习题解答1(轴向拉压)

合集下载

材料力学习题册答案-第2章-拉压

材料力学习题册答案-第2章-拉压
第二章 轴向拉压
一、 选择题
1.图 1 所示拉杆的外表面上有一斜线,当拉杆变形时,斜线将(
A.平动
B.转动
C.不动
D.平动加转动
D)
2.轴向拉伸细长杆件如图 2 所示,则正确的说法是 ( C )
A.1-1、2-2 面上应力皆均匀分布 B.1-1、2-2 面上应力皆非均匀分布 C. 1-1 面上应力非均匀分布,2-2 面上应力均匀分布 D.1-1 面上应力均匀分布,2-2 面上应力非均匀分布
30KN 1
300mm
l1 解:(1) 轴力图如下
2
400mm
l2
10KN
-
40KN
50KN 3
400mm
l3
10KN
+
10KN
(2)
(3)右端面的位移
=
= 即右端面向左移动 0.204mm。
8.一杆系结构如图所示,试作图表示节点 C 的垂直位移,设 EA 为常数。
A
30
C
30 ΔL2 60 ΔL1
CD 段:σ3= =
Pa=25MPa
2.图为变截面圆钢杆 ABCD,已知 =20KN, = =35KN, = =300mm, =400mm,
D
3
C
P3
2
,绘出轴力图并求杆的最大最小应力。
B
1 P2
A
P1
l3 解:
-
50KN
l2 15KN
l1
20KN
+
AB 段:σ1=

=176.9MPa
BC 段:σ2=
反力均匀分布,圆柱承受轴向压力 P,则基座剪切面的剪力
。ห้องสมุดไป่ตู้

轴向拉压1

轴向拉压1
(A) ;(B) ;
(C) ;(D) 。
正确答案是。
试题答案:
答:B
试题内容:
等直杆AB两端固定,受力如图所示。给定杆内轴力与杆端反力的四种情况,问哪一种正确?
(A)CD段受拉,AC和DB段受压,A和B两端反力等值反向;
(B)CD段受拉,轴力为F;AC和DB段受压,轴力均为-F;
(C)CD段受拉,轴力为F;A和B两端不受力;
试题答案:
答: 。
试题内容:
图示杆1和杆2的材料和长度都相同,但横截面面积 > 。若两杆温度都下降 ,则两杆轴力之间的关系是 ,正应力之间的关系是 ____ 。(填入符号<,=,>)
试题答案:
答: > ,
试题内容:
图示为由杆1,杆2和杆3及刚性梁AB组成的超静定结构,求各杆的轴力时,平衡方程为
变形协调方程为
试题答案:
答: 。
试题内容:
一轴向拉杆,横截面为 (a﹥b)的矩形,受轴向载荷作用变形后截面长边和短边的比值为。另一轴向拉杆,横截面是长半轴和短半轴分别为a和b的椭圆形,受轴向载荷作用变形后横截面的形状为__。
试题答案:
答: ;椭圆形。
试题内容:
一长为l,横截面面积为A的等截面直杆,质量密度为 ,弹性模量为E,该杆铅垂悬挂时由自重引起的最大应力 ,杆的总伸长 。
试题答案:
答:图(b)所示橡皮带;图(a)所示橡皮带。
试题内容:
图示平面结构中,杆AB的长度为l,拉压刚度为2EA,杆AC的长度为l,拉压刚度为EA。在力F作用下,若要节点A不产生水平位移,则力F与铅垂线间的夹角 应为度。
试题答案:
答:30º。
试题内容:
图示受力结构中,若杆1和杆2的拉压刚度EA相同,则节点A的铅垂位移 ,水平位移 。

材料力学第二章 轴 向拉压习题及答案

材料力学第二章 轴 向拉压习题及答案

第二章轴向拉压一、选择题1.图1所示拉杆的外表面上有一斜线,当拉杆变形时,斜线将( D)A.平动B.转动C.不动D.平动加转动2.轴向拉伸细长杆件如图2所示,其中1-1面靠近集中力作用的左端面,则正确的说法应是( C)A.1-1、2-2面上应力皆均匀分布B.1-1、2-2面上应力皆非均匀分布C.1-1面上应力非均匀分布,2-2面上应力均匀分布D.1-1面上应力均匀分布,2-2面上应力非均匀分布(图1)(图2)3.有A、B、C三种材料,其拉伸应力—应变实验曲线如图3所示,曲线( B)材料的弹性模量E大,曲线( A )材料的强度高,曲线( C)材料的塑性好。

4.材料经过冷作硬化后,其( D)。

A.弹性模量提高,塑性降低B.弹性模量降低,塑性提高C.比例极限提高,塑性提高D.比例极限提高,塑性降低5.现有钢、铸铁两种杆材,其直径相同。

从承载能力与经济效益两个方面考虑,图4所示结构中两种合理选择方案是( A)。

A.1杆为钢,2杆为铸铁B.1杆为铸铁,2杆为钢C.2杆均为钢D.2杆均为铸铁(图3)(图4)(图5)6.在低碳钢的拉伸试验中,材料的应力变化不大而变形显著增加的是(B)。

A. 弹性阶段;B.屈服阶段;C.强化阶段;D.局部变形阶段。

7.铸铁试件压缩破坏(B)。

A. 断口与轴线垂直;B. 断口为与轴线大致呈450~550倾角的斜面;C. 断口呈螺旋面;D. 以上皆有可能。

8.为使材料有一定的强度储备,安全系数取值应( A )。

A .大于1; B. 等于1; C.小于1; D. 都有可能。

9. 等截面直杆在两个外力的作用下发生轴向压缩变形时,这对外力所具备的特点一定是等值、( C )。

A 反向、共线B 反向,过截面形心C 方向相对,作用线与杆轴线重合D 方向相对,沿同一直线作用10. 图6所示一阶梯形杆件受拉力P的作用,其截面1-1,2-2,3-3上的内力分别为N 1,N 2和N 3,三者的关系为( B )。

《材料力学》第2章轴向拉(压)变形习题解答

《材料力学》第2章轴向拉(压)变形习题解答

其方向。 解:斜截面上的正应力与切应力的公式为:
ασσα20cos = αστα2sin 2 = 式中,MPa mm N A N 1001001000020===σ,把α的数值代入以上二式得:
[习题 2-7] 一根等直杆受力如图所示。已知杆的横截面面积 A 和材料的弹性模量 E 。试作轴力图,并求杆端点 D 的位移。 解: (1)作轴力图
[习题 2-9] 一根直径 mm d 16=、长 m l 3=的圆截面杆,承受轴 向拉力 kN F 30=,其伸长为 mm l 2.2=?。试求杆横截面上的应 力与材料的弹性模量 E 。 解:(1)求杆件横截面上的应力 MPa mm N A N 3.1491614.34 110302 23=???==σ (2)求弹性模量 因为:EA Nl l = ?, 所以:GPa MPa l l l A l N E 6.203)(9.2035902 .23000 3.149==?=??=???=σ。 [习题 2-10] (1)试证明受轴向拉伸(压缩)的圆截面杆横截 面沿圆周方向的线应变 s ε等于直径方向的线应变 d ε。 (2)一根直径为 mm d 10=的圆截面杆,在轴向力 F 作用下,直 径减小了 0.0025mm 。如材料 的弹性模量 GPa E 210=,泊松比 3.0=ν,试求该轴向拉力 F 。 (3)空心圆截面杆,外直径 mm D 120=,内直径 mm d 60=,材 料的泊松比 3.0=ν。当其轴向拉伸时,已知纵向线应变 001.0=, 试求其变形后的壁厚。 解:(1)证明 d s εε= 在圆形截面上取一点 A ,连结圆心 O 与 A 点,则 OA 即代表直 径方向。过 A 点作一条直线 AC 垂直于 OA ,则 AC 方向代表圆周方向。νεεε-==AC s(泊

轴向拉压习题及解答

轴向拉压习题及解答

5-1 试求图示各杆的轴力,并指出轴力的最大值。

解:(a)(1) 用截面法求内力,取1-1、2-2截面;(2) 取1-1截面的左段; 110 0 xN N FF F F F =-==∑(3) 取2-2截面的右段;220 0 0xN N FF F =-==∑(4) 轴力最大值:max N F F =(b)(1) 求固定端的约束反力;0 20 xR R FF F F F F =-+-==∑(2) 取1-1截面的左段;110 0 xN N FF F F F =-==∑(a)(c) (d)N 1F RF N 1220 0 xN R N R FF F F F F =--==-=-∑(4) 轴力最大值:max N F F =(c)(1) 用截面法求内力,取1-1、2-2、3-3截面;(2) 取1-1截面的左段;110 20 2 xN N FF F kN =+==-∑(3) 取2-2截面的左段;220 230 1 xN N FF F kN =-+==∑(4) 取3-3截面的右段;330 30 3 xN N FF F kN =-==∑(5) 轴力最大值:max 3 N F kN =(d)(1) 用截面法求内力,取1-1、2-2截面;FRF N 21 1F N 1N 2F N 3110 210 1 xN N FF F kN =--==∑(2) 取2-2截面的右段;220 10 1 xN N FF F kN =--==-∑(5) 轴力最大值:max 1 N F kN =5-2 试画出8-1所示各杆的轴力图。

解:(a)(b)(c) (d)F N1F N 2FFFFF 1kN5-5 图示阶梯形圆截面杆,承受轴向载荷F 1=50 kN 与F 2作用,AB 与BC 段的直径分别为d 1=20 mm 和d 2=30 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求载荷F 2之值。

解:(1) 用截面法求出1-1、2-2截面的轴力;11212 N N F F F F F ==+(2) 求1-1、2-2截面的正应力,利用正应力相同;311215010159.210.024N F MPa A σπ⨯===⨯⨯32221225010159.210.034N F F MPa A σσπ⨯+====⨯⨯262.5F kN ∴=5-6 题8-5图所示圆截面杆,已知载荷F 1=200 kN ,F 2=100 kN ,AB 段的直径d 1=40 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求BC 段的直径。

轴向拉伸与压缩习题及解答

轴向拉伸与压缩习题及解答

轴向拉伸与压缩习题及解答Prepared on 22 November 2020轴向拉伸与压缩习题及解答一、判断改错1、构件内力的大小不但与外力大小有关,还与材料的截面形状有关。

答:错。

静定构件内力的大小之与外力的大小有关,与材料的截面无关。

2、杆件的某横截面上,若各点的正应力均为零,则该截面上的轴力为零。

答:对。

3、两根材料、长度都相同的等直柱子,一根的横截面积为1A ,另一根为2A ,且21A A >。

如图所示。

两杆都受自重作用。

则两杆最大压应力相等,最大压缩量也相等。

答:对。

自重作用时,最大压应力在两杆底端,即max max N All A Aνσν=== 也就是说,最大应力与面积无关,只与杆长有关。

所以两者的最大压应力相等。

最大压缩量为 2max max22N Al l l l A EA Eνν⋅∆===即最大压缩量与面积无关,只与杆长有关。

所以两杆的最大压缩量也相等。

A 1(a) (b)4、受集中力轴向拉伸的等直杆,在变形中任意两个横截面一定保持平行。

所以宗乡纤维的伸长量都相等,从而在横截面上的内力是均匀分布的。

答:错 。

在变形中,离开荷载作用处较远的两个横截面才保持平行,在荷载作用处,横截面不再保持平面,纵向纤维伸长不相等,应力分布复杂,不是均匀分布的。

5、若受力物体内某电测得x 和y 方向都有线应变x ε和y ε,则x 和y 方向肯定有正应力x σ和y σ。

答:错, 不一定。

由于横向效应作用,轴在x 方向受拉(压),则有x σ;y 方向不受力,但横向效应使y 方向产生线应变,y x εενε'==-。

二、填空题1、轴向拉伸的等直杆,杆内的任一点处最大剪应力的方向与轴线成(45)2、受轴向拉伸的等直杆,在变形后其体积将(增大)3、低碳钢经过冷做硬化处理后,它的(比例)极限得到了明显的提高。

4、工程上通常把延伸率δ>(5%)的材料成为塑性材料。

5、 一空心圆截面直杆,其内、外径之比为,两端承受力力作用,如将内外径增加一倍,则其抗拉刚度将是原来的(4)倍。

工程力学(静力学和材料力学)第2版课后习题答案_范钦珊主编_第5章_轴向拉伸与压缩[1]

工程力学(静力学和材料力学)第2版课后习题答案_范钦珊主编_第5章_轴向拉伸与压缩[1]
FA
45D 30D
FB
C
FP
习题 5-6 图
习题 5-6 解图
∑ Fx = 0 , FB = 2 FA
(1) (2) (3)
∑ Fy = 0 ,
2 3 FA + FB − FP = 0 2 2
1+ 3 FB 2 π FB ≤ [σ ] ⋅ d 2 4 FP =
5
FP ≤
1+ 3 π 2 ⋅ d [σ ] 2 4 ` (4) 1+ 3 π = ⋅ × 20 2 × 10 − 4 × 157 × 106 = 67.4k N 2 4
解:1. 受力分析:由图(a)有
5 FP 3 4 4 ∑ Fx = 0 , F1 = − F3 = − FP 5 3
由图(b)由
2. 强度计算:
3m
F1
F3
F4
C
θ
B
F2
FP
F3
习题 5-7 图
(a)
(b)
∑ F y = 0 , F3 =
4 4 F3 = FP 5 3 5 ∑ F y = 0 , F2 = − F3 = − FP 3
(2)

x=
5 b 6
5-11 电线杆由钢缆通过旋紧张紧器螺杆稳固。已知钢缆的横截面面积为 1× 103 mm 2 , E=200GPa, [σ ] = 300MPa 。欲使电杆有稳固力 FR=100kN,张紧器的螺杆需相对移动多少? 并校核此时钢缆的强度是否安全。
FR
习题 5-11 图
解: (1)设
= 2.947 +
100 ×103 × 2500 × 4 = 5.286 mm 105 ×103 × π × 362

《材料力学》第2章 轴向拉压变形 习题解

《材料力学》第2章 轴向拉压变形 习题解

第二章轴向拉(压)变形[习题2-1] 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。

(a )解:(1)求指定截面上的轴力 FN =-11FF F N -=+-=-222(2)作轴力图轴力图如图所示。

(b )解:(1)求指定截面上的轴力 FN 211=-2222=+-=-F F N (2)作轴力图FF F F N =+-=-2233 轴力图如图所示。

(c )解:(1)求指定截面上的轴力 FN 211=-FF F N =+-=-222(2)作轴力图FF F F N 32233=+-=- 轴力图如图所示。

(d )解:(1)求指定截面上的轴力 FN =-11F F a aFF F qa F N 22222-=+⋅--=+--=-(2)作轴力图 中间段的轴力方程为: x aFF x N ⋅-=)(]0,(a x ∈轴力图如图所示。

[习题2-2] 试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。

若横截面面积,试求各横截面上的应力。

2400mm A =解:(1)求指定截面上的轴力kNN 2011-=- )(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。

(3)计算各截面上的应力MPa mm N A N 504001*********-=⨯-==--σMPa mm N A N 254001010232222-=⨯-==--σMPamm N A N 254001010233333=⨯==--σ[习题2-3] 试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。

若横截面面积,,,并求各横截面上的应力。

21200mm A =22300mm A =23400mm A =解:(1)求指定截面上的轴力kNN 2011-=-)(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。

工程力学习题册第五章 - 答案

工程力学习题册第五章 - 答案

第五章拉伸和压缩一、填空题1.轴向拉伸或压缩的受力特点是作用于杆件两端的外力__大小相等___和__方向相反___,作用线与__杆件轴线重合_。

其变形特点是杆件沿_轴线方向伸长或缩短__。

其构件特点是_等截面直杆_。

2.图5-1所示各杆件中受拉伸的杆件有_AB、BC、AD、DC_,受压缩的杆件有_BE、BD__。

图5-13.内力是外力作用引起的,不同的__外力__引起不同的内力,轴向拉、压变形时的内力称为_轴力__。

剪切变形时的内力称为__剪力__,扭转变形时的内力称为__扭矩__,弯曲变形时的内力称为__剪力与弯矩__。

4.构件在外力作用下,_单位面积上_的内力称为应力。

轴向拉、压时,由于应力与横截面__垂直_,故称为__正应力__;计算公式σ=F N/A_;单位是__N/㎡__或___Pa__。

1MPa=__106_N/m2=_1__N/mm2。

5.杆件受拉、压时的应力,在截面上是__均匀__分布的。

6.正应力的正负号规定与__轴力__相同,__拉伸_时的应力为__拉应力__,符号为正。

__压缩_时的应力为__压应力_,符号位负。

7.为了消除杆件长度的影响,通常以_绝对变形_除以原长得到单位长度上的变形量,称为__相对变形_,又称为线应变,用符号ε表示,其表达式是ε=ΔL/L。

8.实验证明:在杆件轴力不超过某一限度时,杆的绝对变形与_轴力__和__杆长__成正比,而与__横截面面积__成反比。

9.胡克定律的两种数学表达式为σ=Eε和ΔL=F N Lo/EA。

E称为材料的_弹性模量__。

它是衡量材料抵抗_弹性变形_能力的一个指标。

10.实验时通常用__低碳钢__代表塑性材料,用__灰铸铁__代表脆性材料。

11.应力变化不大,应变显著增大,从而产生明显的___塑性变形___的现象,称为__屈服___。

12.衡量材料强度的两个重要指标是__屈服极限___和__抗拉强度__。

13.采用___退火___的热处理方法可以消除冷作硬化现象。

轴向拉伸和压缩习题附标准答案

轴向拉伸和压缩习题附标准答案

第四章轴向拉伸和压缩、填空题1、杆件轴向拉伸或压缩时,其受力特点是:作用于杆件外力的合力的作用线与杆件轴线相_________ .2、轴向拉伸或压缩杆件的轴力垂直于杆件横截面,并通过截面_____________ .4、杆件轴向拉伸或压缩时,其横截面上的正应力是___________ 分布的.7、在轴向拉,压斜截面上,有正应力也有剪应力,在正应力为最大的截面上剪应力为________ .8杆件轴向拉伸或压缩时,其斜截面上剪应力随截面方位不同而不同,而剪应力的最大值发生在与轴线间的夹角为________ 的斜截面上.矚慫润厲钐瘗睞枥庑赖。

9、杆件轴向拉伸或压缩时,在平行于杆件轴线的纵向截面上,其应力值为_______ .10、胡克定律的应力适用范围若更精确地讲则就是应力不超过材料的________ 极限.11、杆件的弹必模量E表征了杆件材料抵抗弹性变形的能力,这说明杆件材料的弹性模量E值越大,其变形就越 ________ 聞創沟燴鐺險爱氇谴净。

12、在国际单位制中,弹性模量E的单位为________ .13、在应力不超过材料比例极限的范围内,若杆的抗拉(或抗压)刚度越_________ ,则变形就越小.15、低碳钢试样据拉伸时,在初始阶段应力和应变成___________ 关系,变形是弹性的,而这种弹性变形在卸载后能完全消失的特征一直要维持到应力为__________ 极限的时候.残骛楼諍锩瀨濟溆塹籟。

16、在低碳钢的应力一应变图上,开始的一段直线与横坐标夹角为a,由此可知其正切tg a在数值上相当于低碳钢的值.酽锕极額閉镇桧猪訣锥。

17、金属拉伸试样在屈服时会表现出明显的__________ 变形,如果金属零件有了这种变形就必然会影响机器正常工作.彈贸摄尔霁毙攬砖卤庑。

18、金属拉伸试样在进入屈服阶段后,其光滑表面将出现与轴线成_______ 角的系统条纹,此条纹称为__________ .謀养抟箧飆鐸怼类蒋薔。

材料力学作业及答案

材料力学作业及答案
在材料力学中采用“突变”的形式来处理。在这种处理方式下,这个截面上的轴力 是不确定的,在材料力学中绘制出来的集中力作用截面附近的轴力图,如下图所示, 此时只需要求出集中力作用截面左右两条线代表的轴力值即可,因此,应该在集中 力作用截面的左右两侧取计算截面。,而不要把计算截面取在集中力的作用截面上。
【C】 就受力分析的目的而言,这样取分离体不算错,但是材料力学与理论力学不同,前
另一个方面即便是把左侧这个截面上的轴力画上去,那还要看它是否是已知的,如果这个内力你已 经求出来了,那么通过水平方向上的平衡方程是能够求出右侧截面上的未知轴力的,但是如果左侧截面 上的内力你预先还没有求出来,那么平衡方程中就会有两个未知数,解不出结果来。因此像本题所示的 单根杆件的问题,一般只用一个截面把杆件截断,取其中一部分为隔离体来列平衡方程,而不要取两个 截面。当然你说这个题目把杆件截断之后我取左侧为隔离体,而左侧有支座怎么办?那当然要把支座从 隔离体上去掉,同时用支座反力来代替,这时你得先把支座反力求出来。 3.正确答案为【B】。 【A】这个选项的问题在于没有考虑轴力的符号,轴力的正负号必须严格按照“拉为正压为负”的原则 来确定,如果你是目测的那么一定要小心,不要忘了轴力的符号;如果是取隔离体列平衡方程算的,那 么要注意,横截面上未知的(要求的那个)轴力一定按其正向(拉力)来假设,否则很容易把符号弄反。 【C】和【D】有两个共同的错误,就是在目测轴力时按照所取截面左右最靠近的外力来确定轴力,例如 BC 段中间取的计算截面的左右两侧都有一个 2F 的外力作用,因此就认为 BC 段上轴力就是 2Fo 所以,在 不熟练的情况下,一般不要通过简单的目测来确定轴力,还是得取隔离体、用平衡方程来计算。 四、 已知一杆件的轴力图如图所示,试回答以下几个问题。

材料力学第二章轴向拉伸与压缩习题答案

材料力学第二章轴向拉伸与压缩习题答案
3-10图示凸缘联轴节传递的力偶矩为 ,凸缘之间用四个对称分布在 圆周上的螺栓联接,螺栓的内径 ,螺栓材料的许用切应力 。试校核螺栓的剪切强度。
解:
设每个螺栓承受的剪力为 ,则由
可得
螺栓的切应力
MPa MPa
∴螺栓满足剪切强度条件。
3-11图示矩形截面木拉杆的接头。已知轴向拉力 ,截面的宽度 ,木材顺纹的许用挤压应力 ,顺纹的许用切应力 。试求接头处所需的尺寸l和a。
解:
1.求支反力,作剪力图和弯矩图。

2.按正应力强度条件选择工字钢型号
由 ≤ ,得到

查表选 14工字钢,其
, ,
3.切应力强度校核
满足切应力强度条件。
∴选择 14工字钢。
5-17图示木梁受移动载荷 作用。已知木材的许用正应力 ,许用切应力 , ,木梁的横截面为矩形截面,其高宽比 。试选择此梁的横截面尺寸。

可得 ≤ ①
D点受力如图(b)所示,由平衡条件可得:
CD杆受压,压力为 ,由压杆的强度条件

可得 ≤ ②
由①②可得结构的许用载荷为 。
3-8图示横担结构,小车可在梁AC上移动。已知小车上作用的载荷 ,斜杆AB为圆截面钢杆,钢的许用应力 。若载荷F通过小车对梁AC的作用可简化为一集中力,试确定斜杆AB的直径d。
截面上的剪力和弯矩为: ,
2.求1-1横截面上a、b两点的应力
5-10为了改善载荷分布,在主梁AB上安置辅助梁CD。若主梁和辅助梁的抗弯截面系数分别为 和 ,材料相同,试求a的合理长度。
解:
1.作主梁AB和辅助梁CD的弯矩图
2.求主梁和辅助梁中的最大正应力
主梁:
辅助梁:
3.求 的合理长度

轴向拉伸与压缩习题及解答

轴向拉伸与压缩习题及解答

轴向拉伸与压缩习题及解答计算题1:利用截面法,求图2.1所示简支梁m — m 面的力分量。

解:〔1〕将外力F 分解为两个分量,垂直于梁轴线的分量F sin θ,沿梁轴线的分量F cos θ. (2)求支座A 的约束反力:xF∑=0,AxF∑=cos F θB M ∑=0, Ay F L=sin 3L F θAy F =sin 3Fθ (3)切开m — m ,抛去右半局部,右半局部对左半局部的作用力N F ,S F 合力偶M 代替 〔图1.12 〕。

图 2.1 图2.1(a) 以左半段为研究对象,由平衡条件可以得到xF∑=0, N F =—Ax F =—cos F θ〔负号表示与假设方向相反〕y F ∑=0, s F =Ay F =sin 3Fθ 左半段所有力对截面m-m 德形心C 的合力距为零sin θC M ∑=0, M=AyF 2L =6FL sin θ 讨论 对平面问题,杆件截面上的力分量只有三个:和截面外法线重合的力称为轴力,矢量与外法线垂直的力偶距称为弯矩。

这些力分量根据截面法很容易求得。

在材料力学课程中主要讨论平面问题。

计算题2:试求题2-2图所示的各杆1-1和2-2横截面上的轴力,并作轴力图。

解 〔a 〕如图〔a 〕所示,解除约束,代之以约束反力,作受力图,如题2-2图〔1a 〕所示。

利用静力学平衡条件,确定约束反力的大小和方向,并标示在题2-2图〔1a 〕中。

作杆左端面的外法线n ,将受力图中各力标以正负号,凡与外法线指向一致的力标以正号,反之标以负号,轴力图是平行于杆轴线的直线。

轴力图在有轴力作用处,要发生突变,突变量等与该处轴力的数值,对于正的外力,轴力图向上突变,对于负的外力,轴力图向下突变,如题2-2图〔2a 〕所示,截面1和截面2上的轴力分别为1N F =F 和2N F =—F 。

(b)解题步骤与题2-2〔a 〕一样,杆受力图和轴力图如题2-2〔1b 〕、〔2b 〕所示。

第二章轴向拉伸与压缩

第二章轴向拉伸与压缩

第二章轴向拉伸与压缩(王永廉《材料力学》作业参考答案(第1-29题))2012-02-26 00:02:20| 分类:材料力学参答|字号订阅第二章轴向拉伸与压缩(第1-29题)习题2-1试绘制如图2-6所示各杆的轴力图。

图2-6解:由截面法,作出各杆轴力图如图2-7所示图2-7习题2-2 试计算图2-8所示结构中BC杆的轴力。

图2-8 a)解:(a)计算图2-8a中BC杆轴力截取图示研究对象并作受力图,由∑M D=0,即得BC杆轴力=25KN(拉)(b)计算图2-8 b中BC杆轴力图2-8b截取图示研究对象并作受力图,由∑MA=0,即得BC杆轴力=20KN(压)习题2-3在图2-8a中,若杆为直径的圆截面杆,试计算杆横截面上的正应力。

解:杆轴力在习题2-2中已求出,由公式(2-1)即得杆横截面上的正应力(拉)习题2-5图2-10所示钢板受到的轴向拉力,板上有三个对称分布的铆钉圆孔,已知钢板厚度为、宽度为,铆钉孔的直径为,试求钢板危险横截面上的应力(不考虑铆钉孔引起的应力集中)。

解:开孔截面为危险截面,其截面面积由公式(2-1)即得钢板危险横截面上的应力(拉)习题2-6如图2-11a所示,木杆由两段粘结而成。

已知杆的横截面面积A=1000 ,粘结面的方位角θ=45,杆所承受的轴向拉力F=10KN。

试计算粘结面上的正应力和切应力,并作图表示出应力的方向。

解:(1)计算横截面上的应力= = 10MPa(2)计算粘结面上的应力由式(2-2)、式(2-3),得粘结面上的正应力、切应力分别为cos245,=5 MPa45=sin(2*45。

)=5MPa45=其方向如图2-11b所示习题2-8 如图2-8所示,等直杆的横截面积A=40mm2,弹性模量E=200GPa,所受轴向载荷F1=1kN,F2=3kN,试计算杆内的最大正应力与杆的轴向变形。

解:(1)由截面法作出轴力图(2)计算应力由轴力图知,故得杆内的最大正应力(3)计算轴向变形轴力为分段常数,杆的轴向变形应分段计算,得杆的轴向变形习题2-9阶梯杆如图2-13a所示,已知段的横截面面积、段的横截面面积,材料的弹性模量,试计算该阶梯杆的轴向变形。

材料力学第版课后习题答案轴向拉压与伸缩

材料力学第版课后习题答案轴向拉压与伸缩

40 100
×10
=
4cm 2
Α = ab = 2a 2
a ≥ Α 2 = 1.414cm
b ≥ 2.828cm
2-7 大功率低速柴油机的气缸盖螺栓如图示,螺栓承受预紧力 P=390 kN,材料的弹性模量E= 210Gpa,求螺栓的伸长变形。
解:
∆l = Ρl1 + Ρl2 =
390
⎛ ⎜
90
+
802
arctan(0.2) = 11�20′ 。杠杆长度OA=lm,OB=5cm,拉杆BC的直径dl=1.0cm,CE杆与CD杆的直径相
同d2=2.0cm。试求(1)此时拉杆BC,以及杆CD与CE内的应力;(2)木材的弹性模量E=10GPa,计算 被压试件的缩短变形。
解:
(1)
Ν BC
= 400 ×1 = 8000Ν 0.05
2
[σ ] ≥ 4R
πd 2
d≤
4R
π [σ ] =
2 × 6000 ×10 = 7.98cm π × 600
2-15 木材试件(立方体 2 × 2 × 2 cm)在手压机内进行压缩。作用力 P=400N,其方向垂直于杠
杆OA,此杠杆可绕固定心轴 o转动,在某一时刻,拉杆 BC垂直于 OB且平分 ECD角,∠CED=
= 63.66 × sin 30°
= 55.13ΜΡa
2-4 图示结构中ABC与CD均为刚性梁,C与D均为铰接,铅垂力P=20kN作用在C铰,若(1)杆的
直径d1=1cm,(2)杆的直径d2=2cm,两杆的材料相同,E=200Gpa,其他尺寸如图示,试求(1)两杆 的应力;(2)C点的位移。
解 (1) 1 杆的应力

2020年10月自考《工程力学》2020第四章轴向拉伸与压缩习题答案及答案

2020年10月自考《工程力学》2020第四章轴向拉伸与压缩习题答案及答案

第四章轴向拉伸与压缩习题答案1. 拉杆或压杆如图所示。

试用截面法求各杆指定截面的轴力,并画出各杆的轴力图。

解:(1)分段计算轴力杆件分为2段。

用截面法取图示研究对象画受力图如图,列平衡方程分别求得:F N1=F(拉);F N2=-F(压)(2)画轴力图。

根据所求轴力画出轴力图如图所示。

2. 拉杆或压杆如图所示。

试用截面法求各杆指定截面的轴力,并画出各杆的轴力图。

解:(1)分段计算轴力杆件分为3段。

用截面法取图示研究对象画受力图如图,列平衡方程分别求得:F N1=F(拉);F N2=0;F N3=2F(拉)(2)画轴力图。

根据所求轴力画出轴力图如图所示。

3. 拉杆或压杆如图所示。

试用截面法求各杆指定截面的轴力,并画出各杆的轴力图。

解:(1)计算A端支座反力。

由整体受力图建立平衡方程:∑F x=0,2kN-4kN+6kN-F A=0F A=4kN(←)(2)分段计算轴力杆件分为3段。

用截面法取图示研究对象画受力图如图,列平衡方程分别求得:F N1=-2kN(压);F N2=2kN(拉);F N3=-4kN(压)(3)画轴力图。

根据所求轴力画出轴力图如图所示。

4. 拉杆或压杆如图所示。

试用截面法求各杆指定截面的轴力,并画出各杆的轴力图。

解:(1)分段计算轴力杆件分为3段。

用截面法取图示研究对象画受力图如图,列平衡方程分别求得:F N1=-5kN(压); F N2=10kN(拉); F N3=-10kN (压)(2)画轴力图。

根据所求轴力画出轴力图如图所示。

5. 圆截面钢杆长l=3m,直径d=25mm,两端受到F=100kN的轴向拉力作用时伸长Δl=2.5mm。

试计算钢杆横截面上的正应力σ和纵向线应变ε。

解:6. 阶梯状直杆受力如图所示。

已知AD段横截面面积A AD=1000mm2,DB段横截面面积A DB=500mm2,材料的弹性模量E=200GPa。

求该杆的总变形量Δl AB。

解:由截面法可以计算出AC,CB段轴力F NAC=-50kN(压),F NCB=30kN(拉)。

材料力学轴向拉压题目+答案详解

材料力学轴向拉压题目+答案详解

材料力学轴向拉压题目+答案详解-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2-4. 图示结构中,1、2两杆的横截面直径分别为10mm 和20mm ,试求两杆内的应力。

设两根横梁皆为刚体。

解:(1)以整体为研究对象,易见A 处的水平约束反力为零;(2)以AB 为研究对象由平衡方程知0===A B B R Y X(3)以杆BD 为研究对象由平衡方程求得1KNN N NY KNN N mC20010 01001101 021211==--===⨯-⨯=∑∑(4)杆内的应力为MPa A N MPa A N 7.63204102012710410102322223111=⨯⨯⨯===⨯⨯⨯==πσπσ2-19. 在图示结构中,设AB 和CD 为刚杆,重量不计。

铝杆EF 的l 1=1m ,A 1=500mm 2,E 1=70GPa 。

钢杆AC 的l 2=1.5m ,A 2=300mm 2,E 2=200GPa 。

若载荷作用点G 的垂直位移不得超过2.5mm 。

试求P 的数值。

解:(1)由平衡条件求出EF 和AC 杆的内力P N N N P N N AC EF AC 4332 2112=====(2)求G 处的位移22221111212243)ΔΔ23(21)ΔΔ(21Δ21ΔA E l N A E l N l l l l l l A C G +=+=+==(3)由题意kNP P P A E Pl A E Pl mml G 1125.2300102001500500107010009212143435.233222111≤∴≤⨯⨯⨯+⨯⨯⨯⨯=⨯⨯+⨯⨯≤ 2-27. 在图示简单杆系中,设AB 和AC 分别是直径 为20mm 和24mm 的圆截面杆,E=200GPa ,P=5kN ,试求A 点的垂直位移。

解:(1)以铰A 为研究对象,计算杆AB 和杆AC 的受力kN N kN N AC AB 66.3 48.4==(2)两杆的变形为()伸长mm πEA l N l ABAB AB AB 201.04201020045cos 20001048.42303=⨯⨯⨯⨯⨯==Δ ()缩短mm πEA l N l ACAC AC AC 0934.04241020030cos 20001066.32303=⨯⨯⨯⨯⨯==Δ(3)如图,A 点受力后将位移至A ’,所以A 点的垂直位移为AA ’’mmctg A A l A A AA A A mmA A ctg A A ctg A A A mm AA AA AA AA A A A A l l AB A AB AC 249.00355.0284.0 4545sin /Δ 035.0 4530A 0972.030sin /45sin /AΔΔAA ΔAA 00330043010243434321=-='''-=''-=''=∴='''∴'''+'''==-=-='==δ 又中在图中2-36. 在图示结构中,设AC 梁为刚杆,杆件1、2、3的横截面面积相等,材料相同。

轴向拉伸与压缩习题和解答1

轴向拉伸与压缩习题和解答1

轴向拉伸与压缩习题及解答一、判断改错1、构件内力的大小不但与外力大小有关.还与材料的截面形状有关。

答:错。

静定构件内力的大小之与外力的大小有关.与材料的截面无关。

2、杆件的某横截面上.若各点的正应力均为零.则该截面上的轴力为零。

答:对。

3、两根材料、长度都相同的等直柱子.一根的横截面积为1A .另一根为2A .且21A A >。

如图所示。

两杆都受自重作用。

则两杆最大压应力相等.最大压缩量也相等。

答:对。

自重作用时.最大压应力在两杆底端.即max max N All A Aνσν=== 也就是说.最大应力与面积无关.只与杆长有关。

所以两者的最大压应力相等。

最大压缩量为 2max max22N Al l l l A EA Eνν⋅∆===即最大压缩量与面积无关.只与杆长有关。

所以两杆的最大压缩量也相等。

4、受集中力轴向拉伸的等直杆.在变形中任意两个横截面一定保持平行。

所以宗乡纤维的伸长量都相等.从而在横截面上的内力是均匀分布的。

答:错 。

在变形中.离开荷载作用处较远的两个横截面才保持平行.在荷载作用处.横截面不再保持平面.纵向纤维伸长不相等.应力分布复杂.不是均匀分布的。

5、若受力物体内某电测得x 和y 方向都有线应变x ε和y ε.则x 和y 方向肯定有正应力x σ和y σ。

答:错. 不一定。

由于横向效应作用.轴在x 方向受拉(压).则有x σ;y 方向不受力.但横向效应使y 方向产生线应变.y x εενε'==-。

A 1(a) (b)二、填空题1、轴向拉伸的等直杆.杆内的任一点处最大剪应力的方向与轴线成(45)2、受轴向拉伸的等直杆.在变形后其体积将(增大)3、低碳钢经过冷做硬化处理后.它的(比例)极限得到了明显的提高。

4、工程上通常把延伸率δ>(5%)的材料成为塑性材料。

5、 一空心圆截面直杆.其内、外径之比为0.8.两端承受力力作用.如将内外径增加一倍.则其抗拉刚度将是原来的(4)倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

e1
P65 36-2
FN A
SMC = 0
FN = 2F FN A =
s=
D
8F
pd2
a
C
FCx FCy
B
(1) 令 s = sS pd2 F= sS = 37.7 kN 8 若 s = sP ( ≈ se ) pd2 F= sP = 31.4 kN 8
a
a
F
(2) 令 s = sb
pd2 F= sb = 62.8 kN 8
3 FN1 + FN2 = 0 2 1 FN2 + FN3 = F 2 FN1a Dl1 = EA FN2 2 a 3 Dl2 = EA FN3 1 a 3 Dl3 = EA
联立 求解
SMA = 0
h = 3m
q = 10 kN/m (2) 斜杆用两根等边角钢
l = 4m
A = 2A1
s=
FN
A
≤ [s ] ∴ A1 ≥ 1.044 mm2
取 ∟ 20×3 ( A1 = 1.13 mm2 )
结论!
P64 35-4
FN1 A ① 45º60º B F ②
FN2
C
SFx = 0
SFy = 0 FN1 = 0.897F FN2 = 0.732F
P62 34-4
F
n
a
FN =–F =–5 kN F 力的单位 : kN FN s= =–50 MPa A
cos2a
s
s
s
sin2a 0
s
sa
ta
sa = s
ta =
s
2
a = 0º a = 30º a = 45º a = 60º a = 90º
– 50 MPa – 37.5 MPa – 25 MPa – 12.5 MPa
P66 36-3
FN1 ① FAx A FAy FN2 ②
SMA = 0
FN1 + 2FN2 = 3F
Dl1 = Dl2 = FN1 l EA FN2 l
a
Dl1a
B
C
D F
D l2 a
且 A 相同
l
EA
∵ FN2 > FN1 ∴
代入 Dl1 = 2Dl2
补充方程! ∴ FN2 = 2FN1
s2 > s1
s2 =
FN2
A
≤ [s ]
联立 求解 FN1 = 30 kN
结论!
∴ A ≥ 6 cm2
取 A = 6 cm2
FN2 = 60 kN
P66 36-4
FN2
受力图!
FN3
SFx = 0 SFy = 0
2
FN1 1 30º
a
位移分析!
Dl1 Dl2 F Dl3
3
代入
1 3 Dl1 + Dl3 = Dl2 2 2 ∴ 3FN1 + FN3 = 4F2 FN1 = – 0.122 kN FN2 = 0.141 kN FN3 = 0.930 kN
s1 =
s2 =
FN1
A1 FN2
A2
≤ [s ]1
≤ [s ]2
F ≤ 107kN F ≤ 123kN
则 [ F ]= 107 kN
P65 36-1
F A B F
FN = 5 kN
s=
FN A
= 25 MPa
s = Ee1 g=
│e2│
s E= = 208 GPa e1
4 = = 0.267 15
P63 35-2
3 H
2h
1
D
dH F = F N3 dH
l 2l
h
A
Dl1 C dC
(1) FN1 = – 80 kN B Dl2 Dl = FN1 2h = – 0.4 mm 1 E1A1 2 FN2 = – 40 kN
E
FN1
FN3 h Dl3 = = 0.2 mm dH = dC + Dl3 = 0.6 mm E3A3 (2) Dl1 = – 0.2 mm Dl2 = – 0.4 mm Dl3 = 0.2 mm 2 │Dl │+ 1 │ dC = │Dl = 0.267 mm 1 3 3 2 位移分析! dH = dC + Dl3 = 0.467 mm
– 21.65 MPa
– 25 MPa
– 21.65 MPa 0
0
P63 35-1
FA FB A FC
FD
a
B
a 1 kN
C
a
D
FNi
FNi a Dli = EA Dli = S Dli
– 4 kN
3 kN
– 0.05 mm 0.0125 mm 0.0375 mm
0
e 呢?
e 与 Dl 区别?
Se ?
轴向拉压
习题解答
P61 34-1(1)
1 1 2 3
1 1 F 2
FN1

4F FN2 3F F F FN3 2F N图 2F 2F
Fy = 0 Fy = 0 Fy = 0
FN1 = 4F
F+ F + 2F
FN2 = 3F
FN3 = 2F
六要素
F 3 2F
P61 34-1(4)
F
1 2 3
F
FN1 FN3 F R

F
+ F
F FF F FN3
1 F
2 F
Fy = 0 Fy = 0 Fy = 0
FN1 = F FN2 = 0
3
FN2 FN图
FN3 = - F
P61 34-2 F1 = 500 N F2 = 420 N F3 = 280 N F4 = 400 N F5 = 240 N
FN3
F1 F2
A1 F3 Fx = 0 FN2 = F3 + F2 = 40 kN FN2 FN图 –2 m2 s = A2 = 2×10 = 2 MPa 2 A2 F3 F = 0 FN3 = F3 + F2 – F1 = 30 kN x FN3 –2 m2 s = A3 = 4×10 = 0.75 MPa 3 A3
dC =│Dl1│ = 0.4 mm
FN2 2h Dl2 = = – 0.4 mm E2A2 FN2 FN3 = 120 kN
ห้องสมุดไป่ตู้ P64 35-3
FBC B
A
FAx FAy
FN = FBC = 100 kN 3 pd2 (1) 斜杆用钢丝索 A = n 4 FN s= ≤ [s ] ∴ n ≥ 66.3 A 取 n = 67 或 66 C
A B F2 920 N 500 N

C F3
D
E
F1
F4
F5
640 N
+ +
240 N

FN 图
s=
FN
A
sAB = 1.25 MPa sCD = 1.6 MPa
sBC = 2.3 MPa sDE = 0.6 MPa
应力单位 : MPa
P62 34-3
3 2 1
F1 F2 A
3
F3 D
1
B
2
C
F3 Fx = 0 FN1 FN1 = F3 = 30 kN 40kN FN1 –2 m2 s = 30kN 30kN A1 = 4×10 = 0.75 MPa 1 FN2+F2 + +
相关文档
最新文档