二次函数与最值问题
二次函数相关的定义域与最值问题
二次函数相关的定义域与最值问题一.定义域为R的含参不等式题型例1.函数y=xkx2+kx+1的定义域为R,则实数k的取值范围为( )A.k<0或k>4 B.0≤k<4C.0<k<4 D.k≥4或k≤0变式:函数y=√ax²+ax+2的定义域为R,则实数a的取值范围为练习:1.函数f(x)=1ax2+4ax+3的定义域为R,求实数a的取值范围。
2.不等式ax²-2ax+3≥0的解集为R,求实数a的取值范围。
二.求二次函数在某一闭区间上的最值(定轴定区间型)例2.求函数y=x²-2x-3在x∈[-2,2]上的最大值与最小值。
练习:(1)求函数y=x²-6x+1在[0,4]的最值。
(2)求函数y=-2x²-4x+7在下列范围内的最值①x∈[-3,0]② x∈[0,4]三.含参二次函数在某一闭区间上的最值(动轴定区间型)二次函数随着参数的变化而变化,即其图像是运动的,但定义域区间是固定的,我们称这种情况为“动二次函数在定区间上的最值”例3.求函数f(x)=x²-2a x+3在x∈[0,4]上的最值变式:已知函数f(x)=-x²+2a x+1-a,在x∈[0,1]上的最大值为2,求实数a的值。
练习:求函数f(x)=-2x²+2ax+1在x∈[-1,1]上的最大值四.二次函数在动闭区间上的最值(定轴动区间型)二次函数是确定的,但它的定义域区间是随着参数的变化而变化的,我们称这种情况是“定函数在动区间上的最值”例4.求函数f(x)=x²-2x-5在x∈[t,t+1]上的最小值(其中t为常数)练习:求函数f(x)=x²-2x+3在x∈[a,a+3]上的最值课后练习1.函数f(x)的图象如图,则其最大值、最小值分别为( )A.f32,f −32B.f(0),f32C.f −32,f(0) D.f(0),f(3)2.若函数f(x)=2x+6,x∈[1,2],x+7,x∈[−1,1),则f(x)的最大值为,最小值为.3.若不等式a≤x2-4x对任意x∈[0,4]恒成立,则a的取值范围为.4.设函数y=f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f(y),f13=1.(1)求f(1)的值.(2)若存在实数m,使得f(m)=2,求m的值.(3)若f(x-2)>2,求x的取值范围.。
二次函数的最值问题与问题解决技巧
二次函数的最值问题与问题解决技巧二次函数是高中数学中一个重要的概念,它有许多实际应用并且涉及到最值问题。
解决这类问题需要一定的技巧和方法。
本文将介绍二次函数的最值问题以及解决这些问题的技巧。
一、二次函数的最值问题最值问题在数学中非常常见,它代表了在一定条件下,函数的最大值或最小值。
对于二次函数而言,最值问题可以通过确定二次函数的开口方向以及顶点位置来解决。
1. 二次函数的开口方向对于二次函数y=ax²+bx+c,其中a,b,c为常数,a不等于0。
通过a的正负可以判断二次函数的开口方向。
当a大于0时,二次函数的开口是向上的,形状像一个U;当a小于0时,二次函数的开口是向下的,形状像一个倒U。
2. 顶点的横坐标和纵坐标二次函数的最值就出现在顶点处,因此需要确定顶点的横坐标和纵坐标。
对于一般形式的二次函数y=ax²+bx+c,顶点的横坐标为x=-b/2a,可以通过对称轴求得;顶点的纵坐标为y=f(-b/2a),即将x=-b/2a代入函数中计算得到。
3. 最值问题的解答根据二次函数的开口方向和顶点的位置,可以得到最值问题的解答。
当二次函数开口向上时,顶点是函数的最小值;当二次函数开口向下时,顶点是函数的最大值。
二、解决二次函数最值问题的技巧解决二次函数最值问题的技巧主要包括图像法、配方法、导数法等。
1. 图像法通过绘制二次函数的图像,可以直观地找出函数的最值。
根据二次函数的开口方向和顶点的位置,可以判断最值是最小值还是最大值。
2. 配方法当二次函数的系数a不为1时,可以使用配方法将其转化为完全平方的形式,从而更容易找到最值。
例如对于二次函数y=ax²+bx+c,可以将x²+bx转化为(x+b/2a)²-b²/4a,然后再根据顶点的位置判断最值。
3. 导数法通过对二次函数求导,可以得到导函数,进而求出极值点。
导数为0处的x值就是函数的极值点,通过计算可以得到相应的y值。
二次函数的最值与零点问题解析
二次函数的最值与零点问题解析二次函数是一种常见的数学函数,其表达式为f(x) = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。
本文将对二次函数的最值与零点问题展开详细的解析,以帮助读者更好地理解与应用二次函数。
一、二次函数的最值问题1. 最值定义在数学中,最大值与最小值称为最值。
对于二次函数f(x) = ax^2 + bx + c,最值即为函数取得最大值或最小值的点。
2. 寻找最值的方法为了找到二次函数的最值,我们可以通过以下步骤进行:a) 首先,我们需要确定a的正负性。
如果a大于0,则二次函数开口向上,即为一个“U”形,并且函数的最小值出现在顶点上。
如果a小于0,则二次函数开口向下,形成一个“∩”形,并且函数的最大值出现在顶点上。
b) 其次,我们可以通过求导数的方法来确定顶点的横坐标。
对二次函数f(x)求导后,得到f'(x) = 2ax + b。
令f'(x) = 0,解得x = -b / (2a),即为顶点的横坐标。
c) 最后,将横坐标代入原二次函数,求得纵坐标即为函数的最值。
3. 示例举例说明,对于二次函数f(x) = 2x^2 - 4x + 1,我们按照上述步骤来找到函数的最小值:a) 由于a = 2大于0,函数开口向上,即为一个“U”形。
b) 求导数f'(x) = 4x - 4,并令f'(x) = 0,解得x = 1,即顶点横坐标为1。
c) 将x = 1代入原二次函数,得到f(1) = 2(1)^2 - 4(1) + 1 = -1,故函数的最小值为-1。
二、二次函数的零点问题1. 零点定义在数学中,二次函数的零点即为函数取值为0的横坐标,即f(x) = 0的解。
2. 寻找零点的方法为了寻找二次函数的零点,我们可以使用以下两种方法:a) 因式分解法:当二次函数可以因式分解时,我们可以通过将f(x) = 0进行因式分解,然后令每一个因子等于0,求得零点。
二次函数与最值问题(含答案)
二次函数与最值问题1.如图,二次函数y=-x2+2(m-2)x+3的图象与x、y轴交于A、B、C三点,其中A(3,0),抛物线的顶点为D.(Ⅰ)求m的值及顶点D的坐标;(Ⅱ)当a≤x≤b时,函数y的最小值为74,最大值为4,求a,b应满足的条件;(Ⅲ)在y轴右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由.解:(Ⅰ)把A(3,0)代入y=-x2+2(m-2)x+3,得-9+6(m-2)+3=0,解得m=3,则二次函数为y=-x2+2x+3,∵y=-x2+2x+3=-(x-1)2+4,∴顶点D的坐标为(1,4);(Ⅱ)把y=74代入y=-x2+2x+3中,得74=-x2+2x+3,解得x1=-12,x2=25,又∵函数y的最大值为4,顶点D的坐标为(1,4),结合图象知-12≤a≤1.当a=-12时,1≤b≤25,当-12<a≤1时,b=25;(Ⅲ)存在点P,使得△PDC是等腰三角形,当x=0时,y=3,∴点C坐标为(0,3).当△PDC是等腰三角形时,分三种情况:①如解图①,当DC=DP时,由抛物线的对称性知:点P与点C关于抛物线的对称轴x=1对称,∴点P坐标为(2,3);②如解图②,当PC=PD时,则线段CD的垂直平分线l与抛物线的交点即为所求的点P, 过点D作x轴的平行线交y轴于点H,过点P作PM⊥y轴于点M,PN⊥DH的延长线于点N,∵HD=HC=1,PC=PD,∴HP是线段CD的垂直平分线.∵HD=HC,HP⊥CD,∴HP平分∠MHN,∵PM⊥y轴于点M,PN⊥HD的延长线于点N, ∴PM=PN.设P(m,-m2+2m+3),则m=4-(-m2+2m+3),解得m=253±,∴点P的坐标为(253-,255+)(解图中未标记此点)或(253+,255-);③如解图③,当CD=CP时,点P在y轴左侧,不符合题意.综上所述,所求点P的坐标为(2,3)或(253-,255+)或(253+,255-).图①图②图③第1题解图2.已知抛物线y=ax2+bx+c(a<0)过(m,b),(m+1,a)两点,(Ⅰ)若m=1,c=1,求抛物线的解析式;(Ⅱ)若b≥a,求m的取值范围;(Ⅲ)当b≥a,m<0时,二次函数y=ax2+bx+c有最大值-2,求a的最大值. 解:(Ⅰ)∵m=1,c=1,∴抛物线的解析式为y=ax2+bx+1(a<0)过(1,b),(2,a)两点,∴1421a b ba b a++=⎧⎨++=⎩,解得11ab=-⎧⎨=⎩,∴抛物线的解析式为y=-x2+x+1;(Ⅱ)依题意得22(1)(1)am bm c ba mb mc a⎧++=⎪⎨++++=⎪⎩①②,由②-①得b=-am, ∵b≥a,∴-am≥a,∵a<0,∴m≥-1;(Ⅲ) 由(Ⅱ)得b=-am,代入①得am2-am2+c=b,∴c=b=-am,∵b≥a,m<0,∴-1≤m<0,∵二次函数y=ax2+bx+c有最大值-2,∴244ac ba-=-2,∴8a=m2+4m,∴8a= (m+2)2-4,∵-1≤m<0,∴-3≤(m+2)2-4<0,∴a≤-8 3 ,∴a的最大值为-8 3 .3.平面直角坐标系xOy中,抛物线y=mx2-2m2x+2交y轴于A点,交直线x=4于B点. (Ⅰ)求抛物线的对称轴(用含m的代数式表示);(Ⅱ)若AB∥x轴,求抛物线的解析式;(Ⅲ)若抛物线在A,B之间的部分任取一点P(x p,y p),一定满足y p≤2,求m的取值范围.∴抛物线的对称轴为直线x=m;(Ⅱ)当x=0时,y=mx2-2m2x+2=2,∴点A(0,2).∵AB∥x轴,且点B在直线x=4上,∴点B(4,2),抛物线的对称轴为直线x=2,∴m=2,∴抛物线的解析式为y=2x2-8x+2;(Ⅲ)当m>0时,如解图①,∵A(0,2),∴要使0≤x p≤4时,始终满足y p≤2,只需使抛物线y=mx2-2m2x+2的对称轴与直线x=2重合或在直线x=2的右侧.∴m≥2;当m<0时,如解图②,m<0时,y p≤2恒成立.综上所述,m的取值范围为m<0或m≥2.第3题解图4.已知抛物线y=ax2+bx+c的顶点为(2,5),且与y轴交于点C(0,1). (Ⅰ)求抛物线的表达式;(Ⅱ)若-1≤x≤3,试求y的取值范围;(Ⅲ)若M(n2-4n+6,y1)和N(-n2+n+74,y2)是抛物线上的不重合的两点,试判断y1与y2的大小,并说明理由.解:(Ⅰ)∵抛物线y=ax2+bx+c的顶点为(2,5),∴设抛物线的表达式为:y=a(x-2)2+5,把(0,1)代入得:a(0-2)2+5=1,a=-1,∴抛物线的表达式为:y=-(x-2)2+5=-x2+4x+1;(Ⅱ)∵抛物线的顶点为(2,5),a=-1,对称轴为直线x=2,且-1≤x≤3,∴当x=-1时,y有最小值,最小值为y=-(-1-2)2+5=-4,当x=2时,y有最大值,最大值为y=5,∴y的取值范围是-4≤y≤5;(Ⅲ)∵n2-4n+6=(n-2)2+2≥2,-n2+n+74=-(n-12)2+2≤2,∴点M在抛物线对称轴右侧,点N在抛物线对称轴左侧,∵N(-n2+n+74,y2),∴点N关于对称轴对称的点坐标为(n2-n+94,y2),∵在抛物线对称轴右侧,y随x的增大而减小,∴①当n2-4n+6>n2-n+94时,即n<45时,y1<y2;②当n2-4n+6=n2-n+94时,即n=45时,y1=y2;③当n2-4n+6<n2-n+94时,即n>45时,y1>y2.和(m-b, m2-mb+n),其中a,b,c,m,n为实数,且a,m不为0.(Ⅰ)求c的值;(Ⅱ)求证:抛物线y=ax2+bx+c与x轴有两个交点;(Ⅲ)当-1≤x≤1时,设抛物线y=ax2+bx+c上与x轴距离最大的点为P(x0,y0),求这时|y0|的最小值.把点(m-b,m2-mb+n)代入抛物线,得:a(m-b)2+b(m-b)+c=m2-mb+n∴a(m-b)2+b(m-b)=m2-mb,am2-2abm+ab2+bm-b2-m2+mb=0,(a-1)m2-(a-1)•2bm+(a-1)b2=0,(a-1)(m2-2bm+b2)=0,(a-1)(m-b)2=0,若∴a=1,∴抛物线y=ax2+bx+c与x轴有两个交点;x轴距离最大的点的纵坐标为h,在x轴下方与x轴距离最大的点是(-1,y0),∴|H|>|h|,当b=0时等号成立,在x轴上方与x轴距离最大的点是(-1,y0),在x 轴下方与x 轴距离最大的点是(1,y 0),∴|H |>|h |,6.在平面直角坐标系中,直线l :y =x +3与x 轴交于点A ,抛物线C:y =x 2+mx +n 的图象经过点A .(Ⅰ)当m =4时,求n 的值;(Ⅱ)设m =-2,当-3≤x ≤0时,求二次函数y =x 2+mx +n 的最小值;(Ⅲ)当-3≤x ≤0时,若二次函数y =x 2+mx +n 时的最小值为-4,求m 、n 的值. 解:(Ⅰ)当y =x +3=0时,x =-3,∴点A 的坐标为(-3,0).∵二次函数y =x 2+mx +n 的图象经过点A ,∴0=9-3m +n,即n =3m -9,∴当m =4时,n =3m -9=3;当m =-2时,对称轴为x =1,n =3m -9=-15,∴当-3≤x ≤0时,y 随x 的增大而减小,∴当x =0时,二次函数y =x 2+mx +n 取得最小值,最小值为-15.在-3≤x ≤0范围内,y 随x 的增大而增大,当x =-3时,y 取得最小值0,不符合题意;∵二次函数最小值为-4,解得:2 3m n -⎧⎨⎩==或1021m n ⎧⎨⎩==(舍去),∴m =2,n =-3;∴4930n m n --+⎧⎪⎨⎪⎩==,综上所述:m =2,n =-3.7.在平面直角坐标系中,抛物线y =x 2-2x +c (c 为常数)的对称轴为x =1.(Ⅰ)当c =-3时,点(x 1,y 1)在抛物线y=x 2-2x +c 上,求y 1的最小值;∴B (2m ,0),∵二次函数y =x 2-2x +c 的对称轴为x =1,∵点A 在抛物线y =x 2-2x +c 上, ②当点A 在原点的左侧,点B 在原点的右侧时,如解图②,设A (-n ,0),∵OA =12OB ,且点A 、B 在原点的两侧, ∴B (2n ,0),由抛物线的对称性得n +1=2n -1,解得n =2,∴A (-2,0),∵点A 在抛物线y =x 2-2x +c 上,∴0=4+4+c ,解得c =-8,此时抛物线的解析式为y =x 2-2x -8,综上,抛物线的解析式为y =x 2-2x +89或y =x 2-2x -8; (Ⅲ)∵抛物线y =x 2-2x +c 与x 轴有公共点,∴对于方程x 2-2x +c =0,判别式b 2-4ac =4-4c ≥0,∴c ≤1.当x =-1时,y =3+c ;当x =0时,y =c ,∵抛物线的对称轴为x =1,且当-1<x <0时,抛物线与x 轴有且只有一个公共点, ∴3+c >0且c <0,解得-3<c <0,综上,当-1<x <0时,抛物线与x 轴有且只有一个公共点时,c 的取值范围为-3<c <0.第7题解图8.已知抛物线 y =(m -1)x 2+(m -2)x -1与x 轴交于A 、B 两点.(Ⅰ)求m 的取值范围;(Ⅱ)若m <0,且点A 在点B 的左侧,OA :OB =3:1,试确定抛物线的解析式;(Ⅲ)设(Ⅱ)中抛物线与y 轴的交点为C ,过点C 作直线l ∥x 轴,将抛物线在y 轴右侧的部分沿直线l 翻折,抛物线的其余部分保持不变,得到一个新图象.当直线y =-x +b 与新图象只有一个公共点P (x 0,y 0)且 y 0≥-5时,求b 的取值范围.解:(Ⅰ)∵抛物线y =(m -1)x 2+(m -2)x -1与x 轴交于A 、B 两点,∴()210241)0(m m m -≠-+⎩-⎧⎨>①②, 由①得m ≠1,由②得m ≠0,∴m 的取值范围是m ≠0且m ≠1;(Ⅱ)∵点A 、B 是抛物线y =(m -1)x 2+(m -2)x -1与x 轴的交点,∴令y =0,即 (m -1)x 2+(m -2)x -1=0.∴新图象经过点D (-2,-5).当直线y =-x +b 经过D 点时,可得b =-7. 当直线y =-x +b 经过C 点时,可得b =-1. 当直线y =-x +b (b >−1)与函数y =-3x 2−4x −1的图象仅有一个公共点P (x 0,y 0)时,得-x 0+b =-3x 02−4x 0−1.整理得 3x 02+3x 0+b +1=0.第8题解图9.如图,已知c <0,抛物线y =x 2+bx +c 与x 轴交于A (x 1,0),B (x 2,0)两点(x 2>x 1),与y 轴交于点C .(Ⅰ)若x 2=1,BC =5,求函数y =x 2+bx +c 的最小值; (Ⅱ)过点A 作AP ⊥BC ,垂足为P (点P 在线段BC 上),AP 交y 轴于点M .若OA OM=2,求抛物线y =x 2+bx +c 顶点的纵坐标随横坐标变化的函数解析式,并直接写出自变量的取值范围.第9题图解:(Ⅰ)∵x 2=1,∴OB =1,∵BC =5,∴OC =22BC OB =2,∴C (0,-2),把B (1,0),C (0,-2)代入y =x 2+bx +c ,得:0=1+b -2,解得:b =1,∴抛物线的解析式为:y =x 2+x -2.转化为y =(x +12)2-94; ∴函数y =x 2+bx +c 的最小值为-94; (Ⅱ)∵∠OAM +∠OBC =90°,∠OCB +∠OBC =90°,∴∠OAM =∠OCB ,又∵∠AOM =∠BOC =90°,∴△AOM∽△COB,BC上的x最小取值,使P、C、M重合,满足点P在线段根据根与系数的关系,对于x2+bx+c=0,-1,由c=2b-4,解得c=。
二次函数求最值的六种考法(含答案)
二次函数与最值的六种考法-重难点题型【题型1 二次函数中的定轴定区间求最值】【例1】(2021春•瓯海区月考)已知二次函数y=﹣x2+2x+4,关于该函数在﹣2≤x≤2的取值范围内,下列说法正确的是()A.有最大值4,有最小值0B.有最大值0,有最小值﹣4C.有最大值4,有最小值﹣4D.有最大值5,有最小值﹣4【解题思路】根据题目中的函数解析式和二次函数的性质,可以得到该函数的对称轴和开口方向,然后根据﹣2≤x≤2,即可得到相应的最大值和最小值,从而可以解答本题.【解答过程】解:∵二次函数y=﹣x2+2x+4=﹣(x﹣1)2+5,∴该函数的对称轴是直线x=1,函数图象开口向下,∴当﹣2≤x≤2时,x=1时取得最大值5,当x=﹣2时,取得最小值﹣4,故选:D.【变式1-1】(2020秋•龙沙区期中)当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,则m=.【解题思路】根据题目中的函数解析式和二次函数的性质,可以求得m的值,本题得以解决.【解答过程】解:∵二次函数y=x2﹣3x+m=(x−32)2+m−94,∴该函数开口向上,对称轴为x=3 2,∵当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,∴当x=﹣1时,该函数取得最大值,此时5=1+3+m,解得m=1,故答案为:1.【变式1-2】(2021•哈尔滨模拟)已知二次函数y=x2﹣4x+3,当自变量满足﹣1≤x≤3时,y的最大值为a,最小值为b,则a﹣b的值为.【解题思路】根据题目中的函数解析式和二次函数的性质,可以得到自变量满足﹣1≤x≤3时,x=﹣1时取得最大值,x=2时取得最小值,然后即可得到a、b的值,从而可以求得a﹣b的值,本题得以解决.【解答过程】解:∵二次函数y=x2﹣4x+3=(x﹣2)2﹣1,∴该函数图象开口向上,对称轴为直线x=2,∵当自变量满足﹣1≤x≤3时,y的最大值为a,最小值为b,∴当x=﹣1时,取得最大值,当x=2时,函数取得最小值,∴a=1+4+3=8,b=﹣1,∴a﹣b=8﹣(﹣1)=8+1=9,故答案为:9.【变式1-3】(2020秋•番禺区校级期中)若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m=.【解题思路】根据题意画出函数图象,即可由此找到m 和M 的值,从而求出M ﹣m 的值. 【解答过程】解:原式可化为y =(x ﹣3)2﹣4, 可知函数顶点坐标为(3,﹣4), 当y =0时,x 2﹣6x +5=0, 即(x ﹣1)(x ﹣5)=0, 解得x 1=1,x 2=5. 如图:m =﹣4,当x =6时,y =36﹣36+5=5,即M =5. 则M ﹣m =5﹣(﹣4)=9.故答案为9.【题型2 二次函数中的动轴定区间求最值】【例2】(2021•雁塔区校级模拟)已知二次函数y =mx 2+2mx +1(m ≠0)在﹣2≤x ≤2时有最小值﹣2,则m =( ) A .3B .﹣3或38C .3或−38D .﹣3或−38【解题思路】先求出对称轴为x =﹣1,分m >0,m <0两种情况讨论解答即可求得m 的值. 【解答过程】解:∵二次函数y =mx 2+2mx +1=m (x +1)2﹣m +1, ∴对称轴为直线x =﹣1, ①m >0,抛物线开口向上,x =﹣1时,有最小值y =﹣m +1=﹣2, 解得:m =3;②m <0,抛物线开口向下,∵对称轴为直线x =﹣1,在﹣2≤x ≤2时有最小值﹣2, ∴x =2时,有最小值y =4m +4m +1=﹣2,解得:m =−38; 故选:C .【变式2-1】(2021•瓯海区模拟)已知二次函数y =ax 2﹣4ax ﹣1,当x ≤1时,y 随x 的增大而增大,且﹣1≤x ≤6时,y 的最小值为﹣4,则a 的值为( ) A .1B .34C .−35D .−14【解题思路】根据二次函数y =ax 2﹣4ax ﹣1,可以得到该函数的对称轴,再根据当x ≤1时,y 随x 的增大而增大,可以得到a 的正负情况,然后根据﹣1≤x ≤6时,y 的最小值为﹣4,即可得到a 的值. 【解答过程】解:∵二次函数y =ax 2﹣4ax ﹣1=a (x ﹣2)2﹣4a ﹣1, ∴该函数的对称轴是直线x =2, 又∵当x ≤1时,y 随x 的增大而增大, ∴a <0,∵当﹣1≤x ≤6时,y 的最小值为﹣4, ∴x =6时,y =a ×62﹣4a ×6﹣1=﹣4, 解得a =−14, 故选:D .【变式2-2】(2021•章丘区模拟)已知二次函数y =2ax 2+4ax +6a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而减小,且﹣2≤x ≤1时,y 的最小值为15,则a 的值为( ) A .1或﹣2B .−√2或√2C .﹣2D .1【解题思路】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向下a <0,然后由﹣2≤x ≤1时,y 的最小值为15,可得x =1时,y =15,即可求出a . 【解答过程】解:∵二次函数y =2ax 2+4ax +6a 2+3(其中x 是自变量), ∴对称轴是直线x =−4a2×2a=−1, ∵当x ≥2时,y 随x 的增大而减小, ∴a <0,∵﹣2≤x ≤1时,y 的最小值为15, ∴x =1时,y =2a +4a +6a 2+3=15, ∴6a 2+6a ﹣12=0, ∴a 2+a ﹣2=0,∴a =1(不合题意舍去)或a =﹣2. 故选:C .【变式2-3】(2021•滨江区三模)已知二次函数y =12(m ﹣1)x 2+(n ﹣6)x +1(m ≥0,n ≥0),当1≤x ≤2时,y 随x 的增大而减小,则mn 的最大值为( ) A .4B .6C .8D .494【解题思路】由二次函数解析式求出对称轴直线方程,分类讨论抛物线开口向下及开口向上的m ,n 的取值范围,将mn 转化为含一个未知数的整式求最值.【解答过程】解:抛物线y =12(m ﹣1)x 2+(n ﹣6)x +1的对称轴为直线x =6−nm−1, ①当m >1时,抛物线开口向上, ∵1≤x ≤2时,y 随x 的增大而减小, ∴6−n m−1≥2,即2m +n ≤8.解得n ≤8﹣2m , ∴mn ≤m (8﹣2m ),m (8﹣2m )=﹣2(m ﹣2)2+8, ∴mn ≤8.②当0≤m <1时,抛物线开口向下, ∵1≤x ≤2时,y 随x 的增大而减小, ∴6−n m−1≤1,即m +n ≤7,解得m ≤7﹣n , ∴mn ≤n (7﹣n ),n (7﹣n )=﹣(n −72)2+494, ∴mn ≤494, ∵0≤m <1, ∴此情况不存在.综上所述,mn 最大值为8. 故选:C .【题型3 二次函数中的定轴动区间求最值】【例3】(2020秋•马鞍山期末)当a﹣1≤x≤a时,函数y=x2﹣2x+1的最小值为1,则a的值为.【解题思路】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a﹣1≤x≤a时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答过程】解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a﹣1≤x≤a时,函数有最小值1,∴a﹣1=2或a=0,∴a=3或a=0,故答案为:0或3.【变式3-1】(2021•济南模拟)函数y=﹣x2+4x﹣3,当﹣1≤x≤m时,此函数的最小值为﹣8,最大值为1,则m的取值范围是()A.0≤m<2B.0≤m≤5C.m>5D.2≤m≤5【解题思路】根据题目中的函数解析式和二次函数的性质,可以求得m的取值范围.【解答过程】解:∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴该函数图象开口向下,对称轴是直线x=2,顶点坐标为(2,1),∴x=﹣1和x=5对应的函数值相等,∵当﹣1≤x≤m时,此函数的最小值为﹣8,最大值为1,当x=﹣1时,y=﹣8,∴2≤m≤5,故选:D.【变式3-2】(2021•宁波模拟)若二次函数y=ax2﹣x+2的图象经过点(2,﹣1),当t≤x≤2时,y有最大值3,最小值﹣1,则t的取值范围应是()A.﹣6≤t≤2B.t≤﹣2C.﹣6≤t≤﹣2D.﹣2≤t≤2【解题思路】根据二次函数y=ax2﹣x+2的图象经过点(2,﹣1),可以求得a的值,然后即可得到该函数的解析式,再根据二次函数的性质和当t≤x≤2时,y有最大值3,最小值﹣1,即可得到t的取值范围.【解答过程】解:∵二次函数y=ax2﹣x+2的图象经过点(2,﹣1),∴﹣1=a×22﹣2+2,解得a=−1 4,∴y=−14x2﹣x+2=−14(x+2)2+3,∴该函数的图象开口向下,对称轴是直线x=﹣2,当x=﹣2时,该函数取得最大值3,∵当t≤x≤2时,y有最大值3,最小值﹣1,当x=2时,y=﹣1,∴﹣6≤t≤﹣2,故选:C.【变式3-3】(2021•莱芜区二模)已知二次函数y=(x+1)2﹣4,当a≤x≤b且ab<0时,y的最小值为2a,最大值为2b,则a+b的值为()A.2√3B.−72C.√3−2D.0【解题思路】根据a的取值范围分﹣1≤a<0,﹣b﹣2≤a<﹣1,a<﹣b﹣2三种情况讨论,求出满足题目条件的情况即可.【解答过程】解:∵a≤x≤b且ab<0,∴a,b异号,∴a<0,b>0,由二次函数的对称性,b关于对称轴的对称点为﹣b﹣2,若﹣1≤a<0,则(a+1)2﹣4=2a,解得a=−√3(舍),若﹣b﹣2≤a<﹣1,则﹣4=2a,a=﹣2,且(b+1)2﹣3=2b,解得b=√3,∴a+b=√3−2,若a<﹣b﹣2,则2a=﹣4,a=﹣2,2b=(a+1)2﹣4=﹣3,∴b=−32(舍),故选:C.【题型4 二次函数中求线段最值】【例4】(2020春•海淀区校级期末)如图,抛物线y=x2+5x+4与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接AC,点P在线段AC上,过点P作x轴的垂线交抛物线于点Q,则线段PQ长的最大值为.【解题思路】先解方程x2+5x+4=0得A(﹣4,0),再确定C(0,4),则可利用待定系数法求出直线AC的解析式为y=x+4,设P(t,t+4)(﹣4≤t≤0),Q(t,t2+5t+4),所以PQ=t+4﹣(t2+5t+4),然后利用二次函数的性质解决问题.【解答过程】解:当y=0时,x2+5x+4=0,解得x1=﹣4,x2=﹣1,则A(﹣4,0),B(﹣1,0),当x=0时,y=x2+5x+4=4,则C(0,4),设直线AC的解析式为y=kx+b,把A(﹣4,0),C(0,4)代入得{−4k+b=0b=4,解得{k=1b=4,∴直线AC的解析式为y=x+4,设P(t,t+4)(﹣4≤t≤0),则Q(t,t2+5t+4),∴PQ=t+4﹣(t2+5t+4)=﹣t2﹣4t=﹣(t+2)2+4,∴当t=﹣2时,PQ有最大值,最大值为4.故答案为4.【变式4-1】(2020秋•镇平县期末)如图,直线y=−34x+3与x轴交于点C,与y轴交于点B,抛物线y=−38x 2+34x +3经过B ,C 两点,点E 是直线BC 上方抛物线上的一动点,过点E 作y 轴的平行线交直线BC 于点M ,则EM 的最大值为 .【解题思路】设出E 的坐标,表示出M 坐标,进而表示出EM ,化成顶点式即可求得EM 的最大值. 【解答过程】解:∵点E 是直线BC 上方抛物线上的一动点,∴点E 的坐标是(m ,−38m 2+34m +3),点M 的坐标是(m ,−34m +3),∴EM =−38m 2+34m +3﹣(−34m +3)=−38m 2+32m =−38(m 2﹣4m )=−38(m ﹣2)2+32, ∴当m =2时,EM 有最大值为32,故答案为32.【变式4-2】(2021•埇桥区模拟)对称轴为直线x =﹣1的抛物线y =x 2+bx +c ,与x 轴相交于A ,B 两点,其中点A 的坐标为(﹣3,0). (1)求点B 的坐标.(2)点C 是抛物线与y 轴的交点,点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.【解题思路】(1)利用二次函数对称性即可得出B 点坐标;(2)首先利用待定系数法求二次函数解析式,进而求出直线AC 的解析式,再利用QD =﹣x ﹣3﹣(x 2+2x ﹣3)进而求出最值.【解答过程】解:(1)∵点A (﹣3,0)与点B 关于直线x =﹣1对称, ∴点B 的坐标为(1,0). (2)∵a =1,∴y =x 2+bx +c .∵抛物线过点(﹣3,0),且对称轴为直线x =﹣1, ∴{9−3b +c =0−b2=−1∴解得:{b =2c =−3,∴y =x 2+2x ﹣3,且点C 的坐标为(0,﹣3). 设直线AC 的解析式为y =mx +n , 则{−3m +n =0n =−3, 解得:{m =−1n =−3,∴y =﹣x ﹣3如图,设点Q 的坐标为(x .y ),﹣3≤x ≤0.则有QD =﹣x ﹣3﹣(x 2+2x ﹣3)=﹣x 2﹣3x =﹣(x +32)2+94∵﹣3≤−32≤0,∴当x =−32时,QD 有最大值94.∴线段QD 长度的最大值为94.【变式4-3】(2020秋•滨海新区期末)如图,在平面直角坐标系中,已知抛物线y =ax 2+bx +52与x 轴交于A(5,0),B(﹣1,0)两点,与y轴交于点C.(Ⅰ)求抛物线的解析式;(Ⅱ)若点M是抛物线的顶点,连接AM,CM,求△ACM的面积;(Ⅲ)若点P是抛物线上的一动点,过点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为点F,连接EF,当线段EF的长度最短时,求出点P的坐标.【解题思路】(Ⅰ)用待定系数法即可求解;(Ⅱ)△AMC的面积=S△MHC+S△MHA=12×MH×OA,即可求解;(Ⅲ)点D在直线AC上,设点D(m,−12m+52),由题意得,四边形OEDF为矩形,故EF=OD,即当线段EF的长度最短时,只需要OD最短即可,进而求解.【解答过程】解:(Ⅰ)令x=0,则y=52,即C(0,52)设抛物线的表达式为y=a(x﹣x1)(x﹣x2)=a(x﹣5)(x+1),将点C的坐标代入上式得:52=a(0﹣5)(0+1),解得a=−1 2,故抛物线的表达式为y=−12(x﹣5)(x+1)=−12x2+2x+52;(Ⅱ)由抛物线的表达式得顶点M(2,92),过点M作MH∥y轴交AC于点H,设直线AC 的表达式为y =kx +t ,则{t =520=5k +t, 解得{k =−12t =52, 故直线AC 的表达式为y =−12x +52,当x =2时,y =32,则MH =92−32=3,则△AMC 的面积=S △MHC +S △MHA =12×MH ×OA =12×3×5=152; (Ⅲ)点D 在直线AC 上,设点D (m ,−12m +52),由题意得,四边形OEDF 为矩形,故EF =OD ,即当线段EF 的长度最短时,只需要OD 最短即可,则EF 2=OD 2=m 2+(−12m +52)2=54m 2−52m +254,∵54>0,故EF 2存在最小值(即EF 最小),此时m =1, 故点D (1,2),∵点P 、D 的纵坐标相同,故2=−12x 2+2x +52,解得x =2±√5,故点P 的坐标为(2+√5,2)或(2−√5,2).【题型5 二次函数中求线段和最值】【例5】(2020秋•安居区期末)如图,在抛物线y =﹣x 2上有A ,B 两点,其横坐标分别为1,2,在y 轴上有一动点C ,当BC +AC 最小时,则点C 的坐标是( )A .(0,0)B .(0,﹣1)C .(0,2)D .(0,﹣2)【解题思路】利用二次函数图象上点的坐标特征可求出点A ,B 的坐标,作点B 关于y 轴的对称点B ′,连接AB ′交y 轴于点C ,此时BC +AC 最小,由点B 的坐标可得出点B ′的坐标,由点A ,B ′的坐标,利用待定系数法可求出直线AB ′的解析式,再利用一次函数图象上点的坐标特征,即可求出点C 的坐标.【解答过程】解:当x =1时,y =﹣12=﹣1,∴点A 的坐标为(1,﹣1);当x =2时,y =﹣22=﹣4,∴点B 的坐标为(2,﹣4).作点B 关于y 轴的对称点B ′,连接AB ′交y 轴于点C ,此时BC +AC 最小,如图所示.∵点B 的坐标为(2,﹣4),∴点B ′的坐标为(﹣2,﹣4).设直线AB ′的解析式为y =kx +b (k ≠0),将A (1,﹣1),B (﹣2,﹣4)代入y =kx +b 得:{k +b =−1−2k +b =−4, 解得:{k =1b =−2, ∴直线AB ′的解析式为y =x ﹣2.当x =0时,y =0﹣2=﹣2,∴点C 的坐标为(0,﹣2),∴当BC +AC 最小时,点C 的坐标是(0,﹣2).故选:D .【变式5-1】(2021•铁岭模拟)如图,已知抛物线y =﹣x 2+px +q 的对称轴为x =﹣3,过其顶点M 的一条直线y =kx +b 与该抛物线的另一个交点为N (﹣1,1).要在坐标轴上找一点P ,使得△PMN 的周长最小,则点P 的坐标为( )A .(0,2)B .(43,0)C .(0,2)或(43,0)D .以上都不正确【解题思路】首先,求得抛物线的解析式,根据抛物线解析式求得M 的坐标;欲使△PMN 的周长最小,MN 的长度一定,所以只需(PM +PN )取最小值即可.然后,过点M 作关于y 轴对称的点M ′,连接M ′N ,M ′N 与y 轴的交点即为所求的点P (如图1);过点M 作关于x 轴对称的点M ′,连接M ′N ,则只需M ′N 与x 轴的交点即为所求的点P (如图2).【解答过程】解:如图,∵抛物线y =﹣x 2+px +q 的对称轴为x =﹣3,点N (﹣1,1)是抛物线上的一点, ∴{−p −2=−31=−1−p +q, 解得{p =−6q =−4. ∴该抛物线的解析式为y =﹣x 2﹣6x ﹣4=﹣(x +3)2+5,∴M (﹣3,5).∵△PMN 的周长=MN +PM +PN ,且MN 是定值,所以只需(PM +PN )最小.如图1,过点M 作关于y 轴对称的点M ′,连接M ′N ,M ′N 与y 轴的交点即为所求的点P .则M ′(3,5).设直线M ′N 的解析式为:y =ax +t (a ≠0),则{5=3a +t 1=−a +t, 解得{a =1t =2, 故该直线的解析式为y =x +2.当x =0时,y =2,即P (0,2).同理,如图2,过点M 作关于x 轴对称的点M ′,连接M ′N ,则只需M ′N 与x 轴的交点即为所求的点P (−43,0).如果点P 在y 轴上,则三角形PMN 的周长=4√2+MN ;如果点P 在x 轴上,则三角形PMN 的周长=2√10+MN ;所以点P 在(0,2)时,三角形PMN 的周长最小.综上所述,符合条件的点P 的坐标是(0,2).故选:A .【变式5-2】(2021•包头)已知抛物线y =x 2﹣2x ﹣3与x 轴交于A ,B 两点(点A 在点B 的左侧)与y 轴交于点C ,点D (4,y )在抛物线上,E 是该抛物线对称轴上一动点,当BE +DE 的值最小时,△ACE 的面积为 .【解题思路】解方程x 2﹣2x ﹣3=0得A (﹣1,0),B (3,0),则抛物线的对称轴为直线x =1,再确定C (0,﹣3),D (4,5),连接AD 交直线x =1于E ,交y 轴于F 点,如图,利用两点之间线段最短可判断此时BE +DE 的值最小,接着利用待定系数法求出直线AD 的解析式为y =x +1,则F (0,1),然后根据三角形面积公式计算.【解答过程】解:当y =0时,x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,则A (﹣1,0),B (3,0), 抛物线的对称轴为直线x =1,当x =0时,y =x 2﹣2x ﹣3=﹣3,则C (0,﹣3),当x =4时,y =x 2﹣2x ﹣3=5,则D (4,5),连接AD 交直线x =1于E ,交y 轴于F 点,如图,∵BE +DE =EA +DE =AD ,∴此时BE +DE 的值最小,设直线AD 的解析式为y =kx +b ,把A (﹣1,0),D (4,5)代入得{−k +b =04k +b =5,解得{k =1b =1, ∴直线AD 的解析式为y =x +1,当x =1时,y =x +1=2,则E (1,2),当x =0时,y =x +1=1,则F (0,1),∴S △ACE =S △ACF +S △ECF =12×4×1+12×4×1=4. 故答案为4.【变式5-3】(2021•涪城区模拟)如图,抛物线y =53x 2−203x +5与x 轴分别交于A 、B 两点(点A 在点B 的左侧),与y 轴交于C ,在其对称轴上有一动点M ,连接MA 、MC 、AC ,则当△MAC 的周长最小时,点M 的坐标是 .【解题思路】点A 关于函数对称轴的对称点为点B ,连接CB 交函数对称轴于点M ,则点M 为所求点,即可求解.【解答过程】解:点A 关于函数对称轴的对称点为点B ,连接CB 交函数对称轴于点M ,则点M 为所求点,理由:连接AC ,由点的对称性知,MA =MB ,△MAC 的周长=AC +MA +MC =AC +MB +MC =CA +BC 为最小,令y =53x 2−203x +5=0,解得x =1或3,令x =0,则y =5,故点A 、B 、C 的坐标分别为(1,0)、(3,0)、(0,5),则函数的对称轴为x =12(1+3)=2,设直线BC 的表达式为y =kx +b ,则{0=3k +b b =5,解得{k =−53b =5, 故直线BC 的表达式为y =−53x +5,当x =2时,y =−53x +5=53,故点M 的坐标为(2,53). 【题型6 二次函数中求面积最值】【例6】(2020秋•盐城期末)如图,抛物线y =x 2+bx +c 与x 轴交于A (﹣1,0),B (3,0)两点,过点A 的直线l 交抛物线于点C (2,m ),点P 是线段AC 上一个动点,过点P 做x 轴的垂线交抛物线于点E .(1)求抛物线的解析式;(2)当P 在何处时,△ACE 面积最大.【解题思路】(1)利用交点式写出抛物线解析式;(2)先利用二次函数解析式确定C (2,﹣3),再利用待定系数法求出直线AC 的解析式为y =﹣x ﹣1,设E (t ,t 2﹣2t ﹣3)(﹣1≤t ≤2),则P (t ,﹣t ﹣1),利用三角形面积公式得到△ACE 的面积=12×(2+1)×PE =32(﹣t 2+t +2),然后根据二次函数的性质解决问题.【解答过程】解:(1)抛物线解析式为y =(x +1)(x ﹣3),即y =x 2﹣2x ﹣3;(2)把C (2,m )代入y =x 2﹣2x ﹣3得m =4﹣4﹣3=﹣3,则C (2,﹣3),设直线AC 的解析式为y =mx +n ,把A (﹣1,0),C (2,﹣3)代入得{−m +n =02m +n =−3,解得{m =−1n =−1, ∴直线AC 的解析式为y =﹣x ﹣1;设E (t ,t 2﹣2t ﹣3)(﹣1≤t ≤2),则P (t ,﹣t ﹣1),∴PE =﹣t ﹣1﹣(t 2﹣2t ﹣3)=﹣t 2+t +2,∴△ACE 的面积=12×(2+1)×PE=32(﹣t 2+t +2)=−32(t −12)2+278,当t =12时,△ACE 的面积有最大值,最大值为278,此时P 点坐标为(12,−32). 【变式6-1】(2021春•金塔县月考)如图,已知抛物线经过A (4,0),B (1,0),C (0,﹣2)三点.(1)求该抛物线的解析式;(2)在直线AC 上方的该抛物线上是否存在一点D ,使得△DCA 的面积最大,若存在,求出点D 的坐标及△DCA 面积的最大值;若不存在,请说明理由.【解题思路】(1)根据题意设出抛物线的交点式,用待定系数法求解即可;(2)根据题意作出相关辅助线,用待定系数法求得直线AC解析式为y=12x﹣2,因为点D在抛物线上,所以可设其坐标为(x,−12x2+52x﹣2),点E在直线AC上则设点E坐标为(x,12x﹣2),由图形可知S△DCA=S△DCE+S△DAE,将相关坐标及线段的长度代入求解,再根据二次函数的性质即可得出△DCA面积的最大值.【解答过程】(1)设该抛物线解析式为y=a(x﹣4)(x﹣1),将点C(0,﹣2)坐标代入解析式得:﹣2=a(0﹣4)(0﹣1),解得a=−1 2,∴y=−12(x﹣4)(x﹣1)=−12x2+52x﹣2,故该抛物线的解析式为:y=−12x2+52x﹣2,(2)如图,设存在点D在抛物线上,连接AD、CD,过点D作DE⊥x轴且与直线AC交于点E,设直线AC表达式为:y=kx+b(k≠0),将A(4,0),C(0,﹣2)代入其表达式得:{0=4k+b−2=b,解得{k=12b=−2,∴直线AC:y=12x﹣2,设点D坐标为(x,−12x2+52x﹣2),则点E坐标为(x,12x﹣2),S△DCA=S△DCE+S△DAE=12×DE×x E+12×DE×(x A﹣x E)=12×DE×x A=12×DE×4=2DE,∵DE=(−12x2+52x﹣2)﹣(12x﹣2)=−12x2+2x,∴S△DCA=2DE=2×(−12x2+2x)=﹣x2+4x=﹣(x﹣2)2+4,∴当x=2时,y=−12x2+52x﹣2═﹣2+5﹣2=1,即点D坐标为(2,1),此时△DCA的面积最大,最大值为4.【变式6-2】(2021春•无为市月考)如图,直线y=﹣x+n与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求抛物线的解析式.(2)若P为直线AB上方的抛物线上一点,且点P的横坐标为m,求四边形BCAP的面积S关于点P横坐标m的函数解析式,并求S的最大值.【解题思路】(1)将点A坐标代入直线解析式可求n的值,可求点B坐标,利用待定系数法可求解;(2)过点P做PE⊥x轴于点E,与直线AB交于点D,求得C的坐标和D的坐标,然后根据S=S△ABC+S △ABP得到S关于m的函数解析式,根据二次函数的性质即可求得结论.【解答过程】解:(1)∵直线y=﹣x+n与x轴交于点A(3,0),∴0=﹣3+n,∴n=3,∴直线解析式为:y=﹣x+3,当x=0时,y=3,∴点B (0,3),∵抛物线y =﹣x 2+bx +c 经过点A ,B ,∴{c =3−9+3b +c =0, ∴{b =2c =3, ∴抛物线的解析式为:y =﹣x 2+2x +3;(2)如图,过点P 做PE ⊥x 轴于点E ,与直线AB 交于点D ,∵点P 的横坐标为m ,∴点P 的坐标为(m ,﹣m 2+2m +3),∵点D 在直线AB 上,∴点D 的坐标为(m ,﹣m +3),∴PD =﹣m 2+2m +3﹣(﹣m +3)=﹣m 2+3m ,在y =﹣x 2+2x +3中.令y =0.则﹣x 2+2x +3=0,解得x 1=﹣1,x 2=3,∴点C 的坐标为(﹣1,0),∴S =S △ABC +S △ABP =12×4×3+12(﹣m 2+3m )×3=−32(m −32)2+758, ∴当m =32时,S 最大,最大值为758.【变式6-3】(2021春•无棣县月考)如图,在平面直角坐标系中,二次函数y =x 2+bx +c 的图象与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于点C (0,﹣3),点P 是直线BC 下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP 'C .是否存在点P ,使四边形POP 'C 为菱形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.【解题思路】(1)先根据点C坐标求出c=﹣3,再将点B坐标代入二次函数解析式中求出b,即可得出结论;(2)连接PP'交y轴于E,根据菱形的性质判断出点E是OC的中点,进而求出点P的纵坐标,最后代入二次函数解析式中求解,即可得出结论;(3)设出点P的坐标,进而利用梯形的面积+三角形的面积得出S四边形ABPC=−32(m−12)2+398,即可得出结论.【解答过程】解:(1)∵二次函数y=x2+bx+c与y轴的交点C(0,﹣3),∴c=﹣3,∴二次函数的解析式为y=x2+bx﹣3,∵点B(3,0)在二次函数图象上,∴9+3b﹣3=0,∴b=﹣2,∴二次函数的解析式为y=x2﹣2x﹣3;(2)存在,理由:如图1,连接PP'交y轴于E,∵四边形POP'C为菱形,∴PP'⊥OC,OE=CE=12OC,∵点C(0,﹣3),∴OC=3,∴OE=3 2,∴E (0,−32),∴点P 的纵坐标为−32,由(1)知,二次函数的解析式为y =x 2﹣2x ﹣3, ∴x 2﹣2x ﹣3=−32,∴x =2−√102或x =2+√102,∵点P 在直线BC 下方的抛物线上,∴0<x <3,∴点P (2+√102,−32);(3)如图2,过点P 作PF ⊥x 轴于F ,则PF ∥OC , 由(1)知,二次函数的解析式为y =x 2﹣2x ﹣3, 令y =0,则x 2﹣2x ﹣3=0,∴x =﹣1或x =3,∴A (﹣1,0),∴设P (m ,m 2﹣2m ﹣3)(0<m <3),∴F (m ,0),∴S 四边形ABPC =S △AOC +S 梯形OCPF +S △PFB =12OA •OC +12(OC +PF )•OF +12PF •BF =12×1×3+12(3﹣m 2+2m +3)•m +12(﹣m 2+2m +3)•(3﹣m ) =−32(m −32)2+758,∴当m =32时,四边形ABPC 的面积最大,最大值为758,此时,P (32,−154),即点P 运动到点(32,−154)时,四边形ABPC 的面积最大,其最大值为758.。
二次函数的应用最值问题
二次函数的应用最值问题二次函数是一个在数学中广泛应用的函数模型。
在实际问题和生产生活中,二次函数的最值问题也经常出现。
本文将介绍二次函数的最值问题,包括实际问题中的二次函数最值、生产生活中的二次函数最值、利用配方法求二次函数的最值、利用导数求解二次函数的最值、利用作图法求解二次函数的最值、利用公式法求解二次函数的最值和利用对称轴求解二次函数的最值等方面。
一、实际问题中的二次函数最值在实际问题中,二次函数最值通常出现在诸如最大利润、最小成本、最高产量等问题中。
例如,一个工厂生产一种产品,该产品的成本包括固定成本和可变成本。
固定成本是不随产量变化的成本,而可变成本是随产量变化的成本。
因此,总成本函数是一个开口向下的二次函数。
为了使总成本最低,需要找到自变量的取值,使得总成本函数的导数为零,并判断导数是否为零,从而确定最值是否存在。
二、生产生活中的二次函数最值在生产生活中,二次函数最值也经常出现。
例如,一个公司投资一个项目,该项目的收益随投资额变化,且收益函数是一个开口向下的二次函数。
为了使收益最大,需要找到投资额的最优解。
最优解可以通过求解收益函数的导数并令其为零得到。
三、利用配方法求二次函数的最值配方法是求二次函数最值的一种常用方法。
该方法的基本思想是将二次函数转化为一个完全平方项和一个常数项之和的形式,然后利用平方的非负性求出最值。
具体步骤如下:(1)将二次函数配方为一个完全平方项和一个常数项之和的形式;(2)根据平方的非负性,求出这个完全平方项的取值;(3)将这个完全平方项的取值代入配方后的二次函数中,求出最值。
四、利用导数求解二次函数的最值利用导数求解二次函数的最值是一种比较简单的方法。
该方法的基本思想是先求出二次函数的导数,然后令导数为零,解出此时的自变量取值,最后比较所有自变量取值对应的函数值,找出最大(或最小)的一个即可。
五、利用作图法求解二次函数的最值作图法是一种直观地求解二次函数最值的方法。
二次函数的最值与极值问题
二次函数的最值与极值问题二次函数是数学中常见的一种函数类型,在很多实际问题中都可以用二次函数来描述。
在解决二次函数的最值与极值问题时,可以运用一些方法和技巧来求解。
本文将介绍一些常见的解题思路和方法。
一、二次函数的最值问题二次函数的最值指的是函数在定义域内的最大值或最小值。
当求解二次函数的最值时,可以利用二次函数的顶点和开口方向进行判断。
1. 定理1:对于开口向上的二次函数 f(x) = ax^2 + bx + c,其中 a > 0,顶点的 y 值是函数的最小值。
使用该定理时,可以先求得二次函数的顶点,再将顶点的坐标代入原函数,得到最小值。
2. 定理2:对于开口向下的二次函数 f(x) = ax^2 + bx + c,其中 a < 0,顶点的 y 值是函数的最大值。
同样地,使用该定理时,先求得二次函数的顶点,再将顶点的坐标代入原函数,得到最大值。
需要注意的是,二次函数的最大值或最小值可能在定义域内的某个点上出现,因此除了顶点外还需要考虑其他可能的极值点。
二、二次函数的极值问题二次函数的极值指的是函数在定义域内的局部最大值或最小值。
当求解二次函数的极值时,可以利用二次函数的导数和零点来寻找。
1. 求解极值的一般步骤如下:a) 求二次函数的导函数;b) 解二次函数的导函数为零的方程,得到零点;c) 将零点带入原函数,求得对应的函数值,得到极值。
2. 一个特殊情况是在二次函数的定义域 [a, b] 上求极值时,可以先求出导数,然后导数大于零的部分即是函数的递增区间,导数小于零的部分即是函数的递减区间。
接着,再对边界点和零点进行比较,得到极值。
三、综合练习与例题为了更好地理解二次函数的最值与极值问题,我们来进行一些练习和解题。
【练习题一】已知二次函数 f(x) = -2x^2 + 4x + 1,1. 求二次函数的顶点及对应的最值;2. 求二次函数的极值。
【解答】1. 对于二次函数 f(x) = -2x^2 + 4x + 1,a = -2 < 0,可以判断开口向下,顶点的 y 值是最大值。
二次函数求线段最值问题
二次函数求线段最值问题二次函数是高中数学的一个重要内容,本文将会详细介绍二次函数以及如何利用二次函数解决线段最值问题。
一、二次函数的基本概念1.二次函数的定义二次函数是指形式为y=ax^2+bx+c的函数,其中a、b、c为常数,且a不等于零。
其中,a决定了二次函数的开口方向(是向上开口还是向下开口),b决定了二次函数的对称轴,c是二次函数的纵坐标系原点和曲线的纵坐标的距离。
2.二次函数的图像根据二次函数的定义,我们可以画出二次函数的图像。
当a大于0时,二次函数开口向上;当a小于0时,二次函数开口向下。
b决定了二次函数的对称轴,对称轴的方程是x=-b/2a。
3.二次函数的最值针对二次函数,我们通常关心的是它的最值问题,也就是函数的峰值和谷值。
对于开口向上的二次函数,它的最小值处于对称轴上;对于开口向下的二次函数,它的最大值处于对称轴上。
二、利用二次函数求线段最值的步骤1.确定二次函数的表达式首先,我们需要明确给定线段的条件,确定二次函数的表达式。
例如,给定线段为y=ax^2+bx+c,其中a、b、c是待确定的系数。
2.求二次函数的对称轴根据二次函数的定义,可以通过计算-b/2a来求得对称轴的横坐标。
3.求二次函数的最值通过求解对应二次函数的最值问题,可以得到线段的最值。
需要将对称轴的横坐标代入二次函数的表达式中,计算出最值对应的纵坐标。
三、例题解析下面通过一个具体的例题,来说明如何利用二次函数求解线段最值的问题。
例题:给定线段y=x^2-4x+5上的点M(-2, 13),求线段上的最小值。
解析:根据题意,给定线段的二次函数表达式为y=x^2-4x+5。
1.求对称轴根据二次函数的定义,可以通过计算-b/2a来求得对称轴的横坐标。
本题中,a=1,b=-4,所以对称轴的横坐标为x=-(-4)/2*1=2。
2.求最小值线段的最小值处于对称轴上,对应的纵坐标可以通过将对称轴的横坐标代入二次函数的表达式中,计算出最小值对应的纵坐标。
二次函数最值问题及解题技巧(个人整理)
一、二次函数线段最值问题1、平行于x轴的线段最值问题1)首先表示出线段两个端点的坐标2)用右侧端点的横坐标减去左侧端点的横坐标3)得到一个线段长关于自变量的二次函数4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值2、平行于y轴的线段最值问题1)首先表示出线段两个端点的坐标2)用上面端点的纵坐标减去下面端点的纵坐标3)得到一个线段长关于自变量的二次函数解析式4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值3、既不平行于x轴,又不平行于y轴的线段最值问题1)以此线段为斜边构造一个直角三角形,并使此直角三角形的两条直角边分别平行于x轴、y轴2)根据线段两个端点的坐标表示出直角顶点坐标3)根据“上减下,右减左”分别表示出两直角边长4)根据勾股定理表示出斜边的平方(即两直角边的平方和)5)得到一个斜边的平方关于自变量的二次函数6)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值7)根据所求得的斜边平方的最值求出斜边的最值即可二、二次函数周长最值问题1、矩形周长最值问题1)一般会给出一点落在抛物线上,从这点向两坐标轴引垂线构成一个矩形,求其周长最值2)可先设此点坐标,点p到x轴、y轴的距离和再乘以2,即为周长3)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值2、利用两点之间线段最短求三角形周长最值1)首先判断图形中那些边是定值,哪些边是变量2)利用二次函数轴对称性及两点之间线段最短找到两条变化的边,并求其和的最小值3)周长最小值即为两条变化的边的和最小值加上不变的边长三、二次函数面积最值问题1、规则图形面积最值问题(这里规则图形指三角形必有一边平行于坐标轴,四边形必有一组对边平行于坐标轴)1)首先表示出所需的边长及高2)利用求面积公式表示出面积3)得到一个面积关于自变量的二次函数4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值2、不规则图形面积最值问题1)分割。
二次函数的最值与最值问题的应用
二次函数的最值与最值问题的应用二次函数是数学中常见的一类函数,具有很多重要的性质和应用。
其中最值与最值问题是二次函数的重要内容之一。
本文将详细介绍二次函数的最值性质,以及如何利用最值问题解决实际应用中的相关问题。
一、二次函数的基本性质二次函数的一般形式为:y = ax² + bx + c其中,a、b、c为常数,且a ≠ 0。
二次函数的图像为抛物线,开口方向取决于a的正负性。
在讨论二次函数的最值之前,我们先了解一些与最值相关的基本性质。
1. 首先,二次函数的开口方向由系数a的正负性决定。
当a > 0时,抛物线开口向上,函数的最小值出现在顶点上;当a < 0时,抛物线开口向下,函数的最大值出现在顶点上。
2. 其次,二次函数的顶点即为函数的最值点。
顶点坐标为(h, k),其中h为抛物线的对称轴的横坐标,k为函数的最值(最小值或最大值)。
3. 再次,二次函数的对称轴与顶点的横坐标相同。
对称轴的方程为x = h。
二、二次函数的最值问题二次函数的最值问题是指求解函数的最小值或最大值的问题。
在实际应用中,最值问题经常出现,例如求解投掷问题中的飞行距离最大值或者盈利问题中的最大利润等。
1. 求解二次函数的最值为了求解二次函数的最值,我们可以利用二次函数图像的特点,即找出抛物线的顶点坐标。
通过完成平方项的平方,将二次函数转换为顶点形式,可以轻松地求解最值问题。
例如,对于函数y = x² - 4x + 3,我们可以完成平方项的平方,将其转换为顶点形式:y = (x - 2)² - 1从中可以看出,顶点坐标为(2, -1),函数的最小值为-1。
因此,原二次函数的最小值为-1。
2. 应用最值问题最值问题在实际应用中非常常见,下面以一个具体的应用为例进行解析。
例题:某商品的价格为p(元),销量为x(件),已知该商品的价格和销量满足二次函数关系p = 0.5x² - 2x + 8,求该商品的最佳销量以及最佳价格。
二次函数的零点与最值问题
二次函数的零点与最值问题二次函数是一种常见的数学函数,其表达式可以写为y = ax^2+bx+c。
在这个题目中,我们需要讨论二次函数的零点和最值问题。
一、二次函数的零点问题零点是指函数的取值为0的点。
对于二次函数,我们可以用求解方程的方法来找到零点。
首先,考虑一般形式的二次函数y = ax^2+bx+c,其中a、b、c为常数。
当a=0时,变成了一次函数,没有零点。
当a≠0时,我们可以利用解一元二次方程的公式来找到零点。
一元二次方程的一般形式为ax^2+bx+c=0。
解一元二次方程的公式为x = (-b±√(b^2-4ac))/(2a)。
通过求解方程,我们可以得到二次函数的零点。
二、二次函数的最值问题最值是指函数取得最大值或最小值的点。
对于二次函数,我们可以通过求导或使用二次函数的顶点公式来找到最值点。
1. 求导法:对于二次函数y = ax^2+bx+c,我们可以先对其求导。
y' = 2ax+b。
当二次函数为凸函数时(a>0),它的顶点就是最小值点;当二次函数为凹函数时(a<0),它的顶点就是最大值点。
将求导结果y' = 2ax+b等于0,解方程得到x = -b/(2a)。
将x = -b/(2a)带入原函数,可以求得最值。
2. 顶点公式法:对于二次函数y = ax^2+bx+c,其顶点坐标可以通过顶点公式x = -b/(2a),y = f(-b/(2a))求得。
当a>0时,顶点是最小值点;当a<0时,顶点是最大值点。
将x = -b/(2a)带入原函数,可以求得最值。
通过以上方法,我们可以求得二次函数的最值点。
总结:通过上述的讨论,我们可以得出以下结论:1. 二次函数的零点可以通过解一元二次方程来求得。
2. 二次函数的最小值点可以通过求导法或顶点公式法来求得,在凸函数的情况下,顶点是最小值点;在凹函数的情况下,顶点是最大值点。
以上是关于二次函数的零点与最值问题的讨论。
高中数学中的二次函数与最值问题
高中数学中的二次函数与最值问题二次函数是高中数学中的重要内容之一,其与最值问题的关系更是难以忽视。
本文将系统地介绍二次函数的定义、性质以及如何利用二次函数求解最值问题。
一、二次函数的定义与性质二次函数是形如y=ax^2+bx+c的函数,其中a、b和c是实数且a不等于0。
二次函数的图像通常是一个抛物线,可以是开口向上或开口向下的形态。
以下是二次函数的一些重要性质:1. 零点:二次函数的零点是其对应的抛物线与x轴相交的点,即使得函数值为0的x值。
零点的求解可以通过因式分解、配方法或求根公式来实现。
2. 頂点坐标:二次函数的顶点是抛物线的最高点(当a小于0时)或最低点(当a大于0时)。
顶点的x坐标可以通过公式x=-b/2a来计算,y坐标则可将x值代入二次函数中得到。
3. 对称轴:二次函数的对称轴是通过抛物线的顶点并平行于y轴的线。
对称轴的方程形式为x=-b/2a。
4. 单调性:当a大于0时,抛物线开口向上,函数值随x的增大而增大;当a小于0时,抛物线开口向下,函数值随x的增大而减小。
二、二次函数求解最值问题的方法在实际问题中,我们常常需要求解二次函数的最大值或最小值。
这些问题可能涉及到经济、物理、几何等领域。
以下是求解二次函数最值问题的常用方法:1. 完成平方:通过将二次函数表示成平方项的和来求解最值问题。
对于一般形式的二次函数,可以通过配方法来实现。
例如,对于函数y=ax^2+bx+c,可以通过将x^2+bx视为一个完全平方进行变形,从而得到最小值或最大值。
2. 求导数:利用导数的性质,求解二次函数的导数,并找到导数为0的点。
这些点即为原函数的最值点。
求导数的方法可以通过一阶导数、二阶导数等进行,具体视题目要求而定。
3. 利用顶点坐标:如果已知二次函数的顶点坐标,则直接取顶点的y值即为函数的最值。
4. 利用最值问题的性质:根据二次函数的几何特性,当a大于0时,函数有最小值;当a小于0时,函数有最大值。
二次函数的最值问题
二次函数的最值问题二次函数是指形式为f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a ≠ 0,x为自变量。
二次函数图像是一条开口朝上或朝下的抛物线,而最值问题则是指在给定范围内,函数取得的最大值或最小值。
一、二次函数的最值问题二次函数的最值问题是数学中常见的问题之一,解决这类问题的关键是找到函数的顶点。
顶点即是抛物线的极值点,对于开口朝上的抛物线,顶点表示最小值;对于开口朝下的抛物线,顶点表示最大值。
二、求解二次函数的最值步骤求解二次函数的最值问题可按以下步骤进行:1. 确定二次函数的开口方向,即判断二次系数a的正负。
2. 利用求导的方法,求得二次函数的导函数。
3. 将导函数等于零并解方程,得到函数的顶点。
4. 求得函数的顶点后,判断是最小值还是最大值。
举例说明:以二次函数f(x) = 2x^2 - 4x + 3为例,来演示求解最值的过程。
1. 开口方向的判断:由于二次系数a为正数,故函数的开口朝上,顶点表示最小值。
2. 求导:首先对函数进行求导,得到导函数f'(x) = 4x - 4。
3. 求解顶点:令导函数f'(x)等于零,并解方程得到x = 1。
4. 判断最值:将x = 1代入原始函数f(x)中,得到f(1) = 2(1)^2 - 4(1) + 3 = 1。
因此,函数f(x)的最小值为1,当x = 1时取得。
通过以上步骤,我们可以求解二次函数的最值问题。
然而,在实际问题中,最值问题往往还涉及到函数的定义域和范围等约束条件。
因此,在解决最值问题时,需要充分考虑这些条件,以确保结果的准确性和合理性。
总结:二次函数的最值问题是数学中常见而重要的问题。
通过分析二次函数的开口方向,并利用导数等工具求解顶点,我们能够准确地确定函数的最大值或最小值。
然而,在实际问题中,我们还需要注意约束条件的考虑,以确保最终结果的可行性。
只有在深入理解二次函数的特性和运用相应的求解方法时,才能更好地解决二次函数的最值问题。
二次函数的最值与最值点
二次函数的最值与最值点二次函数是指具有形式为f(x) = ax² + bx + c的函数,其中a、b、c为常数且a≠0.在数学中,我们常常关注二次函数的最值与最值点,它们对于函数图像的形状与性质具有重要意义。
一、二次函数的最值最值是指函数在定义域内所能取得的最大值或最小值。
对于二次函数而言,其最值与函数的开口方向有关。
1. 当二次函数的抛物线开口向上时,函数的最值为最小值。
在这种情况下,最小值点是抛物线的顶点,也是二次函数的最值点。
2. 当二次函数的抛物线开口向下时,函数的最值为最大值。
同样地,最大值点也是抛物线的顶点,它也是二次函数的最值点。
二、如何求二次函数的最值要求二次函数的最值与最值点,需要进行一些计算与分析。
1. 首先,可以通过计算二次函数的导数,找出导数为零的点。
导数为零的点对应的x坐标就是二次函数的最值点的横坐标,也就是x值。
2. 其次,通过将x值代入二次函数中,可以求得相应的y值,即最值点的纵坐标。
这个y值就是二次函数的最值,它可以是最大值或最小值。
三、举例说明假设有二次函数f(x) = -3x² + 6x + 2,我们来求解它的最值与最值点。
1. 首先,计算导数f'(x) = -6x + 6,并令其为零,解得x = 1。
这说明x = 1是二次函数的最值点的横坐标。
2. 将x = 1代入原函数f(x)中,得到f(1) = -3(1)² + 6(1) + 2 = 5。
因此,最值点的纵坐标为y = 5,即最值为最小值。
综上所述,对于给定的二次函数,我们可以通过计算导数来求解最值点的横坐标,并通过代入求得相应的纵坐标,从而得到最值与最值点的具体数值。
最值与最值点对于理解二次函数的图像特征和函数性质具有重要作用,它们帮助我们分析和预测函数在不同区间内的变化趋势,为实际问题的求解提供了依据。
二次函数的最值点与最值问题
二次函数的最值点与最值问题二次函数是高中数学中的重要概念之一,它在数学建模、物理问题以及经济学中的应用广泛。
在研究二次函数的性质时,我们常常关注它的最值点和最值问题。
本文将重点讨论二次函数的最值点与最值问题,并探究如何求解。
一、二次函数的最值点二次函数的最值点是指在函数曲线上局部最高或局部最低的点。
这些点被称为顶点或拐点。
对于一般形式的二次函数f(x) = ax^2 + bx + c,其中a ≠ 0,顶点坐标可以通过以下公式求得:Vertex_x = -b / 2aVertex_y = f(Vertex_x)在求解最值点时,我们首先需要判断二次函数的开口方向。
当a > 0时,二次函数开口向上;当a < 0时,二次函数开口向下。
知道开口方向后,我们可以通过计算顶点坐标来确定最值点的位置。
举个例子,考虑二次函数f(x) = x^2 + 2x + 1。
首先,根据a的值为1,我们得知此函数开口向上。
然后,根据公式求解顶点坐标:Vertex_x = -2 / (2*1) = -1Vertex_y = f(-1) = (-1)^2 + 2(-1) + 1 = 0因此,二次函数f(x) = x^2 + 2x + 1的最值点为(-1, 0),即顶点位于坐标系中点(-1, 0)的位置。
二、二次函数的最值问题除了求解最值点的坐标,我们还经常遇到二次函数的最值问题。
最值问题包括求解二次函数的最大值和最小值。
在数学建模和实际问题中,这些最值点往往代表了问题的极端点,具有重要的意义。
对于一般形式的二次函数f(x) = ax^2 + bx + c,最值问题可以通过以下步骤求解:1. 判断二次函数的开口方向。
当a > 0时,二次函数开口向上;当a < 0时,二次函数开口向下。
2. 找到最值点的横坐标。
根据二次函数的最值点公式,我们可以计算顶点的横坐标,即Vertex_x = -b / 2a。
3. 根据二次函数的开口方向,确定最大值或最小值。
二次函数的最值与极值问题
二次函数的最值与极值问题二次函数是一种具有一次项和二次项的多项式函数,通常用以下的一般形式表示:f(x) = ax^2 + bx + c其中,a、b、c是实数,且a ≠ 0。
在本文中,我们将讨论二次函数的最值与极值问题。
一、最值问题二次函数的最值表示函数的取值范围的极值点。
要确定二次函数的最值,首先需要弄清楚二次函数的开口方向。
当a > 0时,二次函数开口向上,此时函数的最小值为最值;当a < 0时,二次函数开口向下,此时函数的最大值为最值。
我们以一个具体的例子来说明。
考虑二次函数f(x) = 2x^2 - 3x + 1,根据题目要求,我们需要找到它的最值。
1. 确定二次函数的开口方向:由于a = 2 > 0,所以二次函数的开口向上。
2. 求出二次函数的顶点:二次函数的顶点是一个非常重要的概念,它是确定函数的最值的关键。
顶点的横坐标可以通过以下公式计算得到:x = -b/2a在这个例子中,我们可以计算得出:x = -( -3 ) / ( 2 × 2 ) = 3/4顶点的纵坐标可以通过将横坐标代入函数中计算得到:y = f(3/4) = 2 × (3/4)^2 - 3 × (3/4) + 1 = 11/8所以该二次函数的顶点为(3/4, 11/8)。
3. 确定最值:由于二次函数开口向上,所以顶点代表了函数的最小值。
所以函数f(x)的最小值是11/8,此时x取3/4。
二、极值问题极值点是指函数在某一点上的局部最值点。
对于二次函数来说,极值点就对应着函数的顶点。
回顾刚才的例子,我们已经计算出了二次函数f(x) = 2x^2 - 3x + 1的顶点为(3/4, 11/8)。
这个顶点就是该函数的极小值点。
在极值问题中,有两种情况需要注意:1. 当二次函数开口向上时,顶点为极小值点;2. 当二次函数开口向下时,顶点为极大值点。
所以,在求二次函数的极值问题时,需要先找到顶点,再根据开口方向确定极值类型。
二次函数与平面直角坐标系中的最值问题
二次函数与平面直角坐标系中的最值问题在平面直角坐标系中,二次函数是一个重要的数学概念,经常用于描述各种变化的规律。
对于二次函数而言,最值问题是一个关键的应用,它帮助我们确定函数的最大值或最小值,对于解决实际问题具有重要意义。
本文将从理论和实践两方面探讨二次函数与平面直角坐标系中的最值问题。
一、二次函数的基本形式二次函数的一般形式可以表示为:f(x) = ax² + bx + c其中,a、b、c为实数且a ≠ 0。
二次函数的图像为抛物线,其开口方向由a的正负决定。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
不同的二次函数在坐标系中呈现出不同的形状和位置,反映了函数的特点和变化规律。
二、二次函数的最值问题对于给定的二次函数,我们常常需要确定其最大值或最小值,以便更好地理解函数的性质和应用。
最值问题可以分为两种情况:一是二次函数顶点的最值问题,二是二次函数在给定区间内的最值问题。
1. 二次函数顶点的最值问题二次函数的顶点是函数图像的最高点(最大值)或最低点(最小值)。
根据二次函数的性质,当a>0时,函数的顶点为最小值;当a<0时,函数的顶点为最大值。
因此,对于给定的二次函数,我们可以通过求解顶点的横坐标和纵坐标来确定其最值。
例如,对于二次函数f(x) = 2x² + 3x - 1,我们可以通过求解顶点的横坐标和纵坐标来确定其最小值。
首先,横坐标x的值可以通过x = -b / (2a)的公式得到,即 x = -3 / (2*2) = -3/4。
然后,将x = -3/4带入函数中,得到f(-3/4) = 2*(-3/4)² + 3*(-3/4) - 1 = -23/8。
因此,该二次函数的最小值为-23/8。
2. 二次函数在给定区间内的最值问题除了顶点的最值问题,有时我们需要在给定的区间内确定二次函数的最大值或最小值。
这就要求我们找到函数的临界点,并在临界点和区间的端点上进行比较。
二次函数的最值与优化问题
二次函数的最值与优化问题二次函数是数学中的一种常见函数形式,其一般形式为:f(x) = ax^2 + bx + c其中,a、b、c为实常数,且a≠0。
在本文中,我们将探讨二次函数的最值问题以及与之相关的优化问题。
一、二次函数的最值对于给定的二次函数f(x) = ax^2 + bx + c,我们希望确定其在定义域内的最大值或最小值。
为此,我们可以采用两种主要方法来求解。
1.1 完全平方与顶点根据二次函数的形式,我们可以将其转化为完全平方式,即通过提取二次项系数a来得到形如(x + p)^2 + q的表达式。
其中,p和q是与原函数相关的实数常数。
为了找到二次函数的最值,我们可以通过在完全平方形式下确定顶点来实现。
顶点坐标为(-p, q),其中q为二次函数的最值。
顶点对应着二次函数的最值点。
1.2 导数与极值点除了利用完全平方形式来确定顶点之外,我们还可以应用导数的概念来解决二次函数的最值问题。
具体而言,我们计算出二次函数的导数,并找出导数为零的点。
这些点将对应着二次函数的极值点。
在计算导数时,我们可以使用幂函数的求导法则,得到二次函数的导函数f'(x) = 2ax + b。
令f'(x) = 0,我们可以解得x = -b/2a。
将该值代入原函数,即可得到最值点的纵坐标。
通过以上两种方法,我们可以有效地求解二次函数的最值问题,并得到有效的数学模型。
二、二次函数的优化问题除了求解最值问题外,二次函数还可以应用于优化问题。
在优化问题中,我们希望找到二次函数在一定条件下的最优解。
2.1 最优解的定义在优化问题中,我们需要明确定义何为最优解。
针对二次函数的优化问题,最优解通常是指使得目标函数取得最大值或最小值的变量取值。
2.2 约束条件的设定在确定最优解之前,我们需要设定一些约束条件。
这些条件可能来自于实际问题的限制或者其他相关要求。
常见的约束条件包括:定义域的范围、一些限制性条件(如非负性、连续性等)等。
二次函数的最值与零点问题
二次函数的最值与零点问题在数学中,二次函数是一种形式为y = ax^2 + bx + c的函数,其中a、b、c为常数且a ≠ 0。
二次函数的图像通常是一条抛物线,它的顶点就是函数的最值点,也就是最大值或最小值的取点。
另外,二次函数的零点是使得函数取值为0的x轴上的点。
本文将重点讨论二次函数的最值与零点问题。
一、二次函数的最值问题当二次函数的系数a为正数时,图像呈现开口向上的抛物线形状,此时函数有最小值。
反之,当a为负数时,图像呈现开口向下的抛物线形状,此时函数有最大值。
我们可以通过求解二次函数的顶点坐标来确定函数的最值点。
二次函数的顶点坐标可以通过以下公式计算:顶点的横坐标x = -b / (2a)顶点的纵坐标y = f(x) = a(x)^2 + bx + c (将顶点的横坐标代入函数得到顶点的纵坐标)举例来说,设有二次函数y = 2x^2 - 4x + 3,我们可以先计算出顶点的横坐标:x = -(-4) / (2 * 2) = 1然后将横坐标带入函数,计算出顶点的纵坐标:y = 2(1)^2 - 4(1) + 3 = 1所以,该二次函数的顶点坐标为(1, 1),即最小值点为(1, 1)。
如果我们有一个二次函数的图像,也可以根据图像来确定函数的最值点。
开口向上的二次函数,最小值点就是抛物线的最低点;开口向下的二次函数,最大值点就是抛物线的最高点。
二、二次函数的零点问题二次函数的零点是使得函数取值为0的x轴上的点。
我们可以通过求解二次函数的零点来确定函数的根。
根据二次函数的定义,当y = ax^2 + bx + c等于0时,即可求解出x 的值。
对于一般的二次方程ax^2 + bx + c = 0,可以使用求根公式(也称作二次方程的解根公式)来解得。
假设一般的二次方程的解根公式为:x = (-b ± √(b^2 - 4ac)) / (2a)根据这个公式,我们可以得到二次函数的实根(即存在实数解的情况)或者复根(即存在复数解的情况)。
中考数学专题复习二次函数的应用题与最值问题
二次函数的应用题与最值问题二次函数最值问题(一)开口向上:1.当对称轴a b x 2-=在所给范围内,必在顶点处取得最小值,在离对称轴较远端点处取得最大值;2.当对称轴ab x 2-=不在所给范围内,在离对称轴较远端点处取得最大值,离对称轴较近端点处取得最小值.(二)开口向下:1.当对称轴a b x 2-=在所给范围内,必在顶点处取得最大值,在离对称轴较远端点处取得最小值;2.当对称轴ab x 2-=不在所给范围内,在离对称轴较远端点处取得最小值,离对称轴较近端点处取得最大值.1. 求解析式综合题型:例1.如图,抛物线y =x 2+bx +c 与x 轴交于A ,B 两点,点A ,B 分别位于原点的左、右两侧,BO =3AO =3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C ,D ,BC =CD .(1)求b ,c 的值;(2)求直线BD 的函数解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当△ABD 与△BPQ 相似时,请直接写出所有满足条件的点Q 的坐标.2.已知二次函数y =ax 2+bx +c 的图象过点(﹣1,0),且对任意实数x ,都有4x ﹣12≤ax 2+bx +c ≤2x 2﹣8x +6.(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x 轴的正半轴交点为A ,与y 轴交点为C ;点M 是(1)中二次函数图象上的动点.问在x 轴上是否存在点N ,使得以A 、C 、M 、N 为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N 的坐标;若不存在,请说明理由.2.二次函数的应用题例1.某商品现在的售价为每件25元,每天可售出50件,市场调查发现,售价每上涨1元,每天就少卖出2件,已知该商品的进价为每件20元,设该商品每天的销售量为y件,售价为每件x元(x为正整数)(1)求y与x之间的函数关系式;(2)该商品的售价定为每件多少元时,每天的销售利润W(元)最大,最大利润是多少元?1.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?2.某商家在构进一款产品时,由于运输成本及产品成本的提高,该产品第x天的成本y (元/件)与x(天)之间的关系如图所示,并连续60天均以80元/件的价格出售,第x 天该产品的销售量z(件)与x(天)满足关系式z = x + 15.(1)第25天,该商家的成本是元,获得的利润是元;(2)设第x天,该商家出售该产品的利润为w元.①求w与x之间的函数关系式;②求出第几天的利润最大,最大利润是多少?.3.为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;如果每台设备提价5万元时,则年销售量就减少50台.设该设备的年销售量为y(单位:台),销售单价为x(单位:万元/台).(1)求年销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,则应把这种设备的销售单价定为多少万元时,该公司所获得的年利润最大?最大的年利润是多少?4.某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价x元(x为整数),每个月的销售量为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式.例2.某农场拟建三间矩形牛饲养室,饲养室的一面全部靠现有墙(墙长为40m),饲养室之间用一道用建筑材料做的墙隔开(如图).已知计划中的建筑材料可建围墙的总长为60m,设三间饲养室合计长x(m),总占地面积为y(m2).(1)求y关于x的函数表达式和自变量的取值范围.(2)x为何值时,三间饲养室占地总面积最大?最大为多少?1.某单位为了创建城市文明单位,准备在单位的墙(线段MN所示)外开辟一处长方形的土地进行绿化美化,除墙体外三面要用栅栏围起来,计划用栅栏50米.(1)不考虑墙体长度,问长方形的各边的长为多少时,长方形的面积最大?(2)若墙体长度为20米,问长方形面积最大是多少?2.如图,用48米篱笆围成一个外形为矩形的花园,花园一面利用院墙,中间用一道篱笆间隔成两个小矩形,院墙的长度为20米,平行于院墙的一边长为x米,花园的面积为S平方米.(1)求S与x之间的函数关系式;(2)问花园面积可以达到180平方米吗?如果能,花园的长和宽各是多少?如果不能,请说明理由.3.某社区决定把一块长50m,宽30m的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小、形状都相同的矩形),空白区域为活动区,且四周的4个出口宽度相同,其宽度不小于14m,不大于26m,设绿化区较长边为xm,活动区的面积为ym2.为了想知道出口宽度的取值范围,小明同学根据出口宽度不小于14m,算出x≤18.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)求活动区的最大面积;(3)预计活动区造价为50元/m2,绿化区造价为40元/m2,若社区的此项建造投资费用不得超过72000元,求投资费用最少时活动区的出口宽度?例3.如图是把一个抛物线形桥拱,量得两个数据,画在纸上的情形.小明说只要建立适当的坐标系,就能求出此抛物线的表达式.你认为他的说法正确吗?如果不正确,请说明理由;如果正确,请你帮小明求出该抛物线的表达式.1.有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为10m.现将它的图形放在如图所示的直角坐标系中.求这条抛物线的解析式.2.如图是一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m,在图中直角坐标系中该抛物线的解析式.3.如图,是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m,若水面上升1m,则水面宽为()A.m B.2m C.2m D.2m4.飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是s =60t ﹣1.5t 2,那么飞机着陆后滑行的最远距离为( )A .600mB .400mC .300mD .200m5.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为()341212+--=x y ,由此可知铅球达到的最大高度是 m ,推出的距离是 m .6.如图,若被击打的小球飞行高度h (单位:m )与飞行时间t (单位:s )直接具有的关系为h =24t ﹣4t 2,则小球从飞出到落地所用的时间为 s .7.廊桥是我国古老的文化遗产,如图是某座抛物线形的廊桥示意图.已知抛物线的函数表达式为y =﹣x 2+10,为保护廊桥的安全,在该抛物线上距水面AB 高为6米的点E ,F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是 米.例4.当22≤≤-x 时,求函数322--=x x y 的最大值和最小值.1.当21≤≤x 时,求函数12+--=x x y 的最大值和最小值.2.已知二次函数y =x 2+2bx +c(1)若b =c ,是否存在实数x ,使得相应的y 的值为1?请说明理由;(2)若b =c ﹣2,y 在﹣2≤x ≤2上的最小值是﹣3,求b 的值.3.当﹣1≤x ≤1时,函数y =﹣x 2﹣2mx +2n +1的最小值是﹣4,最大值是0,求m 、n 的值.4.如图是甲、乙两人进行羽毛球练习赛时的一个瞬间,羽毛球飞行的高度y (m )与水平距离x (m )的路线为抛物线的一部分,如图,甲在O 点正上方1m 的P 处发出一球,已知点O 与球网的水平距离为5m ,球网的高度为1.55m .羽毛球沿水平方向运动4m 时,达到羽毛球距离地面最大高度是m .(1)求羽毛球经过的路线对应的函数关系式;(2)通过计算判断此球能否过网;(3)若甲发球过网后,羽毛球飞行到离地面的高度为m 的Q 处时,乙扣球成功求此时乙与球网的水平距离.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习:
2、如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB 为x 米,面积为S 平方米。
(1)求S 与x 的函数关系式及自变量的取值范围;
(2)当x 取何值时所围成的花圃面积最大,最大值是多少?
(3)若墙的最大可用长度为8米,则求围成花圃的最大面积。
3、某商场将进价40元一个的某种商品按50元一个售出时,能卖出500个,已知这种商品每个涨价一元,销量减少10个,为赚得最大利润,售价定为多少?最大利润是多少?
4、如图,在ΔABC 中,AB=8cm ,BC=6cm ,∠B =90°,点P 从点A 开始沿AB 边向点B 以2厘米/秒的速度移动,点Q 从点B 开始沿BC 边向点C 以1厘米/秒的速度移动,如果P ,Q 分别从A,B 同时出发,几秒后ΔPBQ 的面积最大?最大面积是多少?
5、如图:已知抛物线y=ax2+bx+c 的顶点A (2,0),与y 轴的交点为B (0,-1).
(1)求抛物线的解析式;
(2)在对称轴右侧的抛物线上找出一点C,使横坐标为10,设直线x=t (0<t<10)与抛物线交于点N ,当t 为何值时,△BCN 的面积最大,并求出最大值。
C。