⊥AC ,在Rt △ABC 中,sin ∠BAC ==,在Rt △AEH 中,AE =2,sin ∠BAC ==,∴EH =AE =,∴h =EH ﹣EG =﹣1=,∴S 四边形AGCD 最小=h +6=×+6=,过点F 作FM ⊥AC 于M ,∵EH ⊥FG ,EH ⊥AC ,∴四边形FGHM 是矩形,∴FM =GH =∵∠FCM =∠ACB ,∠CMF =CBA =90°,∴△CMF ∽△CBA ,∴,∴,∴CF =1∴BF =BC ﹣CF =4﹣1=3.【点评】此题是四边形综合题,主要考查了矩形的性质,点到直线的距离,轴对称,解本题的关键是确定出满足条件的点的位置,是一道很好的中考常考题.。
石家庄市2017年中考数学模拟试卷(2)含答案
2017年九年级数学中考模拟试卷一、选择题:1.﹣4的相反数是()A.﹣B.C.﹣4D.42.下列计算中正确的是()A.2x3﹣x3=2B.x3•x2=x6C.x2+x3=x5D.x3÷x=x23.下列各图中,不是中心对称图形的是()4.使分式有意义的x的值为()A.x≠1B.x≠2C.x≠1 且 x≠2D.x≠1或 x≠25.在平面直角坐标系中,点P(x,0)是x轴上一动点,它与坐标原点O的距离为y,则y关于x的函数图象大致是()6.下列说法:①三角形的三条高一定都在三角形内②有一个角是直角的四边形是矩形③有一组邻边相等的平行四边形是菱形④两边及一角对应相等的两个三角形全等⑤一组对边平行,另一组对边相等的四边形是平行四边形其中正确的个数有()A.1个B.2个C.3个D.4个7.下列二次根式中,与是同类二次根式的是( )A.B.C.D.8.图①是由五个完全相同的小正方休组成的立休图形,将图①中的一个小正方体改变位置后如图②.则三视图发生改变的是()A.主视图B.俯视图C.左视图D.主视图、俯视图和左视图9.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=( )A.118°B.119°C.120°D.121°10.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为()A.PN<3 B.PN>3 C.PN≥3 D.PN≤311.如图,数轴上点M所表示的数可能是()A.1.5B.﹣1.6C.﹣2.6D.﹣3.412.甲、乙两班参加植树造林,已知甲班每天比乙班每天多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植x棵,根据题意列出的方程是()A. B. C. D.13.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对14.用因式分解法解方程,下列方法中正确的是( )A.(2x-2)(3x-4)=0,∴2-2x=0或3x-4=0B.(x+3)(x-1)=1,∴x+3=0或x-1=1C.(x-2)(x-3)=2×3,∴x-2=2或x-3=3D.x(x+2)=0,∴x+2=015.图中的AD是安装在广告架AB上的一块广告牌,AC和DE分别表示太阳光线.若某一时刻广告牌AD在地面上的影长CE=1m,BD在地面上的影长BE=3m,广告牌的顶端A到地面的距离AB=20m,则广告牌AD的高为()A.5mB. mC.15mD. m16.设二次函数y=a(x-x1)(x-x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0),若函数1y=y2+y1的图象与x轴仅有一个交点,则()A.a(x1-x2)=dB.a(x2-x1)=dC.a(x1-x2)2=dD.a(x1+x2)2=d二、填空题:17.若m的平方根是5a+1和a-19,则m= .18.分解因式:x2+3x(x-3)-9=19.如图,已知等边△ABC的边长为3,点E在AC上,点F在BC上,且AE=CF=1,则AP•AF的值为.三、计算题:20.计算:21.计算:四、解答题:22.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.23.如图,已知△ABC和△ADE均为等边三角形,BD、CE交于点F.(1)求证:BD=CE;(2)求锐角∠BFC的度数.24.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是多少?(2)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是6的倍数的概率.25.如图所示,L,L2分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间1x(h)的函数关系图像,假设两种灯的使用寿命都是2000h,照明效果一样.(1)根据图像分别求出L1,L2的函数关系式.(2)当照明时间为多少时,两种灯的费用相等?(3)小亮房间计划照明2500h,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法.26.某校九年级数学兴趣小组为了测得该校地下停车场的限高CD(CD⊥AE),在课外活动时间测得下列数据:如图,从地面E点测得地下停车场的俯角为30°,斜坡AE的长为16米,地面B点(与E点在同一水平线)距停车场顶部C点(A、C、B在同一条直线上且与水平线垂直)1.2米,试求该校地下停车场的高度AC及限高CD(≈1.73,结果精确到0.1米)27.如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=ax2+bx经过点B(1,4)和点E(3,0)两点.(1)求抛物线的解析式;(2)若点D在线段OC上,且BD⊥DE,BD=DE,求D点的坐标;(3)在条件(2)下,在抛物线的对称轴上找一点M,使得△BDM的周长为最小,并求△BDM周长的最小值及此时点M的坐标;(4)在条件(2)下,从B点到E点这段抛物线的图象上,是否存在一个点P,使得△PAD的面积最大?若存在,请求出△PAD面积的最大值及此时P点的坐标;若不存在,请说明理由.参考答案1.D2.D3.B4.B5.A6.A7.A8.A9.C10.C11.C12.D13.A14.A15.A16.B17.答案为:m=256.18.答案为:(x-3)(4x+3)_.19.答案为:3.20.答案为:-1;21.原式= ==22.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.23.(1)证明:∵△ABC和△ADE均为等边三角形,∴AE=AD、AB=AC,又∵∠EAD=∠BAC=60°,∠EAD+∠DAC=∠BAC+∠DAC,即∠DAB=∠EAC,在△EAC和△DAB中,,∴△EAC≌△DAB,即可得出BD=CE.(2)解:由(1)△EAC≌△DAB,可得∠ECA=∠DBA,又∵∠DBA+∠DBC=60°,在△BFC中,∠ECA+∠DBC=60°,∠ACB=60°,则∠BFC=180°﹣∠ACB﹣(∠ECA+∠DBC)=180°﹣60°﹣60°=60°.24.解:(1)从中随机抽出一张牌,牌面所有可能出现的结果有4种,且它们出现的可能性相等,其中出现偶数的情况有2种,∴P(牌面是偶数)=0.5;(2)列表如下:由表可知共有16∴P(组成的两位数恰好是6的倍数)=3/16.25.解:(1)设L1的解析式为y1=k1x+b1,L2的解析式为y2=k2x+b2.由图可知L1过点(0,2),(500,17),∴∴k1=0.03,b1=2,∴y1=0.03x+2(0≤x≤2000).由图可知L2过点(0,20),(500,26),同理y2=0.012x+20(0≤x≤2000).(2)两种费用相等,即y1=y2,则0.03x+2=0.012x+20,解得x=1000.∴当x=1000时,两种灯的费用相等.(3)显然前2000h用节能灯,剩下的500h,用白炽灯.26.解:连接AC,∵∠ABE=90°,∠E=30°,∴AB=0.5AE=8,∴AC=8﹣1.2=6.8,∴CD=AC•sin∠EAB=6.8×≈5.9,答:地下停车场的高度AC为6.8米,限高CD约为5.9米.27.解:(1)将点B(1,4),E(3,0)的坐标代入抛物线的解析式得:,解得:,抛物线的解析式为y=﹣2x2+6x.(2)如图1所示;∵BD⊥DE,∴∠BDE=90°.∴∠BDC+∠EDO=90°.又∵∠ODE+∠DEO=90°,∴∠BDC=∠DE0.在△BDC和△DOE中,,∴△BDC≌△DE O.∴OD=AO=1.∴D(0,1).(3)如图2所示:作点B关于抛物线的对称轴的对称点B′,连接B′D交抛物线的对称轴与点M.∵x=﹣=,∴点B′的坐标为(2,4).∵点B与点B′关于x=对称,∴MB=B′M.∴DM+MB=DM+MB′.∴当点D、M、B′在一条直线上时,MD+MB有最小值(即△BMD的周长有最小值).∵由两点间的距离公式可知:BD==,DB′==,∴△BDM的最小值=+.设直线B′D的解析式为y=kx+b.将点D、B′的坐标代入得:,解得:k=,b=1.∴直线DB′的解析式为y=x+1.将x=代入得:y=.∴M(,).(4)如图3所示:过点F作FG⊥x轴,垂足为G.设点F(a,﹣2a2+6a),则OG=a,FG=﹣2a2+6a.∵S梯形DOGF=(OD+FG)•OG=(﹣2a2+6a+1)×a=﹣a3+3a2+a,S△ODA=OD•OA=×1×1=,S△AGF=AG•FG=﹣a3+4a2﹣3a,∴S△FDA=S梯形DOGF﹣S△ODA﹣S△AGF=﹣a2+a﹣.∴当a=时,S△FDA的最大值为.∴点P的坐标为(,).。
2017河北中考数学试卷及解析(石家庄学而思培优)(1)(1)
x
卷 不 装 袋
B.甲、乙两组相同 D.无法判断
【答案】D 16. 已知正方形 MNOK 和正六边形 ABCDEF 边长均为 1, 把正方形放 在正六边形中,使 OK 边与 AB 边重合,如图 10 所示,按下列步 骤操作: 将正方形在正六边形中绕点 B 顺时针旋转,使 KM 边与 BC 边重 合,完成第一次旋转;再绕点 C 顺时针旋转,使 MN 边与 CD 边 重合,完成第二次旋转,……在这样连续 6 次旋转的过程中,点
数 学 试 卷 解 析
解析人:石家庄学而思教研部
70 80 90 100 110
50
40
30 20 150
120 130 140
120 130 10090 80 70 110 60 140
70 80 90 100 110 10090 80 70 110 60
50
10
0
160
170 180
O C
50 40 150 30 160 20 10 170 0 180
此 卷 不
二、填空题(本大题有 3 个小题,共 10 分.17~18 小题各 3 分;19 小 题有 2 个空,每空 2 分,把答案写在题中横线上) 17. 如图 11,A,B 两点被池塘隔开,不能直接测量其距离,于是,小
M A C CB, N, 明在岸边选一点 C, 连接 CA, 分别延长到点 M, 使A
2m 3n 【答案】B
A.
B.
2m 3n
C.
2m n2
D.
m2 3n
A
B
5.
一、选择题(本大题共 16 小题,共 42 分,1~10 小题各 3 分,11~16
小题各 2 分,在每个小题给出的四个选项中,只有一项是符合要求 的) 1. 下列运算结果为正数的是 A. 3 【答案】A 把 0.0813 写成 a 10n ( 1 a 10 ,n 为整数)的形式,则 a 为 A.1 B. 2 C. 0.0813 D. 8.13 【答案】D 3. 用量角器测量 MON 的度数,下列操作正确的是 2.
河北石家庄市裕华区第十五中学2017年 中考数学模拟试卷(含答案)
2017年中考数学模拟试卷一、选择题:1.计算1-(-2)的正确结果是( )A.-2B.-1C.1D.32.下列运算正确的是()A.a2﹣a4=a8B.(x﹣2)(x﹣3)=x2﹣6C.(x﹣2)2=x2﹣4D.2a+3a=5a3.在平面直角坐标系中,点P(1,2)关于原点对称的点的坐标是()A.(-1,-2) B.(-1,2) C.(1,-2) D.(2,1)4.如果()2÷()2=3,那么a8b4等于()A.6B.9C.12D.815.若y=x+2-b是正比例函数,则b的值是()A.0B.﹣2C.2D.﹣0.56.如图,把矩形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠CBD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC一定是全等三角形7.下列选项中,使根式有意义的a的取值范围为a<1的是()A. B. C. D.8.如图是用七颗相同骰子叠成的造型,骰子的六面分别标有1至6点.从正上方俯视,看到的点数和是() A.16 B.17 C.19 D.529.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是( )A.2:1B.1:1C.5:2D.5:410.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为()A.PN<3 B.PN>3 C.PN≥3 D.PN≤311.数轴上一点A,一只蚂蚁从A出发爬了4个单位长度到了原点,则点A所表示的数是()A.4B.﹣4C.±8D.±412.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水,求两种污水处理器的污水处理效率.设甲种污水处理器的污水处理效率为x吨/小时,依题意列方程正确的是()A. B. C. D.13.直角三角形有一条直角边为6,另两条边长是连续偶数,则该三角形周长为()A.20B.22C.24D.2614.若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是( )A.a<1B.a>1C.a≤1D.a≥115.如图,AD∥BE∥CF,直线m,n与这三条平行线分别交于点A、B、C和点D、E、F,已知AB=5,BC=10,DE=4,则EF 的长为( )A.12.5B.12C.8D.416.二次函数y=x2﹣x+m(m为常数)的图象如图所示,当x=a时,y<0;那么当x=a﹣1时,函数值()A.y<0B.0<y<mC.y>mD.y=m二、填空题:17.在下列各数中有平方根的个数是个.18.分解因式:2x2﹣4x+2= .19.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5cm,且tan∠EFC=0.75,则矩形ABCD 的周长为三、计算题:20.21.四、解答题:22.如图,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.23.如图,在等边△ABC中,DE分别是AB,AC上的点,且AD=CE.(1)求证:BE=CD;(2)求∠1+∠2的度数.24.某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的长沙﹣我最喜爱的长沙小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图:请根据所给信息解答以下问题:(1)请补全条形统计图;(2)若全校有2000名同学,请估计全校同学中最喜爱“臭豆腐”的同学有多少人?(3)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为四种小吃的序号A、B、C、D,随机地摸出一个小球然后放回,再随机地摸出一个小球,请用列表或画树形图的方法,求出恰好两次都摸到“A”的概率.25.某移动通讯公司开设两种业务.“全球通”:先缴50元月租费,然后每通话1分钟,再付0.4元.“神州行”:不缴月租费,每通话1分钟,付费0.6元(通话均指市话)。
河北省石家庄市裕华区2017届九年级初中毕业生文化课模拟考试(一
最大最全最精的教育资源网最大最全最精的教育资源网1. A2. B3. B4. B5. C6. C7. D8. D9. C10. D20. B21. D22. C23.C卷Ⅱ(非选择题,共70 分)24.( 1)①未成年人是祖国的将来、民族的希望,肩负实在现中华民族伟大中兴的历史重担。
②生命健康权是公民最根本的人身权益。
③增强校园欺辱和暴力的防治工作,有益于保护未成年人的合法权益,促使其健康成长;④有益于建设安全校园,保护社会公正正义,促使社会和睦。
(答出 3 点即可, 3 分)(2)教育行政部门做好防治校园暴力的看管工作;教师确实执行好对学生的教育职责;学校建立有关课程,对学生进行教育;家长言传身教,做好正面教育和指引;学生充足认识校园暴力的危害,远离校园暴力。
(答出 3 点即可。
3 分)25.( 1)弘扬、传承伟大的民族精神。
(只需环绕民族精神即可, 2 分)( 2)①能为全面小康的实现供给精神动力(思想保证);②能增强民族凝集力;③激发人民的爱国热忱,增强公民的社会责任感(答出随意一点2分,共 4分)( 3)①坚持科教兴国、人材强国、创新驱动发展战略,提升我国的科技创新能力。
(1分)②坚持城乡和地区协调发展,坚持共同富饶的原则。
(或建设社会主义新乡村、实行西、中、复兴东北等战略,促使城乡、地区协调发展)(1 分)③增强精神文明建设,坚持物质文明和精神文明协调发展。
(1 分)26.( 1)网络改变了人们的生活方式。
(2分)要素:①信息技术的发展;②我国人民生活(收入)水平的提升。
③人们日趋增加的文化需求(答出每一层意思1分,共 2分)( 2)①节俭是中华民族的传统美德,我们需要弘扬这一传统美德;②我国面对严重的资源环境局势。
节俭资源是每个公民应尽的义务;③我们要继承和弘扬奋发图强的精神。
(合理消费,适量花费)( 3 分)( 3)点赞:①小女孩:是非分明、尊敬别人,富裕正义感;(1分)②车长:恪守职业道德、为别人的生命安全负责;(1 分)吐槽:爷爷:缺少规则意识、语言不文明、不尊敬别人、不会集理控制情绪等。
河北石家庄市裕华区四十三中 2017年九年级数学中考模拟试卷(含答案)
2017年九年级数学中考模拟试卷一、选择题:1.-0.5的绝对值是()A.0.5B.-0.5C.2D.﹣22.下列计算中,正确的是()A.a+a11=a12B.5a﹣4a=aC.a6÷a5=1D.(a2)3=a53.下列图形中既是轴对称图形,又是中心对称图形的是()4.化简的结果是()A. B. C.x+1 D.x﹣15.某市乘出租车需付车费y(元)与行车里程x(千米)之间函数关系的图象如图所示,那么该市乘出租车超过3千米后,每千米的费用是()A.0.71元B.2.3元C.1.75元D.1.4元6.下列三个命题中,是真命题的有()①对角线相等的四边形是矩形;②三个角是直角的四边形是矩形;③有一个角是直角的平行四边形是矩形.A.3个 B.2个 C.1个 D.0个7.在函数y=中,自变量x的取值范围是()A.x≤1且x≠﹣2B.x≤1C.x<1且x≠﹣2D.x>1且x≠2.8.如图所示的几何体是由5个大小相同的小正方体紧密摆放而成的,其三视图中面积最小的是()A.主视图B.左视图C.俯视图D.左视图和俯视图9.如图,AD⊥BC于点D,GC⊥BC于点C,CF⊥AB于点F,下列关于高的说法中错误的是( )A.△AGC中,CF是AG边上的高B.△GBC中,CF是BG边上的高C.△ABC中,GC是BC边上的高D.△GBC中,GC是BC边上的高10.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8B.6C.4D.211.已知a,b,c三个数在数轴上对应点的位置如图所示,下列几个判断:①a<c<b;②-a<b;③a+b>0; ④c-a<0中,错误的个数是()个.A.1B.2C.3D.412.甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为()A. +=2B.﹣=2C. +=D.﹣=13.在下列四组数中,不是勾股数的一组数是( )A.a=15,b=8,c=17B.a=9,b=12,c=15C.a=7,b=24,c=25D.a=3,b=5,c=714.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x=-2,x2=4,则m+n的值是( )1A.-10B.10C.-6D.215.如图,在平行四边形ABCD中,点E在边DC上,DE∶CE=3∶1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为( )A.3:4 B.9:16 C.9:1 D.3:116.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”,[a,b,c]称为“抛物线三角形系数”,若抛物线三角形系数为[﹣1,b,0]的“抛物线三角形”是等腰直角三角形,则b的值()A.±2B.±3C.2D.3二、填空题:17.一个数的立方根是4,那么这个数的平方根是.18.因式分解a2b﹣b的正确结果是19.在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)三、计算题:20.计算:21.计算:四、解答题:22.已知:如图AC,BD相交于点O,∠A=∠D,AB=CD,求证:△AOB≌△DOC.23.已知,如图△ABC和△ADE均为等边三角形,BD、CE交于点F.(1)求证:BD=CE;(2)求锐角∠BFC的度数.24.可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.25.某移动通讯公司开设两种业务.“全球通”:先缴50元月租费,然后每通话1分钟,再付0.4元.“神州行”:不缴月租费,每通话1分钟,付费0.6元(通话均指市话)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年河北省石家庄市裕华区中考数学一模试卷一、选择题(本题共16个小题,共42分)1.(3分)﹣7的相反数是()A.7 B.﹣7 C.D.﹣2.(3分)下列图形中,∠2>∠1的是()A.B.C.D.3.(3分)若两个非零的有理数a、b,满足:|a|=a,|b|=﹣b,a+b<0,则在数轴上表示数a、b的点正确的是()A.B.C.D.4.(3分)在6×6方格中,将图1中的图形N平移后位置如图2所示,则图形N的平移方法中,正确的是()A.向下移动1格B.向上移动1格C.向上移动2格D.向下移动2格5.(3分)下列运算中,正确的是()A.4m﹣m=3 B.﹣(m﹣n)=m+n C.(m2)3=m6D.m2÷m2=m6.(3分)如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=()A.80°B.50°C.40°D.20°7.(3分)关于x,y的方程组的解是,其中y的值被盖住了,不过仍能求出p,则p的值是()A.﹣ B.C.﹣ D.8.(3分)如图,己知△ABC,任取一点O,连AO,BO,CO,并取它们的中点D,E,F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形;②△ABC与△DEF是相似图形;③△ABC与△DEF的周长比为1:2;④△ABC与△DEF的面积比为4:1.A.1 B.2 C.3 D.49.(3分)设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④B.②③C.①②④D.①③④10.(3分)某校九年级(1)班全体学生2016年初中毕业体育考试的成绩统计如表:根据表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分11.(2分)如图,是四张形状不同的纸片,用剪刀沿一条直线将它们分别剪开(只允许剪一次),不能够得到两个等腰三角形纸片的是()A.B.C.D.12.(2分)某农场开挖一条长480米的渠道,开工后每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么求x时所列方程正确的是()A.﹣=4 B.﹣=20C.﹣=4 D.﹣=413.(2分)在平面直角坐标系中,点A、B、C、D是坐标轴上的点且点C坐标是(0,﹣1),AB=5,点(a,b)在如图所示的阴影部分内部(不包括边界),已知OA=OD=4,则a的取值范围是()A.B.C.D.14.(2分)用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是()A.B.C.D.15.(2分)如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.60 B.80 C.30 D.4016.(2分)如图1,在等边△ABC中,点E、D分别是AC,BC边的中点,点P 为AB边上的一个动点,连接PE,PD,PC,DE.设AP=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的()A.线段PD B.线段PC C.线段PE D.线段DE二、填空题(本大题共3小题,每小题3分,共9分)17.(3分)若m、n互为倒数,则mn2﹣(n﹣1)的值为.18.(3分)如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为.19.(3分)对于二次函数y=x2﹣3x+2和一次函数y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)(t为常数)称为这两个函数的“再生二次函数”.其中t是不为零的实数,其图象记作抛物线F,现有点A(2,0)和抛物线F上的点B(﹣1,n),下列结论正确的有.①n的值为6;②点A在抛物线F上;③当t=2时,“再生二次函数”y在x>2时,y随x的增大而增大④当t=2时,抛物线F的顶点坐标是(1,2)三、解答题(本大题共7小题,共69分)20.(9分)请你阅读小明和小红两名同学的解题过程,并回答所提出的问题.计算:+问:小明在第步开始出错,小红在第步开始出错(写出序号即可);请你给出正确解答过程.21.(9分)某学校为了丰富学生课余生活,决定开设以下体育课外活动项目:A.版画B.保龄球C.航模D.园艺种植,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的保龄球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加保龄球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)22.(9分)在学习三角形中位线的性质时,小亮对课本给出的解决办法进行了认真思考:请你利用小亮的发现解决下列问题:(1)如图1,AD是△ABC的中线,BE交AC于E,交AD于E,且AE=EF,求证:AC=BF.请你帮助小亮写出辅助线作法并完成论证过程:(2)解决问题:如图2,在△ABC中,∠B=45°,AB=10,BC=8,DE是△ABC的中位线,过点D、E作DF∥EG,分别交BC于F、G,过点A作MN∥BC,分别与FE、GE的延长线交于M、N,则四边形MFGN周长的最小值是.23.(10分)小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热[此过程中水温y(℃)与开机时间x(分)满足一次函数关系],当加热到100℃时自动停止加热,随后水温开始下降[此过程中水温y(℃)与开机时间x(分)成反比例关系],当水温降至20℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题:(1)当0≤x≤8时,求水温y(℃)与开机时间x(分)的函数关系式;(2)求图中t的值;(3)若小明在通电开机后即外出散步,请你预测小明散步45分钟回到家时,饮水机内的温度约为多少℃?24.(10分)某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,种植花卉的利润y2与投资量x的平方成正比例关系,并得到了表格中的数据.(1)分别求出利润y1与y2关于投资量x的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,设他投入种植花卉金额m万元,种植花卉和树木共获利利润W万元,直接写出W关于m的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?(3)若该专业户想获利不低于22万,在(2)的条件下,直接写出投资种植花卉的金额m的范围.25.(10分)如图所示,点A为半圆O直径MN所在直线上一点,射线AB垂直于MN,垂足为A,半圆绕M点顺时针转动,转过的角度记作a;设半圆O的半径为R,AM的长度为m,回答下列问题:探究:(1)若R=2,m=1,如图1,当旋转30°时,圆心O′到射线AB的距离是;如图2,当a=°时,半圆O与射线AB相切;(2)如图3,在(1)的条件下,为了使得半圆O转动30°即能与射线AB相切,在保持线段AM长度不变的条件下,调整半径R的大小,请你求出满足要求的R,并说明理由.(3)发现:(3)如图4,在0°<α<90°时,为了对任意旋转角都保证半圆O与射线AB能够相切,小明探究了cosα与R、m两个量的关系,请你帮助他直接写出这个关系;cosα=(用含有R、m的代数式表示)拓展:(4)如图5,若R=m,当半圆弧线与射线AB有两个交点时,α的取值范围是,并求出在这个变化过程中阴影部分(弓形)面积的最大值(用m表示)26.(12分)如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,BD=8cm.点M 从点A出发,沿AC的方向匀速运动,同时直线PQ由点B出发,沿BA的方向匀速运动,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接PM,设运动时间为t秒(0<t≤5).线段CM的长度记作y甲,线段BP的长度记作y乙,y甲和y乙关于时间t的函数变化情况如图所示.(1)由图2可知,点M的运动速度是每秒cm,当t为何值时,四边形PQCM 是平行四边形?在图2中反映这一情况的点是;(2)设四边形PQCM的面积为ycm2,求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形PQCM=S△ABC?若存在,求出t的值;若不存在,说明理由;(4)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;若不存在,说明理由.2017年河北省石家庄市裕华区中考数学一模试卷参考答案与试题解析一、选择题(本题共16个小题,共42分)1.(3分)(2017•裕华区一模)﹣7的相反数是()A.7 B.﹣7 C.D.﹣【解答】解:﹣7的相反数是7,故选:A.2.(3分)(2013•南充)下列图形中,∠2>∠1的是()A.B.C.D.【解答】解:A、∠1=∠2(对顶角相等),故本选项错误;B、∠1=∠2(平行四边形对角相等),故本选项错误;C、∠2>∠1(三角形的一个外角大于和它不相邻的任何一个内角),故本选项正确;D、如图,∵a∥b,∴∠1=∠3,∵∠2=∠3,∴∠1=∠2.故本选项错误.故选C.3.(3分)(2017•裕华区一模)若两个非零的有理数a、b,满足:|a|=a,|b|=﹣b,a+b<0,则在数轴上表示数a、b的点正确的是()A.B.C.D.【解答】解:∵a、b是两个非零的有理数满足:|a|=a,|b|=﹣b,a+b<0,∴a>0,b<0,∵a+b<o,∴|b|>|a|,∴在数轴上表示为:故选B.4.(3分)(2013•广州)在6×6方格中,将图1中的图形N平移后位置如图2所示,则图形N的平移方法中,正确的是()A.向下移动1格B.向上移动1格C.向上移动2格D.向下移动2格【解答】解:观察图形可知:从图1到图2,可以将图形N向下移动2格.故选:D.5.(3分)(2009•河北)下列运算中,正确的是()A.4m﹣m=3 B.﹣(m﹣n)=m+n C.(m2)3=m6D.m2÷m2=m【解答】解:A、应为4m﹣m=3m,故本选项错误;B、应为﹣(m﹣n)=﹣m+n,故本选项错误;C、应为(m2)3=m2×3=m6,正确;D、m2÷m2=1,故本选项错误.故选C.6.(3分)(2017•裕华区一模)如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=()A.80°B.50°C.40°D.20°【解答】解:∵AB∥CD,∴∠BCD=∠ABC=40°,∴∠BOD=2∠BCD=80°.故选A.7.(3分)(2017•裕华区一模)关于x,y的方程组的解是,其中y的值被盖住了,不过仍能求出p,则p的值是()A.﹣ B.C.﹣ D.【解答】解:根据题意,将x=1代入x+y=3,可得y=2,将x=1,y=2代入x+py=0,得:1+2p=0,解得:p=﹣,故选:A.8.(3分)(2017•裕华区一模)如图,己知△ABC,任取一点O,连AO,BO,CO,并取它们的中点D,E,F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形;②△ABC与△DEF是相似图形;③△ABC与△DEF的周长比为1:2;④△ABC与△DEF的面积比为4:1.A.1 B.2 C.3 D.4【解答】解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,∵将△ABC的三边缩小的原来的,∴△ABC与△DEF的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC与△DEF的面积比为4:1.故选C.9.(3分)(2013•南京)设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④B.②③C.①②④D.①③④【解答】解:∵边长为3的正方形的对角线长为a,∴a===3.①a=3是无理数,说法正确;②a可以用数轴上的一个点来表示,说法正确;③∵16<18<25,4<<5,即4<a<5,说法错误;④a是18的算术平方根,说法正确.所以说法正确的有①②④.故选C.10.(3分)(2016•安顺)某校九年级(1)班全体学生2016年初中毕业体育考试的成绩统计如表:根据表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分【解答】解:该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:=45,平均数为:=44.425.故错误的为D.故选D.11.(2分)(2017•裕华区一模)如图,是四张形状不同的纸片,用剪刀沿一条直线将它们分别剪开(只允许剪一次),不能够得到两个等腰三角形纸片的是()A.B.C.D.【解答】解:A、如图所示,△ACD和△BCD都是等腰三角形;B、如图所示,△ABC不能够分成两个等腰三角形;C、如图所示,△ACD和△BCD都是等腰三角形;D、如图所示,△ACD和△BCD都是等腰三角形;故选:B.12.(2分)(2017•裕华区一模)某农场开挖一条长480米的渠道,开工后每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么求x时所列方程正确的是()A.﹣=4 B.﹣=20C.﹣=4 D.﹣=4【解答】解:设原计划每天挖x米,那么原计划用时为:,实际用时为:.根据题意,得:﹣=4,故选D.13.(2分)(2017•裕华区一模)在平面直角坐标系中,点A、B、C、D是坐标轴上的点且点C坐标是(0,﹣1),AB=5,点(a,b)在如图所示的阴影部分内部(不包括边界),已知OA=OD=4,则a的取值范围是()A.B.C.D.【解答】解:∵AB=5,OA=4,∴OB==3,∴点B(﹣3,0).∵OA=OD=4,∴点A(0,4),点D(4,0).设直线AD的解析式为y=kx+b,将A(0,4)、D(4,0)代入y=kx+b,,解得:,∴直线AD的解析式为y=﹣x+4;设直线BC的解析式为y=mx+n,将B(﹣3,0)、C(0,﹣1)代入y=mx+n,,解得:,∴直线BC的解析式为y=﹣x﹣1.联立直线AD、BC的解析式成方程组,,解得:,∴直线AD、BC的交点坐标为(,﹣).∵点(a,b)在如图所示的阴影部分内部(不包括边界),∴﹣3<a<.故选D.14.(2分)(2017•裕华区一模)用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是()A.B.C.D.【解答】解:A、根据垂径定理作图的方法可知,CD是Rt△ABC斜边AB上的高线,不符合题意;B、根据直径所对的圆周角是直角的方法可知,CD是Rt△ABC斜边AB上的高线,不符合题意;C、根据相交两圆的公共弦的性质可知,CD是Rt△ABC斜边AB上的高线,不符合题意;D、无法证明CD是Rt△ABC斜边AB上的高线,符合题意.故选:D.15.(2分)(2016•济宁)如图,O为坐标原点,四边形OACB是菱形,OB在x 轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.60 B.80 C.30 D.40【解答】解:过点A作AM⊥x轴于点M,如图所示.设OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA•sin∠AOB=a,OM==a,∴点A的坐标为(a,a).∵点A在反比例函数y=的图象上,∴a×a==48,解得:a=10,或a=﹣10(舍去).∴AM=8,OM=6,OB=OA=10.∵四边形OACB是菱形,点F在边BC上,∴S=S菱形OBCA=OB•AM=40.△AOF故选D.16.(2分)(2017•裕华区一模)如图1,在等边△ABC中,点E、D分别是AC,BC边的中点,点P为AB边上的一个动点,连接PE,PD,PC,DE.设AP=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的()A.线段PD B.线段PC C.线段PE D.线段DE【解答】解:设边长AC=a,则0<x<a,根据题意和等边三角形的性质可知,当x=a时,线段PE有最小值;当x=a时,线段PC有最小值;当x=a时,线段PD有最小值;线段DE的长为定值.故选:C.二、填空题(本大题共3小题,每小题3分,共9分)17.(3分)(2009•河北)若m、n互为倒数,则mn2﹣(n﹣1)的值为1.【解答】解:因为m,n互为倒数可得mn=1,所以mn2﹣(n﹣1)=n﹣(n﹣1)=1.18.(3分)(2016•聊城)如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为2π.【解答】解:如图,∠BAO=30°,AO=,在Rt△ABO中,∵tan∠BAO=,∴BO=tan30°=1,即圆锥的底面圆的半径为1,∴AB==2,即圆锥的母线长为2,∴圆锥的侧面积=•2π•1•2=2π.故答案为2π.19.(3分)(2017•裕华区一模)对于二次函数y=x2﹣3x+2和一次函数y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)(t为常数)称为这两个函数的“再生二次函数”.其中t是不为零的实数,其图象记作抛物线F,现有点A(2,0)和抛物线F上的点B(﹣1,n),下列结论正确的有①②③.①n的值为6;②点A在抛物线F上;③当t=2时,“再生二次函数”y在x>2时,y随x的增大而增大④当t=2时,抛物线F的顶点坐标是(1,2)【解答】解:①将x=﹣1代入抛物线E的解析式中,得:n=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=6,正确.②将x=2代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),得y=0,∴点A(2,0)在抛物线E上,正确.③当t=2时,y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=2x2﹣4x=2(x﹣1)2﹣2,对称轴为x=1,开口向上,∴当x>2时,y随x的增大而增大,正确;④将t=2代入抛物线E中,得:y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=2x2﹣4x=2(x﹣1)2﹣2,∴此时抛物线的顶点坐标为:(1,﹣2),错误;故答案为:①②③三、解答题(本大题共7小题,共69分)20.(9分)(2017•裕华区一模)请你阅读小明和小红两名同学的解题过程,并回答所提出的问题.计算:+问:小明在第②步开始出错,小红在第②步开始出错(写出序号即可);请你给出正确解答过程.【解答】(1)②,②原式=﹣=.21.(9分)(2017•裕华区一模)某学校为了丰富学生课余生活,决定开设以下体育课外活动项目:A.版画B.保龄球C.航模D.园艺种植,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有200人;(2)请你将条形统计图(2)补充完整;(3)在平时的保龄球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加保龄球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)【解答】解:(1)∵A类有20人,所占扇形的圆心角为36°,∴这次被调查的学生共有:20÷=200(人);故答案为:200;(2)C项目对应人数为:200﹣20﹣80﹣40=60(人);补充如图.(3)画树状图得:∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,∴P(选中甲、乙)==.22.(9分)(2017•裕华区一模)在学习三角形中位线的性质时,小亮对课本给出的解决办法进行了认真思考:请你利用小亮的发现解决下列问题:(1)如图1,AD是△ABC的中线,BE交AC于E,交AD于E,且AE=EF,求证:AC=BF.请你帮助小亮写出辅助线作法并完成论证过程:(2)解决问题:如图2,在△ABC中,∠B=45°,AB=10,BC=8,DE是△ABC的中位线,过点D、E作DF∥EG,分别交BC于F、G,过点A作MN∥BC,分别与FE、GE的延长线交于M、N,则四边形MFGN周长的最小值是10+8.【解答】(1)证明:如图1,延长AD至点M,使MD=FD,连接MC,在△BDF和△CDM中,,∴△BDF≌△CDM(SAS).∴MC=BF,∠M=∠BFM.∵EA=EF,∴∠EAF=∠EFA,∵∠AFE=∠BFM,∴∠M=∠MAC,∴AC=MC,∴BF=AC;(2)解:如图2,∵MN∥BC,FM∥GN,∴四边形MFGN是平行四边形,∴MF=NG,MN=FG,∵DE是△ABC的中位线,∴DE=BC=4,DE∥BC,∴MN=FG=BC=4,∴四边形MFGN周长=2(MF+FG)=2MF+8,∴MF⊥BC时,MF最短,即:四边形MFGN的周长最小,过点A作AH⊥BC于H,∴FM=AH在Rt△ABH中,∠B=45°,AB=10,∴AH==5,∴四边形MFGN的周长最小为2MF+8=10+8.故答案为:10+8.23.(10分)(2017•裕华区一模)小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热[此过程中水温y(℃)与开机时间x(分)满足一次函数关系],当加热到100℃时自动停止加热,随后水温开始下降[此过程中水温y(℃)与开机时间x(分)成反比例关系],当水温降至20℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题:(1)当0≤x≤8时,求水温y(℃)与开机时间x(分)的函数关系式;(2)求图中t的值;(3)若小明在通电开机后即外出散步,请你预测小明散步45分钟回到家时,饮水机内的温度约为多少℃?【解答】解:(1)当0≤x≤8时,设水温y(℃)与开机时间x(分)的函数关系为:y=kx+b,依据题意,得,解得:,故此函数解析式为:y=10x+20;(2)在水温下降过程中,设水温y(℃)与开机时间x(分)的函数关系式为:y=,依据题意,得:100=,即m=800,故y=,当y=20时,20=,解得:t=40;(3)∵45﹣40=5≤8,∴当x=5时,y=10×5+20=70,答:小明散步45分钟回到家时,饮水机内的温度约为70℃.24.(10分)(2017•裕华区一模)某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,种植花卉的利润y2与投资量x的平方成正比例关系,并得到了表格中的数据.(1)分别求出利润y1与y2关于投资量x的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,设他投入种植花卉金额m万元,种植花卉和树木共获利利润W万元,直接写出W关于m的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?(3)若该专业户想获利不低于22万,在(2)的条件下,直接写出投资种植花卉的金额m的范围.【解答】解:(1)设y1=kx,由表格数据可知,函数y1=kx的图象过(2,4),∴4=k•2,解得:k=2,故利润y1关于投资量x的函数关系式是y1=2x(x≥0);∵设y2=ax2,由表格数据可知,函数y2=ax2的图象过(2,2),∴2=a•22,解得:a=,故利润y2关于投资量x的函数关系式是:y2=x2(x≥0);(2)因为种植花卉m万元(0≤m≤8),则投入种植树木(8﹣m)万元,w=2(8﹣m)+m2=m2﹣2m+16=(m﹣2)2+14,∵a=0.5>0,0≤m≤8,∴当m=2时,w的最小值是14,∵a=>0,∴当m>2时,w随m的增大而增大∵0≤m≤8,∴当m=8时,w的最大值是32,答:他至少获得14万元利润,他能获取的最大利润是32万元.(3)根据题意,当w=22时,(m﹣2)2+14=22,解得:m=﹣2(舍)或m=6,故:6≤m≤8.25.(10分)(2017•裕华区一模)如图所示,点A为半圆O直径MN所在直线上一点,射线AB垂直于MN,垂足为A,半圆绕M点顺时针转动,转过的角度记作a;设半圆O的半径为R,AM的长度为m,回答下列问题:探究:(1)若R=2,m=1,如图1,当旋转30°时,圆心O′到射线AB的距离是+1;如图2,当a=60°时,半圆O与射线AB相切;(2)如图3,在(1)的条件下,为了使得半圆O转动30°即能与射线AB相切,在保持线段AM长度不变的条件下,调整半径R的大小,请你求出满足要求的R,并说明理由.(3)发现:(3)如图4,在0°<α<90°时,为了对任意旋转角都保证半圆O与射线AB能够相切,小明探究了cosα与R、m两个量的关系,请你帮助他直接写出这个关系;cosα=(用含有R、m的代数式表示)拓展:(4)如图5,若R=m,当半圆弧线与射线AB有两个交点时,α的取值范围是90°<α≤120°,并求出在这个变化过程中阴影部分(弓形)面积的最大值(用m表示)【解答】解:(1)如图1中,作O′E⊥AB于E,MF⊥O′E于F.则四边形AMFE 是矩形,EF=AM=1.想办法求出O′E的长即可.在Rt△MFO′中,∵∠MO F=30°,MO′=2,∴O′F=O′M•cos30°=,O′E=+1,∴点O′到AB的距离为+1.如图2中,设切点为F,连接O′F,作O′E⊥OA于E,则四边形O′EAF是矩形,∴AE=O′F=2,∵AM=1,∴EM=1,在Rt△O′EM中,sinα==,∴α=60°故答案为+1,60°.(2)设切点为P,连接O′P,作MQ⊥O′P,则四边形APQM是矩形.∵O′P=R,∴R=R+1,∴R=4+2.(3)设切点为P,连接O′P,作MQ⊥O′P,则四边形APQM是矩形.在Rt△O′QM中,O′Q=R•cosα,QP=m,∵O′P=R,∴R•cosα+m=R,∴cosα=.故答案为.(4)如图5中,当半圆与射线AB相切时,之后开始出现两个交点,此时α=90°;当N′落在AB上时,为半圆与AB有两个交点的最后时刻,此时∵MN′=2AM,所以∠AMN′=60°,所以,α=120°因此,当半圆弧线与射线AB有两个交点时,α的取值范围是:90°<α≤120°故答案为90°<α≤120°;当N′落在AB上时,阴影部分面积最大,所以S═﹣•m•m=﹣m2.26.(12分)(2017•裕华区一模)如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,BD=8cm.点M从点A出发,沿AC的方向匀速运动,同时直线PQ由点B 出发,沿BA的方向匀速运动,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接PM,设运动时间为t秒(0<t≤5).线段CM的长度记作y甲,线段BP的长度记作y乙,y甲和y乙关于时间t的函数变化情况如图所示.(1)由图2可知,点M的运动速度是每秒2cm,当t为何值时,四边形PQCM 是平行四边形?在图2中反映这一情况的点是E(,);(2)设四边形PQCM的面积为ycm2,求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形PQCM=S△ABC?若存在,求出t的值;若不存在,说明理由;(4)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;若不存在,说明理由.【解答】解:(1)由图2得,点M的运动速度为2cm/s,PQ的运动速度为1cm/s,∵四边形PQCM是平行四边形,则PM∥QC,∴AP:AB=AM:AC,∵AB=AC,∴AP=AM,即10﹣t=2t,解得:t=,∴当t=时,四边形PQCM是平行四边形,此时,图2中反映这一情况的点是E(,)故答案为:2,E(,).(2)∵PQ∥AC,∴△PBQ∽△ABC,∴△PBQ为等腰三角形,PQ=PB=t,∴,即,解得:BF=t,∴FD=BD﹣BF=8﹣t,又∵MC=AC﹣AM=10﹣2t,∴y=(PQ+MC)•FD=(t+10﹣2t)(8﹣t)=t2﹣8t+40;(3)存在;∵S=AC•BD=×10×8=40,△ABC=S△ABC时,y=t2﹣8t+40=20,当S四边形PQCM解得:t=10﹣5,或t=10+5(不合题意,舍);=S△ABC.即:t=10﹣5时,S四边形PQCM(4)假设存在某一时刻t,使得M在线段PC的垂直平分线上,则MP=MC,过M作MH⊥AB,交AB与H,如图所示:∵∠A=∠A,∠AHM=∠ADB=90°,∴△AHM∽△ADB,∴,又∵AD=6,∴,∴HM=t,AH=t,∴HP=10﹣t﹣t=10﹣t,在Rt△HMP中,MP2=(t)2+(10﹣t)2=t2﹣44t+100,又∵MC2=(10﹣2t)2=100﹣40t+4t2,∵MP2=MC2,∴t2﹣44t+100=100﹣40t+4t2,解得t1=,t2=0(舍去),∴t=s时,点M在线段PC的垂直平分线上.参与本试卷答题和审题的老师有:2300680618;zcx;zjx111;HJJ;郝老师;算术;gsls;三界无我;gbl210;sjzx;szl;HLing;曹先生;ZJX;知足长乐;CJX;心若在;弯弯的小河;星月相随(排名不分先后)菁优网2017年4月26日。