百校联盟12月2020届普通高中教育教学质量监测考试全国I卷理数答案
2020年全国卷Ⅰ理科数学(含答案)
2020年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分。
1.若z=1+i,则|z2–2z|=A.0 B.1 C D.22.设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=A.–4 B.–2 C.2 D.43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A B C D4.已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p= A.2 B.3 C.6 D.95.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:°C)的关系,在20个不同的温度x y i=得到下面的散点图:条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i由此散点图,在10°C至40°C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是A .y a bx =+B .2y a bx =+C .e x y a b =+D .ln y a b x =+ 6.函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为A .21y x =--B .21y x =-+C .23y x =-D .21y x =+ 7.设函数()cos π()6f x x ω=+在[]π,π-的图像大致如下图,则f (x )的最小正周期为A .10π9 B .7π6 C .4π3 D .3π28.25()()x x y xy ++的展开式中x 3y 3的系数为 A .5 B .10 C .15 D .20 9.已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=A B .23 C .13D 10.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π11.已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=12.若242log 42log a ba b +=+,则A .2a b >B .2a b <C .2a b >D .2a b <二、填空题:本题共4小题,每小题5分,共20分。
2020年全国卷Ⅰ理科数学(含答案)
2020年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分。
1.若z=1+i,则|z2–2z|=A.0 B.1 C D.22.设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=A.–4 B.–2 C.2 D.43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A B C D4.已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p= A.2 B.3 C.6 D.95.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:°C)的关系,在20个不同的温度x y i=得到下面的散点图:条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i由此散点图,在10°C至40°C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是A .y a bx =+B .2y a bx =+C .e x y a b =+D .ln y a b x =+ 6.函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为A .21y x =--B .21y x =-+C .23y x =-D .21y x =+ 7.设函数()cos π()6f x x ω=+在[]π,π-的图像大致如下图,则f (x )的最小正周期为A .10π9 B .7π6 C .4π3 D .3π28.25()()x x y xy ++的展开式中x 3y 3的系数为 A .5 B .10 C .15 D .20 9.已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=A B .23 C .13D 10.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π11.已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=12.若242log 42log a ba b +=+,则A .2a b >B .2a b <C .2a b >D .2a b <二、填空题:本题共4小题,每小题5分,共20分。
2020年全国卷Ⅰ理科数学含答案2020 数学 理科
2020年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分。
1.若z=1+i,则|z2–2z|=A.0 B.1 C.2D.22.设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=A.–4 B.–2 C.2 D.43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A 51-B51-C51+D51+4.已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p= A.2 B.3 C.6 D.95.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i ix y i=得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A .y a bx =+B .2y a bx =+C .e x y a b =+D .ln y a b x =+6.函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为A .21y x =--B .21y x =-+C .23y x =-D .21y x =+ 7.设函数()cos π()6f x x ω=+在[]π,π-的图像大致如下图,则f (x )的最小正周期为A .10π9 B .7π6 C .4π3 D .3π28.25()()x x y xy ++的展开式中x 3y 3的系数为 A .5 B .10 C .15 D .20 9.已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=AB .23C .13D10.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π11.已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=12.若242log 42log a ba b +=+,则A .2a b >B .2a b <C .2a b >D .2a b <二、填空题:本题共4小题,每小题5分,共20分。
百校联盟2020届普通高中教育教学质量监测考试(12月)
2020届普通高中教育教学质量监测考试全国I卷语文注意事项:1.答题前,考生务必将自己的、号填写在本试卷相应的位置。
2.全部答案写在答题卡上,写在本试卷上无效。
3.本试卷满分150分,测试时间150分钟。
4.考试围:高考全部容。
一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。
“民生”,这几年已经成了社会生活中分外响亮的“主题词”。
政府出台“民生政策”之密集,媒体推出“民生话题”之深入,百姓关注“民生热点”之强烈,可谓前所未有。
如何使每一级政府的惠民之举,托起每一个百姓的幸福生活?显然,我们还有许多的结待解。
走进基层,常常遇到一些令人忧虑的现象。
民生是个“筐”。
看一看各地在抵抗金融危机中接连推出的刺激需的大手笔,看一看基层在跟进产业转移中争相展示的招商引资的新路数,其中究竞有多少是真正关乎民众切身利益的惠民工程,有多少是紧密呼应民众迫切需求的民生项目!一些地方向上汇报、对外宣传时,为了标榜自己的“高度重视”,竟然把高速公路、城市广场等基础设施投资都算作了民生工程。
民生是个“秀”。
“有粉搭在脸上”,这是许多官员的共通心态。
就谈新农村建设,不少地方忙于撤并村庄、洗脚上楼,简单地将城市样式照搬进来,靠近路边的建筑,还要涂脂抹粉,配上白墙红顶。
老百姓的谋生之道、生产方式还没有改变,就急着要在一个早上颠覆农民既有的居住文明和生活方式,于此,官员们有了迎接上级领导检查视察的“盆景”,有了自己表功炫耀的“面子”,甚至还有了其中房地产开发的“实惠”,老百姓却尝到了难言的苦果。
民生是个“痛”。
一些地方政府或盲目追求跨越发展,或急于拉动投资需求,或企图摆脱财政困境,提出加速城市化,让更多的百姓以承包土地换一纸户籍,尽快过上城市生活,享受公共服务,沐浴现代文明。
但是,他们并没有换位思考:农民到城里买不起房怎么办?找不到工作怎么办?子女就学遇到困难怎么办?民生是什么?不是口号,不是标榜,它是百姓的切身利益,是人民的幸福生活。
2020年高考理科数学(1卷):答案详细解析(客观题 最新)
2020年普通高等学校招生全国统一考试理科数学(I 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(复数)若1z i =+,则22z z -=A.0B.1 D.2【解析】∵1z i =+,∴222(2)(1)(1)12z z z z i i i -=-=+-=-=-,∴2=22z z -.【答案】D2.(集合)设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤ ,则a =A.-4B.-2C.2D.4【解析】由已知可得{}22A x x =-≤≤,2a B x x ⎧⎫=≤-⎨⎬⎩⎭,∵{}21A B x x =-≤≤ ,∴12a -=,解得2a =-.【答案】B 3.(立体几何,同文3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A.514- B.512 C.514+ D.512+【解析】如图A3所示,设正四棱锥底面的边长为a ,则有22221212h am a h m ⎧=⎪⎪⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩整理得22420m am a --=,令m t a =,则有24210t t --=,∴114t +=,214t -=(舍去),即14m a +=.图A3【答案】C4.(解析几何)已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =A .2B .3C .6D .9【解析】设A 点的坐标为(m ,n ),∵点A 到C 的焦点的距离为12,∴m =9,∵点A 到C 的焦点的距离为12,∴122p m +=,解得6p =.【答案】C5.(概率统计,同文5)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C )的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据,)(i i x y i =(1,2,…,20)得到下面的散点图:由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A.y a bx =+B.2y a bx =+C.x y a be =+D.ln y a b x=+【解析】根据散点图的趋势和已学函数图象可知,本题的回归方程类型为对数函数,故选D 选项.【答案】D6.(函数)函数43()2f x x x =-的图像在点(1,(1))f 处的切线方程为A .21y x =--B .21y x =-+C .23y x =-D .21y x =+【解析】32()46f x x x '=-,∴函数()f x 的图像在点(1,(1))f 处的切线斜率为(1)2k f '==-,又∵(1)1f =-,∴所求的切线方程为12(1)y x +=--,化简为21y x =-+.【答案】B7.(三角函数,同文7)设函数()cos()6f x x πω=+在[]ππ-,的图像大致如下图,则()f x 的最小正周期为A.109π B.76π C.43π D.32π【解析】∵函数过点4π,09⎛⎫- ⎪⎝⎭,∴4ππcos()=096x ω-+,∴4πππ=962x ω-+-,解得23=ω,∴()f x 的最小正周期为3π4π2==ωT .【答案】C 8.(概率统计)25()y x x y x++的展开式中33x y 的系数为A.5 B.10 C.15 D.20【解析】∵5()x y +展开式的通项公式为55C r r r x y -(r =0,1,2,3,4,5),∴1r =时,2141335C 5y x y x y x=,∴3r =时,323335C 10x x y x y =,∴展开式中的33x y 系数为5+10=15.【答案】C9.(三角函数)已知(0,)α∈π,且3cos28cos 5αα-=,则sin α=A.53 B.23 C.13 D.59【解析】应用二倍角公式2cos22cos 1αα=-,将3cos28cos 5αα-=化简为,23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又∵(0,)α∈π,∴5sin 3α=.【答案】A10.(立体几何,同文12)已知A ,B ,C 为球O 的球面上的三个点, 1O 为△ABC 的外接圆.若 1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π【解析】由题意可知, 1O 为的半径r =2,由正弦定理可知,24sin ==AB r C,则14sin 4sin 60==== OO AB C ,∴球O 的半径4R ==,∴球O 的表面积为24π64πR =.图A10【答案】A11.(解析几何)已知22:2220M x y x y +---= ,直线:20+=l x y ,p 为l 上的动点.过点p 作M 的切线PA ,PB ,切点为,A B ,当PM AB 最小时,直线AB 的方程为A.210x y --= B.210x y +-=C.210x y -+= D.210x y ++=【解析】222:(1)(1)2-+-= M x y , M 的半径r =2,圆心(1,1)M ,由几何知识可知,⊥PM AB ,故1||||=2=||||2||2∆=⋅⋅==四边形APM APBM S PM AB S AP AM AP ,∴⋅PM AB 最小,即PM 最小,此时直线PM ⊥l ,即直线PM 的斜率为12=m k ,故直线PM 的方程为11(1)2-=-y x ,化简为1122=+y x ,∴直线PM 与l 的交点P 的坐标为(1,0)-P ,直线AB 为过点P 作 M 的切线所得切点弦AB 所在的直线,其方程为(11)(1)(01)(1)4---+--=x y ,化简得210++=x y .图A11【答案】D注:过圆外一点00(,)P x y 作222:()()O x a y b r -+-= 的切线所得切点弦所在直线方程为200()()()()x a x a y b y b r --+--=.特别当0a b ==时,切点弦所在直线方程为200x x y y r +=.(具体推到过程,可到百度搜索)12.(函数)若242log 42log +=+a b a b 则A.a >2bB.a <2bC.a >b 2D.a <b 2【解析】由指数和对数运算性质,原等式可化为2222log 2log a b a b +=+,∵222log 1log log 2b b b <+=,∴22222log 2log 2b b b b +<+,∴2222log 2log 2a b a b +<+,设2()2log x f x x =+,则有()(2)f a f b <,由指数函数和对数函数的单调性可知()f x 在(0,)+∞单调递增,∴2a b <.【答案】A二、填空题:本题共4小题,每小题5分,共20分。
2020届普通高中教育教学质量监测考试全国i卷数学(理)(解析版)
故 f (x) 在 (0,ln 2) 上单调递减,在 (ln 2, ) 上单调递增,
所以当 a b 1 时, f (a) f (b) ,即 ea 2a eb 2b ,
即“ a b 1 ”是“ ea 2b eb 2a ”的充分条件;
但当 0 a b ln 2 时,有 f (a) f (b) ,即 ea 2a eb 2b ,
2020 届百校普通高中教育教学质量监测考试全国 i 卷数学 (理)
一、单选题
1.已知集合 A {x | x 3k 1,k N} , B y y 4k 1,k ,
C {1, 2,3, 4,5,6,7,8} ,则 A B C ( )
A. 7
B. {1,4,7}
C. 1,3,7
调性进行判断;属于中档题.
4.已知函数 f (x) 满足 f (x 2) 1 f (x) f (x 2), f (0) 2 ,则
第 2 页 共 23 页
f (2018) f (2020) ( )
A.-1 【答案】D
B.2
C.1
D. 1 2
【解析】由已知得出递推式:
f
(x
2)
1
1 f (x)
7.某几何体的三视图如图所示,则该几何体的体积为( )
10
A.
3
【答案】C
B. 8 3
C.2
7
D.
3
【解析】由三视图还原出原几何体,可以看作是由一个直三棱柱削去两个三棱锥得到的。
【详解】
该几何体为一个直三棱柱削去两个三棱锥后剩下的几何体 ACM-DE,故体积为
V 1222 1 1 1222 1 1222 2.
故 ( A B) C {1,3,4,7} ,
2020年全国I卷理科数学试卷(含答案)
2020年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 若1z i =+,则22z z -= A.0 B.1 C.2 D.22.设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤,则a =A.-4B.-2C.2D.43. 埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A. 514-B. 512-C. 514+D. 512+ 4.已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y轴的距离为9,则p =A .2B .3C .6D .95.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C ο)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据i i (,)x y (1,2,...,20)i =得到下面的散点图: 由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A .y a bx =+B .2y a bx =+C .x y a be =+D .ln y a b x =+6.函数43()2f x x x =-的图像在点(1,(1))f 处的切线方程为 A .21y x =-- B .21y x =-+ C .23y x =- D .21y x =+7.设函数()cos()6f x x πω=+在[]-ππ,的图像大致如下图,则()f x 的最小正周期为A.109π B. 76π C. 43π D. 32π 8. 25()()y x x y x++的展开式中33x y 的系数为 A. 5 B. 10 C. 15 D. 209. 已知(0,)α∈π,且3cos28cos 5αα-=,则sin α=A. 53B. 23C. 13D. 5910. 已知,,A B C 为球O 的球面上的三个点,1O 为ABC 的外接圆,若1O 的面积为14,AB BC AC OO π===,则球O 的表面积为A. 64πB. 48πC. 36πD. 32π11. 已知22:2220M x y x y +---=,直线:20,l x y p +=为l 上的动点.过点p作M 的切线PA ,PB ,切点为,A B ,当PM AB 最小时,直线AB 的方程为A. 210x y --=B. 210x y +-=C. 210x y -+=D. 210x y ++=12.若a 242log 42log b a b +=+则A.a>2bB.a<2bC.a>2bD.a<2b二、填空题:本题共4小题,每小题5分,共20分。
2020年全国卷Ⅰ理数、理综高考试答案
2020年普通高等学校招生全国统一考试 理科数学试题参考答案(A 卷)选择题答案 一、选择题 1.D 2.B 3.C 4.C 5.D 6.B 7.C 8.C 9.A 10.A11.D12.B非选择题答案 二、填空题13.1 1415.2 16.14-三、解答题17.解:(1)设{}n a 的公比为q ,由题设得1232,a a a =+ 即21112a a q a q =+.所以220,q q +-= 解得1q =(舍去),2q =-. 故{}n a 的公比为2-.(2)设n S 为{}n na 的前n 项和.由(1)及题设可得,1(2)n n a -=-.所以112(2)(2)n n S n -=+⨯-++⨯-,21222(2)(1)(2)(2)n n n S n n --=-+⨯-++-⨯-+⨯-.可得2131(2)(2)(2)(2)n n n S n -=+-+-++--⨯-1(2)=(2).3n n n ---⨯-所以1(31)(2)99nn n S +-=-.18.解:(1)设DO a =,由题设可得,,63PO a AO a AB a ===,2PA PB PC ===.因此222PA PB AB +=,从而PA PB ⊥. 又222PA PC AC +=,故PA PC ⊥. 所以PA ⊥平面PBC .(2)以O 为坐标原点,OE 的方向为y 轴正方向,||OE 为单位长,建立如图所示的空间直角坐标系O xyz -.由题设可得1(0,1,0),(0,1,0),(,0),(0,0,)222E A C P --. 所以31(,,0),(0,1,)222EC EP =--=-. 设(,,)x y z =m 是平面PCE 的法向量,则00EPEC ⎧⋅=⎪⎨⋅=⎪⎩m m ,即021022y z x y ⎧-+=⎪⎪⎨⎪--=⎪⎩,可取(=m . 由(1)知AP =是平面PCB 的一个法向量,记AP =n , 则cos ,|||5⋅==n m n m n m |. 所以二面角B PC E --的余弦值为5.19.解:(1)甲连胜四场的概率为116. (2)根据赛制,至少需要进行四场比赛,至多需要进行五场比赛. 比赛四场结束,共有三种情况: 甲连胜四场的概率为116; 乙连胜四场的概率为116; 丙上场后连胜三场的概率为18.所以需要进行第五场比赛的概率为11131161684---=. (3)丙最终获胜,有两种情况:比赛四场结束且丙最终获胜的概率为18.比赛五场结束且丙最终获胜,则从第二场开始的四场比赛按照丙的胜、负、轮空结果有三种情况:胜胜负胜,胜负空胜,负空胜胜,概率分别为116,18,18. 因此丙最终获胜的概率为111178168816+++=.20.解:(1)由题设得A (–a ,0),B (a ,0),G (0,1).则(,1)AG a =,GB =(a ,–1).由AG GB ⋅=8得a 2–1=8,即a =3.所以E 的方程为29x +y 2=1.(2)设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知–3<n <3. 由于直线P A 的方程为y =9t (x +3),所以y 1=9t (x 1+3).直线PB 的方程为y =3t (x –3),所以y 2=3t(x 2–3).可得3y 1(x 2–3)=y 2(x 1+3).由于222219x y +=,故2222(3)(3)9x x y +-=-,可得121227(3)(3)y y x x =-++, 即221212(27)(3)()(3)0.m y y m n y y n ++++++=①将x my n =+代入2219xy +=得222(9)290.m y mny n +++-=所以12229mn y y m +=-+,212299n y y m -=+.代入①式得2222(27)(9)2(3)(3)(9)0.m n m n mn n m +--++++= 解得n =–3(含去),n =32.故直线CD 的方程为3=2x my +,即直线CD 过定点(32,0). 若t =0,则直线CD 的方程为y =0,过点(32,0).综上,直线CD 过定点(32,0).21.解:(1)当a =1时,f (x )=e x +x 2–x ,则()f x '=e x +2x –1.故当x ∈(–∞,0)时,()f x '<0;当x ∈(0,+∞)时,()f x '>0.所以f (x )在(–∞,0)单调递减,在(0,+∞)单调递增. (2)31()12f x x ≥+等价于321(1)e 12x x ax x --++≤. 设函数321()(1)e (0)2xg x x ax x x -=-++≥,则32213()(121)e 22x g x x ax x x ax -'=--++-+-21[(23)42]e 2x x x a x a -=--+++1(21)(2)e 2x x x a x -=----.(i )若2a +1≤0,即12a ≤-,则当x ∈(0,2)时,()g x '>0.所以g (x )在(0,2)单调递增,而g (0)=1,故当x ∈(0,2)时,g (x )>1,不合题意.(ii )若0<2a +1<2,即1122a -<<,则当x ∈(0,2a +1)∪(2,+∞)时,g'(x )<0;当x ∈(2a +1,2)时,g'(x )>0.所以g (x )在(0,2a +1),(2,+∞)单调递减,在(2a +1,2)单调递增.由于g (0)=1,所以g (x )≤1当且仅当g (2)=(7−4a )e −2≤1,即a ≥27e 4-. 所以当27e 142a -≤<时,g (x )≤1. (iii )若2a +1≥2,即12a ≥,则g (x )≤31(1)e 2xx x -++.由于27e 10[,)42-∈,故由(ii )可得31(1)e 2x x x -++≤1. 故当12a ≥时,g (x )≤1.综上,a 的取值范围是27e [,)4-+∞.22.解:(1)当k =1时,1cos ,:sin ,x t C y t =⎧⎨=⎩消去参数t 得221x y +=,故曲线1C 是圆心为坐标原点,半径为1的圆.(2)当k =4时,414cos ,:sin ,x t C y t ⎧=⎪⎨=⎪⎩消去参数t 得1C1. 2C 的直角坐标方程为41630x y -+=.由1,41630x y -+=⎪⎩解得1414x y ⎧=⎪⎪⎨⎪=⎪⎩.故1C 与2C 的公共点的直角坐标为11(,)44.23.解:(1)由题设知13,,31()51,1,33, 1.x x f x x x x x ⎧--≤-⎪⎪⎪=--<≤⎨⎪⎪+>⎪⎩()y f x =的图像如图所示.(2)函数()y f x =的图像向左平移1个单位长度后得到函数(1)y f x =+的图像.()y f x =的图像与(1)y f x =+的图像的交点坐标为711(,)66--.由图像可知当且仅当76x <-时,()y f x =的图像在(1)y f x =+的图像上方,故不等式()(1)f x f x >+的解集为7(,)6-∞-.2020年普通高等学校招生全国统一考试理科综合参考答案1.B 2.D 3.D 4.A 5.C 6.A 7.D 8.B 9.A10.C11.B12.D13.C 14.D 15.B 16.B 17.A 18.C 19.BD 20.AB 21.BC22.(1)O 、P (2)I 50.5 (3)50.0 23.(1)大约相等 (5)m 1gt 12 (5)221d d m t t ⎛⎫-⎪∆∆⎝⎭(6)0.221 0.212 (7)4 24.解:(1)设飞机装载货物前质量为m 1,起飞离地速度为v 1;装载货物后质量为m 2,起飞离地速度为v 2,重力加速度大小为g 。
百师联盟2020届高三考前预测诊断联考全国卷1理科数学试卷及答案解析
百师联盟2020届高三考前预测诊断联考全国卷1理科数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.设全集是R ,集合301x A x x ⎧⎫+=>⎨⎬-⎩⎭,{}|22B x x =-≤≤,则()A B =R ( )A.[]2,1-B.[)2,1- C.(]3,2-D.(],2-∞2.已知复数()12z i i =+⋅,则z =( ) A.2i --B.2i -+C.2i -D.12i --3.已知向量()2,a t =-,()1,1b =-,若()//a b b -,则实数t =( ) A.2-B.4-C.2D.44.已知递增等差数列{}n a 的前n 项和为n S ,若46a =,2a ,4,3a 成等比数列,则6S =( ) A.36B.32C.28D.305.如图是2020年3月3日至4月8日M 国及该国的N 市新冠肺炎的累计确诊病例(单位:例)的折线图,则下列四种说法中正确的是( )①3月15日N 市新冠肺炎的累计确诊病例在M 国总累计确诊病例中占比超过13②3月3日至3月7日M 国的新冠肺炎累计病例的增长率小于4月4日至4月8日的增长率③3月19日至4月4日N 市新冠肺炎的累计确诊病例增加了51例④3月3日至4月8日M 国和N 市的新冠肺炎的累计确诊病例都呈递增趋势 A.①②③④B.①③④C.①③D.②③④6.已知圆()2224:5C x m y m ++=+直线:240l x y --=,若圆C 与直线l 有两个不同的交点,则m 的取值范围为( ) A.()(),13,-∞-+∞B.[]1,3-C.(][)–,02,∞⋃+∞D.()2,4-7.如图为定义在R 上的函数()()320ax bx d a f x cx =+++≠的图象,则关于它的导函数()y f x '=的说法错误的是( )A.()f x '存在对称轴B.()f x '的单调递减区间为1,2⎛⎫-∞ ⎪⎝⎭C.()f x '在()1,+∞上单调递增D.()f x '存在极大值8.已知函数()2sin 23f x x πϕ⎛⎫=+- ⎪⎝⎭是偶函数,且()f x 在,04π⎛⎫-⎪⎝⎭上单调递减,则满足条件的ϕ的一个值为( ) A.3π-B.6π-C.3π D.56π 9.我国古代重要的数学著作《孙子算经》中首次提到了同余方程组问题以及该类问题的具体解法,因其中涉及到余数问题,所以将其称为“中国剩余定理”又名“孙子定理”.若正整数N 除以正整数m 的余数为n ,记为()mod N n m =,例如()122mod5=.执行如图所示的程序框图,则输出的n 值为( )A.16B.17C.22D.2310.已知ABC A B C '''-是体积为54的三棱柱,该三棱柱的五个面所在的平面截其外接球O 所得的截面面积相等,则球O 的表面积为( )A.15πB.28πC.30πD.60π11.已知1F 、2F 分别为双曲线()2222:10,0x yC a b a b-=>>的左、右焦点,点P 是双曲线C 上一点,122PF PF =,若线段1PF 的中点Q 恰好在双曲线C 的一条渐近线上,则双曲线的离心率为( )12.已知定义在()1,+∞上的函数()ln 321x x x f x x +-=-,定义函数()()()(),,f x f x mg x m f x m⎧≥⎪=⎨<⎪⎩,(其中m 为实数),若对于任意的()1,x ∈+∞,都有()()g x f x =,则整数m ( )A.有最大值5B.有最小值5C.有最大值6D.有最小值6第II 卷(非选择题)二、填空题(题型注释)13.为提高网课的教学质量,某省教育厅组织4位优秀教师录制A 、B 、C 三节课的视频,要求每位教师录制其中一节,且每节课至少有一人录制,其中甲、乙两位教师录制同一节视频,则这三节课的不同录制方案有______种.14.已知抛物线()2:20C x py p =>上有三个点()1,1A x a -、()2B y 、()3,1C x a +,其中()0,1a ∈,若A 、B 、C 三点到焦点的距离依次构成等差数列,则p =______.15.已知数列{}n a 满足:13a =,当2n ≥时,)211n a =-,则数列{}n a 的通项公式n a =______.三、解答题(题型注释)16.在ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,向量2sin2cos 22,⎛⎫=- ⎪⎝⎭A A m ,3cos cos 22,⎛⎫= ⎪⎭A A n , m n ⊥.(1)求角A ;(2)若CD 是AB 边上的中线,11cos 12B =,CD =ABC 的面积. 17.如图1中,四边形ABCD 为平行四边形,DP AB ⊥于点P ,且有33AB PB ==,BD =APD △沿DP 边折起至QPD △的位置,如图2,满足6PQB π∠=.(1)证明:QB ⊥平面BCDP ; (2)求二面角P DQ C --的正弦值.18.已知椭圆()2222:10x y C a b a b+=>>的离心率为12,左焦点()1,0F -,斜率为()0k k ≠的直线l 经过点F 且与椭圆C 交于A 、B 两点,点P 为AB 的中点.(1)求椭圆C 的方程;(2)设O 为原点,直线OP 与直线()0x m m =<交于点Q ,且满足FQ FP PQ +=,求m 的值.19.为了提高奶牛产奶的安全性,某大型奶牛场决定定期对奶牛进行X 病毒检测,检验采用对血液样本进行试剂盒检测的方式,该试剂盒不仅操作简单,而且可以准确诊断出牛奶质量是否达标.在试剂盒研制初期,研究人员为验证该试剂盒是否精准,特别选择了已经知道诊断结论的5头奶牛(其中感染X 病毒的奶牛只占少数),做了一次验证性检测,已知在这5头奶牛中任意抽检两头,两头都未感染X 病毒的概率是35. (1)求出这5头奶牛中感染X 病毒的头数?(2)若用该试剂盒检测这5头奶牛,直到感染X 病毒的奶牛全部检出时检测结束,现有两套检测方案:(提前抽取了5份血液样本)方案一:先任取1个样本进行检测,若检测呈阳性(表示该奶牛感染X 病毒),则检测结束;若呈阴性(表示该奶牛未感染X 病毒),则在剩余4个样本中任取2个,并将这2个样本取部分混合在一起检测,若呈阳性,则再在这2个样本中任取一个检测,否则在剩余2个未检测样本中任取一个检测.方案二:先任取2个样本,并将这2个样本取部分混合在一起检测,若检测呈阳性,则再在这2个样本中任取一个检测;若呈阴性,则对剩余3个未检测样本进行逐个检测,直到感染X 病毒的牛全部检出,检测结束.设随机变量1ξ,2ξ分别表示用方案一、方案二进行检测所需的检测次数. (ⅰ)求1ξ,2ξ的分布列和数学期望;(ⅱ)假设每次检测的费用都相同,请说明方案一和方案二哪一个更适合? 20.已知函数()2ln 2f x x x ax =+-,a ∈R .(1)当1a =时,求曲线()f x 在点()()1,1f 处的切线方程;(2)若函数()f x 有两个极值点1x ,()212x x x <,求()()122f x f x -的最小值.21.在平面直角坐标系xOy 中,曲线C 是以(为圆心,r 为半径的圆,直线l 的参数方程为8x y t⎧=⎪⎨=⎪⎩(t 为参数),且直线l 与曲线C 相切.以坐标原点O 为极点,x 轴正半轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)点P 、Q 为曲线C 上两点,若3POQ π∠=,求POQ △面积的最大值.22.已知函数()11f x x x =+--. (1)求不等式()1f x ≤的解集A ;(2)设a 为集合A 中最大的元素,若正数x ,y 满足124a x y+=,证明:4142x y xy ++≥.四、新添加的题型Θ,满足下列性质: ①对任意的m ∈R ,0m m Θ=; ②对任意的m ,n ∈R ,m n n m Θ=Θ;③对任意的m ,n ,t ∈R ,()()()()2m n t t m n n t m t ⎡⎤⎣ΘΘ=Θ⋅+Θ+Θ-⎦; 则24Θ=______,函数()4xxf x e e =Θ的最小值为______.参考答案1.A【解析】1.解分式不等式确定集合A ,然后根据集合运算的定义求解.301x A x x ⎧⎫+=>⎨⎬-⎩⎭{|(3)(1)0}x x x =+->{|3x x =<-或1}x >=()(),31,-∞-⋃+∞,[]3,1A =-R,[]2,2B =-,[]()2,1A B =-R .故选:A . 2.A【解析】2.首先根据复数代数形式的乘法法则求出z ,再根据共轭复数的概念计算可得; 解:因为()122z i i i =+⋅=-+,所以2z i =--. 故选:A 3.C【解析】3.首先求出a b -的坐标,再根据平面向量共线的坐标表示得到方程,解得即可; 解:因为()2,a t =-,()1,1b =-,所以向量()3,1a b t -=-+,因为()//a b b -,所以()310t -+=,所以2t =.故选:C 4.D【解析】4.设等差数列{}n a 的公差为()0d d >,根据题中条件求出公差,得出通项公式,再由求和公式,即可求出结果.由题意,设等差数列{}n a 的公差为()0d d >, 因为46a =,2a ,4,3a 成等比数列, 所以()()2562616a a d d ⋅=-⋅+=, 解得2d =或5-(舍),所以1630,22n a d a n =-==-,()60106302S +⨯==.故选:D. 5.B【解析】5.根据统计拆线图,逐一判断,可得选项.①3月15日N 市新冠肺炎累计确诊病例有33例,M 国总累计病例有87例,占比超过13,①正确;②3月3日至3月7日M 国新冠肺炎累计病例的增长率为3716211616-=,4月4日至4月8日增长率为228214147214214107-==,21716107>,②错误;③3月19日至4月4日N 市新冠肺炎的累计确诊病例增加了994851-=例,③正确; ④3月3日至4月8日M 国和N 市新冠肺炎的累计确诊病例都呈递增趋势,④正确. 故选:B . 6.A【解析】6.求出圆心到直线的距离,由这个距离小于半径可得.圆心是(,0)m -由题意,圆心到直线的距离d =<3m >或1m <-. 故选:A . 7.D【解析】7.由题意得()f x '是开口向上的抛物线,对选项进行一一验证,即可得答案;由题可知,()y f x '=为二次函数,可知函数()y f x =的极大值点为2-,极小值点为1, 可得0a >,且两根分别是2-和1.所以()f x '存在极小值,对称轴12x =-,单调递减区间为1,2⎛⎫-∞- ⎪⎝⎭,单调递增区间为1,2⎛⎫-+∞ ⎪⎝⎭.A ,B ,C 正确.故选:D. 8.B【解析】8.先根据()f x 是偶函数得32k ππϕπ-=+,即:56k πϕπ=+,k Z ∈,再对k 取值验证即可.因为()f x 是偶函数,32k ππϕπ-=+,所以56k πϕπ=+,k Z ∈. 当0k =时,56πϕ=,()2cos2f x x =在,04π⎛⎫- ⎪⎝⎭上单调递增,不满足题意; 1k =-时,6πϕ=-,()2cos2f x x =-在,04π⎛⎫-⎪⎝⎭上单调递减,满足题意. 故选:B . 9.C【解析】9.由已知中的程序框图可知:该程序的功能是利用循环机构计算并输出变量n 的值,模拟程序的运行过程,分析循环中各变量值的变换情况,可得答案.解:由题可知该程序框图的功能是:利用循环结构计算并输出大于10的能同时被3除余1和被5除余2的最小整数.由已知中的四个选项的数据可得:故输出的n 为22. 故选:C. 10.D【解析】10.结合图象设底面边长为a ,侧棱长为l ,结合几何体,利用半径相等,建立方程,求解,,a l r 和球的表面积.由题易得该三棱柱为正三棱柱,设其底面边长为a ,侧棱长为l ,结合图形,三棱柱的五个面所在的平面截其外接球O所得的截面面积相等,可知截面圆半径相等,即球心到三棱柱的5个面的距离相等,设为d.外接球的球心在上下底面正三角形中心连线的中点,由球的半径相等可得2222232r d d⎛⎛⎫=+=+⎪⎪ ⎪⎝⎭⎝⎭,化简得a=.可得该三棱柱的体积21542V a==⨯,得6a=,r=.所以球O的表面积为2460rππ=.故选:D11.C【解析】11.由双曲线定义求得14PF a=,22PF a=,由中点得OQ a=,12QF a=.直线OQ 是渐近线,得斜率为ba-,从而1tanbQOFa∠=,求得1cosaQOFc∠=,再用余弦定理可建立,a c的关系式,求得离心率.由122PF PF=知点P在双曲线的右支上,由122PF PF=,122PF PF a-=可得14PF a=,22PF a=,因为Q为1PF中点,所以OQ a=,12QF a=.直线OQ是渐近线,斜率为ba-,1tanbQOFa∠=,又111sintancosQOF bQOFQOF a∠∠==∠,设1sin QOF bk∠=,1cos QOF ak∠=,(0k>),则22221b k a k+=,1kc==,所以1cos a QOF c∠=, 在1QOF 中22214cos 2a a c a QOF c ac+-∠==,解得c e a ==.故选:C . 12.A【解析】12.依题意若对于任意的()1,x ∈+∞,都有()()g x f x =.则有()m f x ≤在()1,x ∈+∞恒成立,只需()min m f x ≤,利用导数研究函数()f x 的单调性与最值即可得解;解:由题若对于任意的()1,x ∈+∞,都有()()g x f x =.则有()m f x ≤在()1,x ∈+∞恒成立,只需()min m f x ≤,()()2ln 21f x x x x -+-'=-,令()ln 2h x x x =-+-,()110h x x '=-+>,所以()h x 在()1,+∞上单调递增,又由()3ln310h =-+<,()4ln 420h =-+>,所以()03,4x ∃∈满足()00h x =,即有00ln 2x x =-,此时()f x 在()01,x 上单调递减,在()0,x +∞上单调递增,所以()()()()00000000min00232ln 3225,611x x x x x x f x f x x x x -+-+-====+∈--,所以5m ≤.故选:A 13.6【解析】13.由题意可分两步完成,先选一节课甲乙共同录制,剩余两节课安排其余两位老师录制,由分步乘法计数原理可得结果.第一步选一节课甲乙两位老师录制,共有133C =种录制方案,第二步安排另两位老师录制剩余两节课,共有222A =种不同的录制方案,根据分步乘法计数原理可知,共有326⨯=种不同的录制方案, 故答案为:6 14.4【解析】14.设抛物线C 焦点F ,准线方程为2py =-,根据题意,得到2211222p p p y a a ⎛⎫+=-++++ ⎪⎝⎭,求出21y =,代入抛物线方程,即可得出结果.设抛物线C 焦点F ,准线方程为2py =-, 由A 、B 、C 到焦点的距离依次成等差数列得2BF AF CF =+, 所以2211222p p p y a a ⎛⎫+=-++++ ⎪⎝⎭,所以21y =,即()B ,代入22x py =得4p =.故答案为:4. 15.22n n +【解析】15.1=,说明数列是等差数列,再求通项公式.由)211n a =-得)211n a +=1=,即数列2=为首项,公差为1的等差数列,所以()2111n n =+-⨯=+,所以22n a n n =+.故答案为:22n n +16.(1)3A π=;(2)【解析】16.(1)首先根据m n ⊥得到2sin 106A π⎛⎫--= ⎪⎝⎭,从而得到1sin 62A π⎛⎫-= ⎪⎝⎭,再求角A 即可.(2)首先利用正弦两角和公式得到sin C =::7:5:8a b c =,设7a x =,5b x =,8c x =,利用余弦定理得到1x =,再利用正弦定理求面积即可.(1)因为m n ⊥,所以0m n ⋅=.即223sincos 2cos cos 12sin 102226A A A m n A A A π⎛⎫⋅=⋅-=--=--= ⎪⎝⎭, 所以1sin 62A π⎛⎫-= ⎪⎝⎭,因为0A π<<,所以5666A πππ-<-<, 所以66A ππ-=,即3A π=.(2)因为11cos 14B =,()0,B π=,所以sin B =()sin co 111s co s s sin in sin 2142147A B A C A B B =+=+=+⨯=,所以::sin :sin :sin 7:5:8a b c A B C ===, 设7a x =,5b x =,8c x =,在ACD △中,2222cos CD AC AD AC AD A =+-⋅⋅, 所以22221251620x x x =+-,所以1x =, 即7a =,5b =,8c =,故12sin ABCSab C ==17.(1)证明见解析;(2)7.【解析】17.(1)根据线面垂直的判定定理,先证明DP ⊥平面PQB ,得到DP QB ⊥,再根据线面垂直的判定定理,即可证明结论成立;(2)分别以PB ,PD 为x ,y 轴,过点P 作z 轴//BQ ,建立空间直角坐标系,求出两平面的法向量,根据向量夹角公式求出两法向量的夹角,进而可得出结果. (1)证明:因为33AB PB ==,所以2AP =,1PB =.在PQB △中,由余弦定理得2222cos PB PQ BQ PQ BQ PQB =+-⋅∠,得QB =则222BQ PB PQ +=,所以QB PB ⊥.又因为DP PB ⊥,DP QP ⊥,PB QP P ⋂=,且PB ⊂面PQB ,QP ⊂面PQB , 所以DP ⊥平面PQB .因为QB ⊂平面PQB , 所以DP QB ⊥, 又因为PBDP P =,且PB ⊂面BCDP ,DP ⊂面BCDP ,所以QB ⊥平面BCDP .(2)分别以PB ,PD 为x ,y 轴,过点P 作z 轴//BQ ,建立空间直角坐标系, 则()0,0,0P ,()0,2,0D,()3,2,0C,(Q ,(1,DQ =-,()0,2,0PD =,()3,0,0DC =.设平面PDQ 的一个法向量为()1,,n x y z =,1100n DQ n PD ⎧⋅=⎪⎨⋅=⎪⎩,所以2020x y y ⎧-+=⎪⎨=⎪⎩,令1z =,则()13,0,1n =-, 设平面CDQ 的一个法向量为()2,,n x y z =2200n DQ n DC ⎧⋅=⎪⎨⋅=⎪⎩,所以2030x y x ⎧-+=⎪⎨=⎪⎩,令2z =,则()20,2n =.所以121212cos ,27n n n n n n ⋅<>===⋅,因此1242sin ,7n n <>=, 所以二面角P DQ C --的正弦值为7.18.(1)22143x y +=;(2)4m =-.【解析】18.(1)根据题意可得121c a c ⎧=⎪⎨⎪=⎩,即可解出,a c ,再根据,,a b c 的关系222a b c =+可求出2b ,即可求出椭圆C 的方程;(2)设()11A x y ,,()22B x y ,以及():1AB l y k x =+,将直线方程与椭圆方程联立可得12x x +,即可求出点P 的坐标,再联立直线OP 与直线()0x m m =<的方程可求得点Q的坐标,由FQ FP PQ +=可得FQ FP ⊥,然后根据直线的斜率之积为1-即可解出m .(1)由题121c a c ⎧=⎪⎨⎪=⎩解得2,1,a c =⎧⎨=⎩所以2223b a c =-=.所以椭圆C 的方程为22143x y +=.(2)因为焦点()1,0F -,设():1AB l y k x =+, 与椭圆方程联立得,()22224384120k x k x k +++-=,设()11A x y ,,()22B x y ,,则2122843k x x k +=-+.因为P 为AB 的中点,所以21224243P x x k x k +==-+,2343P P k y kx k k =+=+, 即22243,4343k k P k k ⎛⎫- ⎪++⎝⎭,∴3:4OPl y x k =-,则3,4m Q m k ⎛⎫- ⎪⎝⎭, 由FQ FP PQ FQ FP +==-可得FQ FP ⊥,所以()3141mk k m -⋅=-+,所以4m =-.19.(1)1头;(2)(ⅰ)分布列见解析,()1135ξ=E ;()2125ξ=E ;(ⅱ)方案二更适合.【解析】19.(1)根据两头都未感染X 病毒的概率是35,列式求解; (2)(ⅰ)由题意可知1ξ的可能取值为1,3,2ξ的可能取值为2,3,再依次根据随机变量表示的事件求概率,列出分布列,并计算数学期望;(ⅱ)由(ⅰ)可知,数学期望小的合适.(1)设有x 头奶牛感染X 病毒,则由题意有252535x C C -=,解得1x =或8x =(舍).所以这5头奶牛中有1头感染X 病毒.(2)(ⅰ)1ξ的可能取值为1,3,()11115115C P C ξ===,()1435P ξ==,所以1ξ的分布列为则()113555E ξ=⨯+⨯=; 2ξ的可能取值为2,3,由(1)可知()214222153235C C P C C ξ===,所以()2325P ξ==, 所以2ξ的分布列为()223555E ξ=⨯+⨯=.(ⅱ)因为()()21E E ξξ<,所以方案二所需的检测次数期望较少,所需的检测费用期望较低,所以方案二更适合. 20.(1)20x y --=;(2)14ln 22+-.【解析】20.(1)求出'(1)f 再利用点斜式方程,即可得答案;(2)由1x ,2x 是函数()f x 的极值点,得1x ,2x 是方程22210x ax -+=的两不等正根,再利用韦达定理得到120x x a +=>,1212x x ⋅=,利用消元法将()()122f x f x -表示成关于2x 的函数,再利用换元法和导数求函数的最小值. 解:(1)当1a =时,()ln 2f x x x x =+-,()122f x x x'=+-, ()11f =-,()11f '=,则11y x +=-,所以2y x =-,即曲线()f x 在点()()1,1f 处的切线方程为20x y --=.(2)函数()2ln 2f x x x ax =+-,()0,x ∈+∞,()2221x ax f x x-+'=,因为1x ,2x 是函数()f x 的极值点,所以1x ,2x 是方程22210x ax -+=的两不等正根,则有2480a ∆=->,120x x a +=>,1212x x ⋅=,所以a >22a >,即10,2x ⎛∈ ⎝⎭,22x ⎛⎫∈+∞ ⎪ ⎪⎝⎭,且有211221ax x =+,222221ax x =+, ()()()()221211122222ln 2ln 2f x f x x x ax x x ax -=+--+- ()()22221112222ln 21ln 21x x x x x x =+---+--22112222ln ln 1x x x x =-+-+-222222222222111322ln ln 1ln 2ln 212222x x x x x x x ⎛⎫=-+--=---- ⎪⎝⎭令22t x =,则1,2t ⎛⎫∈+∞ ⎪⎝⎭,()13ln 2ln 2122g t t t t =----,()()()22211131222t t g t t t t --'=+-=, 当1,12t ⎛⎫∈⎪⎝⎭上单调递减,当()1,t ∈+∞上单调递增. 所以()()min 14ln 212g t g +==-. 所以()()122f x f x -的最小值为14ln 22+-. 21.(1)4sin 6πρθ⎛⎫=+ ⎪⎝⎭;(2)【解析】21.(1)根据圆的圆心和半径写出圆的普通方程,再利用cos sin x y ρθρθ=⎧⎨=⎩求得圆的极坐标方程;(2)设()1,P ρθ,2,3Q πρθ⎛⎫+⎪⎝⎭,利用三角形的面积公式121sin 23POQ S πρρ=△,再利用三角函数的有界性,即可得答案;解:(1)直线l的参数方程化简为一般式方程为80x +-=,因为直线l 与曲线C 相切,则13822r +-==. 所以圆的方程为()(2214x y -+-=,将cos sin x y ρθρθ=⎧⎨=⎩,代入化简得 曲线C 的极坐标方程为4sin 6πρθ⎛⎫=+ ⎪⎝⎭. (2)设()1,P ρθ,2,3Q πρθ⎛⎫+⎪⎝⎭,121sin 4sin 4sin 23462POQ S πππρρθθ⎛⎫⎛⎫==⨯+⨯+ ⎪ ⎪⎝⎭⎝⎭△1cos cos cos 26226ππθθθθθθ⎫⎛⎫⎛⎫=+=+=++⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎭当262ππθ+=,即6πθ=时,POQ △的面积最大,最大值为22.(1)1,2A ⎛⎤=-∞ ⎥⎝⎦;(2)证明见解析【解析】22.(1)去绝对值可得()2,12,112,1x f x x x x -<-⎧⎪=-≤≤⎨⎪>⎩,然后分1,11,1x x x -≤≤-><三种情况解不等式,进而可求出答案; (2)易知12a =,可得122x y +=,即12xy x y =+,进而4142x y xy xy xy ++=+,然后利用基本不等式可证明结论成立.(1)由题意,()2,1112,112,1x f x x x x x x -<-⎧⎪=+--=-≤≤⎨⎪>⎩,解不等式()1f x ≤,即121x <-⎧⎨-≤⎩或1121x x -≤≤⎧⎨≤⎩或121x >⎧⎨≤⎩,解得12x ≤. 即不等式()1f x ≤的解集1,2A ⎛⎤=-∞ ⎥⎝⎦.(2)由题可知12a =,则122x y +=,所以22xy x y =+,即12xy x y =+.则4142x y xy xy xy++=+, 因为0,0x y >>,所以0xy >,所以44xy xy +≥=,当且仅当4xy xy=,即1x =,2y =时等号成立. 所以4142x y xy ++≥. 23.12 6【解析】23.利用新定义运算,转化()24240Θ=ΘΘ,再由性质③,①可得;这样可得()00()0022a b a b ab a b ab a b Θ=ΘΘ=Θ+Θ+Θ-=++-,函数4()42x x f x e x=++-,再由基本不等式可得最小值. 根据定义可得()242400802042824212Θ=ΘΘ=Θ+Θ+Θ-=++-=;()444004002x x xx x xf x e e e e e e ⎛⎫=Θ=ΘΘ=Θ+Θ+Θ- ⎪⎝⎭4442226x x x x e e e e =++-=++≥=,当且仅当ln 2x =时等号成立. 故答案为:12;6.。
2020年全国普通高等学校招生统一考试理科数学试卷 全国Ⅰ卷 (含答案)
2020年普通高等学校招生全国统一考试 理科数学 一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 若1z i =+,则22z z -=A.0B.1C.2D.22.设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤,则a =A.-4B.-2C.2D.43. 埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A. 514- B. 51- C. 51+ D.51+4.已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y轴的距离为9,则p =A .2B .3C .6D .95.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C ο)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据i i (,)x y (1,2,...,20)i =得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A .y a bx =+B .2y a bx =+C .x y a be =+D .ln y a b x =+6.函数43()2f x x x =-的图像在点(1,(1))f 处的切线方程为 A .21y x =--B .21y x =-+C .23y x =-D .21y x =+7.设函数()cos()6f x x πω=+在[]-ππ,的图像大致如下图,则()f x 的最小正周期为A.109π B. 76π C. 43π D. 32π 8. 25()()y x x y x++的展开式中33x y 的系数为 A. 5B. 10C. 15D. 209. 已知(0,)α∈π,且3cos28cos 5αα-=,则sin α=A. 5B. 23C. 13D.510. 已知,,A B C 为球O 的球面上的三个点,1O 为ABC 的外接圆,若1O 的面积为14,AB BC AC OO π===,则球O 的表面积为A. 64πB. 48πC. 36πD. 32π11. 已知22:2220M x y x y +---=,直线:20,l x y p +=为l 上的动点.过点p作M 的切线PA ,PB ,切点为,A B ,当PM AB 最小时,直线AB 的方程为A. 210x y --=B. 210x y +-=C. 210x y -+=D. 210x y ++=12.若a 242log 42log b a b +=+则A.a>2bB.a<2bC.a>2bD.a<2b二、填空题:本题共4小题,每小题5分,共20分。
百校联盟2020届普通高中教育教学质量监测考试(12月)
D.作者提出,财力固然重要,考核不可或缺,但比财力更重要的是理念,比考核更重要的是情怀。
(二)实用类文本阅读(本题共3小题,12分)
阅读下面的文字,完成4~6题。
材料一:
《哪吃之魔童降世》票房和口碑双丰收,只是国产动画的初始一战。与此同时,80~90%勺国产动画电
影票房都低于1亿,市场完全是由少数头部爆款电影支撑的。归根结底,国产动画的崛起需要持续、大量 的优质作品产出。现在只是万里长征走出了第一步。
国产动画从“少儿向”走向“全年龄向”。成年人对于幻想与感动的需求有过之而无不及。2018年我
国动漫用户的规模有3.46亿人,而且还在以12.3%的增速扩。根据我们的监测,20至29岁的高付费意愿
动画电影的盈利波动性高,制作周期长,产能有限。《大圣归来》《哪吒》这样的爆款动画电影具备标
杆效应,给动画产业带来了巨大的关注度。但是,动画电影的本质还是电影,可预见性低,制作周期长, 现金回收周期更长。在同等条件下,动画电影的产能远低于番剧(日本连载动画电视剧,属于二次元用户 常用语)。国产动画的发展不能依靠少数爆款电影,而要形成多平台、多品类、头部和长尾并存的产品矩 阵。
C.作者用“筐”“秀”“痛”的概括生动地Байду номын сангаас示了当前民生建设中存在的问题。
D.作者用“有道理,但未必尽然”来委婉否定某些人的观点,语言很有分寸。
3.根据原文容,下列说法不正确的一项是(3分)
A.作者对某些地方的做法感到气愤,因这些地方竟把基础设施投资都算作民生工程来标榜自己。
B.那些在新农村建设中撤并村庄、洗脚上楼,粉刷装饰靠近路边的建筑的做法都是在“作秀”。
2020年全国卷Ⅰ理科数学含答案2020数学理科
2020年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分。
1.若z=l+i,则lr-2zl=A. 0B. 1C. 72D. 22.设集^A={xLr^<0}, B=(.d2x+</<0},且ACB={.d-2gl},则“=A. -4B. -2C. 2D. 43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的髙为边长的正方形面积等于该四棱锥一个侧而三角形的面积,则其侧而三角形底边上的高与底面正方形的边长的比值为A.虽1B.逅C.逅11D.逅±14 2 4 24.已知A为抛物线C:y2=2p.Y (p>0)上一点,点A到C•的焦点的距离为12,到y轴的距离为9,则尸A. 2B. 3 C・ 6 D・ 95.某校一个课外学习小组为研究某作物种子的发芽率y和温度x (单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(心X)(i = l,2,….20)得到下而的散点图:类型的是6. 函数/(x) = x 4-2x 3的图像在点(h /⑴)处的切线方程为A. y = -2x_lB. y = -2x + lC. y = 2x -3D. y = 2x + l7•设函数/(x) = cos(fyx + —)在[-兀,兀]的图像大致如下图,则•心)的最小正周期为8. (x + ^-)(x + y)5的展开式中Qv 3的系数为 x9.已知ae(O,7r),且3cos2a-8cosa = 5 ,贝ijsina =A. y = a + bxB. y = " +C. y = a + be'D. y = a + b\nx A. 1071C. D. 3 71A. 5B ・10C ・15 D. 20由此散点图,在i(rc 至40。
(:之间,下而四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程 475 2 1 75A. ---B. —C. —D・ -3 3 3 910.已知A,B,C为球0的球而上的三个点,为AABC的外接圆,若0 0]的而积为4兀,AB = BC = AC = OC\,则球O的表而积为A. 64兀B. 487TC. 36兀D. 32兀11.已知OM:x2 + y2-2x-2y-2 = 0,直线/: 2x+y + 2 = 0, P为/上的动点,过点P作OM的切线PA,PB,切点为A.B,当I PM\\AB\最小时,直线力3的方程为A. 2x-y-1 = 0B. 2x + y-1 = 0C. 2x-y + l=0D. 2x + y + l=O12.若2°+log" = 4°+2log』,则A. a>2b B・a<U)C・a>b2D・a<b2二、填空题:本题共4小题,每小题5分,共20分。