2011年河南中招考试数学试题及答案
2011年河南中考语文、英语、数学、物理、化学试题及答案
2011年河南省初中学业水平暨高级中等学校招生考试试卷语文注意事项:1.本试卷共l0页,四个大题,满分120分,考试时间l20分钟。
请用蓝、黑色钢笔或圆珠笔直接答在试卷上。
2.答卷前将密封线内的项目填写清楚。
一、积累与运用(共27分)1.下列词语中加点的字,每对读音都不相同的一项是【B 】(2分)A.湖泊./淡泊.角.逐/角.色浑身解.数/解.甲归田B.缜.密/慎.重机械./训诫.叱咤.风云/姹.紫嫣红C.滑稽./畸.形辍.学/点缀.猝.不及防/鞠躬尽瘁.D.陨.落/吮.吸分歧./祈.祷言简意赅./骇.人听闻2.下列词语中有错别字的一项是【C 】(2分)A.端详亲和力两全其美一如既往B.捍卫必需品入不敷出不屑置辩C.松弛名信片直截了当变本加利D.抱负入场券不胫而走各行其是3.依次填人下面横线处的词语,最恰当的一项是【D 】(2分)把全面发展和个性发展紧密结合起来,不仅为青年学子成长提供了价值准绳,也为高校教书育人提供了工作方法。
百年清华__________并参与了中国高等教育探索发展的历史,这里蓬勃昂扬的青春理想、严谨勤奋的治学氛围,__________了许许多多全面发展、个性鲜明的栋梁之才。
__________高等教育始终让青年学子全面发展并保持个性,我国的人才培养水平__________一定会大幅度提高。
A.见证铸就只有才B.印证造就只要就C.印证铸就只有才D.见证造就只要就4.下列关于文学名著的表述,有错误的一项是【B 】(3分)A.《西游记》中,唐僧先后在五行山收了孙悟空,鹰愁涧收了白龙马,高老庄收了猪八戒,流沙河收了沙和尚。
师徒历尽磨难,取得真经。
B.衍太太是一个善良、朴实、疼爱孩子、精通礼节的人,鲁迅在《父亲的病》《琐记》《狗·猫·鼠》中表达了对她的怀念之情。
C.《鲁滨逊漂流记》用第一人称的叙述方式,讲述了鲁滨逊流落荒岛的生活经历,语言浅显,叙事详尽,让读者感到真实可信。
2011年河南中考数学答案
第二部分:毕业实习作业实习结束后,每个学生应完成以下实习作业:一、必答题(一)概念题1、什么叫“三一”砌筑法如何操作2、什么是施工缝如何留置3、砼的一般标准有哪些砼为什么要振捣4、用什么工具检查墙面垂直度平整度怎么检查5、抹灰工程中质量通病有那些6、手工弯制钢筋有那些设备、工具7、模板的基本作用是什么(二)、编制一份与自己实习的实习工地的施工方案。
1、抗震柱与构造柱的区别。
2、施工项目的主要经济指标。
3、普通粘土砖的标准尺寸是多少砌筑常用砂浆的标号4、脚手架的材质有哪几种常用的是什么类型的脚手架5、普通硅酸盐水泥的主要成分是什么常见水泥的标号6、水平缝灰浆饱满度用什么方法测量达到多少为合格7、普通砼主要有哪几种材料组成,那些是粗骨料,那些是细骨料塌落度是什么意思。
8、水泥砂浆抹灰的工艺流程9、一般墙裙、踢脚线,楼梯踏步的尺寸是多少10、试说明施工现场,常用的一级钢筋,二级钢筋及表示方法。
11、什么是砼的自然养护,自然养护有那些方法12、钢筋为什么要留保护层,一般现浇梁、板、柱的保护层是多少(三)、讨论题:根据你所实习的工地情况编制一份基础或主体等方面的施工方案。
二、本专业毕业设计(论文)学生可结合实习所在企业的具体工作情况,在下列命名的课题任选或自选一题进行毕业设计(论文),实习结束后根据选择的题目进行答辩。
(一)题目的要求:(1)、内容涉及本专业。
(2)、结合实习所在单位的工作安排或具体工作。
(3)、论述应全面覆盖本课题。
(4)、内容新颖、可行、实践操作性强,能较全面论述该内容的现状、发展前景等。
参考题目(可供学生根据实习单位情况自行选择其一完成)。
1、基础工程施工工艺论述,制定基础工程施工方案;基础形式的选择、特点、施工方案2、砌体工程的施工技术论述,制定一个砌体施工方案;砌体材料的选择、特点,与其他砌体材料的比较常见形式的组砌、质量检查3、钢筋工程的施工技术论述,制定一个钢筋工程施工方案;下料、绑扎、焊接、质量检查4、混凝土工程的施工技术论述,制定一个混凝土施工方案;搅拌、浇筑、养护、施工缝的留设、模板拆除时间5、模板工程施工技术论述,制定一个支撑方案及计算书;模板的选择、特点,支撑方案的选择、计算书安装、拆除、质量检查、技术资料6、屋面工程施工技术论述;7、装修工程施工技术论述;装修工程包括哪些分项工程,论述各自特点8、抹灰工程施工工艺论述;一般墙面抹灰工艺、操作方法、饰面砖镶贴、涂料施工工艺9、编写各工种班组技术交底;10、工程质量通病或事故分析及防治措施;11、主体阶段的施工组织设计;以钢筋、模板、混凝土、砌体为主,画进度网络图12、建筑安全技术论述,如何在各个施工环节保证安全生产;13、编制各分部分项工程技术交底(资料)14、各种工程技术资料填写方法(附表格)15、ISO9001质量体系、IS94001安全环境卫生职业体系认证等在本工程的应用;(三)、其他1、毕业设计(论文)指导教师:实习期间的毕业设计(论文)指导教师原则上学生聘请实习所在单位技术人员担任,现场工程技术人员既为实习指导教师又为毕业设计(论文)辅导教师。
河南省2011年中招数学模拟试卷及答案
新世纪教育网 精品资料版权所有@新世纪教育网2011年中招数学模拟试题第4题图 y xO -1 2 ⑴ 1+8=?1+8+16=?⑵ ⑶1+8+16+24=?第5题图(第6题) 姓名 考号⊙┄―――――――――――――┄┄┄┄密┄┄┄封┄┄┄装┄┄┄订┄┄┄线┄┄┄内┄┄┄不┄┄┄要┄┄┄答┄┄┄题┄┄┄┄┄┄┄┄┄┄┄⊙注意事项:1.本试卷共三大题,满分120分.考试时间90分钟.一、选择题(每小题3分,共18分.)在每小题给出的四个选项中,只有一项是符合题目要求的. 1.2-(-2)的值是( )A .-4B .14-C .0D .42.图中的几何体是由7个大小相同的小正方 体组成的,该几何体的俯视图为( )3.下列各选项的运算结果正确的是( )A.(2x 2)3=8x 6. B .22523a b a b -= C .623x x x ÷=D .222()a b a b -=-4.二次函数22y x x =--的图象如图所示,则函数值y <0时x 的取值范围是( )A .x <-1B .x >2C .-1<x <2D .x <-1或x >25.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n (n 是正整数)的结果为( )A .2(21)n +B 2(21)n -C .2(2)n +D .2n6.梯形ABCD 中AB ∥CD ,∠ADC +∠BCD =90°,以AD 、AB 、BC为斜边向形外作等腰直角三角形,其面积分别是S 1、S 2、S 3 ,且S 1 +S 3 =4S 2,则CD =( )A. 2.5ABB. 3ABC. 3.5ABD. 4ABA . D AC .D . 第2A BC D 1y x =-第14题图 y x O 1二、填空题(每小题3分,共27分.). 7..不等式组6020x x -<⎧⎨->⎩的解集是 .8.□ABCD 的对角线AC 、BD 相交于点O , 点E 是CD 的中点,若AD =4cm ,则OE 的 长为 cm .9.分解因式:26_________.x x +=10. 2010年4月14日青海玉树发生的7.1级地震震源深度约为14000米,震源深度用科学记数法表示约为_____________米.11.已知一组数据2, 1,-1,0, 3,则这组数据的极差是______. 12. 已知圆锥的高是30cm ,母线长是cm 50,则圆锥的 侧面积是 . 13.如图,BAC ∠位于6×<的方格纸中,则 tan BAC ∠= .14.如图所示,点A 是双曲线1y x =-在第二象限的分支上的任意一点,点B 、C 、D 分别是点A 关于x 轴、原点、y 轴的对称点,则四边形ABCD 的面积是 .15.如图,△ABC 是一个边长为2的等边三角形,AD 0⊥BC ,垂足为点D 0.过点D 0作D 0D 1⊥AB ,垂足为点D 1;再过点D 1作D 1D 2⊥AD 0,垂足为点D 2;又过点D 2作D 2D 3⊥AB ,垂足为点D 3;……;这样一直作下去,得到一组线段:D 0D 1,D 1D 2,D 2D 3,……,则线段D n -1D n 的长为_ _ (n 为正整数)第13题图 A BCD第8题ECBA OD D 0 C D第8题ECBA O三、解答题(本大题共8个小题,共75分) 16.(8分)先化简,再求值:x x x x x x11132-⋅⎪⎭⎫ ⎝⎛+--,其中22-=x.17(本题满分9分)如图,梯形ABCD 中,AB ∥CD ,AC 平分∠BAD , CE ∥AD 交AB 于点E .求证:四边形AECD 是菱形.18.(9分)某校为了了解九年级女生的体能情况,随机抽查了部分女生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图和不完整的统计表(每个分组包括左端点,不包括右端点). 请你根据图中提供的信息,解答以下问题: (1) 分别把统计图与统计表补充完整;(2)被抽查的女生小敏说:“我的仰卧起坐次数是被抽查的所有同学的仰卧起坐次数的中位数”,请你写出小敏仰卧起坐次数所在的范围.(3)若年段的奋斗目标成绩是每个女生每分钟23次,问被抽查的所有女生的平均成绩是否达到奋斗目标成绩?仰卧起坐次数的范15~20 20~25 25~30 30~35ABCDE15 20 25 30 35次数(次)人数(人) 01012 53O第19题图xyAB PC D19.(9分)如图所示,菱形ABCD 的顶点A 、B 在x 轴上,点A 在点B 的左侧,点D 在y 轴的正半轴上,∠BAD =60°,点A 的坐标为(-2,0).⑴求线段AD 所在直线的函数表达式.⑵动点P 从点A 出发,以每秒1个单位长度的速度,按照A →D →C →B →A 的顺序在菱形的边上匀速运动一周,设运动时间为t 秒.求t 为何值时,以点P 为圆心、以1为半径的圆与对角线AC 相切?20.(9分)团体购买公园门票票价如下:围(单位:次) 频数 3 10 12 频率 101 31 61购票人数 1~50 51~100 100人以上 每人门票(元)13元11元9元今有甲、乙两个旅行团,已知甲团人数少于50人,乙团人数不超过100人.若分别购票,两团共计应付门票费1392元,若合在一起作为一个团体购票,总计应付门票费1080元. (1)请你判断乙团的人数是否也少于50人. (2)求甲、乙两旅行团各有多少人?21.(10分)如图所示,直线AB 与反比例函数图像相交于A ,B 两点,已知A (1,4). (1)求反比例函数的解析式;(2)连结OA ,OB ,当△AOB 的面积为152时,求直线AB 的解析式.22、(本题满分10分)探索勾股定理时,我们发现“用不同的方式表示同一图形的面积”可以解决线段和或差)的有关问题,这种方法称为面积法。
2011年河南中招考试猜题试卷数学(五)
2011年河南中招考试猜题试卷数学(五)一、选择题(每小题3分,共18分) 1. 51-的相反数是( )A.51 B. 51-C. 5-D. 52.2011年3月23日,我省残疾人工作会议在郑州举行.会议提出继续开展全省各级残联扶残助残活动,计划投入8966万元,惠及107万残疾人.8966万用科学记数法表示正确的是( ) A.9.0×107B. 9.0×106C.8.966×107D.8.966×1083. 一组数据3,4,x ,6,7的平均数是5,则这组数据的中位数和方差分别是( )A.4和2B. 5和2C. 5和4D. 4和44. 已知:四边形ABCD 的对角线AC 、BD 相交于点O ,给出下列4个条件:①AB ∥CD ;②OA =OC ;③AB =CD ;④AD ∥BC 从中任取两个条件,能推出四边形ABCD 是平行四边形的概率是( )A.21 B.31 C.32 D.655. 方程x x 32=的根是( )A. x =3 B. x =0C. x 1=3,x 2=0D. x 1=0,x 2=36. 在平面直角坐标系xoy 中,已知A (4,2),B (2,-2),以原点O 为位似中心,按位似比1:2把△OAB 缩小,则点A 的对应点A ′的坐标为( )A. (3,1) B. (-2,-1) C. (3,1)或(-3,-1)D. (2,1)或(-2,-1)二、填空题(每小题3分,共27分) 7. 分解因式m 2- 2 (m-1) - 1为 .8. 已知:a 是5的小数部分,则代数式)25(+a 的值为.9. 一次函数)0(2<k kx y +=的图像上不重合的两点A (m 1,n 1),B (m 2,n 2),且))((2121n n m m P --=,则函数xp y =的图像分布在第 象限.10. 已知圆锥的侧面展开图是直径为8cm 的半圆,则这个圆锥的侧面积是cm 2.11. 如图,A 、B 、C 、D 四点在同一个圆上,AD 与BC 交于点O ,∠AOC =80°,∠B =50°,则∠C =.左视图 俯视图(第11题) (第12题) (第13题)12. 已知一个直角三角板PMN ,∠MPN =30°,MN =2,使它的一边PN 与正方形ABCD 的一边AD 重合(如图放置在正方形内)把三角板绕点P 旋转,使点M 落在直线BC 上一点F 处,则CF 的长为.13. 如图是由大小相同的小正方体组成的简单几何体的左视图和俯视图,那么组成这个几何体的小正方体的个数最少为个.A O B(第14题) (第15题)14. 如图,AB 是⊙O 的直径,∠CAB =45°,AB =BC =2,则图中阴影部分面积为 .15. 如图,矩形纸片ABCD 中,AB =5cm ,BC =10cm ,CD 上有一点E ,EC =2cm ,AD 上有一点P ,PA =6cm ,过点P 作PF ⊥AD 交BC 于点F ,将纸片折叠,使P 与E 重合,折痕交PF 于Q ,则线段PQ 的长是cm.三、解答题(本大题共8个小题,计75分) 16. (8分)已知:A =21-x ,B =62-x x ,当x 为何值时,A 与B 的值相等?CCE M D BC(N)17. (9分)如图,点C是l上任意一点,CA⊥CB且AC=BC,过点A作AM⊥l于点M,过点B作BN⊥l于N,则线段MN与AM、BN有什么数量关系,证明你的结论:18. (9分)在“全国亿万学生阳光体育运动”启动后,小华和小敏在课外活动后,报名参加了短跑训练,在近几次百米训练中,所测成绩如图,请根据图中所给信息解答以下问题:秒次数(1)请补齐下面的表格:(2)小华与小敏哪次的成绩最好?最好成绩分别是多少秒?(3)分别计算他们的平均数、极差和方差,如果你是教练请综合比较他们的成绩,分别给予怎样的建议?19.(9分)如图,在梯形ABCD 中,AD ∥BC, AB = CD,E 是AD 的中点,AD=4,BC=6,点P 是BC 边上的动点(不与点B 重合),PE 与BD 相交于点O,设PB 的长为x.(1) 当P 点在BC 边上运动时,求证:△BOP ∽△DOE.(2) 当x = ( )时,四边形ABPE 是平行四边形;当x = ( )时,四边形ABPE 是直角梯形;(3)当P 在BC 上运动的过程中,四边形ABPE 会不会是等腰梯形?试说明理由.20.(9分)某公司专销产品A,第一批产品A 上市40天恰好全部售完.该公司对第一批产品A 上市后的市场销售情况进行了跟踪调查,调查结果如图1和图2所示,其中图1中的折线表示是市场日销售量y (万件)与上市时间t (天)的关系,图2中的折线表示的是每件产品A 的日销售利润w (元)与上市时间t (天)的关系.(1)试写出第一批产品A 的市场日销售量y (万件)与上市时间t (天)的关系式; (2)第一批产品A 上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?C21.(10分)如图,双曲线xk y =与直线x =k 相交于点P ,过点P 作PA ⊥y 轴于A ,y 轴上的点A 1、A 2、A 3……An 的坐标是连续整数,分别过A 1、A 2……An 作x 轴的平行线于双曲线xk y =(x >0)及直线x =k 分别交于点B 1、B 2,……Bn ,C 1、C 2,……Cn.(1)求A 的坐标; (2)求1111B A B C 及2222B A B C 的值;(3)猜想AnBnCnBn 的值(直接写答案).22.(10分)如图,在梯形ABCD 中,AB ∥DC ,∠ABC =90°,AB =2,BC =4,tan ∠ADC =2.(1)求证:DC =BC ;(2)E 是梯形内一点,连接DE 、CE ,将△DCE 绕点C 顺时针旋转90°, 得△BCF ,连接EF.判断EF 与CE 的数量关系,并证明你的结论; (3)在(2)的条件下,当CE =2BE ,∠BEC =135°时,求cos ∠BFE 的值.FABCDE23. (11分)已知:抛物线c bx ax y ++=2(a ≠0)的顶点M 的坐标为(1,-2)与y 轴交于点C (0,23-),与x 轴交于A 、B 两点(A 在B 的左边).(1)求此抛物线的表达式;(2)点P 是线段OB 上一动点(不与点B 重合),点Q 在线段BM 上移动且∠MPQ =45°,设线段OP =x ,MQ =y 221,求y 1与x 的函数关系式,并写出自变量x 的取值范围;(3)①在(2)的条件下是否存在点P ,使△PQB 是PB 为底的等腰三角形,若存在试求点Q 的坐标,若不存在说明理由;②在(1)中抛物线的对称轴上是否存在点F ,使△BMF 是等腰三角形,若存在直接写出所有满足条件的点F 的坐标.x参考答案:一、选择题(每小题3分,共18分) 1. B 2.C 3.B 4.C 5.C 6.D 二、填空题(每题3分,共27分) 7. (m- 1)28. 1 9. 二、四10. 8π 11. 30° 12. 232-或232+13. 514.-1 15. 625三、解答题(本大题共8个小题,计75分) 16. 解:由A =B 得:6212-=-x x x ………………………2分方程两边同乘以)6)(2(2--x x 得:)2(62-=-x x x解得:x =3………………………6分当x =3时,方程左边=1231=- 右边=16332=-∴左边=右边∴当x =3时,A 与B 的值相等………………………8分17. 答案:MN =AM +BN ………………………1分证明:∵CA ⊥CB∴∠ACM +∠BCN = 900 又∵BN ⊥l 于N , ∴ ∠CBN + ∠BCN = 900∴ ∠ACM=∠CBN ………………………3分 又∵∠AMC =∠BNC=900,AC =BC ,∴ △AMC ≌△CNB ………………………6分 ∴AM =CN ,BN =CM , ………………………8分 ∴MN =AM +BN ………………………9分(2)小华第四次成绩最好是13.2秒;小敏第三次成绩最好是13.1秒;………………………2分(3)3.13)3.132.133.134.133.13(51=++++=小华x (秒) ………………3分3.13)3.135.131.134.132.13(51=++++=小敏x (秒) ………………4分小华极差为:13.4-13.2=0.2(秒) 小敏极差为:13.5-13.1=0.4(秒) ………………5分004.0)01.001.0(512=+=小华S02.0)04.004.001.001.0(512=+++=小敏S ………………8分他们成绩平均数相同,小敏成绩的极差和方差都比小华大,因此小华较稳定,小敏有潜力. ………………9分 19.(1) ∵AD ∥BC ,∴∠CBD = ∠ADB. ∵∠BOP=∠DOE ,∴△BOP ∽△DOE. ………………………………3分 (2)2;3 ………………………………5分 (3)当PB=4时,四边形ABPE 是等腰梯形. ………………6分证明:∵AD ∥BC 即DE ∥PC ,∴当PC=DE=2,即PB=BC-PC=4时,四边形PCDE 是平行四边形, ∴PE=CD.又∵AB=CD , ∴PE=AB.∵AE ∥PB 且AE 与PB 不相等,∴四边形ABPE 是等腰梯形. ………………………………9分20. 解:(1)①当0<t ≤30时,y =2t ,当30<t ≤40时,y =-6t +240 ………………2分 (2)设该公司的日销售利润为Z 万元Z =y ·w =2t ×(3t )=6t 2当t =20时,Z 最大=2400(万元) ………………4分 ②当20≤t ≤30时 Z =2t ×60=120t当t =30时,Z 最大=3600(万元) ………………6分 ③当30≤t ≤40时Z =(-6t +240)×60=-360t +14400 ∵-360<0∴当t =30时,Z 最大=-360×30+14400=3600(万元) …………8分 由∵2400<3600∴当上市第30天时,日销售利润最大,最大利润为3600万元. ………………9分 21. 解:(1)在)0(>x xk y =中当x =k 时,y =1,∵PA ⊥y 轴于A ,∴A 点坐标为(0,1).………………………………2分 (2)∵A 1、A 2…An 的坐标为连续整数, ∴A 1为(0,2),A 2(0,3). ∴B 1为(2,2k),C 1(k ,2),B 2(33,k),C 2(k ,3). ∴A 1B 1=2k ,B 1C 1=2k ,C 2B 2=32k ,A 2B 2=3k ,∴11111=B A B C ,22222=B A B C . …………………………6分(3)提示:An 为(0,n +1) ∴Bn 为(11++n n k ,),Cn (k ,n +1),∴AnBn =1+n k ,BnCn =k n n n k k 11+=+-,∴n n kkn nB A BC nn n n =++=11. …………………………10分∵AB ∥CD ,∠ABC =90°,∴四边形APCB 是矩形,………………………………1分 ∴PC =AB =2,AP =BC =4. 在Rt △ADP 中,tan ∠ADC =DPAP 即DPAP =2,∴DP =2,∴DC =DP +PC =4=BC.…………………………3分 (2)EF =2CE.………………………4分 证明如下:由△DCE 绕点C 顺时针旋转90°得△BCF , ∴CF =CE ,∠ECF =90°, ∴EF =CE CECF222=+. …………………………6分(3)由(2)得∠CEF =45°. ∵∠BEC =135°,∴∠BEF =90°. ………………………………7分 设BE =a ,则CE =2a ,由EF =2CE ,则EF =a 22 在Rt △BEF 中,由勾股定理得:BF =3a , ∴COS ∠BFE =322=BFEF . ……………………10分23. 解:(1)∵抛物线的顶点为M (1,﹣2)可设2)1(2--=x a y ,由点(0,23-)得:232-=-a ∴21=a .∴2)1(212--=x y 即23212--=x x y . ……………………3分(2)在23212--=x x y 中由y =0得023212=--x x解得:11-=x ,32=x∴A 为(-1,0),B 为(3,0) ……………………4分∵M (1,-2)∴∠MBO =45°,MB =22∴∠MPQ =45°∠MBO =∠MPQ又∵∠M =∠M∴△MPQ ∽△MPB ……………………5分 ∴MP MQ MBMP= ∴MQ MB MP ·2= 即12222·22)1(2y x =-+ ∴2)1(2121+-=x y (0≤x <3). …………………………7分(自变量取值范围1分)(3)①存在点Q ,使QP =QB ,即△PQB 是以PB 为底的等腰三角形,作PB 的垂直平分线交BM 于Q ,则QP =QB.∴∠QPB =∠MBP =45°又∵∠MPQ =45°,∴此时MP ⊥x 轴∴P 为(1,0),∴PB =2.∴Q 的坐标为(2,1). …………………………9分②F 1(1,0),F 2(1,222+-),F 3(1,222--),F 4(1,2) (11)。
2011河南中考数学试题及答案
2011河南中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正整数?A. -3B. 0C. 2D. -2答案:C2. 若a > 0且b < 0,下列哪个不等式是正确的?A. a + b > 0B. a - b < 0C. a + b < 0D. a - b > 0答案:D3. 圆的半径是5,那么它的周长是多少?A. 10πB. 15πC. 20πD. 25π答案:C4. 一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A5. 以下哪个代数式是二次的?A. x + 2B. x^2 + 3x + 1C. x^3 - 2D. x^2 - 1答案:B6. 一个数的平方根是4,那么这个数是多少?A. 16B. -16C. 8D. -8答案:A7. 一个数的绝对值是3,那么这个数可能是?A. 3B. -3C. 3或-3D. 0答案:C8. 一个长方体的长、宽、高分别是2、3和4,那么它的体积是多少?A. 24B. 12C. 6D. 8答案:A9. 一个数列的前三项是2、5、10,那么第四项是多少?A. 15B. 17C. 20D. 21答案:C10. 一个多项式x^3 - 6x^2 + 11x - 6可以分解为多少个一次因式的乘积?A. 1B. 2C. 3D. 4答案:C二、填空题(每题2分,共20分)11. 一个数的相反数是-5,那么这个数是________。
答案:512. 如果一个角的补角是120°,那么这个角是________。
答案:60°13. 一个分数的分子是7,分母是14,化简后是________。
答案:1/214. 一个三角形的内角和是________。
答案:180°15. 一个正方体的表面积是96,那么它的边长是________。
答案:416. 一个数的立方根是2,那么这个数是________。
2011河南中考数学试题及答案
2011河南中考数学试题及答案一、选择题(每题3分,共36分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 已知一个长方体的长、宽、高分别为10cm、8cm、6cm,其体积是多少立方厘米?A. 480B. 240C. 360D. 6003. 一个数的75%是60,那么这个数是多少?A. 80B. 72C. 60D. 1004. 一个数的1/3加上它的1/4等于2,这个数是多少?A. 3B. 4C. 6D. 125. 下列哪个选项不是质数?A. 2B. 3C. 4D. 56. 一个班级有48名学生,其中2/3是男生,那么女生有多少人?A. 16B. 24C. 32D. 407. 一个数的2倍加上3等于这个数的5倍减去5,这个数是多少?A. 5B. 6C. 7D. 88. 一个正方形的面积是64平方厘米,它的周长是多少厘米?A. 32B. 48C. 64D. 169. 一个数除以3的商是8,余数是1,这个数是多少?A. 25B. 26C. 27D. 2810. 一个数的3/4加上它的1/2等于9,这个数是多少?A. 6B. 4C. 8D. 1211. 一个长方体的长、宽、高分别是12cm、10cm、8cm,它的表面积是多少平方厘米?A. 832B. 760C. 680D. 60012. 一个数的2/5加上它的3/4等于21,这个数是多少?A. 20B. 30C. 40D. 50二、填空题(每题3分,共36分)13. 一个数的1/2与它的1/3的和是10,这个数是_________。
14. 一个数的3/4加上12等于这个数本身,这个数是_________。
15. 一个长方体的长是15cm,宽是10cm,高是8cm,它的体积是_________立方厘米。
16. 一个数的75%是24,那么这个数的40%是_________。
17. 一个班级有36名学生,其中3/4是女生,那么男生有_________人。
2011年河南省中考数学试卷标准答案与解析
2011年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.(3分)(2013?宁德)﹣5的绝对值是()5 A.B.﹣5 C.D.﹣考点:绝对值.分析:根据绝对值的性质求解.解答:解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.点评:此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2011?河南)如图,直线a,b被c所截,a∥b,若∠1=35°,则∠2的大小为()35°145°55°125°A.B.C.D.考点:平行线的性质.分析:由a∥b,根据两直线平行,同位角相等,即可求得∠3的度数,又由邻补角的定义,即可求得∠2的度数.解答:解:∵a∥b,∴∠3=∠1=35°,∴∠2=180°﹣∠3=180°﹣35°=145°.故选B.点评:此题考查了平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.3.(3分)(2011?河南)下列各式计算正确的是()236224A.B.C.D.a)=a (2a+4a=6a考点:二次根式的加减法;合并同类项;幂的乘方与积的乘方;零指数幂;负整数指数幂.分析:根据各选项进行分析得出计算正确的答案,注意利用幂的乘方的运算以及二次根式的加减,负整数指数幂等知识分别判断即可.解答: 1 0﹣解:A、(﹣1)﹣()=1﹣2=﹣1,故此选项错误;B、与不是同类项无法计算,故此选项错误;222C、2a+4a=6a,故此选项错误;236D、(a)=a,故此选项正确.故选D.点评:此题主要考查了二次根式的混合运算以及幂的乘方的运算和负整数指数幂等知识,此题难度不大注意计算要认真,保证计算的正确性.1河南)不等式的解集在数轴上表示正确的是(?)4.(3分)(2011 C..D.B A.考点:在数轴上表示不等式的解集;解一元一次不等式组.专题:计算题.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:,由①得,x>﹣2,由②得,x≤3,故此不等式组的解集为:﹣2<x≤3.在数轴上表示为:故选B.点评:本题考查的是在数轴上表示一元一次不等式组的解集,解答此类题目时一定要注意实心圆点与空心圆点的区别.5.(3分)(2011?河南)某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产22=2.7SS.则关于两种小麦推广种植的合=29.6,千克,量分别是=610=608千克,亩产量的方差分别是乙甲理决策是()A.甲的平均亩产量较高,应推广甲甲、乙的平均亩产量相差不多,均可推广B.甲的平均亩产量较高,且亩产量比较稳定,应推广甲C.D.甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙考方差;算术平均数专压轴题分析本题需先根据甲、乙亩产量的平均数得出甲、乙的平均亩产量相差不多,再根据甲、乙的平均亩产量的差即可得出乙的亩产量比较稳定,从而求出正确答案解答解:=61千克=60千克∴甲、乙的平均亩产量相差不多22 S=2.7.,∵亩产量的方差分别是S=29.6乙甲∴乙的亩产量比较稳定.D.故选本题主要考查了方差和平均数的有关知识,在解题时要能根据方差和平均数代表的含义得出正确答案是本点评:题的关键.°旋转180先将它绕原点?分)(2011河南)如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,O3.6(的坐标为(AA2到乙位置,再将它向下平移个单位长到丙位置,则小花顶点在丙位置中的对应点′)2)1,1 D.(3)C.(3,﹣1)1 A.(3,1)B.(,平移.-旋转;坐标与图形变化-考点:坐标与图形变化压轴题;网格型;数形结合.:专题上加下“),根据平移°后得到的坐标为(3,1A点坐标为(﹣3,﹣1),它绕原点O旋转180分析:根据图示可知.1)原则,向下平移2个单位得到的坐标为(3,﹣减”,1)A点坐标为(﹣3,﹣解答:解:根据图示可知横纵坐标互为相反数180°根据绕原点O旋转,1)∴旋转后得到的坐标为(3,”原则,根据平移“上加下减),个单位得到的坐标为(3,﹣1∴向下平移2 C.故选°特点以及平移的特点,比较综合,难度适中.点评:本题主要考查了根据图示判断坐标、图形旋转180 27分)二、填空题(每小题3分,共.的立方根为33分)(2011?河南)277.(立方根.考点:计算题.专题:的数即可.找到立方等于分析:273解答:3,=27解:∵,27的立方根是3∴.故答案为:3 考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.点评:BD的度数7,则AB中AB=AC平分AC,A=3分201河南)如图,△等腰三角形的性质考,并能求出其角度等于AC18可求得C平分AC,A=3,根据三角形内角分析AB=AC DBC求得所求角度.在△,,∠ACBA=36°解:∵AB=AC,CD平分∠解答:.DCB=36°°°)÷2=72,∠180∴∠B=(°﹣36 .BDC=72°∴∠.72°故答案为:BDC的角度.度,在△CDB中从而求得∠点评:本题考查了等腰三角形的性质,本题根据三角形内角和等于180轴对称的点在反比例函数yP关于b(a,)在反比例函数的图象上,若点P(.9(3分)2011?河南)已知点.的值为﹣2k的图象上,则轴对称的点的坐标.轴、yx考点:反比例函数图象上点的坐标特征;关于轴对称的点在反比例函数yPyPab 分析:本题需先根据已知条件,求出的值,再根据点关于轴对称并且点关于3K的值.的图象上即可求出点解答:,b)在反比例函数的图象上,a解:∵点P(∴ab=2,,b),∵点P关于y轴对称的点的坐标是(﹣a ab=﹣2.∴k=﹣故答案为:﹣2.本题主要考查了反比例函数图象上点的坐标的特征,在解题时要能灵活应用反比例函数图象上点的坐标的点评:特征求出k的值是本题的关键.、上异于点A为⊙O的直径,点E是且如图,CB切⊙O 于点B,CA交⊙O于点DAB(10.(3分)2011?河南).40°D的一点.若∠C=40°,则∠E的度数为切线的性质;圆周角定理.考点:常规题型;压轴题.专题:的度数,然后用同弧所对的圆周角ABD分析:连接BD,根据直径所对的圆周角是直角,利用切线的性质得到∠的度数.相等,求出∠E ,解答:解:如图:连接BD 是直径,∵AB ,∴∠ADB=90°O于点B,BC∵切∴ABC=9∵C=4BAC=5∴ABD=4∴ABD=4∴E故答案为40E的度数.点评:本题考查的是切线的性质,利用切线的性质和圆周角定理求出∠2的大小关系与y﹣3,y)是二次函数y=x2x+1的图象上两点,则yByA(.11(3分)2011?河南)点(2,)、(2112).”””(填<y“>、“<、“=y为21二次函数图象上点的坐标特征.考点:分析:y与yBA本题需先根据已知条件求出二次函数的图象的对称轴,再根据点、的横坐标的大小即可判断出21的大小关系.42解答:x=1,y=x2x+1﹣的图象的对称轴是解:∵二次函数x的增大而增大,在对称轴的右面y随2 2x+1的图象上两点,y)是二次函数y=x﹣y)、B(3,,∵点A(221 3,2<y.∴y<21故答案为:<.本题主要考查了二次函数图象上点的坐标特征,在解题时要能灵活应用二次函数的图象和性质以及点的坐点评:标特征是本题的关键.的两个小球,另一个装有标号分2河南)现有两个不透明的袋子,其中一个装有标号分别为1、2011.(3分)(?12个小球,两球标号恰好相同的概1、4的三个小球,小球除标号外其它均相同,从两个袋子中各随机摸出别为2、3.率是列表法与树状图法.考点:首先根据题意画树状图,然后由树状图求得所有等可能的结果与两球标号恰好相同的情况,即可根据概率分析:公式求解.解:画树状图得:解答:种等可能的结果,∴一共有6 种情况,两球标号恰好相同的有1.∴两球标号恰好相同的概率是此题考查了树状图法与列表法求概率.树状图法与列表法适合两步完成的事件,可以不重不漏的表示出所点评:所求情况数与总情况数之比.有等可能的情况.用到的知识点为:概率=PC.若CD,∠ADB=∠°,AD=4,连接BD,BD⊥?13.(3分)(2011河南)如图,在四边形ABCD中,∠A=90 .长的最小值为4是BC边上一动点,则DP角平分线的性质;垂线段最短考压轴题专的长度最小,则结合已知条件,利用三角形的内角和定D垂直B的时候分析根据垂线段最短,D的长的长可DCB,由角平分线性质即可AD=D,A推出ABDD的长度最小DB的时候解答解:根据垂线段最短,当,,又∠°A=90°∵BD⊥CD,即∠BDC=90 ,∠CBDC∴∠A=∠,又∠ADB= ,BD,⊥DCDAABD=∴∠∠CBD,又⊥BA AD=4,又,∴AD=DP .DP=4∴4故答案为:.本题主要考查了直线外一点到直线的距离垂线段最短、全等三角形的判定和性质、角平分线的性质,解题点评:5.垂直于BC的关键在于确定好DP .π2011?河南)如图是一个几何体的三视图,根据图示的数据可计算出该几何体的表面积为9014.(3分)(圆锥的计算;由三视图判断几何体.:考点压轴题.:专题根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积为,即可得出表面积.分析:,,底面圆的直径为10解答:解:∵如图所示可知,圆锥的高为12 ,∴圆锥的母线为:13 π,π×5×13=65∴根据圆锥的侧面积公式:πrl=2,πr=25π底面圆的面积为:.∴该几何体的表面积为90π.故答案为:90π此题主要考查了圆锥侧面积公式,根据已知得母线长,再利用圆锥侧面积公式求出是解决问题的关键.点评:是E,BC=2AD=2,点BC,∠ABC=90°,∠C=60°15.(3分)(2011?河南)如图,在直角梯形ABCD中,AD∥3+.G,则△BFG的周长为交BC边的中点,△DEF是等边三角形,DFAB于点直角梯形;等边三角形的性质;解直角三角形.考点:几何综合题;压轴题专是矩形,所以得到直角三角ABEB边的中点,推出四边ABC=9分析首先由已AB,ADD,由直角三角AG可求CE,所以能求CD,又DE是等边三角形,得BF的周长,得BF=A,从而求进而求F,再AG≌BGF解答:AD=BE=CE=,是BC边的中点,即∥BC,∠ABC=90°,点E解:已知AD 为矩形,∴四边形ABED ,,∠A=90°∴∠DEC=90°,又∠C=60°,×=3DE=CE?tan60°=∴是等边三角形,又∵△DEF ADG=30°∠EDF=60°,∠∴DF=DE=AB=3,∠AGD=,=×=1°∴AG=AD?tan30 ,﹣DG=1,∴DG=2FG=DF 1=2﹣,BG=3 ,FGB ∠,BG=DG=2AG=FG=1∴,∠AGD= BGF≌△,∴△AGD,BF=AD=∴,2+1+BFG ∴△的周长为=3+63+.故答案为:此题考查的知识点是直角梯形、等边三角形的性质及解直角三角形,解题的关键是先由已知推出直角三角点评:DEF是等边三角形,解直角三角形证明三角形全等求解.形CED,再通过△分)三、解答题(本大题共8个小题,满分75的范围内选取一个合适的整数作为22≤x≤(8分)(2011?河南)先化简,然后从﹣16.的值代入求值.x 分式的化简求值.考点:开放型.专题:的整数x分析:首先对分式进行化简、把除法转化为乘法、在进行混合运算,把分式转化为最简分式,然后确定的值不可使分式的分母为零.值,把合适的值代入求值,x 解答:=原式.= ,﹣2.≤2且为整数,若使分式有意义,x只能取0xx满足﹣2≤=).=(或:当x=﹣2时,原式∴当x=0时,原式的取值不可是分式的分x的合适的整数值,x点评:本题主要考查分式的化简、分式的性质,解题的关键在于找到母为零..ABDE交于点M延长CB到点E,使BE=AD,连接中,分)17.(9(2011?河南)如图,在梯形ABCDAD∥BC,;△AMD≌△BME(1)求证:的长.BE=2,求BC)若N是CD的中点,且MN=5,2(梯形;全等三角形的判定与性质考计算题;证明题专AD,即可证明AB,E,分析)找出全等的条件BE=AA=,即可求得.BE+BC),又BE=2((2)首先证得MN是三角形的中位线,根据MN= ,AD∥BC 解答:(1)证明:∵∠E,∴∠A=∠MBE,∠ADM= 中,BME在△AMD和△,ASA);BME∴△AMD≌△(BME)解:∵△AMD≌△,2(ND=NCMD=ME∴,,7,∴MN=EC ,EC=2MN=2×5=10∴2=8EB=10﹣.∴BC=EC﹣的长是8.答:BC 点评:本题考查了全等三角形的判断及三角形中位线定理的应用,熟记其性质、定理是证明、解答的基础.的驾车理念,某市一家报社设计了如右的调查问“开车不喝酒,喝酒不开车”分)(2011?河南)为更好地宣传18.(9 .在随机调查了某市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:卷(单选)根据以上信息解答下列问题:;1)补全条形统计图,并计算扇形统计图中m=20(B的司机大约有多少人?(2)该市支持选项的提醒标志,则支持该选项的司机请勿酒驾”的司机中随机选择100名,给他们发放“(3)若要从该市支持选项B 小李被选中的概率是多少?条形统计图;用样本估计总体;扇形统计图;概率公式.考点:压轴题专所占的百分比求出总人数,然后减去其的人数,和扇形分析)先算组里的人数,根据条形的人数组的人数,求支持选的人数的百分比可求出结果)全市所以司机的人的提醒标志,则可请勿酒)算出的支的人数,以及随机选10名,给他们发)根据出支持该选项的司机小李被选中的概率是多少345=9(人66236解解答=20m%=66239选项的频数分所m=2分的人数大约为)支持选50023%=115人)∵总人=50023%=115(9.∴小李被选中的概率是:=(分)8本题考查认知条形统计图和扇形统计图的能力,条形统计图告诉每组里面的具体数据,扇形统计图告诉部点评:分占整体的百分比以及概率等概念从而可求出解.河南)如图所示,中原福塔(河南广播电视塔)是世界第﹣高钢塔.小明所在的课外活动小组在?9分)(201119.(米;从地的距离DG为10α为45°,点D到AO处,测得地面上点距地面268米高的室外观光层的点DB的俯角并求出请你根据以上数据计算塔高AO,60测得塔尖A的仰角β为°.面上的点B沿BO方向走50米到达点C处,.结果精确到0.1米)米之间的误差.(参考数据:≈1.732,≈1.414计算结果与实际塔高388解直角三角形的应用-仰角俯角问题.考点:探究型.:专题的值,再是等腰直角三角形,进而可得出BF=45°可判断出△DBF,先作DF⊥BO于点F,根据DE∥BOα分析:中利用锐角三角函数的定义及特殊角的三角ACO的值,在FO与CORt△根据四边形DFOG是矩形可求出的长,进而可得出其误差.函数值可求出ADB 于解答解:=4DB=4DBF∴分RDB中BF=DF=26BC=550=21CF=BBC=26由题意知四边DFO是矩形FO=DG=1分CO=CF+FO=218+10=22=6AC中R分1.732=394.89°AO=Ctan6226.(米∴误差394.89388=6.89分即计算结果与实际高度的误差约6.米本题考查的是解直角三角形的应用﹣仰角俯角问题,涉及到的知识点为:等腰直角三角形的判定与性质点评矩形的性质、锐角三角函数的定义及特殊角的三角函数值,熟知以上知识是解答此题的关键.,(﹣)和,(的图象交于点A4mB与反比例函数x+2=k河南)如图,一次函数2011分)(20.9(?y811 y,与2﹣).轴交于点C9,k=16;(1)k= 21(2)根据函数图象可知,当y>y时,x的取值范围是﹣8<x<0或x>4;21(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP与线段AD交于点E,当S:S=3:1时,求点P的坐标.ODE△ODAC四边形考点:反比例函数综合题.专题:代数几何综合题;数形结合.分析:(1)本题须把B点的坐标分别代入一次函数y=kx+2与反比例函数的解析式即可求出K、k的值.1112(2)本题须先求出一次函数y=kx+2与反比例函数的图象的交点坐标,即可求出当y>y时,x2111的取值范围.(3)本题须先求出四边形OCAD的面积,从而求出DE的长,然后得出点E的坐标,最后求出直线OP的解析式即可得出点P的坐标.解答:解:(1)∵一次函数y=kx+2与反比例函数的图象交于点A(4,m)和B(﹣8,﹣2),11(﹣2)=16,)∴K=(﹣8×2+2 8k﹣2=﹣1=∴k1=)∵一次函x+与反比例函)(,的图象交于1时,x的取值范围是y∴当y>21或<﹣8x<0x>4;.)由(1)知,3(∴m=4,点C的坐标是(0,2)点A的坐标是(4,4).∴CO=2,AD=OD=4.∴.∵S:S=3:1,∴S=S=×12=4,ODEODE△△ODACODAC梯形梯形即OD?DE=4,∴DE=2.∴点E的坐标为(4,2).又点E在直线OP上,10.∴直线OP的解析式是的坐标为(的图象在第一象限内的交点与P ).∴直线OP 4>8<x<0或x故答案为:,16,﹣本题主要考查了反比例函数的综合问题,在解题时要综合应用反比例函数的图象和性质以及求一次函数与点评:反比例函数交点坐标是本题的关键.”活动,收费标准如下:河南)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游分)21.(10(2011?200>≤200 m100 人数m 0<m≤100<m75 85 90 人)收费标准(元/人,乙校报名参加的甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100 元,若两校联合组团只需花费18 000元.学生人数少于100人.经核算,若两校分别组团共需花费20 800 )两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(1 2)两所学校报名参加旅游的学生各有多少人?(二元一次方程组的应用.考点:压轴题;方程思想.专题:a200和100<≤200,得出结论;1分析:()由已知分两种情况讨论,即a>100<x≤200分别设未知数列方程组求解,讨论得出答案.x(2)根据两种情况的费用,即>200和人,理由为:)这两所学校报名参加旅游的学生人数之和超过(1200解答:解设两校人数之和75=2420,a=18000,不合题意,,则a≤200a=18000÷85=211>200<若100 则这两所学校报名参加旅游的学生人数之和等于240人,超过200人.人,则y)设甲学校报名参加旅游的学生有x人,乙学校报名参加旅游的学生有2(200时,得≤当①100<x(解得6分)时,得②当>200x解得不合题意,舍去.80160答:甲学校报名参加旅游的学生有人,乙学校报名参加旅游的学生有人.点评:此题考查的是二元一次方程组的应用,关键是把不符合题意的结论舍去.11BC=5,∠C=30°.点D从点C出发沿CA2011?河南)如图,在Rt△ABC中,∠B=90°,方向以22.(10分)(每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(3)当t为何值时,△DEF为直角三角形?请说明理由.考点:菱形的性质;含30度角的直角三角形;矩形的性质;解直角三角形.专题:几何图形问题;动点型.分析:(1)在△DFC中,∠DFC=90°,∠C=30°,由已知条件求证;(2)求得四边形AEFD为平行四边形,若使?AEFD为菱形则需要满足的条件及求得;(3)①∠EDF=90°时,四边形EBFD为矩形.在直角三角形AED中求得AD=2AE即求得.②∠DEF=90°时,由(2)知EF∥AD,则得∠ADE=∠DEF=90°,求得AD=AE?cos60°列式得.③∠EFD=90°时,此种情况不存在.解答:(1)证明:在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=t.又∵AE=t,∴AE=DF.(2)解:能.理由如下:∵AB⊥BC,DF⊥BC,∴AE∥DF.AE=D∴四边AEF为平行四边形∵AB=BC?tan30°=5=5,∴AC=2AB=10.∴AD=AC﹣DC=10﹣2t.若使?AEFD为菱形,则需AE=AD,即t=10﹣2t,t=.时,四边形AEFD为菱形.即当t=(3)解:①∠EDF=90°时,四边形EBFD为矩形.在Rt△AED中,∠ADE=∠C=30°,∴AD=2AE.即10﹣2t=2t,t=.②∠DEF=90°时,由(2)四边形AEFD为平行四边形知EF∥AD,∴∠ADE=∠DEF=90°.∵∠A=90°﹣∠C=60°,12.cos60°∴AD=AE?.2t=﹣t,t=4即10 时,此种情况不存在.③∠EFD=90°秒时,△DEF为直角三角形.综上所述,当t=秒或4难以及菱形与矩形之间的联系.考查了菱形是平行四边形,考查了菱形的判定定理,点评:本题考查了菱形的性质,度适宜,计算繁琐.两、B(2011?河南)如图,在平面直角坐标系中,直线与抛物线交于A23.(11分)8.A在x轴上,点B的横坐标为﹣点,点1)求该抛物线的解析式;(AB,交直线,过点P作x轴的垂线,垂足为C2()点P是直线AB上方的抛物线上一动点(不与点A、B重合).PE⊥AB于点E于点D,作关于x的函数关系式,并求出l的最大值;的周长为设△PDEl,点P的横坐标为x,求l①FAPFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点PA②连接,以PA为边作图示一侧的正方形y轴上时,直接写出对应的点P的坐标.或G恰好落在二次函数综合题考代数几何综合题;压轴题;数形结合;待定系数法专即可分析)利用待定系数法求,再求PD=求出二函数最值即可PEAO∽,得DPPD=根P,解得,即,轴上时,由落在y△ACP≌△GOA得PC=AO=2当点②GP点坐标.x+﹣﹣落在所以得出P点坐标,当点Fy轴上时,x=,解得x=,可得解答:﹣时,.当y=0,x=2)对于(解:1x= .﹣8y=,当∴A点坐标为(2 .,0),B点坐标为13两点,经过A、B由抛物线得.解得∴.轴交于点)①设直线与yM,(2.时,y=.∴OM=当x=0.∴AM=.,∵点A的坐标为(20),∴OA=2 5.4∵OM:OA:AM=3::.∽△由题意得,∠PDE=∠OMA,∠AOM=∠PED=90°,∴△AOMPED ∴DE:PE:PD=3:4:5.∵点上方的抛物线上一动点,P是直线AB 轴,PD⊥x∵两点横坐标相同,∴PD)x+PD=y∴﹣y=﹣﹣﹣(x﹣DP2 x+4x=﹣,﹣∴..∴﹣∴x=3时,l=15.最大PC=AO=2,得△y ②当点G落在轴上时,如图2,由ACP≌△GOA,即,解得所以,SPSPNPN作⊥y轴于点,过点作⊥x轴于点,P3如图,过点,≌△△由PNFPSA P,可得点横纵坐标相等,PN=PS F故得当点落在轴上时,y x=,解得x+﹣x=﹣,(舍去)可得.,14综上所述:满足题意的点P有三个,分别是.此题主要考查了二次函数的综合应用以及相似三角形的判定以及待定系数法求二次函数解析式,利用数形点评:结合进行分析以及灵活应用相似三角形的判定是解决问题的关键.15。
2011年河南中考数学试题及答案
(第2题)21c ba 第8题DCBA一、选择题:(每小题3分,共18分)1. -5的绝对值是( )A .5B . -5C . 15D . 15- 2. 如图,直线a ,b 被直线c 所截,a ∥b ,若∠1=35°,则∠2的大小为( ) A .35° B .145° C .55°D .125°3. 下列各式计算正确的是( )A .11(1)()32---=-— B .235+=C .224246a a a +=D .236()a a =4. 不等式组 的解集在数轴上表示正确的是( )A .-203B .30-2-203C .D.-2035. 某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是610x =甲千克,608x =乙千克,亩产量的方差分别是229.6S =甲,2 2.7S =乙,则关于两种小麦推广种植的合理决策是( ) A . 甲的平均亩产量较高,应推广甲 B . 甲、乙的平均亩产量相差不多,均可推广 C . 甲的平均亩产量较高,且亩产量比较稳定,应推广甲D . 甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙6. 如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O 旋转180°到乙位置,再将它向下平移2个单位长到丙位置,则小花顶点A 在丙位置中的对应点A '的坐标为( ) A .(3,1) B .(1,3) C .(3,-1) D .(1,1)二、填空题:(每小题3分,共27分)7. 27的立方根是_______.8. 如图,在△ABC 中,AB =AC ,CD 平分∠ACB ,∠A =36°,则∠BDC 的度数为________.2011年河南中考数学试题(满分120分,考试时间100分钟)20x +>12x ≤-(第14题)俯视图主视图左视图10129. 已知点P (a b ,)在反比例函数2y x=的图象上,若点P 关于y 轴对称的点在反比例函数ky x=的图象上,则k 的值为_______.10. 如图,CB 切⊙O 于点B ,CA 交⊙O 于点D ,且AB 为⊙O 的直径,点E 是弧ADB 上异于点A 、D 的一点.若∠C =40°,则∠E 的度数为________.11. 点A (2,1y )、B (3,2y )是二次函数221y x x =-+的图象上两点,则1y 与2y 的大小关系为1y ____2y (填“>”、“<”或“=”). 12. 现有两个不透明的袋子,其中一个装有标号分别为1、2的两个小球,另一个装有标号分别为2、3、4的三个小球,小球除标号外其它均相同.从两个袋子中各随机摸出1个小球,两球标号恰好相同的概率是_________.13. 如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为__________.14. 如图,是一个几何体的三视图,根据图示的数据可计算出该几何体的表面积为________.15. 如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,∠C =60°,BC =2AD =23,点E 是BC 边的中点,△DEF 是等边三角形,DF 交AB 于点G ,则△BFG 的周长为__________.三、解答题:(本大题8个题,共75分)16. 先化简2144(1)11x x x x -+-÷--,然后从2-≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值.(第13题)CBPDAA DBCE MN17. 如图,在梯形ABCD 中,AD ∥BC ,延长CB 到点E ,使BE =AD ,连接DE 交AB 于点M . (1)求证:△AMD ≌△BME ;(2)若N 是CD 的中点,且MN =5,BE =2,求BC 的长.18. 为了更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如下的调查问卷(单选).克服酒驾——你认为哪一种方更好? A. 司机酒驾,乘客有责,让乘客帮助监督 B. 在汽车上张贴“请勿酒驾”的提醒标志 C. 签订“永不酒驾”保证书 D. 希望交警加大检查力度E. 查出酒驾,追究就餐饭店的连带责任 在随机调查了本市全部5000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m =_________.(2)该市支持选项B 的司机大约有多少人? (3)若从该市支持选项B 的司机中随机选择100名,给他们发放“请勿酒驾”提醒标志,则支持该选项的司机小李被选中的概率是多少?19. 如图所示,中原福塔(河南广播电视塔)是世界第一高钢塔.小明所在的课外活动小组在距地面268米高的室外观光层的点D 处,测得地面上点B 的俯角 为45°,点D 到AO的距离DG 为10米;从地面上的点B 沿BO 方向走50米到达点C 处,测得塔尖A 的仰角β为60°.请你根据以上数据计算塔高AO ,并求出计算结果与实际塔高388米之间的误差.(参考数据:3 1.732,2 1.414≈≈.结果精确到0.1米).20. 如图,一次函数112y k x =+与反比例函数22ky x =的图象交于点A (4,m )和点B (-8,-2),与y 轴交于点C .(1)1k =__________,2k =________;(2)根据函数图象可知,当1y >2y 时,x 的取值范围是____________;(3)过点A 作AD ⊥x 轴于点D ,点P 是反比例函数在第一象限的图象上一点,设直线OP 与线段AD 交于点E ,当ODE ODAC S S △四边形:=3:1,求点P 的坐标.21. 某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下: 人数m 0<m ≤100 100<m ≤200m >200 收费标准(元/人)908575甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20800元,若两校联合组团只需花费18000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人.(第22题)CFBDEAxyA BO22. 如图,在Rt △ABC 中,∠B =90°,BC =53,∠C =30°.点D 从点C 出发沿CA 方向以每秒2个单位长的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以每秒1个单位长的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是t 秒(t >0).过点D 作DF ⊥BC 于点F ,连接 DE 、EF . (1)求证:AE =DF ;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,说明理由; (3)当t 为何值时,△DEF 为直角三角形?请说明理由.23. (11分)如图,在平面直角坐标系中,直线3342y x =-与抛物线214y x bx c =-++交于A 、B 两点,点A 在x 轴上,点B 的横坐标为-8. (1)求该抛物线的解析式;(2)点P 是直线AB 上方的抛物线上一动点(不与点A 、B 重合),过点P 作x 轴的垂线,垂足为C ,交直线AB 于点D ,作PE ⊥AB 于点E . ①设△PDE 的周长为l ,点P 的横坐标为x ,求l 关于x 的函数关系式,并求出l 的最大值;②连接P A ,以P A 为边作图示一侧的正方形APFG .随着点P 的运动,正方形的大小、位置也随之改变.当顶点F 或G 恰好落在y 轴上时,直接写出对应的点P 的坐标.xyECDABO PF G(备用图)河南卷参考答案一、选择题123A B D456B D C二、填空题7. 3 8. 729. -2 10. 40 11.<12. 1613.414.90π15.3+3三、解答题16. 当x=0时,原式=12-(或:当x=-2时,原式=14).17.(1)证明略(2)BC=8 18.(1)图略,20(2)1150(3)2 2319.6.9米.20.(1)12,16;(2)-8<x<0或x>4;(3)P的坐标为(42,22)21.(1)这两所学校报名参加旅游的学生人数之和等于240人,超过200人(2)甲学校报名参加旅游的学生有160人,乙学校报名参加旅游的学生有80人22.(1)证明略(2)能,当103t=时,四边形AEFD为菱形(3)当52t=或4时,△DEF为直角三角形.23.(1)2135442y x x=--+(2)①当3x=-时,l最大=15②满足题意的点P有三个,分别是12317317(,2),(,2),22P P-+--3789789(,).22P-+-+。
2011年河南省中考数学试卷标准答案与解析
2011年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.(3分)(2013?宁德)﹣5的绝对值是()5 A.B.﹣5 C.D.﹣考点:绝对值.分析:根据绝对值的性质求解.解答:解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.点评:此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2011?河南)如图,直线a,b被c所截,a∥b,若∠1=35°,则∠2的大小为()35°145°55°125°A.B.C.D.考点:平行线的性质.分析:由a∥b,根据两直线平行,同位角相等,即可求得∠3的度数,又由邻补角的定义,即可求得∠2的度数.解答:解:∵a∥b,∴∠3=∠1=35°,∴∠2=180°﹣∠3=180°﹣35°=145°.故选B.点评:此题考查了平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.3.(3分)(2011?河南)下列各式计算正确的是()236224A.B.C.D.a)=a (2a+4a=6a考点:二次根式的加减法;合并同类项;幂的乘方与积的乘方;零指数幂;负整数指数幂.分析:根据各选项进行分析得出计算正确的答案,注意利用幂的乘方的运算以及二次根式的加减,负整数指数幂等知识分别判断即可.解答: 1 0﹣解:A、(﹣1)﹣()=1﹣2=﹣1,故此选项错误;B、与不是同类项无法计算,故此选项错误;222C、2a+4a=6a,故此选项错误;236D、(a)=a,故此选项正确.故选D.点评:此题主要考查了二次根式的混合运算以及幂的乘方的运算和负整数指数幂等知识,此题难度不大注意计算要认真,保证计算的正确性.1河南)不等式的解集在数轴上表示正确的是(?)4.(3分)(2011 C..D.B A.考点:在数轴上表示不等式的解集;解一元一次不等式组.专题:计算题.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:,由①得,x>﹣2,由②得,x≤3,故此不等式组的解集为:﹣2<x≤3.在数轴上表示为:故选B.点评:本题考查的是在数轴上表示一元一次不等式组的解集,解答此类题目时一定要注意实心圆点与空心圆点的区别.5.(3分)(2011?河南)某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产22=2.7SS.则关于两种小麦推广种植的合=29.6,千克,量分别是=610=608千克,亩产量的方差分别是乙甲理决策是()A.甲的平均亩产量较高,应推广甲甲、乙的平均亩产量相差不多,均可推广B.甲的平均亩产量较高,且亩产量比较稳定,应推广甲C.D.甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙考方差;算术平均数专压轴题分析本题需先根据甲、乙亩产量的平均数得出甲、乙的平均亩产量相差不多,再根据甲、乙的平均亩产量的差即可得出乙的亩产量比较稳定,从而求出正确答案解答解:=61千克=60千克∴甲、乙的平均亩产量相差不多22 S=2.7.,∵亩产量的方差分别是S=29.6乙甲∴乙的亩产量比较稳定.D.故选本题主要考查了方差和平均数的有关知识,在解题时要能根据方差和平均数代表的含义得出正确答案是本点评:题的关键.°旋转180先将它绕原点?分)(2011河南)如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,O3.6(的坐标为(AA2到乙位置,再将它向下平移个单位长到丙位置,则小花顶点在丙位置中的对应点′)2)1,1 D.(3)C.(3,﹣1)1 A.(3,1)B.(,平移.-旋转;坐标与图形变化-考点:坐标与图形变化压轴题;网格型;数形结合.:专题上加下“),根据平移°后得到的坐标为(3,1A点坐标为(﹣3,﹣1),它绕原点O旋转180分析:根据图示可知.1)原则,向下平移2个单位得到的坐标为(3,﹣减”,1)A点坐标为(﹣3,﹣解答:解:根据图示可知横纵坐标互为相反数180°根据绕原点O旋转,1)∴旋转后得到的坐标为(3,”原则,根据平移“上加下减),个单位得到的坐标为(3,﹣1∴向下平移2 C.故选°特点以及平移的特点,比较综合,难度适中.点评:本题主要考查了根据图示判断坐标、图形旋转180 27分)二、填空题(每小题3分,共.的立方根为33分)(2011?河南)277.(立方根.考点:计算题.专题:的数即可.找到立方等于分析:273解答:3,=27解:∵,27的立方根是3∴.故答案为:3 考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.点评:BD的度数7,则AB中AB=AC平分AC,A=3分201河南)如图,△等腰三角形的性质考,并能求出其角度等于AC18可求得C平分AC,A=3,根据三角形内角分析AB=AC DBC求得所求角度.在△,,∠ACBA=36°解:∵AB=AC,CD平分∠解答:.DCB=36°°°)÷2=72,∠180∴∠B=(°﹣36 .BDC=72°∴∠.72°故答案为:BDC的角度.度,在△CDB中从而求得∠点评:本题考查了等腰三角形的性质,本题根据三角形内角和等于180轴对称的点在反比例函数yP关于b(a,)在反比例函数的图象上,若点P(.9(3分)2011?河南)已知点.的值为﹣2k的图象上,则轴对称的点的坐标.轴、yx考点:反比例函数图象上点的坐标特征;关于轴对称的点在反比例函数yPyPab 分析:本题需先根据已知条件,求出的值,再根据点关于轴对称并且点关于3K的值.的图象上即可求出点解答:,b)在反比例函数的图象上,a解:∵点P(∴ab=2,,b),∵点P关于y轴对称的点的坐标是(﹣a ab=﹣2.∴k=﹣故答案为:﹣2.本题主要考查了反比例函数图象上点的坐标的特征,在解题时要能灵活应用反比例函数图象上点的坐标的点评:特征求出k的值是本题的关键.、上异于点A为⊙O的直径,点E是且如图,CB切⊙O 于点B,CA交⊙O于点DAB(10.(3分)2011?河南).40°D的一点.若∠C=40°,则∠E的度数为切线的性质;圆周角定理.考点:常规题型;压轴题.专题:的度数,然后用同弧所对的圆周角ABD分析:连接BD,根据直径所对的圆周角是直角,利用切线的性质得到∠的度数.相等,求出∠E ,解答:解:如图:连接BD 是直径,∵AB ,∴∠ADB=90°O于点B,BC∵切∴ABC=9∵C=4BAC=5∴ABD=4∴ABD=4∴E故答案为40E的度数.点评:本题考查的是切线的性质,利用切线的性质和圆周角定理求出∠2的大小关系与y﹣3,y)是二次函数y=x2x+1的图象上两点,则yByA(.11(3分)2011?河南)点(2,)、(2112).”””(填<y“>、“<、“=y为21二次函数图象上点的坐标特征.考点:分析:y与yBA本题需先根据已知条件求出二次函数的图象的对称轴,再根据点、的横坐标的大小即可判断出21的大小关系.42解答:x=1,y=x2x+1﹣的图象的对称轴是解:∵二次函数x的增大而增大,在对称轴的右面y随2 2x+1的图象上两点,y)是二次函数y=x﹣y)、B(3,,∵点A(221 3,2<y.∴y<21故答案为:<.本题主要考查了二次函数图象上点的坐标特征,在解题时要能灵活应用二次函数的图象和性质以及点的坐点评:标特征是本题的关键.的两个小球,另一个装有标号分2河南)现有两个不透明的袋子,其中一个装有标号分别为1、2011.(3分)(?12个小球,两球标号恰好相同的概1、4的三个小球,小球除标号外其它均相同,从两个袋子中各随机摸出别为2、3.率是列表法与树状图法.考点:首先根据题意画树状图,然后由树状图求得所有等可能的结果与两球标号恰好相同的情况,即可根据概率分析:公式求解.解:画树状图得:解答:种等可能的结果,∴一共有6 种情况,两球标号恰好相同的有1.∴两球标号恰好相同的概率是此题考查了树状图法与列表法求概率.树状图法与列表法适合两步完成的事件,可以不重不漏的表示出所点评:所求情况数与总情况数之比.有等可能的情况.用到的知识点为:概率=PC.若CD,∠ADB=∠°,AD=4,连接BD,BD⊥?13.(3分)(2011河南)如图,在四边形ABCD中,∠A=90 .长的最小值为4是BC边上一动点,则DP角平分线的性质;垂线段最短考压轴题专的长度最小,则结合已知条件,利用三角形的内角和定D垂直B的时候分析根据垂线段最短,D的长的长可DCB,由角平分线性质即可AD=D,A推出ABDD的长度最小DB的时候解答解:根据垂线段最短,当,,又∠°A=90°∵BD⊥CD,即∠BDC=90 ,∠CBDC∴∠A=∠,又∠ADB= ,BD,⊥DCDAABD=∴∠∠CBD,又⊥BA AD=4,又,∴AD=DP .DP=4∴4故答案为:.本题主要考查了直线外一点到直线的距离垂线段最短、全等三角形的判定和性质、角平分线的性质,解题点评:5.垂直于BC的关键在于确定好DP .π2011?河南)如图是一个几何体的三视图,根据图示的数据可计算出该几何体的表面积为9014.(3分)(圆锥的计算;由三视图判断几何体.:考点压轴题.:专题根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积为,即可得出表面积.分析:,,底面圆的直径为10解答:解:∵如图所示可知,圆锥的高为12 ,∴圆锥的母线为:13 π,π×5×13=65∴根据圆锥的侧面积公式:πrl=2,πr=25π底面圆的面积为:.∴该几何体的表面积为90π.故答案为:90π此题主要考查了圆锥侧面积公式,根据已知得母线长,再利用圆锥侧面积公式求出是解决问题的关键.点评:是E,BC=2AD=2,点BC,∠ABC=90°,∠C=60°15.(3分)(2011?河南)如图,在直角梯形ABCD中,AD∥3+.G,则△BFG的周长为交BC边的中点,△DEF是等边三角形,DFAB于点直角梯形;等边三角形的性质;解直角三角形.考点:几何综合题;压轴题专是矩形,所以得到直角三角ABEB边的中点,推出四边ABC=9分析首先由已AB,ADD,由直角三角AG可求CE,所以能求CD,又DE是等边三角形,得BF的周长,得BF=A,从而求进而求F,再AG≌BGF解答:AD=BE=CE=,是BC边的中点,即∥BC,∠ABC=90°,点E解:已知AD 为矩形,∴四边形ABED ,,∠A=90°∴∠DEC=90°,又∠C=60°,×=3DE=CE?tan60°=∴是等边三角形,又∵△DEF ADG=30°∠EDF=60°,∠∴DF=DE=AB=3,∠AGD=,=×=1°∴AG=AD?tan30 ,﹣DG=1,∴DG=2FG=DF 1=2﹣,BG=3 ,FGB ∠,BG=DG=2AG=FG=1∴,∠AGD= BGF≌△,∴△AGD,BF=AD=∴,2+1+BFG ∴△的周长为=3+63+.故答案为:此题考查的知识点是直角梯形、等边三角形的性质及解直角三角形,解题的关键是先由已知推出直角三角点评:DEF是等边三角形,解直角三角形证明三角形全等求解.形CED,再通过△分)三、解答题(本大题共8个小题,满分75的范围内选取一个合适的整数作为22≤x≤(8分)(2011?河南)先化简,然后从﹣16.的值代入求值.x 分式的化简求值.考点:开放型.专题:的整数x分析:首先对分式进行化简、把除法转化为乘法、在进行混合运算,把分式转化为最简分式,然后确定的值不可使分式的分母为零.值,把合适的值代入求值,x 解答:=原式.= ,﹣2.≤2且为整数,若使分式有意义,x只能取0xx满足﹣2≤=).=(或:当x=﹣2时,原式∴当x=0时,原式的取值不可是分式的分x的合适的整数值,x点评:本题主要考查分式的化简、分式的性质,解题的关键在于找到母为零..ABDE交于点M延长CB到点E,使BE=AD,连接中,分)17.(9(2011?河南)如图,在梯形ABCDAD∥BC,;△AMD≌△BME(1)求证:的长.BE=2,求BC)若N是CD的中点,且MN=5,2(梯形;全等三角形的判定与性质考计算题;证明题专AD,即可证明AB,E,分析)找出全等的条件BE=AA=,即可求得.BE+BC),又BE=2((2)首先证得MN是三角形的中位线,根据MN= ,AD∥BC 解答:(1)证明:∵∠E,∴∠A=∠MBE,∠ADM= 中,BME在△AMD和△,ASA);BME∴△AMD≌△(BME)解:∵△AMD≌△,2(ND=NCMD=ME∴,,7,∴MN=EC ,EC=2MN=2×5=10∴2=8EB=10﹣.∴BC=EC﹣的长是8.答:BC 点评:本题考查了全等三角形的判断及三角形中位线定理的应用,熟记其性质、定理是证明、解答的基础.的驾车理念,某市一家报社设计了如右的调查问“开车不喝酒,喝酒不开车”分)(2011?河南)为更好地宣传18.(9 .在随机调查了某市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:卷(单选)根据以上信息解答下列问题:;1)补全条形统计图,并计算扇形统计图中m=20(B的司机大约有多少人?(2)该市支持选项的提醒标志,则支持该选项的司机请勿酒驾”的司机中随机选择100名,给他们发放“(3)若要从该市支持选项B 小李被选中的概率是多少?条形统计图;用样本估计总体;扇形统计图;概率公式.考点:压轴题专所占的百分比求出总人数,然后减去其的人数,和扇形分析)先算组里的人数,根据条形的人数组的人数,求支持选的人数的百分比可求出结果)全市所以司机的人的提醒标志,则可请勿酒)算出的支的人数,以及随机选10名,给他们发)根据出支持该选项的司机小李被选中的概率是多少345=9(人66236解解答=20m%=66239选项的频数分所m=2分的人数大约为)支持选50023%=115人)∵总人=50023%=115(9.∴小李被选中的概率是:=(分)8本题考查认知条形统计图和扇形统计图的能力,条形统计图告诉每组里面的具体数据,扇形统计图告诉部点评:分占整体的百分比以及概率等概念从而可求出解.河南)如图所示,中原福塔(河南广播电视塔)是世界第﹣高钢塔.小明所在的课外活动小组在?9分)(201119.(米;从地的距离DG为10α为45°,点D到AO处,测得地面上点距地面268米高的室外观光层的点DB的俯角并求出请你根据以上数据计算塔高AO,60测得塔尖A的仰角β为°.面上的点B沿BO方向走50米到达点C处,.结果精确到0.1米)米之间的误差.(参考数据:≈1.732,≈1.414计算结果与实际塔高388解直角三角形的应用-仰角俯角问题.考点:探究型.:专题的值,再是等腰直角三角形,进而可得出BF=45°可判断出△DBF,先作DF⊥BO于点F,根据DE∥BOα分析:中利用锐角三角函数的定义及特殊角的三角ACO的值,在FO与CORt△根据四边形DFOG是矩形可求出的长,进而可得出其误差.函数值可求出ADB 于解答解:=4DB=4DBF∴分RDB中BF=DF=26BC=550=21CF=BBC=26由题意知四边DFO是矩形FO=DG=1分CO=CF+FO=218+10=22=6AC中R分1.732=394.89°AO=Ctan6226.(米∴误差394.89388=6.89分即计算结果与实际高度的误差约6.米本题考查的是解直角三角形的应用﹣仰角俯角问题,涉及到的知识点为:等腰直角三角形的判定与性质点评矩形的性质、锐角三角函数的定义及特殊角的三角函数值,熟知以上知识是解答此题的关键.,(﹣)和,(的图象交于点A4mB与反比例函数x+2=k河南)如图,一次函数2011分)(20.9(?y811 y,与2﹣).轴交于点C9,k=16;(1)k= 21(2)根据函数图象可知,当y>y时,x的取值范围是﹣8<x<0或x>4;21(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP与线段AD交于点E,当S:S=3:1时,求点P的坐标.ODE△ODAC四边形考点:反比例函数综合题.专题:代数几何综合题;数形结合.分析:(1)本题须把B点的坐标分别代入一次函数y=kx+2与反比例函数的解析式即可求出K、k的值.1112(2)本题须先求出一次函数y=kx+2与反比例函数的图象的交点坐标,即可求出当y>y时,x2111的取值范围.(3)本题须先求出四边形OCAD的面积,从而求出DE的长,然后得出点E的坐标,最后求出直线OP的解析式即可得出点P的坐标.解答:解:(1)∵一次函数y=kx+2与反比例函数的图象交于点A(4,m)和B(﹣8,﹣2),11(﹣2)=16,)∴K=(﹣8×2+2 8k﹣2=﹣1=∴k1=)∵一次函x+与反比例函)(,的图象交于1时,x的取值范围是y∴当y>21或<﹣8x<0x>4;.)由(1)知,3(∴m=4,点C的坐标是(0,2)点A的坐标是(4,4).∴CO=2,AD=OD=4.∴.∵S:S=3:1,∴S=S=×12=4,ODEODE△△ODACODAC梯形梯形即OD?DE=4,∴DE=2.∴点E的坐标为(4,2).又点E在直线OP上,10.∴直线OP的解析式是的坐标为(的图象在第一象限内的交点与P ).∴直线OP 4>8<x<0或x故答案为:,16,﹣本题主要考查了反比例函数的综合问题,在解题时要综合应用反比例函数的图象和性质以及求一次函数与点评:反比例函数交点坐标是本题的关键.”活动,收费标准如下:河南)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游分)21.(10(2011?200>≤200 m100 人数m 0<m≤100<m75 85 90 人)收费标准(元/人,乙校报名参加的甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100 元,若两校联合组团只需花费18 000元.学生人数少于100人.经核算,若两校分别组团共需花费20 800 )两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(1 2)两所学校报名参加旅游的学生各有多少人?(二元一次方程组的应用.考点:压轴题;方程思想.专题:a200和100<≤200,得出结论;1分析:()由已知分两种情况讨论,即a>100<x≤200分别设未知数列方程组求解,讨论得出答案.x(2)根据两种情况的费用,即>200和人,理由为:)这两所学校报名参加旅游的学生人数之和超过(1200解答:解设两校人数之和75=2420,a=18000,不合题意,,则a≤200a=18000÷85=211>200<若100 则这两所学校报名参加旅游的学生人数之和等于240人,超过200人.人,则y)设甲学校报名参加旅游的学生有x人,乙学校报名参加旅游的学生有2(200时,得≤当①100<x(解得6分)时,得②当>200x解得不合题意,舍去.80160答:甲学校报名参加旅游的学生有人,乙学校报名参加旅游的学生有人.点评:此题考查的是二元一次方程组的应用,关键是把不符合题意的结论舍去.11BC=5,∠C=30°.点D从点C出发沿CA2011?河南)如图,在Rt△ABC中,∠B=90°,方向以22.(10分)(每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(3)当t为何值时,△DEF为直角三角形?请说明理由.考点:菱形的性质;含30度角的直角三角形;矩形的性质;解直角三角形.专题:几何图形问题;动点型.分析:(1)在△DFC中,∠DFC=90°,∠C=30°,由已知条件求证;(2)求得四边形AEFD为平行四边形,若使?AEFD为菱形则需要满足的条件及求得;(3)①∠EDF=90°时,四边形EBFD为矩形.在直角三角形AED中求得AD=2AE即求得.②∠DEF=90°时,由(2)知EF∥AD,则得∠ADE=∠DEF=90°,求得AD=AE?cos60°列式得.③∠EFD=90°时,此种情况不存在.解答:(1)证明:在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=t.又∵AE=t,∴AE=DF.(2)解:能.理由如下:∵AB⊥BC,DF⊥BC,∴AE∥DF.AE=D∴四边AEF为平行四边形∵AB=BC?tan30°=5=5,∴AC=2AB=10.∴AD=AC﹣DC=10﹣2t.若使?AEFD为菱形,则需AE=AD,即t=10﹣2t,t=.时,四边形AEFD为菱形.即当t=(3)解:①∠EDF=90°时,四边形EBFD为矩形.在Rt△AED中,∠ADE=∠C=30°,∴AD=2AE.即10﹣2t=2t,t=.②∠DEF=90°时,由(2)四边形AEFD为平行四边形知EF∥AD,∴∠ADE=∠DEF=90°.∵∠A=90°﹣∠C=60°,12.cos60°∴AD=AE?.2t=﹣t,t=4即10 时,此种情况不存在.③∠EFD=90°秒时,△DEF为直角三角形.综上所述,当t=秒或4难以及菱形与矩形之间的联系.考查了菱形是平行四边形,考查了菱形的判定定理,点评:本题考查了菱形的性质,度适宜,计算繁琐.两、B(2011?河南)如图,在平面直角坐标系中,直线与抛物线交于A23.(11分)8.A在x轴上,点B的横坐标为﹣点,点1)求该抛物线的解析式;(AB,交直线,过点P作x轴的垂线,垂足为C2()点P是直线AB上方的抛物线上一动点(不与点A、B重合).PE⊥AB于点E于点D,作关于x的函数关系式,并求出l的最大值;的周长为设△PDEl,点P的横坐标为x,求l①FAPFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点PA②连接,以PA为边作图示一侧的正方形y轴上时,直接写出对应的点P的坐标.或G恰好落在二次函数综合题考代数几何综合题;压轴题;数形结合;待定系数法专即可分析)利用待定系数法求,再求PD=求出二函数最值即可PEAO∽,得DPPD=根P,解得,即,轴上时,由落在y△ACP≌△GOA得PC=AO=2当点②GP点坐标.x+﹣﹣落在所以得出P点坐标,当点Fy轴上时,x=,解得x=,可得解答:﹣时,.当y=0,x=2)对于(解:1x= .﹣8y=,当∴A点坐标为(2 .,0),B点坐标为13两点,经过A、B由抛物线得.解得∴.轴交于点)①设直线与yM,(2.时,y=.∴OM=当x=0.∴AM=.,∵点A的坐标为(20),∴OA=2 5.4∵OM:OA:AM=3::.∽△由题意得,∠PDE=∠OMA,∠AOM=∠PED=90°,∴△AOMPED ∴DE:PE:PD=3:4:5.∵点上方的抛物线上一动点,P是直线AB 轴,PD⊥x∵两点横坐标相同,∴PD)x+PD=y∴﹣y=﹣﹣﹣(x﹣DP2 x+4x=﹣,﹣∴..∴﹣∴x=3时,l=15.最大PC=AO=2,得△y ②当点G落在轴上时,如图2,由ACP≌△GOA,即,解得所以,SPSPNPN作⊥y轴于点,过点作⊥x轴于点,P3如图,过点,≌△△由PNFPSA P,可得点横纵坐标相等,PN=PS F故得当点落在轴上时,y x=,解得x+﹣x=﹣,(舍去)可得.,14综上所述:满足题意的点P有三个,分别是.此题主要考查了二次函数的综合应用以及相似三角形的判定以及待定系数法求二次函数解析式,利用数形点评:结合进行分析以及灵活应用相似三角形的判定是解决问题的关键.15。
最近四年09-12河南中招考试数学试题及详细答案
2011年河南省初中学业水平暨高级中等学校招生考试试卷数 学参考公式:二次函数2(0)y ax bx c a =++≠图象的顶点坐标为24(,)24b ac b a a--. 一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内. 1. -5的绝对值 【 】 (A )5 (B )-5 (C )15 (D )15- 2. 如图,直线a ,b 被c 所截,a ∥b ,若∠1=35°,则∠2的大小为 【 】(A )35° (B )145° (C )55° (D )125°3. 下列各式计算正确的是 【 】 (A )011(1)()32---=- (B=(C )224246a a a += (D )236()a a =4.不等式5. 某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是x 甲=610千克,x 乙=608千克,亩产量的方差分别是2S 甲=29. 6, 2S 乙=2. 7. 则关于两种小麦推广种植的合理决策是 【 】(A )甲的平均亩产量较高,应推广甲(B )甲、乙的平均亩产量相差不多,均可推广(C )甲的平均亩产量较高,且亩产量比较稳定,应推广甲(D )甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙6. 如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O 旋转180°到乙位置,再将它向下平移2个单位长到丙位置,则小花顶点A 在丙位置中的对应点A ′的坐标为 【 】x +2>0,x -1≤2的解集在数轴上表示正确的是 【 】(A )(3,1) (B )(1,3) (C )(3,-1) (D )(1,1)二、填空题 (每小题3分,共27分) 7. 27的立方根是 。
8. 如图,在△ABC 中,AB =AC ,CD 平分∠ACB ,∠A =36°,则∠BDC 的度数为 .9. 已知点(,)P a b 在反比例函数2y x =的图象上,若点P 关于y 轴对称的点在反比例函数ky x=的图象上,则k 的值为 .10. 如图,CB 切⊙O 于点B ,CA 交⊙O 于点D 且AB 为⊙O 的直径,点E 是ABD 上异于点A 、D 的一点.若∠C=40°,则∠E 的度数为 .11.点1(2,)A y 、2(3,)B y 是二次函数221y x x =-+的图象上两点,则1y 与2y 的大小关系为1y 2y (填“>”、“<”、“=”).12.现有两个不透明的袋子,其中一个装有标号分别为1、2的两个小球,另—个装有标号分别为2、3、4的三个小球,小球除标号外其它均相同,从两个袋子中各随机摸出1个小球,两球标号恰好相同的概率是 。
2011年河南省初中学业水平暨高级中等学校招生考试数学试题答案
2011年河南省初中学业水平暨高级中等学校招生考试数学试卷参考答案及评分标准说明:1.如果考生的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分. 2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分的多少,但原则上不超过后继部分应得分数之半. 3.评分标准中,如无特殊说明,均为累计给分. 4.评分过程中,只给整数分数.一、选择题(每小题3分,共18分)二、填空题(每小题3分,共27分)(注:若第8题填为72°,第10题填为40°,不扣分)三、解答题(本大题共8个小题,满分75分 ) 16.原式=22(1)(1)1(2)x x x x x -+-∙--…………………………………………………………3分 =12x x +-.……………………………………………………………………………5分x 满足-2≤x ≤2且为整数,若使分式有意义,x 只能取0,-2.……………………7分 当x =0时,原式=12-(或:当x =-2时,原式=14).…………………8分 17.(1)∵AD ∥BC ,∴∠A =MBE ,∠ADM =∠E .…………………………………2分 在△AMD 和△BME 中,∴△AMD ≌△BME . ……………………………………5分(2)∵△AMD ≌△BME ,∴MD =ME . 又ND =NC ,∴MN =12EC . (7)分∴EC =2MN =2×5=10.∴BC=EC-EB=10-2=8.………………………………………………9分18.(1)(C选项的频数为90,正确补全条形统计图);……………2分20.…………………………………………………………………4分(2)支持选项B的人数大约为:5000×23%=1150.……………………………………6分(3)小李被选中的概率是:1002………………………………………………9分115023.19.∵DE∥BO,α=45°,∴∠DBF=α=45°.∴Rt△DBF中,BF=DF=268.…………………………………………………………2分∵BC=50,∴CF=BF-BC=268-50=218.由题意知四边形DFOG是矩形,∴FO=DG=10.∴CO=CF+FO=218+10=228.……………………………………………………………5分在Rt△ACO中,β=60°,∴AO =CO ·tan60°≈228×1.732=394.896……………………………………………7分∴误差为394.896-388=6.896≈6.9(米). 即计算结果与实际高度的误差约为 6.9米.…………………………………………9分 20.(1)12,16;………………………………………………………………2分(2)-8<x <0或x >4;…………………………………………………………4分(3)由(1)知,121162,.2y x yx=+=∴m =4,点C 的坐标是(0,2)点A 的坐标是(4,4). ∴CO =2,AD =OD =4.………………………………………………………………5分 ∴24412.22ODAC CO AD S OD ++=⨯=⨯=梯形∵:3:1,ODEODACS S =梯形∴1112433ODEODACSS =⨯=⨯=梯形……………………………………………7分即12OD ·DE =4,∴DE =2. ∴点E 的坐标为(4,2).又点E 在直线OP 上,∴直线OP 的解析式是12y x =. ∴直线OP 与216yx=的图象在第一象限内的交点P 的坐标为(.……9分21.(1)设两校人数之和为a. 若a >200,则a =18 000÷75=240.若100<a ≤200,则13180008521117a =÷=,不合题意.所以这两所学校报名参加旅游的学生人数之和等于240人,超过200人.……3分(2)设甲学校报名参加旅游的学生有x 人,乙学校报名参加旅游的学生有y 人,则①当100<x ≤200时,得240,859020800.x y x y +=⎧⎨+=⎩解得160,80.x y =⎧⎨=⎩…………………………………………………………………6分 ②当x >200时,得 解得153,32186.3x y ⎧=⎪⎪⎨⎪=⎪⎩此解不合题意,舍去.∴甲学校报名参加旅游的学生有160人,乙学校报名参加旅游的学生有80人.……10分 22.(1)在△DFC 中,∠DFC =90°,∠C =30°,DC =2t ,∴DF =t . 又∵AE=t ,∴AE=DF.……………………………………………………2分(2)能理由如下:∵AB ⊥BC ,DF ⊥BC ,∴AE ∥DF .又AE =DF ,∴四边形AEFD 为平行四边形.…………………………………………………3分∵AB =BC ·tan30°=5,210.AC AB =∴==若使AEFD为菱形,则需10.102,.3AE AD t t t ==-=即 即当103t =时,四边形AEFD为菱形.……………………………………………………5分(3)①∠EDF =90°时,四边形EBFD 为矩形. 在Rt △AED 中,∠ADE =∠C =30°,∴AD =2AE .即10-2t =2t ,52t =.………………7分 ②∠DEF=90°时,由(2)知EF ∥AD ,∴∠ADE =∠DEF =90°.∵∠A =90°-∠C =60°,∴AD =AE ·cos60°.即1102, 4.2t t t -==…………………………………………………………………………9分③∠EFD =90°时,此种情况不存在.综上所述,当52t =或4时,△DEF 为直角三角形.……………………………………10分23.(1)对于3342y x =-,当y =0,x =2.当x =-8时,y =-152. ∴A 点坐标为(2,0),B 点坐标为15(8,).2--………………………………………1分由抛物线214y xbx c=-++经过A 、B 两点,得解得235135..42442b c y x x =-=∴=--+,…………………………………………3分(2)①设直线3342y x =-与y 轴交于点M 当x =0时,y =32-.∴OM =32. ∵点A 的坐标为(2,0),∴OA =2.∴AM5.2=………………4分∵OM :OA :AM =3∶4:5.由题意得,∠PDE =∠OMA ,∠AOM =∠PED =90°,∴△AOM ~△PED . ∴DE :PE :PD =3∶4:5.…………………………………………………………………5分∵点P 是直线AB 上方的抛物线上一动点, ∴PD =y P -y D =213444x x --+.………………………………………………………………………6分∴21213(4)542l xx =--+231848.555x x =--+…………………………………………………………………7分23(3)15.315.5l x x l ∴=-++∴=-=最大时,……………………………………8分②满足题意的点P 有三个,分别是1233(2),(2),22P P ---377(,22P -+-……………………………………………………………11分 【解法提示】当点G 落在y 轴上时,由△ACP ≌△GOA 得PC=AO =2,即21352442x x --+=,解得32x -±=,所以122),2).P P当点F 落在y 轴上时,同法可得3P ,477(22P --(舍去).。
2011年河南省中招考试第一次模拟考试数学试卷及答案(精)
2011年河南省中招考试第一次模拟考试试卷数学注意事项:1.本试卷共8页,三大题,满分120分,考试时间100分钟. 请用钢笔或圆珠笔直接答在试卷上.2.答题前将密封线内的项目填写清楚.一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.12-的相反数是【】A.2 B.−2 C.12D.12-2.若3m,则下列不等关系正确的是【】A.12m<<B.23m<<C.34m<<D.45m<<3.甲、乙、丙三人抽签确定两人参加某项活动,则乙被抽中的概率为【】A.12B.13C.23D.194.若代数式211xx-+的值为0,则x等于【】A.1B.1-C.1,1-D.1,05.如图,在平面直角坐标系中,其中一个三角形是由另一个三角形绕着某点旋转一定的角度得到的,则其旋转中心可能是【】A.(0,1)B.(0,2)C.(−1,1)D.(−1,2)6.如图,一个几何体是由大小相同的小正方体焊接..而成,其主视图、俯视图、左视图都是“田”字形,则焊接..该几何体所需小正方体的个数最少为【 】 A .3 B .4 C .5 D .6 二、填空题(每小题3分,共27分) 7_________.8.如图,直线AB ∥DE ,BC ⊥CD ,若∠1=25°,则∠2的度数是 __________.9.如图,是一个简单的运算程序.若输入x 的值为 −2,则输出的数值为________.10.如图,在□ABCD 中,AD =8cm ,CD =6 cm ,∠BAD 的平分线与BC 边相交于点E ,则EC 等于_______ cm .11.如图,在以AB 为直径的半圆中,E 是弦AC 的中点,延长BE 交半圆于点D ,若OB =2,OE =1,则CDE ∠的度数是 _____________.(第9题)(第10题)ADBCE(第11题)ABC O·DE(第14题)(第15题)B(第5题)(第6题)B1(第8题)2CDEA12.函数2yx=和3y x n=+的图象交于点A(−2,m),则n m= _________.13.市中心医院妇产科某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现2个男婴、1个女婴的概率是__________.14.如图,在矩形ABCD纸片中,AD=4,CD=3.限定点E在边AB上,点F 在边BC上,将△BEF沿EF翻折后叠合在一起,则点B距点A的最小距离是___________.15.如图,点C在以AB为直径的半圆弧上,∠ABC=30°,沿直线CB将半圆折叠,直径AB和弧BC交于点D,已知AB=6,则图中阴影部分的面积和周长分别等于________________.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:2233 11a a a a a a a+-⎛⎫-÷ ⎪+-⎝⎭,其中tan602sin30a=︒-︒.17.(9分)如图,点B 在AD 上,AC =CB ,CD =CE ,∠ACB =∠DCE =90°.试判断线段AD 和BE 的大小和位置关系,并给予证明.18.(9分)在一次以“节约用水,从我做起”为主题的社会实践活动中,小华对自己生活的小区居民用水情况进行了调查,他从该小区五月份的居民用水记录中随机抽取20户居民的用水数据统计如下:⑴ 计算这20户居民的平均月用水量;⑵ 把这20户居民用水量的频数分布直方图补充完整;⑶ 如果该小区有500户居民,根据上面的计算结果,估计该小区居民当月共用水多少吨?(第18题)(m 3)(第17题)A DC B E19.(9分)某软件公司开发出一种智能学习机,前期投入的研发、广告费用总计100万元,经销商每出售一台学习机,软件公司还要给经销商返利200元.⑴ 写出软件公司的总费用y 元与销售台数x 之间的函数关系式;⑵ 如果软件公司给经销商每台价格700元,那么软件公司至少要售出多少台智能学习机才能确保不亏本?20.(9分)如图,在一条东西公路l 的两侧分别有村庄A 和B ,村庄A 到公路的距离为3km ,村庄A 位于村庄B 北偏东60°的方向,且与村庄B 相距10km .现有一辆长途客车从位于村庄A 南偏西76°方向的C 处,正沿公路l 由西向东以40km/h 的速度行驶,此时,小明正以25km/h 的速度由B 村出发,向正北方向赶往公路l 的D 处搭乘这趟客车.⑴ 求村庄B 到公路l 的距离;⑵ 小明能否搭乘上这趟长途客车?(1.73≈,sin 760.97︒≈,cos 760.24︒≈,tan 76 4.01︒≈)(第20题)l21.(10分)如图,在直角梯形ABCD 中,AD ∥BC ,∠A =∠B =90°,AD =1,AB =5,BC =4,点P 是线段AB 上一个动点,点E 是CD 的中点,延长PE 至F ,使EF =PE .⑴ 判定四边形PCFD 的形状;⑵ 当AP 的长为何值时,四边形PCFD 是矩形; ⑶ 求四边形PCFD 的周长的最小值.(第21题)A BCDPFE22.(10分)某学生用品商店,计划购进A、B两种背包共80件进行销售,购货资金不少于2090元,但不超过2096元,两种背包的成本和售价如下表:假设所购两种背包可全部售出,请回答下列问题:⑴该商店对这两种背包有哪几种进货方案?⑵该商店如何进货获得利润最大?⑶根据市场调查,每件B种背包的市价不会改变,每件A种背包的售价将会提高a元(0a ),该商店又将如何进货获得的利润最大?23.(11分)如图,已知二次函数的图象经过点A(3,3)、B(4,0)和原点O.P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA交于点C.⑴求出二次函数的解析式;⑵当点P在直线OA的上方时,求线段PC的最大值.⑶当0△为等腰三角形,如果存在,m 时,探索是否存在点P,使得PCO求出P的坐标;如果不存在,请说明理由.Array(第23题)2011年河南省中招考试第一次模拟考试试卷数学参考答案一、选择题1.D .2.B .3.C .4.A .5.D .6.B . 二、填空题7.±2; 8.115°; 9.89; 10.2; 11.30°; 12.−1; 13.3; 14.1;15.32π,63π+. 三、解答题16.解:1a ,原式(3)(1)12(1)(1)(3)1a a a a a a a a -+=⨯===-+--17.解:相等,垂直.△ACD ≌△BCE (SAS ).AD =BE ,∠EBC =∠DAC =45°. 18.解:⑴ 6.7x =(m 3);⑵ 略;⑶ 6.75003350⨯=(m 3).19.解:⑴ 2001000000y x =+;⑵ 7002001000000x x +≥,2000x ≥.售出2000台不亏本.20.解:⑴ BD =10÷2−3)=2(km );⑵ 能.CD = 3tan76°−5≈3.38.t 客车3.38400.0845==(h ),t 小明2250.08==(h ),t 客车>t 小明. 21.解:⑴PCFD □;⑵ AP x =,△APD ∽△BCP .x :4=1:(5−x ).解得x 1=1,x 2=4;⑶ 延长DA 到G ,使AG =AD .当点G 、P 、C 共线时CP +PD 最小,值为GC =.所以PCFD □周长的最小值为22.⑴ 购A 种背包x 件,则20902528(80)2096x x +-≤≤.解得4850x ≤≤.有3种方案:A 48、B 32;A 49、B 31;A 50、B 30. ⑵ 利润57(80)2560w x x x =+-=-+.当A 48、B 32时,2485w =-⨯+=最大(元);⑶(5)7(80)(2)560w a x x a x =++-=-+.当2a >时,采用A 50、B 30;当2a =时,均可采用;当02a <<时,采用A 48、B 32.23.解:⑴设(4)y ax x =-,A 点坐标代入得1a =-,函数为24y x x =-+. ⑵03m <<,23PC PD CD m m =-=-+()23294m =--+,当()32,0D 时,m a x 94PC =.⑶ 当03m <<时,仅有OC =PC ,此时,23m m -+=,解得3m =,(3P +;当3m ≥时,23P C C D P D m m =-=-,OC =,222222(4)OP OD DP m m m =+=+-.①当OC = PC 时,23m m -=.解得3m =+(3P -;②当OC = OP 时,2222)(4)m m m =+-,解得m 1=5,m 2=3(舍去),(5,5)P -; ③当PC =OP 时,22222(3)(4)m m m m m -=+-,解得4m =,(4,0)P .。
2011年河南省中考数学试题(A4版)
2011年河南省中考数学试题(满分120分,考试时间100分钟)一、选择题(每小题3分,共18分) 1. -5的绝对值是( )A .5B .-5C .15D .15-2. 如图,直线a ,b 被直线c 所截,a ∥b ,若∠1=35°,则∠2的大小为( )A .35°B .145°C .55°D .125°c21ba3. 下列各式计算正确的是( )A .101(1)()32---=-B .235+=C .224246a a a +=D .236()a a =4. 不等式组2012x x +>⎧⎨-⎩≤的解集在数轴上表示正确的是( )30-230-2A .B .30-2 30-2C .D .5. 某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是610x =甲千克,608x =乙千克,亩产量的方差分别是229.6S =甲,2 2.7S =乙,则关于两种小麦推广种植的合理决策是( ) A .甲的平均亩产量较高,应推广甲 B .甲、乙的平均亩产量相差不多,均可推广C .甲的平均亩产量较高,且亩产量比较稳定,应推广甲D .甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙6. 如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O 旋转180°到乙位置,再将它向下平移2个单位长到丙位置,则小花顶点A 在丙位置中的对应点A′的坐标为( ) A .(3,1)B .(1,3)C .(3,-1)D .(1,1)A乙甲y xO11二、填空题(每小题3分,共27分) 7. 27的立方根是_______.8. 如图,在△ABC 中,AB =AC ,CD 平分∠ACB ,∠A =36°,则∠BDC 的度数为________.DCBAO EDCBA第8题图第10题图9. 已知点P (a ,b )在反比例函数2y x=的图象上,若点P 关于y 轴对称的点在反比例函数ky x=的图象上,则k 的值为_______. 10. 如图,CB 切⊙O 于点B ,CA 交⊙O 于点D ,且AB 为⊙O 的直径,点E 是ABD︵上异于点A ,D 的一点.若∠C =40°,则∠E 的度数为________.11. 点A (2,y 1),B (3,y 2)是二次函数221y x x =-+的图象上两点,则y 1与y 2的大小关系为y 1____y 2(填“>”,“<”或“=”).12. 现有两个不透明的袋子,其中一个装有标号分别为1,2的两个小球,另一个装有标号分别为2,3,4的三个小球,小球除标号外其他均相同.从两个袋子中各随机摸出1个小球,两球标号恰好相同的概率是_________.13. 如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为__________.PDCBA14. 如图,是一个几何体的三视图,根据图示的数据可计算出该几何体的表面积为________.左视图俯视图主视图1210G FEDCBA第14题图第15题图15. 如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,∠C =60°,BC =2AD =23,点E 是BC 边的中点,△DEF 是等边三角形,DF 交AB 于点G ,则△BFG 的周长为__________.三,解答题(本大题8个小题,满分75分)16. (8分)先化简22144(1)11x x x x -+-÷--,然后从-2≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值.17. (9分)如图,在梯形ABCD 中,AD ∥BC ,延长CB 到点E ,使BE =AD ,连接DE 交AB 于点M . (1)求证:△AMD ≌△BME ;(2)若N 是CD 的中点,且MN =5,BE =2,求BC 的长.NMEDCBA18. (9分)为了更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如下的调查问卷(单选). 克服酒驾——你认为哪一种方法更好? A .司机酒驾,乘客有责,让乘客帮助监督 B .在汽车上张贴“请勿酒驾”的提醒标志 C .签订“永不酒驾”保证书 D .希望交警加大检查力度E .查出酒驾,追究就餐饭店的连带责任在随机调查了本市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:调查结果的扇形统计图23%m %A BCDE调查结果的条形统计图45366960人数选项100806040200EDCBA根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m =_________. (2)该市支持选项B 的司机大约有多少人?(3)若要从该市支持选项B 的司机中随机选择100名,给他们发放“请勿酒驾”提醒标志,则支持该选项的司机小李被选中的概率是多少?19. (9分)如图所示,中原福塔(河南广播电视塔)是世界第一高钢塔.小明所在的课外活动小组在距地面268米高的室外观光层的点D 处,测得地面上点B 的俯角α为45°,点D 到AO 的距离DG 为10米;从地面上的点B 沿BO 方向走50米到达点C 处,测得塔尖A 的仰角β为60°.请你根据以上数据计算塔高AO ,并求出计算结果与实际塔高388米之间的误差.(参考数据:3 1.7322 1.414≈≈,.结果精确到0.1米)βαOF GED C BA20. (9分)如图,一次函数112y k x =+与反比例函数22k y x=的图象交于点A (4,m )和点B (-8,-2),与y 轴交于点C . (1)k 1=__________,k 1=________;(2)根据函数图象可知,当y 1>y 2时,x 的取值范围是____________; (3)过点A 作AD ⊥x 轴于点D ,点P 是反比例函数在第一象限的图象上一点,设直线OP 与线段AD 交于点E ,当S 四边形ODAC :S △ODE =3:1,求点P 的坐标.yxPODC BA21.(10分)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m0<m≤100 100<m≤200 m>200 收费标准(元/人)90 85 75甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人.22. (10分)如图,在Rt △ABC 中,∠B =90°,BC =53,∠C =30°.点D 从点C 出发沿CA 方向以每秒2个单位长的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以每秒1个单位长的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D ,E 运动的时间是t 秒(t >0).过点D 作DF ⊥BC 于点F ,连接DE ,EF . (1)求证:AE =DF .(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,说明理由.(3)当t 为何值时,△DEF 为直角三角形?请说明理由.FED CBA23. (11分)如图,在平面直角坐标系中,直线3342y x =-与抛物线214y x bx c =-++交于A ,B 两点,点A 在x 轴上,点B 的横坐标为-8.(1)求该抛物线的解析式.(2)点P 是直线AB 上方的抛物线上一动点(不与点A ,B 重合),过点P 作x 轴的垂线,垂足为C ,交直线AB 于点D ,作PE ⊥AB 于点E . ①设△PDE 的周长为l ,点P 的横坐标为x ,求l 关于x 的函数关系式,并求出l 的最大值;②连接P A ,以P A 为边作图示一侧的正方形APFG .随着点P 的运动,正方形的大小、位置也随之改变.当顶点F 或G 恰好落在y 轴上时,直接写出对应的点P 的坐标.y xP OGF E D C BAyxBA。