2019-2020年初一上学期数学期中试卷含解析

合集下载

2019-2020学年新人教版七年级上学期期中考试数学试卷(含解析版)

2019-2020学年新人教版七年级上学期期中考试数学试卷(含解析版)

2019-2020学年新人教版七年级上学期期中考试数学试卷一.选择题(每题3分,共30分)1.下列四个式子中,是一元一次方程的是( )A .2x ﹣6B .x ﹣1=0C .2x +y =25D .=12.x =2是下列方程( )的解.A .2x =6B .(x ﹣3)(x +2)=0C .x 2=3D .3x ﹣6=03.下列等式变形中,结果不正确的是( )A .如果a =b ,那么a +2b =3bB .如果a =b ,那么a ﹣m =b ﹣mC .如果a =b ,那么=D .如果3x =6y ﹣1,那么x =2y ﹣14.如图,若m ∥n ,∠1=105°,则∠2=( )A .55°B .60°C .65°D .75°5.如图,图中∠1与∠2是同位角的是( )A .(2)(3)B .(2)(3)(4)C .(1)(2)(4)D .(3)(4)6.如图,由AD ∥BC 可以得到的是( )A .∠1=∠2B .∠3+∠4=90°C .∠DAB +∠ABC =180°D .∠ABC +∠BCD =180°7.如图,AB∥EF,EF∥CD,EG∥BD,则图中与∠1相等的角(除∠1外)共有()A.6个B.5个C.4个D.2个8.某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x人,则下列方程正确的是()A.3x﹣20=24x+25B.3x+20=4x﹣25C.3x﹣20=4x﹣25D.3x+20=4x+259.下列说法中①过一点有且只有一条直线与已知直线平行;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③两直线平行,同旁内角互补;④直线外一点到已知直线的垂线段就是点到直线的距离,其中正确的有()个A.4个B.3个C.2个D.1个10.下面的程序计算,若开始输入的值为正数,最后输出的结果为131,则满足条件的x的不同值最多有()A.0个B.1个C.2个D.3个二、填空题(每題3分,共30分)11.关于x的方程ax+1=4的解是x=1,则a=.12.已知∠1与∠2是对顶角,∠2与∠3是邻补角,则∠1+∠3=.13.若2x3﹣2k+2k=41是关于x的一元一次方程,则k=.14.如图所示,∠1=100°,∠3=110°,∠2=100°,则∠4的度数为.15.若关于x的方程3x+2=0与5x+k=20的解相同,则k的值为.16.如图,直线AB与直线CD相交于点O,E是∠AOD内一点,已知OE⊥AB,∠BOD=45°,则∠COE的度数是.17.已知小名比小丽大3岁,一天小名对小丽说“再过十五年,咱俩年龄和的2倍就是110岁了”那么现在小名年龄是岁.18.如图,已知DE∥BC,∠ABC=100°,点F在射线BA上,且∠EDF=120°,则∠DFB的度数为.19.某轮船在松花江沿岸的两城市之间航行,已知顺流航行要6小时由A市到达B市,逆流航行要10小时由B市到达A市,则江面上的一片树叶由A市漂到B市需要小时.20.如图,有两个正方形夹在AB与CD中,且AB∥CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为度(正方形的每个内角为90°)三、解答題(21題10分,22、23题各7分,24、25题各8分,26、27题各10分,共计60分21.解方程(1)2x+5=3x﹣3(2)=2﹣22.已知x=3是方程4(x﹣1)﹣mx+6=8的解,求m2+2m﹣3的值.23.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?24.如图,BD是∠ABC的平分线,ED∥BC,∠4=∠5,则EF也是∠AED的平分线.完成下列推理过程:证明:∵BD是∠ABC的平分线(已知)∴∠1=∠2(角平分线定义)∵ED∥BC(已知)∴∠5=∠2()∴∠1=∠5(等量代换)∵∠4=∠5(已知)∴EF∥()∴∠3=∠1()∴∠3=∠4(等量代换)∴EF是∠AED的平分线(角平分线定义)25.如图,E为DF上的点,B为AC上的点,DF∥AC,∠C=∠D,求证:∠2=∠1.26.小明爸爸装修要粉刷断居室的墙面,在家装商场选购某品牌的乳胶漆:小明爸估算家里的粉刷面积,若买“大桶装”,则需若干桶但还差2升;若买“小桶装”,则需多买11桶但会剩余1升,(1)小明爸预计墙面的粉刷需要乳胶漆多少升?(2)喜迎新年,商场进行促销:满1000减120元现金,并且该品牌商家对“小桶装”乳胶漆有“买4送1“的促销活动,小明爸打算购买“小桶装”,比促销前节省多少钱?(3)在(2)的条件下,商家在这次乳胶漆的销售买卖中,仍可盈利25%,则小桶装乳胶漆每桶的成本是多少元?27.已知,点A,点B分别在线段MN,PQ上∠ACB﹣∠MAC=∠CBP(1)如图1,求证:MN∥PQ;(2)分别过点A和点C作直线AG、CH使AG∥CH,以点B为顶点的直角∠DBI绕点B旋转,并且∠DBI的两边分别与直线CH,AG交于点F和点E,如图2试判断∠CFB、∠BEG是之间的数量关系,并证明;(3)在(2)的条件下,若BD和AE恰好分别平分∠CBP和∠CAN,并且∠ACB=60°,求∠CFB的度数.参考答案与试题解析一.选择题(每题3分,共30分)1.下列四个式子中,是一元一次方程的是()A.2x﹣6B.x﹣1=0C.2x+y=25D.=1【分析】根据一元一次方程的定义对各选项进行逐一分析即可.【解答】解:A、不是等式,故不是方程,故本选项错误;B、符合一元一次方程的定义,故本选项正确;C、含有两个未知数,是二元一次方程,故本选项错误;D、分母中含有未知数,是分式方程,故本选项错误.故选:B.【点评】本题考查的是一元一次方程的定义,即只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.2.x=2是下列方程()的解.A.2x=6B.(x﹣3)(x+2)=0C.x2=3D.3x﹣6=0【分析】方程的解就是能够使方程左右两边相等的未知数的值,把x=2代入各个方程进行进行检验,看能否使方程的左右两边相等.【解答】解:将x=2代入各个方程得:A.2x=2×2=4≠6,所以,A错误;B.(x﹣3)(x+2)=(2﹣3)(2+2)=﹣4≠0,所以,B错误;C.x2=22=4≠3,所以,C错误;D.3x﹣6=3×2﹣6=0,所以,D正确;故选:D.【点评】此题考查的是一元一次方程的解,只要把x的值代入看方程左边的值是否与右边的值相等,即可知道x是否是方程的解.3.下列等式变形中,结果不正确的是()A.如果a=b,那么a+2b=3bB.如果a=b,那么a﹣m=b﹣mC.如果a=b,那么=D.如果3x=6y﹣1,那么x=2y﹣1【分析】根据等式的性质判断即可.【解答】解:A、∵a=b,∴a+2b=b+2b,∴a+2b=3b,正确,故本选项错误;B、∵a=b,∴a﹣m=b﹣m,正确,故本选项错误;C、∵a=b,∴ac2=bc2,正确,故本选项错误;D、∵3x=6y﹣1,∴两边都除以3得:x=2y﹣,错误,故本选项正确;故选:D.【点评】本题考查了等式的性质的应用,注意:等式的基本性质1:等式两边同时加上(或减去)同一个代数式,所得结果仍是等式;等式的基本性质2:等式两边同时乘同一个数(或除以一个不为0的数),所得结果仍是等式.4.如图,若m∥n,∠1=105°,则∠2=()A.55°B.60°C.65°D.75°【分析】由m∥n,根据“两直线平行,同旁内角互补”得到∠1+∠2=180°,然后把∠1=105°代入计算即可得到∠2的度数.【解答】解:∵m∥n,∴∠1+∠2=180°(两直线平行,同旁内角互补),而∠1=105°,∴∠2=180°﹣105°=75°.故选:D.【点评】本题考查了平行线的性质:两直线平行,同旁内角互补.5.如图,图中∠1与∠2是同位角的是()A.(2)(3)B.(2)(3)(4)C.(1)(2)(4)D.(3)(4)【分析】根据同位角的定义作答.【解答】解:(1)(2)(4)中,∠1与∠2是同位角;图(3)中,∠1与∠2不是同位角,因为这两个角的边所在的直线没有一条公共边.故选:C.【点评】两条直线被第三条直线所截,在截线的同侧,在两条被截直线的同旁的两个角是同位角.如果两个角是同位角,那么它们一定有一条边在同一条直线上.6.如图,由AD∥BC可以得到的是()A.∠1=∠2B.∠3+∠4=90°C.∠DAB+∠ABC=180°D.∠ABC+∠BCD=180°【分析】依据两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等,即可得出结论.【解答】解:∵AD∥BC,∴∠3=∠4,∠DAB+∠ABC=180°,故选:C.【点评】此题考查了平行线的性质:两直线平行,内错角相等,同旁内角互补.解题的关键是找到截线与被截线.7.如图,AB∥EF,EF∥CD,EG∥BD,则图中与∠1相等的角(除∠1外)共有()A.6个B.5个C.4个D.2个【分析】根据直线平行关系找出∠1的同位角和内错角,或与∠1相等的角的同位角和内错角,然后计算个数即可.【解答】解:如图,与∠1相等的角有:∠2、∠3、∠4、∠5、∠6共5个.故选:B.【点评】本题主要考查根据平行线的性质,∠1的同位角和内错角就是相等的角,要注意与∠1相等的角的同位角和内错角也是要找的角.8.某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x人,则下列方程正确的是()A.3x﹣20=24x+25B.3x+20=4x﹣25C.3x﹣20=4x﹣25D.3x+20=4x+25【分析】直接利用总本书相等进而得出等式.【解答】解:设该校七年一班有学生x人,根据题意可得:3x+20=4x﹣25.故选:B.【点评】此题主要考查了由实际问题抽象出一元一次方程,正确得出等式是解题关键.9.下列说法中①过一点有且只有一条直线与已知直线平行;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③两直线平行,同旁内角互补;④直线外一点到已知直线的垂线段就是点到直线的距离,其中正确的有()个A.4个B.3个C.2个D.1个【分析】根据平行公理,平行线的性质,点到直线的距离判断即可.【解答】解:①在同一平面内,过一点有且只有一条直线与已知直线平行;错误;②在同一平面内,过一点有且只有一条直线与已知直线垂直;正确;③两直线平行,同旁内角互补;正确;④直线外一点到已知直线的垂线段的长度就是点到直线的距离,错误;故选:C.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.10.下面的程序计算,若开始输入的值为正数,最后输出的结果为131,则满足条件的x的不同值最多有()A.0个B.1个C.2个D.3个【分析】由题中的程序框图确定出满足题意x的值即可.【解答】解:若5x+1=131,即5x=130,解得:x=26,若5x+1=26,即5x=25,解得:x=5,若5x+1=5,即x=,则满足条件的x的值是,5,26.故选:D.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.二、填空题(每題3分,共30分)11.关于x的方程ax+1=4的解是x=1,则a=3.【分析】将x=1代入方程得到关于a的方程,解之可得.【解答】解:根据题意,将x=1代入ax+1=4,得:a+1=4,解得:a=3,故答案为:3.【点评】本题主要考查一元一次方程的解,解题的关键是熟练掌握方程的解的定义.12.已知∠1与∠2是对顶角,∠2与∠3是邻补角,则∠1+∠3=180°.【分析】根据对顶角、邻补角的性质,可得∠1=∠2,∠1+∠3=180°,则∠2+∠3=∠1+∠3=180°.【解答】解:∵∠1与∠2是对顶角,∴∠1=∠2,又∵∠2与∠3是邻补角,∴∠1+∠3=180°,等角代换得∠2+∠3=180°,故答案为:180°.【点评】本题主要考查对顶角的性质以及邻补角的定义,熟记对顶角和邻补角的性质是解题的关键.13.若2x3﹣2k+2k=41是关于x的一元一次方程,则k=1.【分析】直接利用一元一次方程的定义分析得出答案.【解答】解:∵2x3﹣2k+2k=41是关于x的一元一次方程,∴3﹣2k=1,解得:k=1.故答案为:1.【点评】此题主要考查了一元一次方程的定义,正确把握次数为1是解题关键.14.如图所示,∠1=100°,∠3=110°,∠2=100°,则∠4的度数为70°.【分析】依据∠1=∠2,即可得出AB∥CD,进而得到∠3+∠4=180°,再根据∠3=110°,即可得到∠4=70°.【解答】解:∵∠1=100°,∠2=100°,∴∠1=∠2,∴AB∥CD,∴∠3+∠4=180°,又∵∠3=110°,∴∠4=70°,故答案为:70°.【点评】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.15.若关于x的方程3x+2=0与5x+k=20的解相同,则k的值为.【分析】本题可先将3x+2=0的x解出来,然后代入5x+k=20中可得k的值.【解答】解:∵3x+2=0∴x=将x=代入5x+k=20中解得:k=【点评】本题解决的关键是能够求解关于x的方程,要能根据同解的定义建立方程.16.如图,直线AB与直线CD相交于点O,E是∠AOD内一点,已知OE⊥AB,∠BOD=45°,则∠COE的度数是135°.【分析】先根据对顶角相等求出∠AOC的度数,根据垂直的定义求出∠AOE,然后相加即可得解.【解答】解:∵OE⊥AB,∴∠AOE=90°,∵∠BOD=45°,∴∠AOC=∠BOD=45°,∴∠COE=∠AOE+∠AOC=90°+45°=135°.故答案为:135°.【点评】本题考查了对顶角相等的性质,垂直的定义,根据图形找出角的关系代入数据进行计算即可,比较简单.17.已知小名比小丽大3岁,一天小名对小丽说“再过十五年,咱俩年龄和的2倍就是110岁了”那么现在小名年龄是14岁.【分析】根据题意,可以列出相应的方程,求出现在小名的年龄.【解答】解:设现在小名年龄是x岁,[(x+15)+(x﹣3+15)]×2=110,解得,x=14,故答案为:14.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.18.如图,已知DE∥BC,∠ABC=100°,点F在射线BA上,且∠EDF=120°,则∠DFB的度数为20°或140°.【分析】分两种情况讨论,画出图形,分别依据平行线的性质,即可得到∠DFB的度数.【解答】解:分两种情况:①如图,延长ED交AB于G,∵DE∥BC,∴∠FGD=∠B=100°,又∵∠EDF=120°,∴∠DFB=120°﹣100°=20°;②如图,过F作FG∥BC,∵DE∥BC,∴FG∥DE,∴∠D+∠DFG=180°,∠B+∠BFG=180°,又∵∠ABC=100°,∠EDF=120°,∴∠BFG=80°,∠DFG=60°,∴∠DFB=140°,故答案为:20°或140°.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,同旁内角互补.19.某轮船在松花江沿岸的两城市之间航行,已知顺流航行要6小时由A市到达B市,逆流航行要10小时由B市到达A市,则江面上的一片树叶由A市漂到B市需要30小时.【分析】根据题意可知从A市到B市是船在静水中的速度和水流的速度之和,从B市到A市是船在静水中的速度和水流的速度之差,从而可以得到相应的方程,求出江面上的一片树叶由A市漂到B市需要的时间.【解答】解:设轮A市到达B市的路程为S,江面上的一片树叶由A市漂到B市需要h小时,=,解得,h=30故答案为:30.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.20.如图,有两个正方形夹在AB与CD中,且AB∥CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为70度(正方形的每个内角为90°)【分析】如图,延长KH交EF的延长线于M,作MG⊥AB于G,交CD于H.利用四边形内角和36°,求出∠HMF,再根据∠KME=∠MKG+∠MEH,求出∠MKG即可解决问题;【解答】解:如图,延长KH交EF的延长线于M,作MG⊥AB于G,交CD于H.∵∠GHM=∠GFM=90°,∴∠HMF=180°﹣150°=30°,∵∠HMF=∠MKG+∠MEH,∠MEH=10°,∴∠MKG=20°,∴∠1=90°﹣20°=70°,故答案为70.【点评】本题利用正方形的四个角都是直角,直角的邻补角也是直角,四边形的内角和定理和两直线平行,内错角相等的性质,延长正方形的边构造四边形是解题的关键.三、解答題(21題10分,22、23题各7分,24、25题各8分,26、27题各10分,共计60分21.解方程(1)2x+5=3x﹣3(2)=2﹣【分析】(1)依据解一元一次方程的一般步骤:移项、合并同类项、系数化为1计算可得;(2)依据解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1计算可得.【解答】解:(1)2x﹣3x=﹣3﹣5,﹣x=﹣8,x=8;(2)3(3y﹣2)=24﹣4(2y﹣1),9y﹣6=24﹣8y+4,9y+8y=24+4+6,17y=34,y=2.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.22.已知x=3是方程4(x﹣1)﹣mx+6=8的解,求m2+2m﹣3的值.【分析】将x的值代入方程得出关于m的方程,解之求得m的值,再代入计算可得.【解答】解:根据题意,将x=3代入方程4(x﹣1)mx+6=8,得:4×(3﹣1)﹣3m+6=8,解得:m=2,则m2+2m﹣3=22+2×2﹣3=4+4﹣3=5.【点评】本题主要考查一元一次方程的解,解题的关键是掌握方程的解的定义.23.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?【分析】两个等量关系为:加工的甲部件的人数+加工的乙部件的人数=85;3×16×加工的甲部件的人数=2×加工的乙部件的人数×10.【解答】解:设加工的甲部件的有x人,加工的乙部件的有y人.,由②得:12x﹣5y=0③,①×5+③得:5x+5y+12x﹣5y=425,即17x=425,解得x=25,把x=25代入①解得y=60,所以答:加工的甲部件的有25人,加工的乙部件的有60人.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.需注意:两个甲种部件和三个乙种部件配成一套的等量关系为:3×甲种部件的个数=2×乙种部件的个数.24.如图,BD是∠ABC的平分线,ED∥BC,∠4=∠5,则EF也是∠AED的平分线.完成下列推理过程:证明:∵BD是∠ABC的平分线(已知)∴∠1=∠2(角平分线定义)∵ED∥BC(已知)∴∠5=∠2(两直线平行,内错角相等)∴∠1=∠5(等量代换)∵∠4=∠5(已知)∴EF∥BD(内错角相等,两直线平行)∴∠3=∠1(两直线平行,同位角相等)∴∠3=∠4(等量代换)∴EF是∠AED的平分线(角平分线定义)【分析】依据角平分线的定义以及平行线的性质,即可得到∠1=∠5,再根据∠4=∠5,即可得出EF∥BD,进而得出∠3=∠4,即可得到EF是∠AED的平分线.【解答】证明:∵BD是∠ABC的平分线(已知)∴∠1=∠2(角平分线定义)∵ED∥BC(已知)∴∠5=∠2(两直线平行,内错角相等)∴∠1=∠5(等量代换)∵∠4=∠5(已知)∴EF∥BD(内错角相等,两直线平行)∴∠3=∠1(两直线平行,同位角相等)∴∠3=∠4(等量代换)∴EF是∠AED的平分线(角平分线定义)故答案为:两直线平行,内错角相等;BD;内错角相等,两直线平行;两直线平行,同位角相等.【点评】本题主要考查了平行线的性质与判定,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.25.如图,E为DF上的点,B为AC上的点,DF∥AC,∠C=∠D,求证:∠2=∠1.【分析】依据平行线的性质,即可得到∠C=∠CEF,依据∠CEF=∠D,即可得到BD∥CE,进而得出∠3=∠4,再根据对顶角相等,即可得到∠2=∠1.【解答】证明:∵DF∥AC,∴∠C=∠CEF,又∵∠C=∠D,∴∠CEF=∠D,∴BD∥CE,∴∠3=∠4,又∵∠3=∠2,∠4=∠1,∴∠2=∠1.【点评】此题考查平行线的性质和判定.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.26.小明爸爸装修要粉刷断居室的墙面,在家装商场选购某品牌的乳胶漆:小明爸估算家里的粉刷面积,若买“大桶装”,则需若干桶但还差2升;若买“小桶装”,则需多买11桶但会剩余1升,(1)小明爸预计墙面的粉刷需要乳胶漆多少升?(2)喜迎新年,商场进行促销:满1000减120元现金,并且该品牌商家对“小桶装”乳胶漆有“买4送1“的促销活动,小明爸打算购买“小桶装”,比促销前节省多少钱?(3)在(2)的条件下,商家在这次乳胶漆的销售买卖中,仍可盈利25%,则小桶装乳胶漆每桶的成本是多少元?【分析】(1)设需购买“大桶装”乳胶漆x桶,则需购买“小桶装”乳胶漆(x+11)桶,根据所需乳胶漆体积不变,即可得出关于x的一元一次方程,解之即可得出x的值,再将其代入18x+2中即可求出结论;(2)由(1)可知:需购买15桶“小桶装”乳胶漆,结合商家对“小桶装”乳胶漆有“买4送1“的促销活动可得出只需购买12桶“小桶装”乳胶漆,再利用节省钱数=促销前所需费用﹣促销后所需费用,即可求出结论;(3)设“小桶装”乳胶漆每桶的成本是y元,根据利用=销售收入﹣成本,即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设需购买“大桶装”乳胶漆x桶,则需购买“小桶装”乳胶漆(x+11)桶,依题意,得:18x+2=5(x+11)﹣1,解得:x=4,∴18x+2=74.答:小明爸预计墙面的粉刷需要乳胶漆74升.(2)由(1)可知,需购买15桶“小桶装”乳胶漆.∵商家对“小桶装”乳胶漆有“买4送1“的促销活动,∴只需购买15×=12(桶),∴比促销前可节省15×90﹣(12×90﹣120)=390(元).答:比促销前节省390元钱.(3)设“小桶装”乳胶漆每桶的成本是y元,依题意,得:12×90﹣120﹣15y=15y×25%,解得:y=51.2.答:“小桶装”乳胶漆每桶的成本是51.2元.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.27.已知,点A,点B分别在线段MN,PQ上∠ACB﹣∠MAC=∠CBP(1)如图1,求证:MN∥PQ;(2)分别过点A和点C作直线AG、CH使AG∥CH,以点B为顶点的直角∠DBI绕点B旋转,并且∠DBI的两边分别与直线CH,AG交于点F和点E,如图2试判断∠CFB、∠BEG是之间的数量关系,并证明;(3)在(2)的条件下,若BD和AE恰好分别平分∠CBP和∠CAN,并且∠ACB=60°,求∠CFB的度数.【分析】(1)过C作CE∥MN,根据平行线的判定和性质即可得到结论;(2)过B作BR∥AG,根据平行线的性质得到∠BEG=∠EBR,∠RBF+∠CFB=180°,等量代换即可得到结论;(3)过E作ES∥MN,根据平行线的性质得到∠NAE=∠AES,∠QBE=∠EBC,根据角平分线的定义得到∠NAE=∠EAC,∠CBD=∠DBP,根据四边形的内角和即可得到结论.【解答】解:(1)过C作CE∥MN,∴∠1=∠MAC,∵∠2=∠ACB﹣∠1,∴∠2=∠ACB﹣∠MAC,∵∠ACB﹣∠MAC=∠CBP,∴∠2=∠CBP,∴CE∥PQ,∴MN∥PQ;(2)过B作BR∥AG,∵AG∥CH,∴BR∥HF,∴∠BEG=∠EBR,∠RBF+∠CFB=180°,∵∠EBF=90°,∴∠BEG=∠EBR=90°﹣∠RBF,∴∠BEG=90°﹣∠RBF=90°﹣(180°﹣∠CFB),∴∠CFB﹣∠BEG=90°;(3)过E作ES∥MN,∵MN∥PQ,∴ES∥PQ,∴∠NAE=∠AES,∠QBE=∠EBC,∵BD和AE分别平分∠CBP和∠CAN,∴∠NAE=∠EAC,∠CBD=∠DBP,∴∠CAE=∠AES,∵∠EBD=90°,∴∠EBQ+∠PBD=∠EBC+∠CBD=90°,∴∠QBE=∠EBC,∴∠AEB=∠AES+∠BES=∠CAE+∠CBE=,∵∠ACB=60°,∴∠AEB=150°,∴∠BEG=30°,∵∠CFB﹣∠BEG=90°,∴∠CFB=120°.【点评】本题考查了平行线的判定和性质,余角的性质,四边形的内角和,正确的作出辅助线是解题的关键.。

2019-2020学年七年级(上)期中数学试卷 解析版

2019-2020学年七年级(上)期中数学试卷  解析版

七年级(上)期中数学试卷一、选择题本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的1.下列四个有理数中,最大的是()A.﹣B.﹣C.﹣1 D.﹣22.我市某天早晨气温是﹣3℃,到中午升高了7℃,晚上又降低了3℃,到午夜又降低了6℃,午夜时温度为()A.19℃B.1℃C.﹣5℃D.﹣2℃3.节约是一种美德,据不完全统计,某国每年浪费食物总量折合粮食可养活约3亿6千万人,360000000用科学记数法表示为()A.0.36×109B.3.6×108C.36×107D.360×1064.如果a,b互为相反数,x,y互为倒数,则(a+b)2018+(﹣xy)2019的值是()A.1 B.0 C.﹣1 D.﹣20195.我国为了解决药品价格过高的问题,决定大幅度降低某些药品价格,其中将原价为a元的某种常用药降低60%,则降低后的价格为()A.元B.元C.0.4a元D.0.6a元6.下列各组代数式中,不是同类项的是()A.2与﹣5 B.2xy2与3x2y C.﹣3t与200t D.ab2与b2a7.当代数式x2+3x+5的值为11时,代数式3x2+9x﹣2的值为()A.16 B.12 C.9 D.﹣28.定义一种新运算“※”,观察下列各式1※3=1×5+3=83※(﹣1)=3×5﹣1=145※4=5×5+4=294※(﹣3)=4×5﹣3=17若a※(﹣b)=﹣6,则(a﹣b)※(5a+3b)的值为()A.12 B.6 C.﹣6 D.﹣12二、填空题本大题共8个问题,钊题3分,共24分,答案填在题中横线上9.有理数﹣的倒数是.10.绝对值小于3.5的整数是.11.若|x|=2,|y|=3,则|x+y|的值为.12.已知长方形的周长为4a+2b,其一边长为a﹣b,则另一边长为.13.已知a,b,c三个数在数轴上对应点的位置如图所示①a<c<b,②﹣a<b,③a﹣b>0,④c﹣a<0在上述几个判断中,错误的序号为.14.若规定一种运算法则=ad﹣bc,请运算=.15.下列说法中正确的序号为.①在正有理数中,0是最小的整数②最大的负整数是﹣1③有理数包括正有理数和负有理数④数轴上表示﹣a的点一定在原点的左边⑤在数轴上5与7之间的有理数是6.16.由1开始的连续奇数排成如下图所示,观察规律.则此表中第n行的第一个数是.(用含有n的代数式表示)三、解答题本大题共6个小题,共52分,解答应写出文字说明,证明过程或演算步骤. 17.根据下列要求完成各题(1)计算:(﹣5)﹣(﹣2)+(﹣3)+6(2)计算:(﹣10)÷2﹣(﹣3)×418.计算:(﹣3)2×(﹣2)﹣[(﹣1)5﹣8]÷3+|﹣7|19.已知有理数a、b、c在数轴上的位置如图,化简|a|﹣|a+b|+|c﹣a|+|b+c|.20.先化简,再求值:2(x3﹣32)﹣(5x3+x)﹣3(y2﹣x3),其中x=﹣7,y=﹣21.如图,在长方形ABCD中,放入6个形状和大小都相同的小长方形后,还有一部分空余(阴影部分),已知小长方形的长为a,宽为b,且a>b.(1)用含a、b的代数式表示长方形ABCD的长AD和宽AB.(2)用含a、b的代数式表示阴影部分的面积(列式表示即可,不要求化简).(3)若a=7cm,b=2cm,求阴影部分的面积.22.如图1所示,在一个长方形广场的四角都设计一块半径相同的四分之一圆形的花坛.若广场的长为m米,宽为n米,圆形的半径为r米.(1)列式表示广场空地的面积.(2)若广场的长为300米,宽为200米,圆形的半径为30米,求广场空地的面积(计算结果保留π).(3)如图2所示,在(2)的条件下,若在广场的中间再建一个半径为R的圆形花坛,使广场的空地面积不少于广场总面积的,求R的最大整数值(π取3.1).参考答案与试题解析一.选择题(共8小题)1.下列四个有理数中,最大的是()A.﹣B.﹣C.﹣1 D.﹣2【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣>﹣>﹣1>﹣2,∴四个有理数中,最大的是﹣.故选:B.2.我市某天早晨气温是﹣3℃,到中午升高了7℃,晚上又降低了3℃,到午夜又降低了6℃,午夜时温度为()A.19℃B.1℃C.﹣5℃D.﹣2℃【分析】根据题意列出算式,利用有理数的加减即可求得结果.【解答】解:根据题意,得﹣3+7﹣3﹣6=﹣5故选:C.3.节约是一种美德,据不完全统计,某国每年浪费食物总量折合粮食可养活约3亿6千万人,360000000用科学记数法表示为()A.0.36×109B.3.6×108C.36×107D.360×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3亿6千万=360000000=3.6×108,故选:B.4.如果a,b互为相反数,x,y互为倒数,则(a+b)2018+(﹣xy)2019的值是()A.1 B.0 C.﹣1 D.﹣2019【分析】利用相反数,倒数的性质求出a+b与xy的值,代入原式计算即可求出值.【解答】解:根据题意得:a+b=0,xy=1,则原式=0﹣1=﹣1,故选:C.5.我国为了解决药品价格过高的问题,决定大幅度降低某些药品价格,其中将原价为a元的某种常用药降低60%,则降低后的价格为()A.元B.元C.0.4a元D.0.6a元【分析】关键描述语是:降价后是在a的基础上减少了60%,价格为:a(1﹣60%)=40%a =0.4a元.【解答】解:依题意得:价格为:a(1﹣60%)=40%a=0.4a元.故选:C.6.下列各组代数式中,不是同类项的是()A.2与﹣5 B.2xy2与3x2y C.﹣3t与200t D.ab2与b2a【分析】同类项定义:单项式所含字母及字母指数相同的是同类项,单个数也是同类项.根据定义即可判断选择项.【解答】解:A是两个常数项,是同类项;B中两项所含字母相同但相同字母的指数不同,不是同类项;C和D所含字母相同且相同字母的指数也相同的项,是同类项.故选:B.7.当代数式x2+3x+5的值为11时,代数式3x2+9x﹣2的值为()A.16 B.12 C.9 D.﹣2【分析】根据题意求出x2+3x=6,变形后整体代入,即可求出答案.【解答】解:根据题意得:x2+3x+5=11,x2+3x=6,所以3x2+9x﹣2=3(x2+3x)﹣2=3×6﹣2=16.故选:A.8.定义一种新运算“※”,观察下列各式1※3=1×5+3=83※(﹣1)=3×5﹣1=145※4=5×5+4=294※(﹣3)=4×5﹣3=17若a※(﹣b)=﹣6,则(a﹣b)※(5a+3b)的值为()A.12 B.6 C.﹣6 D.﹣12【分析】题中等式利用新定义化简,原式化简后代入计算即可求出值.【解答】解:根据题中的新定义得:a※(﹣b)=5a﹣b=﹣6,则原式=5(a﹣b)+5a+3b=10a﹣2b=2(5a﹣b)=﹣12,故选:D.二.填空题(共8小题)9.有理数﹣的倒数是﹣5 .【分析】根据倒数的定义即可求解.【解答】解:有理数﹣的倒数是﹣5.故答案为:﹣5.10.绝对值小于3.5的整数是0,±1,±2,±3 .【分析】根据一个数所表示的点到原点的单位长度叫做这个数的绝对值,从而画图得出答案.【解答】解:如图,绝对值小于3.5的整数是:﹣3;﹣2;﹣1;0;1;2;3.故答案为:0;±1;±2;±3.11.若|x|=2,|y|=3,则|x+y|的值为5或1 .【分析】根据绝对值的意义由|x|=2,|y|=3得到x=±2,y=±3,可计算出x+y=±1或±5,然后再利用绝对值的意义求|x+y|.【解答】解:∵|x|=2,|y|=3,∴x=±2,y=±3,∴x+y=±1或±5,∴|x+y|=5或1.故答案为5或1.12.已知长方形的周长为4a+2b,其一边长为a﹣b,则另一边长为a+2b.【分析】根据长方形的对边相等得出算式(4a+2b)÷2﹣(a﹣b),化简即可.【解答】解:∵长方形的周长为4a+2b,其一边长为a﹣b,∴另一边长为(4a+2b)÷2﹣(a﹣b),即(4a+2b)÷2﹣(a﹣b)=2a+b﹣a+b=a+2b.故答案为:a+2b.13.已知a,b,c三个数在数轴上对应点的位置如图所示①a<c<b,②﹣a<b,③a﹣b>0,④c﹣a<0在上述几个判断中,错误的序号为③.【分析】利用A、B、C在数轴上的位置,确定符号和绝对值,进而对各个选项做出判断.【解答】解:由题意得,a<0,b<0,c>0,且|a|<|b|,|c|<|b|,因此:①a<c<b,不正确,②﹣a<b,不正确,③a﹣b>0,正确,④c﹣a<0不正确,故答案为:③14.若规定一种运算法则=ad﹣bc,请运算=﹣28 .【分析】根据新定义得到:=﹣2×5﹣3×6,再先算乘法运算,然后进行减法运算.【解答】解:=﹣2×5﹣3×6=﹣10﹣18=﹣28.故答案为:﹣28.15.下列说法中正确的序号为②.①在正有理数中,0是最小的整数②最大的负整数是﹣1③有理数包括正有理数和负有理数④数轴上表示﹣a的点一定在原点的左边⑤在数轴上5与7之间的有理数是6.【分析】根据有理数的意义、数轴等知识逐个判断,得出结论即可.【解答】解:①0既不是正数也不是负数,因此①不正确,②负整数中最大的是﹣1,正确,③有理数包括正有理数,0,负有理数,因此③不正确,④﹣a不一定是负数,不一定在原点的左边,因此④不正确,⑤在数轴上5与7之间的有理数有无数个,不仅仅有6,因此⑤不正确,故答案为:②.16.由1开始的连续奇数排成如下图所示,观察规律.则此表中第n行的第一个数是n(n ﹣1)+1 .(用含有n的代数式表示)【分析】根据图中给出的第一个数找出规律,根据规律解答;【解答】解:由题意得,第1行的第一个数是1=1×(1﹣1)+1,第2行的第一个数是3=2×(2﹣1)+1,第3行的第一个数是5=3×(3﹣1)+1,…第n行的第一个数是n(n﹣1)+1,故答案为:n(n﹣1)+1.三.解答题(共6小题)17.根据下列要求完成各题(1)计算:(﹣5)﹣(﹣2)+(﹣3)+6(2)计算:(﹣10)÷2﹣(﹣3)×4【分析】(1)先化简,再计算加减法即可求解;(2)先算乘除法,再算减法.【解答】解:(1)(﹣5)﹣(﹣2)+(﹣3)+6=﹣5+2﹣3+6=﹣8+8=0;(2)(﹣10)÷2﹣(﹣3)×4=﹣5+12=7.18.计算:(﹣3)2×(﹣2)﹣[(﹣1)5﹣8]÷3+|﹣7|【分析】先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号和绝对值,要先做括号和绝对值内的运算.【解答】解:(﹣3)2×(﹣2)﹣[(﹣1)5﹣8]÷3+|﹣7|=9×(﹣2)﹣(﹣1﹣8)÷3+7=﹣18﹣(﹣9)÷3+7=﹣18+3+7=﹣8.19.已知有理数a、b、c在数轴上的位置如图,化简|a|﹣|a+b|+|c﹣a|+|b+c|.【分析】直接利用数轴结合绝对值的性质化简求出答案.【解答】解:由数轴可得:原式=﹣a﹣[﹣(a+b)]+c﹣a﹣(b+c)=﹣a.20.先化简,再求值:2(x3﹣32)﹣(5x3+x)﹣3(y2﹣x3),其中x=﹣7,y=﹣【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=2x3﹣18﹣5x3﹣x﹣3y2+3x3=﹣18﹣x﹣3y2,当x=﹣7,y=﹣时,原式=﹣18+7﹣=﹣11.21.如图,在长方形ABCD中,放入6个形状和大小都相同的小长方形后,还有一部分空余(阴影部分),已知小长方形的长为a,宽为b,且a>b.(1)用含a、b的代数式表示长方形ABCD的长AD和宽AB.(2)用含a、b的代数式表示阴影部分的面积(列式表示即可,不要求化简).(3)若a=7cm,b=2cm,求阴影部分的面积.【分析】(1)如图所示,AD=a+b+b=a+2b,CD=a+b,即为长方形的长与宽;(2)阴影部分的面积=长方形ABCD的面积﹣6个小长方形的面积,利用长方形的面积公式表示出阴影部分的面积即可;(3)代入求值即可.【解答】解:(1)由图形得:AD=a+2b,AB=a+b;(2)S阴影=(a+b)(a+2b)﹣6ab=a2+2ab+ab+2b2﹣6ab=a2﹣3ab+2b2;(3)把a=7cm,b=2cm代入,得S阴影=72﹣3×7×2+2×22=15.22.如图1所示,在一个长方形广场的四角都设计一块半径相同的四分之一圆形的花坛.若广场的长为m米,宽为n米,圆形的半径为r米.(1)列式表示广场空地的面积.(2)若广场的长为300米,宽为200米,圆形的半径为30米,求广场空地的面积(计算结果保留π).(3)如图2所示,在(2)的条件下,若在广场的中间再建一个半径为R的圆形花坛,使广场的空地面积不少于广场总面积的,求R的最大整数值(π取3.1).【分析】(1)长方形的面积减去半径为r的圆的面积即可.(2)把m=300,n=200,r=30代入即可求出空地的面积,(3)根据面积之间的关系列出不等式,求出不等式的整数解即可.【解答】解:(1)由题意得,mn﹣πr2,答:广场空地的面积为(mn﹣πr2)平方米,(2)把m=300,n=200,r=30代入得,原式=300×200﹣π×900=(60000﹣900π)平方米,答:广场空地的面积大约为(60000﹣90π)平方米.(3)由题意得,300×200﹣π×302﹣πR2≥300×200×,解得R≤74.51,R为最大的整数,所以R=74米,答:R的最大整数值为74米.。

2019-2020学年新人教版七年级上学期期中考试数学试卷(解析版)

2019-2020学年新人教版七年级上学期期中考试数学试卷(解析版)

2019-2020学年新人教版七年级上学期期中考试数学试卷一、选择题:(每小题3分,共36分)1.0.2的相反数是()A.B.C.﹣5D.52.下列计算正确的是()A.23=6B.﹣42=﹣16C.﹣8﹣8=0D.﹣5﹣2=﹣33.在有理数(﹣1)2、、﹣|﹣2|、(﹣2)3中负数有()个.A.4B.3C.2D.14.下列说法中正确的是()A.没有最小的有理数B.0既是正数也是负数C.整数只包括正整数和负整数D.﹣1是最大的负有理数5.2010年5月1日至2010年10月31日期间在上海举行的世界博览会总投资约450亿元人民币,其中“450亿”用科学记数法表示为()元.A.4.5×1010B.4.5×109C.4.5×108D.0.45×1096.下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1不是单项式C.的系数是D.﹣22xab2的次数是67.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水()A.3瓶B.4瓶C.5瓶D.6瓶8.如图所示是5个城市的国际标准时间(单位:时)那么北京时间2007年11月9日上午9时应是()A.伦敦时间2007年11月9日凌晨1时B.纽约时间2007年11月9日晚上22时C.多伦多时间2007年11月8日晚上20时D.汉城时间2007年11月9日上午8时9.如图是一个简单的数值运算程序,当输入的x的值为﹣1时,则输出的值为()A.1B.﹣5C.﹣1D.510.下列各式中,是二次三项式的是()A.B.32+3+1C.32+a+ab D.x2+y2+x﹣y11.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,﹣a,b,﹣b按照从小到大的顺序排列()A.﹣b<﹣a<a<b B.﹣a<﹣b<a<b C.﹣b<a<﹣a<b D.﹣b<b<﹣a<a12.已知a、b为有理数,下列式子,其中一定能够表示a、b异号的有()个①|ab|>ab②<0③||=﹣④a3+b3=0A.1B.2C.3D.4二、填空题:(每题3分,共18分)13.若a与b互为相反数,c与d互为倒数,则(a+b)3﹣4(cd)5=.14.已知|a|=3,|b|=2,且ab<0,则a﹣b=.15.一只猫头鹰一年能吃300只田鼠,一只田鼠一年大约要糟蹋2千克粮食,现有m只猫头鹰,一年可以减少损失粮食千克.16.若规定a*b=5a+2b﹣1,则(﹣4)*6的值为.17.已知a=25,b=﹣3,则a99+b100的末位数字是.18.观察一列数:,,,,,…根据规律,请你写出第10个数是.三、解答题:(共66分)19.(5分)画一根数轴,用数轴上的点把如下的有理数﹣2,﹣0.3,0,2.5,表示出来,并用“<”把它们连接起来.20.(24分)计算(1)(2)(﹣﹣+﹣+)×(﹣60)(3)﹣×[(﹣)÷(0.75﹣1)+(﹣2)5](4)﹣23+[(﹣4)2﹣(1﹣32)×3](5)(6)﹣13×﹣0.34×+×(﹣13)﹣×0.3421.(16分)化简(1)a2﹣ab+a2+ab﹣b2(2)(7m2n﹣5mn)﹣(4m2n﹣5mn)(3)(4)﹣2y3+(3xy2﹣x2y)﹣2(xy2﹣y3)22.(5分)先化简,再求值:5(3a2b﹣ab2﹣1)﹣(ab2+3a2b﹣5),其中a=﹣,b=.23.(5分)一位同学做一道题,已知两个多项式A,B,计算A+B,他误将A+B看作A﹣B,求得9x2﹣2x+7,若B=x2+3x﹣2,你能否帮助他求得正确答案?24.(5分)如果有理数a,b满足|ab﹣2|+(1﹣a)2=0,试求的值.25.(6分)已知有理数a、b、c在数轴上的位置如图所示,且|a|=|b|,化简|a|﹣|a+b|﹣|c﹣a|+|c﹣b|+|ac|﹣|﹣2b|参考答案与试题解析一、选择题:(每小题3分,共36分)1.【分析】根据相反数的意义在0.2前面加上负号即可得出答案.【解答】解:由相反数的意义得:0.2的相反数是:﹣0.2=﹣,故选:B.【点评】此题主要考查的知识点是相反数的定义,关键是在其前面加“﹣”得出这个数的相反数.2.【分析】根据有理数的加法、减法、乘方法则分别计算出结果,再进行比较.【解答】解:A、23=8≠6,错误;B、﹣42=﹣16,正确;C、﹣8﹣8=﹣16≠0,错误;D、﹣5﹣2=﹣7≠﹣3,错误;故选:B.【点评】本题主要考查学生的运算能力,掌握运算法则是关键.3.【分析】根据小于0的数是负数,对各项计算后得出负数的个数.【解答】解:(﹣1)2=1是正数,﹣(﹣)=是正数,﹣|﹣2|=﹣2是负数,(﹣2)3=﹣8是负数,所以负数有﹣|﹣2|,(﹣2)32个,故选:C.【点评】本题主要利用小于0的数是负数的概念,是基础题,比较简单.4.【分析】按照有理数的分类作出选择:有理数.【解答】解:A、没有最大的有理数,也没有最小的有理数;故本选项正确;B、0既不是正数,也不是负数,而是整数;故本选项错误;C、整数包括正整数、负整数和零;故本选项错误;D、比﹣1大的负有理数可以是﹣;故本选项错误;故选:A.【点评】认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.5.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将450亿用科学记数法表示为:4.5×1010.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.【分析】根据单项式和多项式的概念及性质判断各个选项即可.【解答】解:A、2x2﹣3xy﹣1是二次三项式,故本选项不符合题意;B、﹣x+1不是单项式,故本选项不符合题意;C、的系数是,故本选项不符合题意;D、﹣22xab2的次数是4,故本选项符合题意.故选:D.【点评】本题考查单项式及多项式的知识,注意对这两个基本概念的熟练掌握,属于基础题,比较容易解答.7.【分析】4个矿泉水空瓶可以换矿泉水一瓶,16个矿泉水空瓶可换4瓶矿泉水,喝完后又得4个空矿泉水瓶,又可换一瓶,喝完后得一空瓶.所以最多可以喝矿泉水5瓶.【解答】解:16个空瓶可换16÷4=4瓶矿泉水;4瓶矿泉水喝完后又可得到4个空瓶子,可换4÷4=1瓶矿泉水;因此最多可以喝矿泉水4+1=5瓶,故选:C.【点评】本题需注意喝完4瓶矿泉水后,又可得到4个空瓶即1瓶矿泉水.8.【分析】根据数轴所显示的差值进行计算即可.【解答】解:若北京是2007年11月9日上午9时,则汉城是11月9日上午10时,纽约是11月8日晚上20时,多伦多是11月8日晚上21时,伦敦是11月9日凌晨1时.故选:A.【点评】本题考查了有理数的加减法.注意会根据数轴知道﹣4、﹣5表达的时间的意思.9.【分析】根据运算程序可得若输入的是x,则输出的是﹣3x﹣2,把x的值代入即可求值.【解答】解:根据运算程序可知,若输入的是x,则输出的是﹣3x﹣2,∴当x=﹣1时,原式=﹣3×(﹣1)﹣2=1.故选:A.【点评】此题考查了代数式求值问题.解题的关键是理解题意,能根据题意列得代数式.10.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选:C.【点评】此题主要考查了如何确定多项式的项数和次数,难点是通过计算确定多项式的次数.11.【分析】利用有理数大小的比较方法可得﹣a<b,﹣b<a,b>0>a进而求解.【解答】解:观察数轴可知:b>0>a,且b的绝对值大于a的绝对值.在b和﹣a两个正数中,﹣a<b;在a和﹣b两个负数中,绝对值大的反而小,则﹣b<a.因此,﹣b<a<﹣a<b.故选:C.【点评】有理数大小的比较方法:正数大于0;负数小于0;正数大于一切负数;两个负数,绝对值大的反而小.12.【分析】利用有理数的乘除法则,以及绝对值的代数意义计算即可求出值.【解答】解:①|ab|>ab,得到a、b异号,符合题意;②<0,得到a、b异号,符合题意;③||=﹣,a、b异号或a=0,不符合题意;④a3+b3=0,得到a、b互相相反数,不符合题意,故选:B.【点评】此题考查了有理数的乘除法,以及绝对值,熟练掌握运算法则是解本题的关键.二、填空题:(每题3分,共18分)13.【分析】根据a与b互为相反数,c与d互为倒数,可以得到:a+b=0,cd=1.代入求值即可求解.【解答】解:∵a与b互为相反数,c与d互为倒数,∴a+b=0,cd=1.∴(a+b)3﹣4(cd)5=0﹣4×1=﹣4.故答案是:﹣4.【点评】本题考查了相反数,倒数的定义,正确理解定义是关键.14.【分析】先根据绝对值的定义,求出a、b的值,然后根据ab<0确定a、b的值,最后代入a ﹣b中求值即可.【解答】解:∵|a|=3,|b|=2,∴a=±3,b=±2;∵ab<0,∴当a=3时b=﹣2;当a=﹣3时b=2,∴a﹣b=3﹣(﹣2)=5或a﹣b=﹣3﹣2=﹣5.故填5或﹣5.【点评】解答此题时,要注意ab<0的真正含义,并充分利用题目中的条件,是正确解答题目的关键.15.【分析】一年减少损失的粮食情况数为:2×田鼠只数.【解答】解:∵一只猫头鹰一年能吃300只田鼠,∴m只猫头鹰一年能吃300m只田鼠,∵一只田鼠一年大约要糟蹋2千克粮食,∴m只猫头鹰,一年可以减少损失粮食300m×2=600m(千克).故答案为600m.【点评】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.用字母表示数时,要注意写法:①在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号;②在代数式中出现除法运算时,一般按照分数的写法来写;③数字通常写在字母的前面;④带分数的要写成假分数的形式.16.【分析】根据a*b=5a+2b﹣1,可以求得题目中所求式子的值,本题得以解决.【解答】解:∵a*b=5a+2b﹣1,∴(﹣4)*6=5×(﹣4)+2×6﹣1=(﹣20)+12﹣1=﹣9,故答案为:﹣9.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.17.【分析】先把各数的值代入代数式,再找出规律求解即可.【解答】解:∵a=25,b=﹣3,∴2599+(﹣3)100=2599+(﹣3)25×4=2599+[(﹣3)4]25=2599+8125,∵5的任何次幂末位数均为5,1的任何次幂末位数均为1,∴2599+8125的末位数是5+1=6.【点评】此题比较简单,把(﹣3)100化为8125是解答此题的关键.18.【分析】仔细观察给出的一列数字,从而可发现,分子等于其项数,分母为其所处的项数的平方加1,根据规律解题即可.【解答】解:,,,,,…根据规律可得第n个数是,∴第10个数是,故答案为;.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.三、解答题:(共66分)19.【分析】先在数轴上表示各个数,再比较大小即可.【解答】解:如图所示:用“<”把它们连接起来为:﹣2<﹣<﹣0.3<0<2.5.【点评】本题考查了数轴,有理数的大小比较的应用,能正确比较两个数的大小是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.20.【分析】(1)先算小括号里面的减法,再将除法变为乘法,再约分计算即可求解;(2)(6)根据乘法分配律简便计算;(3)(4)(5)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)=(﹣)×(﹣)××(﹣2)=﹣;(2)(﹣﹣+﹣+)×(﹣60)=﹣×(﹣60)﹣×(﹣60)+×(﹣60)﹣×(﹣60)+×(﹣60)=20+15﹣12+28﹣25=26;(3)﹣×[(﹣)÷(0.75﹣1)+(﹣2)5]=﹣×[(﹣)÷(﹣)+(﹣32)]=﹣×[2+(﹣32)]=﹣×(﹣30)=24;(4)﹣23+[(﹣4)2﹣(1﹣32)×3]=﹣8+[16﹣(1﹣9)×3]=﹣8+[16﹣(﹣8)×3]=﹣8+(16+24)=﹣8+40=32;(5)=﹣1﹣(﹣)÷×(﹣2+27)﹣|﹣|=﹣1﹣(﹣)÷×25﹣=﹣1+12﹣=11;(6)﹣13×﹣0.34×+×(﹣13)﹣×0.34=﹣13×(+)﹣0.34×(+) =﹣13×1﹣0.34×1 =﹣13﹣0.34 =﹣13.34.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化. 21.【分析】(1)直接合并同类项即可; (2)(4)先去括号,再合并同类项即可;(3)先去小括号,再去中括号,然后合并同类项即可.【解答】解:(1)a 2﹣ab +a 2+ab ﹣b 2=a 2+ab ﹣b 2;(2)(7m 2n ﹣5mn )﹣(4m 2n ﹣5mn ) =7m 2n ﹣5mn ﹣4m 2n +5mn =3m 2n ;(3)=4x 2﹣[x ﹣x +3+3x 2]=4x 2﹣x +x ﹣3﹣3x 2 =x 2﹣x ﹣3;(4)﹣2y3+(3xy2﹣x2y)﹣2(xy2﹣y3)=﹣2y3+3xy2﹣x2y﹣2xy2+2y3=xy2﹣x2y.【点评】本题考查了整式的加减,整式加减的实质就是去括号、合并同类项.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“﹣”时,去括号后括号内的各项都要改变符号.22.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=15a2b﹣5ab2﹣5﹣ab2﹣3a2b+5=12a2b﹣6ab2,当a=﹣,b=时,原式=1﹣=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:9x2﹣2x+7+2(x2+3x﹣2)=9x2﹣2x+7+2x2+6x﹣4=11x2+4x+3.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.24.【分析】根据|ab﹣2|+(1﹣a)2=0,可以求得a、b的值,从而可以求得所求式子的值.【解答】解:∵|ab﹣2|+(1﹣a)2=0,∴ab﹣2=0,1﹣a=0,解得,a=1,b=2,∴==1﹣=1﹣=.【点评】本题考查数字的变化类、非负数的性质,解答本题的关键是明确题意,求出a、b的值.25.【分析】根据有理数a、b、c在数轴上的位置,可知c<b<0<a,且|a|=|b|,继而对②中的式子去绝对值,也即可得出答案.【解答】解:根据有理数a、b、c在数轴上的位置,可知c<b<0<a,且|a|=|b|,则a+b=0,所以|a|﹣|a+b|﹣|c﹣a|+|c﹣b|+|ac|﹣|﹣2b|,=a﹣0﹣(a﹣c)+(b﹣c)﹣ac+2b,=3b﹣ac.【点评】本题考查了数轴,绝对值,注意要会根据数在数轴上的位置判断其符号以及组成的一些代数式的符号.同时注意把一个代数式看作一个整体.。

2019—2020年最新人教版七年级数学上册期中考试综合测试题及答案解析(同步试卷).docx

2019—2020年最新人教版七年级数学上册期中考试综合测试题及答案解析(同步试卷).docx

七年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.﹣的相反数是()A.B.﹣C.5 D.﹣52.下列去括号的结果中,正确的是()A.﹣2(a﹣1)=﹣2a﹣1 B.﹣2(a﹣1)=﹣2a+1 C.﹣2(a﹣1)=﹣2a﹣2 D.﹣2(a﹣1)=﹣2a+23.如图所示,根据有理数a,b,c在数轴上的位置,下列关系正确的是()A.b>a>0>c B.a<b<0<c C.b<a<0<c D.a<b<c<04.某种速冻水饺的储藏温度是﹣18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是()A.﹣17℃B.﹣22℃C.﹣18℃D.﹣19℃5.下列说法中不正确的是()A.最小的正整数是1 B.最大的负整数是﹣1C.有理数分为正数和负数 D.绝对值最小的有理数是06.下面运算正确的是()A.3ab+3ac=6abc B.4a2b﹣4b2a=0 C.2x2+5x2=7x4D.5y2﹣2y2=3y27.下面各组数中,相等的一组是()A.﹣22与(﹣2)2B.与()3C.﹣|﹣2|与﹣(﹣2)D.(﹣3)3与﹣338.若有理数m,n满足mn>0,且m+n<0,则下列说法正确的是()A.m,n可能一正一负B.m,n都是正数C.m,n都是负数D.m,n中可能有一个为09.已知a,b互为倒数,|c﹣1|=2,则abc的值为()A.﹣1或3 B.﹣1 C.3 D.±210.观察下列单项式的排列规律:3x,﹣7x2,11x3,﹣15x4,19x5,…,照这样排列第10个单项式应是()A.39x10B.﹣39x10C.﹣43x10D.43x10二、填空题(共8小题,每小题3分,满分24分)11.若一个物体向东运动5米记作﹣5米,则该物体向西运动3米记作米.12.比较大小:(用“>或=或<”填空).13.某文具店的钢笔每支m元,练习本每本n元,小颖买了2支钢笔和3本练习本,应付元.14.请写出一个与5a2b是同类项的代数式.15.太阳的半径约为696 000千米,用科学记数法表示数696 000为.16.已知a﹣b=3,c+d=2,则(b+c)﹣(a﹣d)的值为.17.若﹣1<a<3,则化简|﹣1﹣a|+|3﹣a|的结果为.18.用火柴按图中的方式撘图形:按照这种方式撘下去,撘第n个图形需要根火柴.三、解答题(共7小题,满分46分)19.已知下列各有理数:5,﹣3.5,0,,2,﹣.(1)画出数轴,在数轴上标出这些数表示的点;(2)用“>”号把这些数连接起来.20.计算:(1)(﹣15)+(+7)﹣(﹣3);解:原式=(2).解:原式=21.如图,小刚有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各题.(1)从中抽出2张卡片,使这两张卡片上的数字之和最大,可抽取的卡片是,,最大值是.(2)从中抽出2张卡片,使这两张卡片上的数字乘积最大,可抽取的卡片是,,最大值是.(3)从中抽出4张卡片,用学过的运算方式,使结果为24,请写出一个运算式子:.22.(1)化简:4x﹣5﹣3(x﹣2);(2)先化简,再求值:x2y+5xy﹣3(2x2y+xy),其中x=﹣,y=4.23.如图是一所住宅的建筑平面图(图中长度单位:m).(1)这所住宅的建筑面积是多少(用字母x,y的代数式表示)?(2)若x=3m,y=2.5m,要把卧室和客厅铺上木地板,则至少需要购买多少平方米的木地板?24.“十•一”黄金周期间,一农家花博园统计了10月1日至10月6日每天参观的人数及变化,如表(正数表示比前一天多的人数,负数表示比前一天少的人数):日期10月1日10月2日10月3日10月4日10月5日10月6日人数 a ﹣100 +550 ﹣200 +600 ﹣300(1)若10月1日的游客人数记为a人,请用a的代数式表示10月3日的游客人数(直接在横线上写出结果):.(2)若a=1000,花博园门票每人20元,问10月1日至6日期间游客人数最多一天门票收入多少元?25.阅读材料大数学家高新在上学时,曾经研究过这样一个问题:1+2+3+4+5+…+100=?经过研究,这个问题的一般性结论是:1+2+3+4+5+…+n=n(n+1),其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+3×4+4×5×…+n(n+1)=?观察下面三个特殊的等式:1×2=.2×.3×.如果将这三个等式的两边相加,你会有怎样的发现呢?解决问题要求:直接在横线上写出结果(式子或数值),不必写过程.(1)将材料中的三个特殊的等式两边相加,可以得到:1×2+2×3+3×4= ;(2)探究并计算:1×2+2×3+3×4+4×5+…+20×21= ;1×2+2×3+3×4+4×5+…+n(n+1)= .参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.﹣的相反数是()A.B.﹣C.5 D.﹣5【考点】相反数.【分析】求一个数的相反数,即在这个数的前面加负号.【解答】解:﹣的相反数是.故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.2.下列去括号的结果中,正确的是()A.﹣2(a﹣1)=﹣2a﹣1 B.﹣2(a﹣1)=﹣2a+1 C.﹣2(a﹣1)=﹣2a﹣2 D.﹣2(a﹣1)=﹣2a+2【考点】去括号与添括号.【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【解答】解:A、﹣2(a﹣1)=﹣2a+2,故本选项错误;B、﹣2(a﹣1)=﹣2a+2,故本选项错误;C、﹣2(a﹣1)=﹣2a+2,故本选项错误;D、2(a﹣1)=﹣2a+2,故本选项正确;故选D.【点评】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.3.如图所示,根据有理数a,b,c在数轴上的位置,下列关系正确的是()A.b>a>0>c B.a<b<0<c C.b<a<0<c D.a<b<c<0【考点】有理数大小比较;数轴.【专题】数形结合.【分析】根据数轴的特点可直接解答.【解答】解:因为在数轴上原点右边的数大于0,左边的数小于0,右边的数总大于左边的数可知,b<a<0<c.故选C.【点评】本题比较简单,考查的是有理数大小比较及数轴上各数的特点.4.某种速冻水饺的储藏温度是﹣18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是()A.﹣17℃B.﹣22℃C.﹣18℃D.﹣19℃【考点】正数和负数.【分析】根据有理数的加减运算,可得温度范围,根据温度范围,可得答案.【解答】解:﹣18﹣2=﹣20℃,﹣18+2=﹣16℃,温度范围:﹣20℃至﹣16℃,A、﹣20℃<﹣17℃<﹣16℃,故A不符合题意;B、﹣22℃<﹣20℃,故B不符合题意;C、﹣20℃<﹣18℃<﹣16℃,故C不符合题意;D、﹣20℃<﹣19℃<﹣16℃,故D不符合题意;故选:B.【点评】本题考查了正数和负数,有理数的加法运算是解题关键,先算出适合温度的范围,再选出不适合的温度.5.下列说法中不正确的是()A.最小的正整数是1 B.最大的负整数是﹣1C.有理数分为正数和负数 D.绝对值最小的有理数是0【考点】有理数.【分析】此题主要是理解有理数、正整数、负整数的概念.【解答】解:A、最小的正整数是1,正确;B、最大的负整数是﹣1,正确;C、有理数分为正数、零和负数,错误;D、绝对值最小的有理数是0,正确;故选C【点评】此题考查有理数的概念问题,关键是注意对概念的理解.6.下面运算正确的是()A.3ab+3ac=6abc B.4a2b﹣4b2a=0 C.2x2+5x2=7x4D.5y2﹣2y2=3y2【考点】合并同类项.【分析】根据合并同类项,系数相加字母和字母的指数不变,可得答案.【解答】解:A、不是同类项不能合并,故A错误;B、不是同类项不能合并,故B错误;C、合并同类项,系数相加字母和字母的指数不变,故C错误;D、合并同类项,系数相加字母和字母的指数不变,故D正确;故选:D.【点评】本题考查了合并同类项,合并同类项,系数相加字母和字母的指数不变.7.下面各组数中,相等的一组是()A.﹣22与(﹣2)2B.与()3C.﹣|﹣2|与﹣(﹣2)D.(﹣3)3与﹣33【考点】有理数的乘方.【分析】本题涉及负数和分数的乘方,有括号与没有括号底数不相同,对各选项计算后即可选取答案.【解答】解:A、﹣22=﹣4,(﹣2)2=4,故本选项错误;B、=,()3=,故本选项错误;C、﹣|﹣2|=﹣2,﹣(﹣2)=2,故本选项错误;D、(﹣3)3=﹣27,﹣33=﹣27,故本选项正确.故选D.【点评】本题主要考查有理数的乘方运算.8.若有理数m,n满足mn>0,且m+n<0,则下列说法正确的是()A.m,n可能一正一负B.m,n都是正数C.m,n都是负数D.m,n中可能有一个为0【考点】有理数的乘法;有理数的加法.【分析】根据有理数的性质,因为mn>0,且m+n<0,可得n,m同号且两者都为负数可排除求解.【解答】解:若有理数m,n满足mn>0,则m,n同号,排除A,D选项;且m+n<0,则排除m,n都是正数的可能,排除B选项;则说法正确的是m,n都是负数,C正确,故选:C.【点评】本题考查了有理数的乘法.根据有理数的性质利用排除法依次排除选项,最后得解.9.已知a,b互为倒数,|c﹣1|=2,则abc的值为()A.﹣1或3 B.﹣1 C.3 D.±2【考点】有理数的乘法;绝对值.【分析】利用倒数的定义求出ab值,利用绝对值求出c的值,代入代数式即可解答.【解答】解:∵a,b互为倒数,∴ab=1,∵|c﹣1|=2,∴c=3或﹣1,∴abc=﹣1或3,故选:A.【点评】本题考查了有理数的乘法,解决本题的关键是熟记倒数、绝对值的性质.10.观察下列单项式的排列规律:3x,﹣7x2,11x3,﹣15x4,19x5,…,照这样排列第10个单项式应是()A.39x10B.﹣39x10C.﹣43x10D.43x10【考点】单项式.【专题】规律型.【分析】第奇数个单项式系数的符号为正,第偶数个单项式的符号为负,那么第n个单项式可用(﹣1)n+1表示,第一个单项式的系数的绝对值为3,第2个单项式的系数的绝对值为7,那么第n个单项式的系数可用(4n﹣1)表示;第一个单项式除系数外可表示为x,第2个单项式除系数外可表示为x2,第n个单项式除系数外可表示为x n.【解答】解:第n个单项式的符号可用(﹣1)n+1表示;第n个单项式的系数可用(4n﹣1)表示;第n个单项式除系数外可表示为x n.∴第n个单项式表示为(﹣1)n+1(4n﹣1)x n,∴第10个单项式是(﹣1)10+1(4×10﹣1)x10=﹣39x10.故选B.【点评】本题考查了单项式.也考查了数字的变化规律;分别得到符号,系数等的规律是解决本题的关键;得到各个单项式的符号规律是解决本题的易错点.二、填空题(共8小题,每小题3分,满分24分)11.若一个物体向东运动5米记作﹣5米,则该物体向西运动3米记作﹣3 米.【考点】正数和负数.【分析】正数和负数具有相反的意义,向东运动为负,那么向西运动为正.【解答】解:若一个物体向东运动5米记作﹣5米,则该物体向西运动3米记作﹣3米.故答案为:﹣3.【点评】本题考查正数和负数的意义,解决本题的关键是熟记正数和负数具有相反的意义.12.比较大小:<(用“>或=或<”填空).【考点】有理数大小比较.【分析】根据两个负数比较大小,绝对值大的反而小,即可得出答案.【解答】解:∵>,∴<;故答案为:<.【点评】此题考查了有理数的大小比较,掌握两个负数比较大小,绝对值大的反而小是解题的关键.13.某文具店的钢笔每支m元,练习本每本n元,小颖买了2支钢笔和3本练习本,应付2m+3n 元.【考点】列代数式.【分析】根据总价=单价×数量的关系列出代数式即可.【解答】解:应付(2m+3n)元.故答案为:2m+3n.【点评】此题主要考查代数式问题,解答此题的关键是根据总价=单价×数量的关系列出代数式.14.请写出一个与5a2b是同类项的代数式a2b .【考点】同类项.【分析】根据同类项的概念求解.【解答】解:与5a2b是同类项的为a2b.故答案为:a2b.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.15.太阳的半径约为696 000千米,用科学记数法表示数696 000为 6.96×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:696 000=6.96×105,故答案为:6.96×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.已知a﹣b=3,c+d=2,则(b+c)﹣(a﹣d)的值为﹣1 .【考点】整式的加减—化简求值.【分析】运用整式的加减运算顺序,先去括号,再合并同类项.解答时把已知条件代入即可.【解答】解:原式=b+c﹣a+d=c+d﹣a+b=(c+d)﹣(a﹣b)=2﹣3=﹣1.【点评】本题考查整式的加减运算,解此题的关键是注意整体思想的应用.17.若﹣1<a<3,则化简|﹣1﹣a|+|3﹣a|的结果为 4 .【考点】绝对值.【分析】根据a的范围判断出﹣1﹣a与3﹣a的正负,利用绝对值的代数意义化简,计算即可得到结果.【解答】解:∵﹣1<a<3,∴﹣1﹣a<0,3﹣a>0,|﹣1﹣a|+|3﹣a|=﹣(﹣1﹣a)+(3﹣a)=1+a+3﹣a=4.故答案为:4.【点评】此题考查了整式的加减,以及绝对值,熟练掌握运算法则是解本题的关键.18.用火柴按图中的方式撘图形:按照这种方式撘下去,撘第n个图形需要2n+2 根火柴.【考点】规律型:图形的变化类.【分析】由图形可知:撘第1个图形需要4根火柴,撘第2个图形需要4+2=6根火柴,撘第3个图形需要4+2+2=8根火柴,…由此得出撘第n个图形需要4+2(n﹣1)=2n+2根火柴.【解答】解:∵撘第1个图形需要4根火柴,撘第2个图形需要4+2=6根火柴,撘第3个图形需要4+2+2=8根火柴,…∴撘第n个图形需要4+2(n﹣1)=2n+2根火柴.故答案为:2n+2.【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间得运算规律,利用规律解决问题.三、解答题(共7小题,满分46分)19.已知下列各有理数:5,﹣3.5,0,,2,﹣.(1)画出数轴,在数轴上标出这些数表示的点;(2)用“>”号把这些数连接起来.【考点】有理数大小比较;数轴.【分析】(1)画出数轴,把各数在数轴上表示出来即可;(2)按各数在数轴上的位置从右到左用“>”连接起来即可.【解答】解:(1)如图所示,;(2)由图可知,5>2>>0>﹣>﹣3.5.【点评】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.20.计算:(1)(﹣15)+(+7)﹣(﹣3);解:原式=(2).解:原式=【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣15+7+3=﹣5;(2)原式=×4﹣+=+=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.21.如图,小刚有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各题.(1)从中抽出2张卡片,使这两张卡片上的数字之和最大,可抽取的卡片是+3 ,+4 ,最大值是7 .(2)从中抽出2张卡片,使这两张卡片上的数字乘积最大,可抽取的卡片是﹣3 ,﹣5 ,最大值是15 .(3)从中抽出4张卡片,用学过的运算方式,使结果为24,请写出一个运算式子:(﹣3)×(+4)×[(﹣5)+(+3)] .【考点】有理数的混合运算.【专题】计算题;图表型.【分析】(1)取值两个正数,使其和最大即可;(2)取值两个负数,使其积最大即可;(3)利用“24点”游戏规则计算即可.【解答】解:(1)从中抽出2张卡片,使这两张卡片上的数字之和最大,可抽取的卡片是+3,+4,最大值是7;(2)从中抽出2张卡片,使这两张卡片上的数字乘积最大,可抽取的卡片是﹣3,﹣5,最大值是15;(3)从中抽出4张卡片,用学过的运算方式,使结果为24,写出一个运算式子为(﹣3)×(+4)×[(﹣5)+(+3)].故答案为:(1)+3;+4;7;(2)﹣3;﹣5;15;(3)(﹣3)×(+4)×[(﹣5)+(+3)]【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.(1)化简:4x﹣5﹣3(x﹣2);(2)先化简,再求值:x2y+5xy﹣3(2x2y+xy),其中x=﹣,y=4.【考点】整式的加减—化简求值;整式的加减.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(1)原式=4x﹣5﹣3x+6=x+1;(2)原式=x2y+5xy﹣6x2y﹣3xy=﹣5x2y+2xy,当x=﹣,y=4时,原式=﹣5﹣4=﹣9.【点评】此题考查了整式的加减﹣化简求值,以及整式的加减,熟练掌握运算法则是解本题的关键.23.如图是一所住宅的建筑平面图(图中长度单位:m).(1)这所住宅的建筑面积是多少(用字母x,y的代数式表示)?(2)若x=3m,y=2.5m,要把卧室和客厅铺上木地板,则至少需要购买多少平方米的木地板?【考点】列代数式;代数式求值.【分析】(1)把四个小长方形的面积合并起来即可;(2)把x=3m,y=2.5m代入(1)中的代数式求得答案即可.【解答】解:(1)这所住宅的建筑面积是8xy+2xy+4xy+xy=15xy;(2)把x=3m,y=2.5m代入8xy+4xy=90(平方米).【点评】此题考查列代数式,看清图意,利用面积的出代数式是解决问题的关键.24.“十•一”黄金周期间,一农家花博园统计了10月1日至10月6日每天参观的人数及变化,如表(正数表示比前一天多的人数,负数表示比前一天少的人数):日期10月1日10月2日10月3日10月4日10月5日10月6日人数 a ﹣100 +550 ﹣200 +600 ﹣300(1)若10月1日的游客人数记为a人,请用a的代数式表示10月3日的游客人数(直接在横线上写出结果):a+450 .(2)若a=1000,花博园门票每人20元,问10月1日至6日期间游客人数最多一天门票收入多少元?【考点】列代数式;代数式求值.【分析】(1)直接求出10月3日的人数,即可解决问题.(2)首先求出黄金周期间游客的总人数,然后即可求出总收入.【解答】解:(1)10月3日的游客人数是a+450,故答案为:a+450;(2)10月1日人数:1000,10月2日人数:1000+(﹣100)=900,10月3日人数:900+(+550)=1450,10月4日人数:1450+(﹣200)=1250,10月5日人数:1250+(+600)=1850,10月6日人数:1850+(﹣300)=1550,故10月5日人数最多1850,最多一天门票收入37000元.【点评】该题主要考查了列代数式来解决现实生活中的实际问题;解题的关键是灵活运用正数和负数的意义准确列出代数式,来分析、判断、解答.25.阅读材料大数学家高新在上学时,曾经研究过这样一个问题:1+2+3+4+5+…+100=?经过研究,这个问题的一般性结论是:1+2+3+4+5+…+n=n(n+1),其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+3×4+4×5×…+n(n+1)=?观察下面三个特殊的等式:1×2=.2×.3×.如果将这三个等式的两边相加,你会有怎样的发现呢?解决问题要求:直接在横线上写出结果(式子或数值),不必写过程.(1)将材料中的三个特殊的等式两边相加,可以得到:1×2+2×3+3×4= ×3×4×5 ;(2)探究并计算:1×2+2×3+3×4+4×5+…+20×21= ×20×21×22 ;1×2+2×3+3×4+4×5+…+n(n+1)= n(n+1)(n+2).【考点】有理数的混合运算.【专题】计算题;规律型.【分析】(1)将三式子相加求出结果即可;(2)原式各项归纳总结得到一般性规律,计算即可.【解答】解:(1)三式相加得:1×2+2×3+3×4=(1×2×3﹣0×1×2+2×3×4﹣1×2×3+3×4×5﹣2×3×4)=×3×4×5;(2)归纳总结得:原式=×20×21×22;原式=n(n+1)(n+2).故答案为:(1)×3×4×5;(2)×20×21×22;n(n+1)(n+2).【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。

2019-2020学年第一学期期中质量检测七年级数学试卷 含答案

2019-2020学年第一学期期中质量检测七年级数学试卷  含答案

2019-2020学年第一学期期中质量检测七年级数学一、选择题(每小题3分,共30分)1.温度上升5摄氏度后,又下降了2摄氏度,实际上温度( ) A . 上升7摄氏度 B . 下降7摄氏度 C . 上升3摄氏度 D . 下降3摄氏度2. -114的倒数是( )A .―54B .54C .―45D .45 3.下列各组数中,互为相反数的有( ) ①―(―2)和―|―2| ②(―1)2和 ―12③ 23和 32④ (―2)3和 ―23A .④B .①②C .①②③D .①②④ 4.数轴上的点M 对应的数是-2,那么将点M 向右移动4个单位长度,此时点M 表示的数是( )A . -6B . 2C . -6或2D .都不正确 5.若x 的相反数是3,5y ,则x +y 的值为( ). A .-8 B . 2 C . 8或-2 D .-8或2 6.马虎同学做了以下4道计算题:① 0―(―1)=1;② 12÷(―12)=―1; ③ ―12+13=―16; ④ (―1)2005=―2005. 请你帮他检查一下,他一共做对了( )A . 1道题B . 2道题C . 3道题D . 4道题7.实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( )A .ab >0B .a +b <0C .a -b <0D .1<ba 8.下列关于单项式―3xy 25的说法中,正确的是( ) A .系数是―35,次数是2; B .系数是 35,次数是2; C .系数是―3,次数是3; D .系数是―35,次数是3. 9.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为( ) A .2.1×109 B .0.21×109 C .2.1×108 D .21×107 10.用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n 个“口”字需用棋子( )A .4n 枚B .(4n ―4) 枚C .(4n +4) 枚D .n 2枚二、填空题(每题3分,共15分) 11.比较大小:56-______45-(填“>”、“<”或“=”).12.按四舍五入法取近似值:40.649≈______ . (精确到十分位))13.根据如图所示的程序运算,若输入的x 值为1,则输出y 的值为 .14.将多项式:y y x x xy 65323322-+-按y 的升幂排列: . 15.找规律并填空:―13、29、―327、481、 . 三、解答题(共75分)16.计算(共20分,每小题5分)(1))13()18()14(20---++-- (2))12()216141(-⨯-+(3)()312612014-⨯-÷-- (4)[]3)1(7)325.01(2-+⨯⎥⎦⎤⎢⎣⎡⨯--17.(7分)在数轴上把下列各数表示出来,并用“<”连接各数.32,1--,211,0,()5.3--18.(8分)已知:有理数m 所表示的点到表示3的点距离4个单位,a 、b 互为相反数,且都不为零,c 、d 互为倒数. (1)求m 的值,(2)求:m cd b ab a --++)3(22的值.19.(8分)“※”是规定的一种新运算法则:a ※b =22b a -, 求5※[(-1)※2]的值.20.(10分)现代营养学家用身体质量指数来判断人体的健康状况.这个指数等于人体体重(千克)除以人体身高(米)的平方所得的商.一个健康人的身体质量指数在20~25之间;身体质量指数低于18,属于不健康的瘦;身体质量指数高于30,属于不健康的胖.(1)若一个人的体重为w(千克),身高为h(米),请求他的身体质量指数p(即用含w、h的代数式表示p);(2)小张的身高是1.75米,体重68千克,请你判断小张的身体是否健康.21.(10分)某个体儿童服装店老板以每件32元的价格购进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同,若以50元为标准价,将超过的钱数记为正,不足的钱数记为负,则记录结果如下表所示:该服装店在售完这30件连衣裙后,赚了多少钱?22.(12分)(1)当a=―2,b=1时,求两个代数式(a+b)2与a2+2ab+b2的值;(2)当a=―2,b=―3时,再求以上两个代数式的值;(3)你能从上面的计算结果中,发现上面有什么结论?结论是:;(4)利用你发现的结论,求:22+⨯+的值.196519657035七年级数学答案(仅供参考)一、选择题(每小题3分,共30分)CCBBC CDDCA二、填空题(每小题3分,共15分)11. < 12. 40.6 13. 4 14. -3x²-6y+2xy²+5x³y³15. ―5243三、解答题(共75分)16.(共20分,每小题5分)(1) -39 (2) 1 (3) 0 (4) 817.(7分)解:……5分 -|-1|< 0<32<121<-(-3.5) ……7分18.(8分)(1)解:∵有理数m 所表示的点到点3距离4个单位,∴m-3=4或3-m=4 ∴m=7或-1 ……3分 (2)由题可得:a+b=0, cd=1, ……5分 所以原式=2(a+b)+(-1-3)-m=-4-m ……6分 当m=7时,原式=-4-7=-11 当m=-1时,原式=-4-(-1)=-3所以2a+2b+(ba -3cd)-m 的值为-11或-3. ……8分 19.(8分)解:由题可得(-1)※2=(-1)²-2²=1-4=-3 ……4分则5※[(-1)※2]=5※(-3)=5²-(-3)²=16 ……8分 20.(10分)解:(1)p=w h 2 ……3分(2)当w=68,h=1.7时p=w h 2=681.75²≈22.2 ……8分∵20<22.2<25 ∴小明的身体健康. ……10分 21.(10分)解:[(50+3)×7+(50+2)×6+(50+1)×3+50×5+(50-1)×4+(50-2)×5]-32×30 ……5分 =(371+312+153+250+196+240)-960x--3.5()112--1–11234O=1522-960=562(元)……9分答:该服装店在售完这30件连衣裙后,赚了562元. (10)分22.(12分)解:(1)当a=-2 b=1时,(a+b)²=(-2+1)²=1 ……1分a²+2ab+b²=(-2)²+2×(-2)×1+1²=1 ……2分(2)当a=-2 b=-3时,(a+b)²=(-2-3)²=25 ……4分a²+2ab+b²=(-2)²+2×(-2)×(-3)+(-3)²=25 (6)分(3)(a+b)²=a²+2ab+b²……9分(4)原式=(1965+35)²=2000²=4000000 ……12分。

2019-2020学年七年级数学上学期期中试卷(含解析) 新人教版

2019-2020学年七年级数学上学期期中试卷(含解析) 新人教版

2019-2020学年七年级数学上学期期中试卷(含解析) 新人教版一、选择题(本题共8小题,每小题4分,满分32分)1.下列四个数中最小的是( )A.0 B.﹣2 C.πD.﹣12.如果收入200元记作+200元,那么支出150元记作( )A.+150元B.﹣150元C.+50元D.﹣50元3.世界文化遗产长城总长约为6700000米,将6700000用科学记数法可表示为( ) A.6.7×105B.6.7×106C.67×105D.0.67×1074.下列运算正确的是( )A.B.﹣7﹣2×5=﹣9×5=﹣45C.D.﹣(﹣3)2=﹣95.下列说法正确的是( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小.A.①② B.①③ C.①②③D.①②③④6.一台电冰箱的原价是2400元,现在按七折出售,求现价多少元?列式是( ) A.2400÷70%B.2400×70%C.2400×(1﹣70%) D.2400×77.在代数式,2x2y,,﹣5,a中,单项式的个数是( )A.1个B.2个C.3个D.4个8.下列计算正确的是( )A.3a2+a=4a3 B.﹣2(a﹣b)=﹣2a+bC.5a﹣4a=1 D.a2b﹣2a2b=﹣a2b二、填空题(本题共7小题,每小题3分,满分21分)9.在数轴上,M点表示1,距离M点3.5个单位长度的点表示的数是__________.10.若3x n y2与xy1﹣m是同类项,则m+n=__________.11.比较大小:__________.12.﹣6的相反数是__________,﹣的倒数是__________,﹣10的绝对值是__________.13.A、B两地海拔高度分别是120米、﹣10米,A地比B地高__________米.14.多项式2x3﹣3x4+2x﹣1有__________项,其中次数最高的项是__________.15.观察图形,它们是按一定规律排列的,依照此规律,第n个图形中★的个数是__________个.三、计算题16.(1)(﹣3)×(﹣9)﹣(﹣5)(2)(﹣7)+(+15)﹣(﹣25)(3)﹣14﹣(﹣2)××[2﹣(﹣3)2].(4)(+1﹣2.75)×24+(﹣1)2014.(5)2x﹣[3x﹣2(3x﹣y)].21.先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.22.已知A=3x2﹣5xy﹣3y2,B=4x2+2xy﹣3y2,(1)2A+B;(2)A﹣2B.四、解答题23.画出数轴,并用数轴上的点表示下列各数:用“<”号把各数从小到大连起来:﹣5,2.5,3,﹣,0,﹣3,3.24.把下列各数填入表示它所在的数集的大括号内:2.0141141114,﹣,1,﹣0.,0,﹣,﹣|﹣4|①正数集合{ …}②有理数集合{ …}③整数集合{ …}④负分数集合{ …}.25.设(x﹣3)2+|y+1|=0,求代数式x2y2的值.26.某检修小组乘一辆检修车沿铁路检修,规定向东走为正,向西走为负,小组的出发地记为0,某天检修完毕时,行走记录(单位:千米)如下:+10,﹣2,+3,﹣1,+9,﹣3,﹣2,+11,+3,﹣4,+6.(1)问收工时,检修小组距出发地有多远?在东侧还是西侧?(2)若检修车每千米耗油2.8升,求从出发到收工共耗油多少升?2015-2016学年云南省大理州鹤庆二中七年级(上)期中数学试卷一、选择题(本题共8小题,每小题4分,满分32分)1.下列四个数中最小的是( )A.0 B.﹣2 C.πD.﹣1【考点】实数大小比较.【分析】根据有理数的大小比较法则比较即可.【解答】解:﹣2<﹣1<0<π,即最小的数是﹣2,故选B.【点评】本题考查了有理数的大小比较法则的应用,能熟记有理数的大小比较法则是即此题的关键.2.如果收入200元记作+200元,那么支出150元记作( )A.+150元B.﹣150元C.+50元D.﹣50元【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,所以,如果收入200元记作+200元,那么支出150元记作﹣150元.【解答】解:因为正”和“负”相对,所以,如果收入200元记作+200元,那么支出150元记作﹣150元.故选B.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.3.世界文化遗产长城总长约为6700000米,将6700000用科学记数法可表示为( ) A.6.7×105B.6.7×106C.67×105D.0.67×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将6700000用科学记数法表示为6.7×106.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列运算正确的是( )A.B.﹣7﹣2×5=﹣9×5=﹣45C.D.﹣(﹣3)2=﹣9【考点】有理数的混合运算.【专题】计算题.【分析】A、利用有理数的加法法则计算即可判定;B、利用有理数的混合运算法则计算即可判定;C、利用有理数的乘除法则计算即可判定;D、利用有理数的乘方法则计算即可判定.【解答】解:A、,故选项错误;B、﹣7﹣2×5=﹣7﹣10=﹣17,故选项错误;C、,故选项错误;D、﹣(﹣3)2=﹣9,故选项正确.故选D.【点评】此题主要考查了有理数的混合运算法则:有括号首先计算括号,然后计算乘除,接着计算加减即可求解.5.下列说法正确的是( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小.A.①② B.①③ C.①②③D.①②③④【考点】绝对值;相反数;有理数大小比较.【分析】根据绝对值的意义对①④进行判断;根据相反数的定义对②③进行判断.【解答】解:0是绝对值最小的有理数,所以①正确;相反数大于本身的数是负数,所以②正确;数轴上在原点两侧且到原点的距离相等的数互为相反数,所以③错误;两个负数比较,绝对值大的反而小,所以④错误.故选A.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.也考查了相反数.6.一台电冰箱的原价是2400元,现在按七折出售,求现价多少元?列式是( ) A.2400÷70%B.2400×70%C.2400×(1﹣70%) D.2400×7【考点】有理数的乘法.【专题】应用题.【分析】现价等于原价乘70%,然后根据选项判断即可.【解答】解:现价=2400×70%.故选:B.【点评】本题主要考查的是有理数的乘法,根据题意列出算式是解题的关键.7.在代数式,2x2y,,﹣5,a中,单项式的个数是( )A.1个B.2个C.3个D.4个【考点】单项式.【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式.【解答】解:根据单项式的定义知,单项式有:2x2y,﹣5,a.共3个.故选C.【点评】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,这是判断是否是单项式的关键.8.下列计算正确的是( )A.3a2+a=4a3 B.﹣2(a﹣b)=﹣2a+bC.5a﹣4a=1 D.a2b﹣2a2b=﹣a2b【考点】去括号与添括号;合并同类项.【分析】①根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.②去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进行计算,即可选出答案.【解答】A、a与2a2不是同类项,不能合并,故此选项错误;B、﹣2(a﹣b)=﹣2a+2b,故此选项错误;C、5a﹣4a=a,故此选项错误;D、a2b﹣2a2b=﹣a2b,故此选项正确;故选:D.【点评】此题主要考查了合并同类项,去括号,关键是注意去括号时注意符号的变化,注意乘法分配律的应用,不要漏乘.二、填空题(本题共7小题,每小题3分,满分21分)9.在数轴上,M点表示1,距离M点3.5个单位长度的点表示的数是﹣2.5或4.5.【考点】数轴.【专题】计算题.【分析】画出数轴,找出1左边与右边相距3.5个单位对应的点即可.【解答】解:根据数轴上的点得:距离M点3.5个单位长度的点表示的数是﹣2.5或4.5.故答案为:﹣2.5或4.5.【点评】此题考查了数轴,画出相应的数轴是解本题的关键.10.若3x n y2与xy1﹣m是同类项,则m+n=0.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,求出m,n的值,继而可求得m+n.【解答】解:∵3x n y2与xy1﹣m是同类项,∴n=1,1﹣m=2,∴m=﹣1,n=1,则m+n=0.故答案为:0.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个相同:相同字母的指数相同.11.比较大小:>.【考点】有理数大小比较.【专题】计算题.【分析】先计算|﹣|==,|﹣|==,然后根据负数的绝对值越大,这个数反而越小即可得到它们的关系关系.【解答】解:∵|﹣|==,|﹣|==,而<,∴﹣>﹣.故答案为:>.【点评】本题考查了有理数的大小比较:正数大于零,负数小于零;负数的绝对值越大,这个数反而越小.12.﹣6的相反数是6,﹣的倒数是﹣,﹣10的绝对值是10.【考点】倒数;相反数;绝对值.【分析】根据只有符号不同的两个数互为相反数,乘积为1的两个数互为倒数,负数的绝对值是它的相反数,可得答案.【解答】解:﹣6的相反数是 6,﹣的倒数是﹣,﹣10的绝对值是 10,故答案为:6,﹣,10.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.13.A、B两地海拔高度分别是120米、﹣10米,A地比B地高130米.【考点】有理数的减法.【专题】计算题.【分析】用120减去(﹣10),再根据减去一个数等于加上这个数的相反数进行计算即可.【解答】解:120﹣(﹣10)=120+10=130米.故答案为:130.【点评】本题主要考查了有理数的减法计算,减去一个数等于加上这个数的相反数.14.多项式2x3﹣3x4+2x﹣1有4项,其中次数最高的项是﹣3x4.【考点】多项式.【分析】根据多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,进而得出答案.【解答】解:多项式2x3﹣3x4+2x﹣1一共有4项,最高次项是﹣3x4.故答案为:4,﹣3x4.【点评】本题考查了多项式,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.15.观察图形,它们是按一定规律排列的,依照此规律,第n个图形中★的个数是2n+2个.【考点】规律型:图形的变化类.【分析】由图形可知:第1个图形中★的个数是4个,第2个图形中★的个数是4+2=6个,第3个图形中★的个数是4+2×2=8个,第4个图形中★的个数是4+2×3=10个,…由此得出第n个图形中★的个数是4+2(n﹣1)=2n+2个.【解答】解:∵第1个图形中★的个数是4个,第2个图形中★的个数是4+2=6个,第3个图形中★的个数是4+2×2=8个,第4个图形中★的个数是4+2×3=10个,…∴第n个图形中★的个数是4+2(n﹣1)=2n+2个.故答案为:2n+2.【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字的运算规律,利用规律解决问题.三、计算题16.(1)(﹣3)×(﹣9)﹣(﹣5)(2)(﹣7)+(+15)﹣(﹣25)(3)﹣14﹣(﹣2)××[2﹣(﹣3)2].(4)(+1﹣2.75)×24+(﹣1)2014.(5)2x﹣[3x﹣2(3x﹣y)].【考点】有理数的混合运算;整式的加减.【分析】(1)先算乘法,再算减法;(2)先将减法转化为加法,再根据有理数加法法则计算;(3)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(4)先运用分配律计算乘法,利用乘方计算(﹣1)2014,再根据有理数加法法则计算;(5)先去小括号,再去中括号,最后合并同类项.【解答】解:(1)(﹣3)×(﹣9)﹣(﹣5)=27+5=32;(2)(﹣7)+(+15)﹣(﹣25)=﹣7+15+25=33;(3)﹣14﹣(﹣2)××[2﹣(﹣3)2]=﹣1﹣(﹣2)××[2﹣9]=﹣1﹣=﹣;(4)(+1﹣2.75)×24+(﹣1)2014=3+32﹣66+1=﹣30;(5)2x﹣[3x﹣2(3x﹣y)]=2x﹣[3x﹣6x+2y]=2x﹣3x+6x﹣2y=5x﹣2y.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.(3)整式中如果有多重括号应按照先去小括号,再去中括号,最后大括号的顺序进行.21.先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.【考点】整式的加减—化简求值.【分析】首先根据整式的加减运算法则将原式化简,然后把给定的值代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【解答】解:原式=15a2b﹣5ab2﹣3ab2﹣15a2b=﹣8ab2,当a=,b=﹣时,原式=﹣8××=﹣.【点评】熟练地进行整式的加减运算,并能运用加减运算进行整式的化简求值.22.已知A=3x2﹣5xy﹣3y2,B=4x2+2xy﹣3y2,(1)2A+B;(2)A﹣2B.【考点】整式的加减.【分析】(1)、(2)把A=3x2﹣5xy﹣3y2,B=4x2+2xy﹣3y2代入式子,再去括号,合并同类项即可.【解答】解:(1)∵A=3x2﹣5xy﹣3y2,B=4x2+2xy﹣3y2,∴2A+B=2(3x2﹣5xy﹣3y2)+(4x2+2xy﹣3y2)=6x2﹣10xy﹣6y2+4x2+2xy﹣3y2=10x2﹣8xy﹣9y2;(2)∵A=3x2﹣5xy﹣3y2,B=4x2+2xy﹣3y2,∴A﹣2B=3x2﹣5xy﹣3y2﹣2(4x2+2xy﹣3y2)=3x2﹣5xy﹣3y2﹣8x2﹣4xy+6y2=﹣5x2﹣9xy+3y2.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.四、解答题23.画出数轴,并用数轴上的点表示下列各数:用“<”号把各数从小到大连起来:﹣5,2.5,3,﹣,0,﹣3,3.【考点】有理数大小比较;数轴.【分析】在数轴上把各个数表示出来,再按在数轴上右边的数总比左边的数大比较即可.【解答】解:如图,﹣5<﹣3<﹣<0<2.5<3<3.【点评】本题考查了数轴和有理数的大小比较,注意:在数轴上右边的数总比左边的数大.24.把下列各数填入表示它所在的数集的大括号内:2.0141141114,﹣,1,﹣0.,0,﹣,﹣|﹣4|①正数集合{ …}②有理数集合{ …}③整数集合{ …}④负分数集合{ …}.【考点】有理数.【分析】按照有理数的分类填写:有理数.【解答】解:①正数集合{2.0141141114,1 }②有理数集合{2.0141141114,﹣,1,﹣0.,0,﹣|﹣4|};③整数集合{0,﹣|﹣4|};④负分数集合{﹣,1,﹣0.};故答案为:2.0141141114,1;2.0141141114,﹣,1,﹣0.,0,﹣|﹣4|;0,﹣|﹣4|;﹣,1,﹣0..【点评】本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点,注意整数和正数的区别,注意0是整数,但不是正数.25.设(x﹣3)2+|y+1|=0,求代数式x2y2的值.【考点】代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】平方与绝对值都是非负的,应用它们的非负性求代数式的值是一种常见的重点考题,解决时可以根据非负性求出未知数的值,然后代入求解.【解答】解:∵两个非负数的和等于0,∴x﹣3=0,y+1=0,∴x=3,y=﹣1,∴x2y2=32•(﹣1)2=9.【点评】本题是利用非负性解题的一个典型考题,解决此类问题的关键是根据非负性求出未知数代入即可.26.某检修小组乘一辆检修车沿铁路检修,规定向东走为正,向西走为负,小组的出发地记为0,某天检修完毕时,行走记录(单位:千米)如下:+10,﹣2,+3,﹣1,+9,﹣3,﹣2,+11,+3,﹣4,+6.(1)问收工时,检修小组距出发地有多远?在东侧还是西侧?(2)若检修车每千米耗油2.8升,求从出发到收工共耗油多少升?【考点】正数和负数.【分析】(1)求得记录的数的和,根据结果即可确定所处的位置;(2)求得记录的数的绝对值的和,乘以2.8即可求解.【解答】解:(1)10﹣2+3﹣1+9﹣3+11+3﹣4+6=+30,则距出发地东侧30米.(2)(10+2+3+1+9+3+2+11+3+4+6+)×2.8=151.2(升).则共耗油151.2升.【点评】本题考查了正负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.。

2019-2020学年七年级数学上学期期中卷(全解全析)

2019-2020学年七年级数学上学期期中卷(全解全析)

2019-2020学年上学期期中原创卷A 卷七年级数学·全解全析123456789101112BABCAACDDCAB1.【答案】B【解析】因为只有符号不同的两个数互为相反数,所以–2019的相反数是2019.故选B.2.【答案】A【解析】规定向右运动3m 记作+3m ,那么向左运动4m 记作–4m .故选A .3.【答案】B【解析】在所列有理数中,负数有–|–12|,(–2)3这2个,故选B .4.【答案】C【解析】根据单项式的定义,在代数式2x -,0,3x y -,4x y +,ba 中单项式有2x -和0两个.故选C .5.【答案】A【解析】m 的3倍与n 的差的平方为(3m –n )2.故选A.6.【答案】A【解析】π5x 的系数是1π5,故原题说法错误;故选A.7.【答案】C【解析】8.8×104精确到千位.故选C .8.【答案】D【解析】A 、x –(3y –12)=x –3y +12,正确;B 、m +(–n +a –b )=m –n +a –b ,正确;C 、2–3x =–(3x –2),正确;D 、–12(4x –6y +3)=–2x +3y –32,错误;故选D .9.【答案】D【解析】因为3x 2+5x =5,所以10x –9+6x 2=2(3x 2+5x )–9=2×5–9=1.故选D .10.【答案】C【解析】由图可得,a <0,b >0,且|a |>|b |,所以a +b <0,所以|a +b |=–(a +b )=–a –b .故选C .11.【答案】A【解析】m 2+2mn =13,3mn +2n 2=21,可得2m 2+4mn =26,9mn +6n 2=63,两式相加可得:2m 2+13mn +6n 2=89,所以2m 2+13mn +6n 2–44=45.故选A .12.【答案】B【解析】因为13a =,所以22223a ==--,()321222a ==--,4241322a ==-,52 3.423a ==-所以该数列每4个数为一周期循环,因为2018÷4=504……2,所以201822a a ==-,故选B .13.【答案】2【解析】|–2|=2.故答案为:2.14.【答案】–35;7【解析】单项式2535x y -的系数是35-,次数是7,故答案为:35-,7.15.【答案】7.6×1011【解析】7600亿=760000000000,760000000000=7.6×1011.故答案为:7.6×1011.16.【答案】2ab【解析】根据题意可得这批图书共有ab 册,它的一半就是2ab .故答案为:2ab .17.【答案】3【解析】因为多项式(a –2)x 2+(2b +1)xy –x +y –7是关于x ,y 的多项式,该多项式不含二次项,所以a –2=0,2b +1=0,解得a =2,b =12-,所以a –2b =2–12(2⨯-=2+1=3.故答案为:3.18.【答案】4【解析】第1次输入10:10×|–12|÷[–(−12)2]=–20,–20<100;第2次输入–20:–20×|–12|÷[–(−12)2]=40,40<100,第3次输入40:40×|–12|÷[–(−12)2]=–80,–80<100,第4次输入–80:80×|–12|÷[–(−12)2]=160,因为160>100,停止.所以输入的次数为4.故答案为:4.19.【解析】(1)原式=–115+3×1283=–115+128=13;(3分)(2)原式=–1–12×13×(–7)=–1+76=16.(6分)20.【解析】(1)原式=a 2–2a 3–2a 2+3a 3+3a 2=a 3+2a 2;(3分)(2)原式=x –3x –2y –4x +2y =–6x .(6分)21.【解析】因为a 、b 互为相反数,c 、d 互为倒数,x 的绝对值等于3,所以a +b =0,cd =1,x =±3,(3分)所以原式=9–(0+1)+2×0=9–1+0=8.(6分)22.【解析】(1)3x 2–5x +x 2+2x –4x 2+7=–3x +7,把x =13代入得:原式=–3×13+7=6;(4分)(2)6(a +b )2+12(a +b )+19(a +b )2–2(a +b )=25(a +b )2+10(a +b ),把a +b =25代入得:原式=25×(25)2+10×25=8.(8分)23.【解析】(1)由数轴可知x >0,y <0,则y =–y ,则–x ,y 在数轴上表示为:(2分)(2)数轴上左边的数小于右边的数,则–x <y <0<y <x ;(5分)(3)由数轴可知x +y >0,y –x <0,y =–y ,则x y +–y x -+y =x +y +y –x –y =y .(8分)24.【解析】(1)(–1008)+1100+(–976)+1010+827+946=1899(米).答:此时他在A 地的向南方向,距A 地1899米;(5分)(2)|–1008|+|1100|+|–976|+|1010|+|827|+|946|=5867(米).答:小明共跑了5867米.(10分)25.【解析】(1)阴影部分的面积为a 2+82–[12a 2+12×8×(a +8)](4分)=a 2+64–(12a 2+4a +32)=a2+64–12a2–4a–32=12a2–4a+32;(6分)(2)当a=4时,12a2–4a+32=12×42–4×4+32=24,则所涂油漆费用=24×60=1440(元).(10分)26.【解析】(1)小军解法较好;(2分)(2)还有更好的解法,492425×(–5)=(50–125)×(–5)=50×(–5)–125×(–5)=–250+1 5=–24945;(7分)(3)191516×(–8)=(20–116)×(–8)=20×(–8)–116×(–8)=–160+1 2=–1591 2.(12分)27.【解析】(1)因为|a+2|+(c–7)2=0,所以a+2=0,c–7=0,解得a=–2,c=7,因为b是最小的正整数,所以b=1;故答案为:–2,1,7.(3分)(2)(7+2)÷2=4.5,对称点为7–4.5=2.5,2.5+(2.5–1)=4;故答案为:4.(7分)(3)不变,因为AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;所以3BC–2AB=3(2t+6)–2(3t+3)=12.(12分)。

2019-2020年七年级(上)期中数学试卷(解析)

2019-2020年七年级(上)期中数学试卷(解析)

2019-2020年七年级(上)期中数学试卷(解析)一、细心选一选,慧眼识金!(四个选项中只有一个答案是正确.每小题2分,共20分)1.3的相反数是()A.3 B.﹣3 C. D.﹣2.若规定收入为“+”,那么﹣50元表示()A.收入了50元B.支出了50元C.没有收入也没有支出D.收入了100元3.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有()A.1个B.2个C.3个D.4个4.下列变形正确的是()A.2÷8×=2÷(8×)B.6÷(+)=6÷+6÷C.(﹣8)×(﹣5)×0=40 D.(﹣2)××(﹣5)=55.绝对值不大于3的整数的个数是()A.4 B.5 C.6 D.76.我校七年级有学生x人,其中女生占45%,男生人数是()A.45%x B. C.(1﹣45%)x D.7.如果﹣22a2bc n是7次单项式,则n的值是()A.4 B.3 C.2 D.58.近似数2.60所表示的精确值x的取值范围()A.2.600<x≤2.605 B.2.595<x≤2.605C.2.595≤x<2.605 D.2.50≤x<2.709.若代数式2a2﹣a+3的值为5,则代数式4a2﹣2a+6的值为()A.﹣22 B.10 C.﹣10 D.2210.小华利用计算机设计了一个计算程序,输入和输出的数据如下表:那么当输入数据是8时,输出的数据是()A. B. C. D.二、耐心填一填,你一定能行.11.化简或计算:﹣[﹣(﹣5)]=,(﹣1)99=,(﹣2)+3=.12.平方等于16的数是,立方等于﹣27的数是.13.绝对值等于本身的有理数是;倒数等于本身的数是;绝对值最小的有理数是.14.在“百度”搜索引擎中输入“嫦娥三号”,能搜索到与之相关的网页约13 100 000个,将13 100 000用科学记数法表示为.15.将算式(﹣5)﹣(﹣10)+(﹣9)﹣(+2)改写成省略加号的和的形式,应该是.16.某班有女生a人,男生比女生的2倍少5人,则男生有人.17.单项式﹣的系数是,次数是;多项式a3﹣3a2b2+ab4﹣1是次项式.18.把代数式2x2﹣8xy3+x4y﹣y2+9x3y4按下列要求填空:(1)按字母x的升幂排列(2)按字母y的降幂排列.19.已知|x+2|+(y﹣5)2=0,则x=,y=.20.用四舍五入法,将下列各数按括号中的要求取近似数.(1)67.31 (精确到个位)≈;(2)479550 (精确到千位)≈.21.规定一种新的运算:A*B=A×B﹣A,如4*2=4×2﹣4=4,运算6*(﹣3)=.22.观察一列单项式:a,﹣2a2,4a3,﹣8a4…根据你发现的规律,第7个单项式为;第n个单项式为.三、认真做一做,你一定是生活的强者23.把下列各数填入相应的大括号里:﹣4,xx,﹣0.5,﹣,8.7,0,﹣95%.整数集:{…};负分数集:{…}.24.计算(1)(﹣6)+(+8)﹣(+4)﹣(﹣2)(2)(﹣7)×(﹣5)﹣90÷(﹣15)(3)(﹣+)×(﹣36)(4)2÷(﹣)×÷(﹣)(5)﹣24+(4﹣9)2﹣5×(﹣1)6(6)用简便方法计算:(﹣370)×(﹣)+0.25×24.5﹣5×(﹣25%)25.求值(1)已知:a=﹣5,b=2时,求代数式a2﹣3b的值.(2)当a=﹣1,b=﹣3时,求代数式a2+2ab+b2的值(3)已知:有理数m在原点右侧并且和原点距离4个单位,a,b互为相反数,且都不为零,c,d互为倒数.求:2(a+b)﹣(﹣3cd)﹣m的值.26.小虫从某点O出发在一天直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬过的各段路程(单位:厘米)依次为:+4,﹣3,+10,﹣8,﹣7,+12,﹣10①通过计算说明小虫最后是否回到起点.②如果小虫爬行的速度为每秒0.5厘米,小虫共爬行了多长时间?27.某市出租车的收费标准如下:起步价5元,即3千米以内(含3千米)收费5元,超过3千米的部分,每千米收费1.3元.(不足1千米按1千米计算)(1)假如你乘出租车行驶7千米应付多少钱?(2)若小红付出租车费16.7元,则小红最多乘坐多少千米?28.已知多项式(m2﹣49)x3﹣(m﹣7)x2+3x+4是关于x的二次三项式,求(m+3)(m ﹣3)的值.四、解答题(共3小题,满分20分)29.数轴三要素:,,.30.比较大小:﹣70,1001.31.小明同学平时爱好数学,他探索发现了:从2开始,连续的几个偶数相加,它们和的情况变化规律,如表所示:请你根据表中提供的规律解答下列问题:(1)如果n=8时,那么S的值为;(2)根据表中的规律猜想:用n的代数式表示S,则S=2+4+6+8+…+2n=;(3)利用上题的猜想结果,计算300+302+304+…+xx+xx的值(要有计算过程).xx学年福建省泉州市晋江一中、华侨中学七年级(上)期中数学试卷参考答案与试题解析一、细心选一选,慧眼识金!(四个选项中只有一个答案是正确.每小题2分,共20分)1.3的相反数是()A.3 B.﹣3 C. D.﹣【考点】相反数.【专题】常规题型.【分析】根据相反数的意义,3的相反数即是在3的前面加负号.【解答】解:根据相反数的概念及意义可知:3的相反数是﹣3.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.若规定收入为“+”,那么﹣50元表示()A.收入了50元B.支出了50元C.没有收入也没有支出D.收入了100元【考点】正数和负数.【分析】若规定收入为“+”,则“﹣”表示与之相反的意义,即支出.【解答】解:∵收入用“+”表示,∴﹣50元表示支出50元,故选B.【点评】本题考查了“+”与“﹣”所表示的意义.3.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有()A.1个B.2个C.3个D.4个【考点】有理数的乘方;正数和负数.【专题】计算题.【分析】先对每个数进行化简,然后再确定负数的个数.【解答】解:|﹣2|=2,﹣(﹣2)2=﹣4,﹣(﹣2)=2,(﹣2)3=﹣8,﹣4,﹣8是负数,∴负数有2个.故选:B.【点评】本题考查了去绝对值,有理数的乘方、正数和负数的意义,关键准确掌握.4.下列变形正确的是()A.2÷8×=2÷(8×)B.6÷(+)=6÷+6÷C.(﹣8)×(﹣5)×0=40 D.(﹣2)××(﹣5)=5【考点】有理数的乘法;有理数的混合运算.【分析】A、乘除是同级运算,应按从左往右的顺序进行,而不能先算乘法,再算除法;B、除法不满足分配律,对于混合运算,有括号应该先算括号里面的;C、根据有理数的乘法法则,几个数相乘,有一个因数为0,积就为0,可知(﹣8)×(﹣5)×0=0≠40;D、根据有理数的乘法法则计算等号的左边,再与等号的右边比较.【解答】解:A、2÷8×=2×=,2÷(8×)=2÷1=2,故错误;B、6÷(+)=6÷=,6÷+6÷=12+18=30,故错误;C、0乘以任何数都得0,(﹣8)×(﹣5)×0=0,故错误;D、(﹣2)××(﹣5)=5,故正确.故选D.【点评】本题考查了有理数的运算.需牢固掌握运算顺序与运算法则.有理数混合运算顺序:先算乘方,再算乘除,最后算加减;如果有括号,就先算括号里面的.对于同级运算,需按从左往右的顺序进行.5.绝对值不大于3的整数的个数是()A.4 B.5 C.6 D.7【考点】绝对值.【分析】绝对值不大于3的整数即为绝对值分别等于3、2、1、0的整数.【解答】解:不大于3的整数绝对值有0,1,2,3.因为互为相反数的两个数的绝对值相等,所以绝对值不大于3的整数是0,±1,±2,±3;故选:D.【点评】考查了绝对值的定义和性质,注意掌握互为相反数的两个数的绝对值相等.6.我校七年级有学生x人,其中女生占45%,男生人数是()A.45%x B. C.(1﹣45%)x D.【考点】列代数式.【分析】男生人数=总人数×男生所占的百分比.【解答】解:男生人数为:(1﹣45%)x.故选C.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.7.如果﹣22a2bc n是7次单项式,则n的值是()A.4 B.3 C.2 D.5【考点】单项式.【分析】直接利用单项式次数的确定方法得出n的值.【解答】解:∵﹣22a2bc n是7次单项式,∴2+1+n=7,∴n=4,故选A.【点评】题主要考查了单项式的次数,正确把握单项式次数的定义是解题关键.8.近似数2.60所表示的精确值x的取值范围()A.2.600<x≤2.605 B.2.595<x≤2.605C.2.595≤x<2.605 D.2.50≤x<2.70【考点】近似数和有效数字.【分析】利用近似数的精确度可确定x的范围.【解答】解:近似数2.60所表示的精确值x的取值范围为2.595≤x<2.605.故选C.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.9.若代数式2a2﹣a+3的值为5,则代数式4a2﹣2a+6的值为()A.﹣22 B.10 C.﹣10 D.22【考点】代数式求值.【分析】根据题意可得2a2﹣a的值,再整体代入即可.【解答】解:∵代数式2a2﹣a+3的值为5,∴2a2﹣a+3=5,∴2a2﹣a=2,∴4a2﹣2a+6=2(2a2﹣a)+6=2×2+6=10,故选B.【点评】本题考查了代数式的求值,整体思想的运用是解题的关键.10.小华利用计算机设计了一个计算程序,输入和输出的数据如下表:那么当输入数据是8时,输出的数据是()A. B. C. D.【考点】函数值.【专题】规律型.【分析】根据图表找出输出数字的规律:输出的数字中,分子就是输入的数,分母是输入的数字的平方加1,直接将输入数据代入即可求解.【解答】解:输出数据的规律为,当输入数据为8时,输出的数据为=,故选:C.【点评】此题主要考查数字的规律性问题,根据已有输入输出数据找出它们的规律,进而求解.二、耐心填一填,你一定能行.11.化简或计算:﹣[﹣(﹣5)]=﹣1,(﹣1)99=﹣1,(﹣2)+3=1.【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式去括号即可得到结果;原式利用乘方的意义计算即可得到结果;原式利用异号两数相加的法则计算即可得到结果.【解答】解:原式=﹣1;原式=﹣1;原式=1,故答案为:﹣1;﹣1;1【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.平方等于16的数是±4,立方等于﹣27的数是﹣3.【考点】有理数的乘方.【专题】存在型.【分析】根据有理数的乘方的概念进行解答即可.【解答】解:∵(±4)2=16,∴平方等于16的数是±4;∵(﹣3)3=﹣27,∴立方等于﹣27的数是﹣3.故答案为:±4;﹣3.【点评】本题考查的是有理数的乘方,即正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.13.绝对值等于本身的有理数是非负数;倒数等于本身的数是±1;绝对值最小的有理数是0.【考点】绝对值;倒数.【分析】根据绝对值的定义及性质和倒数的定义来解答.【解答】解:绝对值等于本身的有理数是非负数,倒数等于本身的±1,绝对值最小的有理数是0,故答案为:非负数,±1,0.【点评】本题考查了绝对值的定义和倒数的定义,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,±1的倒数是它本身.14.在“百度”搜索引擎中输入“嫦娥三号”,能搜索到与之相关的网页约13 100 000个,将13 100 000用科学记数法表示为 1.31×107.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于13 100 000有8位,所以可以确定n=8﹣1=7.【解答】解:13 100 000=1.31×107.故答案为:1.31×107.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.15.将算式(﹣5)﹣(﹣10)+(﹣9)﹣(+2)改写成省略加号的和的形式,应该是﹣5+10﹣9﹣2.【考点】有理数的加减混合运算.【专题】推理填空题.【分析】根据有理数加法和减法的法则即可解答本题.【解答】解:因为(﹣5)﹣(﹣10)+(﹣9)﹣(+2)=﹣5+10﹣9﹣2,故答案为:﹣5+10﹣9﹣2.【点评】本题考查有理数的加减混合运算,解题的关键是明确在运算中正数的正号可以省略,减去一个负数相当于加上这个负数的相反数.16.某班有女生a人,男生比女生的2倍少5人,则男生有(2a﹣5)人.【考点】列代数式.【分析】男生人数=女生人数×2倍﹣5.【解答】解:依题意得:(2a﹣5).【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.17.单项式﹣的系数是﹣,次数是2;多项式a3﹣3a2b2+ab4﹣1是4次4项式.【考点】多项式;单项式.【分析】根据单项式系数和次数的定义,根据多项式次数和项数的定义求解即可.【解答】解:单项式﹣的系数是﹣,次数是2;多项式a3﹣3a2b2+ab4﹣1是4次4项式,故答案为:﹣,2,4,4.【点评】本题考查了单项式,此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.解答本题的关键各定义,属于基础题.18.把代数式2x2﹣8xy3+x4y﹣y2+9x3y4按下列要求填空:(1)按字母x的升幂排列﹣y2﹣8xy3+2x2+9x3y4(2)按字母y的降幂排列9x3y4+2x2﹣8xy3﹣y2.【考点】多项式.【专题】计算题;整式.【分析】(1)把原式按照x升幂排列即可;(2)把原式按照y的降幂排列即可.【解答】解:(1)按字母x的升幂排列为﹣y2﹣8xy3+2x2+9x3y4;(2)按字母y的降幂排列为9x3y4+2x2﹣8xy3﹣y2.故答案为:(1)﹣y2﹣8xy3+2x2+9x3y4;(2)9x3y4+2x2﹣8xy3﹣y2.【点评】此题考查了多项式,熟练掌握多项式次数的定义是解本题的关键.19.已知|x+2|+(y﹣5)2=0,则x=﹣2,y=5.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值即可.【解答】解:根据题意得,x+2,y﹣5=0,解得x=﹣2,y=5.故答案为:﹣2;5.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.20.用四舍五入法,将下列各数按括号中的要求取近似数.(1)67.31 (精确到个位)≈67;(2)479550 (精确到千位)≈ 4.80×105.【考点】近似数和有效数字.【分析】(1)把十分位上的数字3进行四舍五入即可;(2)先用科学记数法表示,然后把百位上的数字5进行四舍五入即可.【解答】解:(1)67.31 (精确到个位)≈67;(2)479550 (精确到千位)≈4.80×105.故答案为67,4.80×105.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.21.规定一种新的运算:A*B=A×B﹣A,如4*2=4×2﹣4=4,运算6*(﹣3)=﹣24.【考点】有理数的混合运算.【专题】新定义.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:6*(﹣3)=﹣18﹣6=﹣24,故答案为:﹣24【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.观察一列单项式:a,﹣2a2,4a3,﹣8a4…根据你发现的规律,第7个单项式为64a7;第n个单项式为(﹣2)n﹣1a n..【考点】单项式.【专题】压轴题;规律型.【分析】本题须先通过观察已知条件,找出这列单项式的规律即可求出结果.【解答】解:根据观察可得第7个单项式为64a7第n个单项式为(﹣2)n﹣1a n.故答案为:64a7,(﹣2)n﹣1a n.【点评】本题主要考查了单项式的有关知识,在解题时要能通过观察得出规律是本题的关键.三、认真做一做,你一定是生活的强者23.把下列各数填入相应的大括号里:﹣4,xx,﹣0.5,﹣,8.7,0,﹣95%.整数集:{﹣4,xx,0…};负分数集:{﹣0.5,,﹣95%…}.【考点】有理数.【分析】分别根据整数的意义:正整数、负整数、0统称整数;负分数定义得出即可.【解答】解:整数集:{﹣4,xx,0 …};负分数集:{﹣0.5,,﹣95% …}.故答案为:﹣4,xx,0;﹣0.5,,﹣95%.【点评】此题主要考查了有理数的有关定义,熟练掌握相关的定义是解题关键.24.计算(1)(﹣6)+(+8)﹣(+4)﹣(﹣2)(2)(﹣7)×(﹣5)﹣90÷(﹣15)(3)(﹣+)×(﹣36)(4)2÷(﹣)×÷(﹣)(5)﹣24+(4﹣9)2﹣5×(﹣1)6(6)用简便方法计算:(﹣370)×(﹣)+0.25×24.5﹣5×(﹣25%)【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式从左到右依次计算即可得到结果;(5)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(6)原式变形后,逆用乘法分配律计算即可得到结果.【解答】解:(1)原式=﹣6+8﹣4+2=﹣10+10=0;(2)原式=25+6=31;(3)原式=﹣18+20﹣21=﹣19;(4)原式=2×××=1;(5)原式=﹣16+25﹣5=4;(6)原式=0.25×(370+24.5+5.5)=0.25×400=100.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.求值(1)已知:a=﹣5,b=2时,求代数式a2﹣3b的值.(2)当a=﹣1,b=﹣3时,求代数式a2+2ab+b2的值(3)已知:有理数m在原点右侧并且和原点距离4个单位,a,b互为相反数,且都不为零,c,d互为倒数.求:2(a+b)﹣(﹣3cd)﹣m的值.【考点】代数式求值.【分析】(1)将a、b的值代入代数式进行计算即可;(2)利用完全平方公式因式分解,再代入即可;(3)首先得出m的值,再利用相反数和倒数的定义得出a+b和cd的值,代入即可.【解答】解:(1)把a=﹣5,b=2代入得,a2﹣3b=(﹣5)2﹣3×2=25﹣6=19;(2)∵a=﹣1,b=﹣3,∴a2+2ab+b2=(a+b)2=(﹣1﹣3)2=16;(3)∵m在原点右侧并且和原点距离4个单位,∴m=4,∵a,b互为相反数,且都不为零,c,d互为倒数,∴=﹣1,a+b=0,cd=1,∴2(a+b)﹣(﹣3cd)﹣m=2×0﹣(﹣1﹣3)﹣4=0.【点评】本题主要考查了代数式求值,倒数的定义和相反数的定义,利用代入法式是解答此题的关键.26.小虫从某点O出发在一天直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬过的各段路程(单位:厘米)依次为:+4,﹣3,+10,﹣8,﹣7,+12,﹣10①通过计算说明小虫最后是否回到起点.②如果小虫爬行的速度为每秒0.5厘米,小虫共爬行了多长时间?【考点】正数和负数.【分析】①将+4,﹣3,+10,﹣8,﹣7,+12,﹣10这几个数进行相加,得到的结果若是0就说明最后回到了起点,若结果不是0那么就没有回到起点;②将4,3,10,8,7,12,10进行相加的到54就是小虫爬行的总路程,然后根据速度可以求的小虫爬行的时间.【解答】解:①(+4)+(﹣3)+(+10)+(﹣8)+(﹣7)+(+12)+(﹣10)=﹣2,所以小虫最后没有回到起点;②因为小虫爬行的总路程是:4+|﹣3|+10+|﹣8|+|﹣7|+12+|﹣10|=54(厘米),所以小虫爬行的时间为:54÷0.5=108(秒),故小虫爬行了108秒.【点评】本题主要考查了正数和负数的概念和意义:1、在以前学过的0以外的数叫做正数,在正数前面加负号“﹣”,叫做负数,一个数前面的“+”“﹣”号叫做它的符号;2、0既不是正数也不是负数.0是正负数的分界点,正数是大于0的数,负数是小于0的数;3、用正负数表示两种具有相反意义的量.具有相反意义的量都是互相依存的两个量,它包含两个要素,一是它们的意义相反,二是它们都是数量.解答本题的关键就是读懂题意然后仔细计算就好.27.某市出租车的收费标准如下:起步价5元,即3千米以内(含3千米)收费5元,超过3千米的部分,每千米收费1.3元.(不足1千米按1千米计算)(1)假如你乘出租车行驶7千米应付多少钱?(2)若小红付出租车费16.7元,则小红最多乘坐多少千米?【考点】一元一次方程的应用.【分析】(1)起步价+超过3千米的部分×每千米收费,列式计算即可求解;(2)利用起步价+超过3千米的部分×每千米收费=出租车费16.7元列方程解答即可.【解答】解:(1)5+1.3×(7﹣3)=5+1.3×4=5+5.2=10.2(元)答:出租车行驶7千米应付10.2元;(2)设小红最多乘坐x千米,由题意得5+1.3(x﹣3)=16.7解得:x=12答:小红最多乘坐12千米.【点评】此题考查一元一次方程的实际运用,找出乘车费用的计算方法是解决问题的关键.28.已知多项式(m2﹣49)x3﹣(m﹣7)x2+3x+4是关于x的二次三项式,求(m+3)(m ﹣3)的值.【考点】多项式;代数式求值.【分析】根据题意可得当m2﹣49=0时,多项式(m2﹣49)x3﹣(m﹣7)x2+3x+4是关于x 的二次三项式,再解即可.【解答】解:由题意得:m2﹣49=0,且m﹣7≠0,解得:m=﹣7,则(m+3)(m﹣3)=40.【点评】此题主要考查了多项式,关键是掌握多项式中次数最高的项的次数叫做多项式的次数.四、解答题(共3小题,满分20分)29.数轴三要素:原点,正方向,单位长度.【考点】数轴.【分析】根据数轴的三要素:原点、正方向、单位长度,即可解答.【解答】解:数轴的三要素:原点、正方向、单位长度,故答案为:原点、正方向、单位长度.【点评】本题考查了数轴,解决本题的关键是熟记数轴的三要素:原点、正方向、单位长度.30.比较大小:﹣7<0,100>1.【考点】有理数大小比较.【分析】根据正数大于负数和0,0大于负数,即可解答.【解答】解:﹣7<0,100>1,故答案为:<,>.【点评】本题考查了有理数的大小比较,解决本题的关键是熟记正数大于负数和0,0大于负数.31.小明同学平时爱好数学,他探索发现了:从2开始,连续的几个偶数相加,它们和的情况变化规律,如表所示:请你根据表中提供的规律解答下列问题:(1)如果n=8时,那么S的值为72;(2)根据表中的规律猜想:用n的代数式表示S,则S=2+4+6+8+…+2n=n(n+1);(3)利用上题的猜想结果,计算300+302+304+…+xx+xx的值(要有计算过程).【考点】规律型:数字的变化类.【分析】(1)当n=8时,表示出S,计算得到S的值;(2)根据表格得到从2开始的偶数之和为偶数个数乘以个数加1,用n表示出即可;(3)将所求式子表示为(2+4+6+…+298+300+302+304+…+xx+xx)﹣(2+4+6+…+298),用上述规律计算,即可得到结果.【解答】解:(1)当n=8时,那么S=2+4+6+8+10+12+14+16=8×9=72;(2)∵2=1×2,2+4=6=2×3,2+4+6=12=3×4,2+4+6+8=20=4×5,2+4+6+8+10=30=5×6,∴S=2+4+6+8+…+2n=2(1+2+3+…+n)=n(n+1);(3)300+302+304+…+xx+xx=(2+4+6+...+298+300+302+304+...+xx+xx)﹣(2+4+6+ (298)=1006×1007﹣149×150=1013042﹣22350=990692.故答案为:(1)72;(2)n(n+1).【点评】此题考查了规律型:数字的变化类,本题的规律为:从2开始的连续偶数之和为偶数个数乘以偶数个数加1.。

2019-2020年七年级数学上学期期中试卷(含解析) 新人教版

2019-2020年七年级数学上学期期中试卷(含解析) 新人教版

2019-2020年七年级数学上学期期中试卷(含解析)新人教版一、精心选一选,慧眼识金!(本大题共10小题,每题3分,共30分.)1.﹣3的倒数是()A.3 B.﹣3 C. D.2.下列各数中,互为相反数的是()A.﹣3与2 B.(﹣3)2与9 C.25与﹣52 D.0.5与23.用科学记数法表示106 000,其中正确的是()A.1.06×105B.1.06×106C.106×103D.10.6×1044.式子﹣x2+2x中,第一项﹣x2的系数是()A.1 B.﹣1 C.0 D.25.下列计算正确的是()A.(﹣3)2=﹣9 B.(﹣2)2=﹣10 C.(﹣)3=﹣D.﹣3+=﹣36.下列等式成立的是()A.(﹣a)2=a2B.a+a=a2C.﹣2+3=﹣1 D.3a+5b=8ab7.已知2x6y2和﹣是同类项,则m+n的值是()A.0 B.﹣2 C.+4 D.﹣48.一个多项式与x2﹣2x+1的和是3x﹣2,则这个多项式为()A.x2﹣5x+3 B.﹣x2+x﹣1 C.﹣x2+5x﹣3 D.x2﹣5x﹣139.甲数的比乙数小1,设甲数为x,则乙数为()A. B. C. D.10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A. B.99! C.9900 D.2!二、耐心填一填,一锤定音!(本大题共8小题,每空2分,共16分)11.单项式2x6y2的系数为.12.多项式x2+2x+1的次数是.13.列式表示:x的3倍比x的二分之一大多少.14.任写一个与﹣a2b是同类项的单项式.15.多项式3x+2y与多项式4x﹣2y的和是.16.三个连续奇数,中间的一个是n,则这三个数的和是.17.买一个足球需要m元,买一个篮球要n元,则买4个足球、3个篮球共需要元.18.已知长方形的周长为2m+4n,长为m,则该长方形的宽为.三、用心做一做,马到成功!(共54分).19.计算:(1)(﹣10)+(+7);(2)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1);(3)(﹣1)÷(﹣);(4)﹣22×(﹣)+8÷(﹣2)2;(5)6﹣(﹣9)÷32×2;(6)a+2b+3a﹣2b;(7)2(2a﹣3b)﹣3(﹣2b+3a).20.先化简再求值:3x﹣4x2+7﹣3x+2x2+1,其中x=﹣3.21.若a,b互为相反数,c,d互为倒数,m的绝对值是2,求+m﹣cd的值.22.一种笔记本的单价是x元,圆珠笔的单价是y元,小红买3本笔记本,2支圆珠笔;小明买4本笔记本,3支圆珠笔,买这些笔记本和圆珠笔,小红和小明共花费多少钱?小明比小红多花多少元?23.个体儿童服装店老板以每件32元的价格购进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同,若以每件47元作为标准售价,将超过的钱数记为正,不足的钱数记为负,记录结果如下表所示:请问该服装店老板在售完这30件连衣裙后,是赔了还是赚了?赔或赚多少钱?2016-2017学年青海师大二附中七年级(上)期中数学试卷参考答案与试题解析一、精心选一选,慧眼识金!(本大题共10小题,每题3分,共30分.)1.﹣3的倒数是()A.3 B.﹣3 C. D.【考点】倒数.【分析】直接根据倒数的定义进行解答即可.【解答】解:∵(﹣3)×(﹣)=1,∴﹣3的倒数是﹣.故选:D.2.下列各数中,互为相反数的是()A.﹣3与2 B.(﹣3)2与9 C.25与﹣52 D.0.5与2【考点】有理数的乘方;相反数.【分析】原式各项计算得到结果,利用相反数定义判断即可.【解答】解:互为相反数的为25与﹣52=﹣25,故选C3.用科学记数法表示106 000,其中正确的是()A.1.06×105B.1.06×106C.106×103D.10.6×104【考点】科学记数法—表示较大的数.【分析】确定a×10n(1≤|a|<10,n为整数)中n的值是易错点,由于106 000有6位,所以可以确定n=6﹣1=5.【解答】解:106 000=1.66×105.故选A.4.式子﹣x2+2x中,第一项﹣x2的系数是()A.1 B.﹣1 C.0 D.2【考点】单项式.【分析】根据单项式系数的定义来求解.单项式中数字因数叫做单项式的系数.【解答】解:第一项﹣x2的系数是﹣1,故选B.5.下列计算正确的是()A.(﹣3)2=﹣9 B.(﹣2)2=﹣10 C.(﹣)3=﹣D.﹣3+=﹣3【考点】有理数的混合运算.【分析】原式各项计算得到结果,即可作出判断.【解答】解:A、原式=﹣9,错误;B、原式=4,错误;C、原式=﹣,正确;D、原式=﹣2,错误,故选C6.下列等式成立的是()A.(﹣a)2=a2B.a+a=a2C.﹣2+3=﹣1 D.3a+5b=8ab【考点】幂的乘方与积的乘方;有理数的加法;合并同类项.【分析】结合幂的乘方与积的乘方进行求解即可.【解答】解:A、(﹣a)2=a2,本选项正确;B、a+a=2a≠a2,本选项错误;C、﹣2+3=1≠﹣1,本选项错误;D、3a+5b≠8ab,本选项错误.故选A.7.已知2x6y2和﹣是同类项,则m+n的值是()A.0 B.﹣2 C.+4 D.﹣4【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,求出m,n的值,继而可求出m+n.【解答】解:∵2x6y2和﹣是同类项,∴3m=6,n=2,解得:m=2,n=2,则m+n=4.故选C.8.一个多项式与x2﹣2x+1的和是3x﹣2,则这个多项式为()A.x2﹣5x+3 B.﹣x2+x﹣1 C.﹣x2+5x﹣3 D.x2﹣5x﹣13【考点】整式的加减.【分析】由题意可得被减式为3x﹣2,减式为x2﹣2x+1,根据差=被减式﹣减式可得出这个多项式.【解答】解:由题意得:这个多项式=3x﹣2﹣(x2﹣2x+1),=3x﹣2﹣x2+2x﹣1,=﹣x2+5x﹣3.故选C.9.甲数的比乙数小1,设甲数为x,则乙数为()A. B. C. D.【考点】列代数式.【分析】设甲数为x,根据甲数的比乙数小1可列出代数式.【解答】解:设甲数为x,则乙数为x+1.故选B.10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A. B.99! C.9900 D.2!【考点】有理数的混合运算.【分析】由题目中的规定可知100!=100×99×98×…×1,98!=98×97×…×1,然后计算的值.【解答】解:∵100!=100×99×98×...×1,98!=98×97× (1)所以=100×99=9900.故选:C.二、耐心填一填,一锤定音!(本大题共8小题,每空2分,共16分)11.单项式2x6y2的系数为 2 .【考点】单项式.【分析】根据单项式的概念即可求出系数【解答】解:故答案为:212.多项式x2+2x+1的次数是 2 .【考点】多项式.【分析】根据多项式的次数即可求出答案.【解答】解:故答案为:213.列式表示:x的3倍比x的二分之一大多少3x﹣.【考点】列代数式.【分析】根据题意可以用代数式表示题目中的语句,本题得以解决.【解答】解:由题意可得,x的3倍比x的二分之一大多少可表示为:3x﹣,故答案为:3x﹣.14.任写一个与﹣a2b是同类项的单项式a2b .【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),即可解答.【解答】解:与﹣a2b是同类项的单项式是a2b(答案不唯一).故答案是:a2b.15.多项式3x+2y与多项式4x﹣2y的和是7x .【考点】整式的加减.【分析】根据题意列出多项式相加的式子,再去括号,合并同类项即可.【解答】解:原式=(3x+2y)+(4x﹣2y)=3x+2y+4x﹣2y=7x.故答案为:7x.16.三个连续奇数,中间的一个是n,则这三个数的和是3n .【考点】整式的加减;列代数式.【分析】中间数为n,分别表示出其它两个数,求和即可.【解答】解:由题意得,其它两个数为:n﹣2,n+2,则三个数的和=n﹣2+n+n+2=3n.故答案为:3n.17.买一个足球需要m元,买一个篮球要n元,则买4个足球、3个篮球共需要4m+3n 元.【考点】列代数式.【分析】根据题意可知4个足球需4m元,3个篮球需3n元,故共需(4m+3n)元.【解答】解:∵一个足球需要m元,买一个篮球需要n元.∴买4个足球、3个篮球共需要(4m+3n)元.故答案为:4m+3n.18.已知长方形的周长为2m+4n,长为m,则该长方形的宽为2n .【考点】整式的加减.【分析】根据长方形的周长=2(长+宽),求出宽即可.【解答】解:根据题意得:(2m+4n)﹣m=m+2n﹣m=2n,则该长方形的宽为2n.故答案为:2n三、用心做一做,马到成功!(共54分).19.计算:(1)(﹣10)+(+7);(2)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1);(3)(﹣1)÷(﹣);(4)﹣22×(﹣)+8÷(﹣2)2;(5)6﹣(﹣9)÷32×2;(6)a+2b+3a﹣2b;(7)2(2a﹣3b)﹣3(﹣2b+3a).【考点】整式的加减;有理数的混合运算.【分析】(1)原式利用异号两数相加的法则计算即可得到结果;(2)原式结合后,相加即可得到结果;(3)原式先计算括号中的减法运算,再计算除法运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(5)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(6)原式合并同类项即可得到结果;(7)原式去括号合并即可得到结果.【解答】解:(1)原式=﹣10+7=﹣3;(2)原式=5.6+4.4﹣0.9﹣8.1﹣0.1=10﹣9.1=0.9;(3)原式=﹣1÷(﹣)=6;(4)原式=2+2=4;(5)原式=6+9÷9×2=6+2=8;(6)原式=4a;(7)原式=4a﹣6b+6b﹣9a=﹣5a.20.先化简再求值:3x﹣4x2+7﹣3x+2x2+1,其中x=﹣3.【考点】整式的加减—化简求值.【分析】原式合并同类项得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=﹣2x2+8,当x=﹣3时,原式=﹣18+8=﹣10.21.若a,b互为相反数,c,d互为倒数,m的绝对值是2,求+m﹣cd的值.【考点】代数式求值;相反数;绝对值;倒数.【分析】由于a,b互为相反数,c,d互为倒数,m的绝对值是2,由此可以得到a+b=0,cd=1,m=±2,然后发vdr所求代数式计算即可求解.【解答】解:∵a,b互为相反数,c,d互为倒数,m的绝对值是2,∴a+b=0,cd=1,m=±2,∴+m﹣cd=±2﹣1,∴所求代数式的值为1或﹣3.22.一种笔记本的单价是x元,圆珠笔的单价是y元,小红买3本笔记本,2支圆珠笔;小明买4本笔记本,3支圆珠笔,买这些笔记本和圆珠笔,小红和小明共花费多少钱?小明比小红多花多少元?【考点】列代数式.【分析】根据题意可以用代数式分别表示出小红和小明共花费多少钱,小明比小红多花多少元,本题得以解决.【解答】解:由题意可得,小红和小明共花费:(3x+2y)+(4x+3y)=(7x+5y)(元),小明比小红多花:(4x+3y)﹣(3x+2y)=(x+y)(元),即小红和小明共花费多(7x+5y)元,小明比小红多花多(x+y)元.23.个体儿童服装店老板以每件32元的价格购进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同,若以每件47元作为标准售价,将超过的钱数记为正,不足的钱数记为负,记录结果如下表所示:请问该服装店老板在售完这30件连衣裙后,是赔了还是赚了?赔或赚多少钱?【考点】正数和负数.【分析】首先由进货量和进货单价计算出进货的成本,然后再根据售价计算利润即可.【解答】解:以47元为标准价,30件连衣裙的总增减量为7×(+3)+6×(+2)+3×(+1)+5×0+4×(﹣1)+5×(﹣2)=21+12+3+0﹣4﹣10=36﹣14=22(元).所以总售价为47×30+22=1432(元).∵进价为:30×32=960,∴利润为:1432﹣960=472>0,故该服装店老板在售完这30件连衣裙后,赚了472元.。

2019-2020学年新人教版七年级上学期期中考试数学试题(解析版)

2019-2020学年新人教版七年级上学期期中考试数学试题(解析版)

2019-2020学年新人教版七年级上学期期中考试数学试题一、选择题(本大题共10小题,共30.0分)1.向东行驶3km,记作,向西行驶2km记作A. B. C. D.【答案】B【解析】解:向东行驶3km,记作,向西行驶2km记作,故选:B.根据正数和负数表示相反意义的量,向东记为正,可得答案.本题考查了正数和负数,相反意义的量用正数和负数表示.2.已知一个单项式的系数是2,次数是3,则这个单项式可以是A. B. C. D.【答案】D【解析】解:此题规定了单项式的系数和次数,但没规定单项式中含几个字母.A、系数是,错误;B、系数是3,错误;C、次数是4,错误;D、符合系数是2,次数是3,正确;故选:D.根据单项式系数、次数的定义来求解单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.此题考查单项式问题,解答此题需灵活掌握单项式的系数和次数的定义.3.如果单项式与是同类项,那么a、b的值分别为A. ,B. ,C. ,D. ,【答案】A【解析】解:单项式与是同类项,,,,,故选:A.根据同类项是字母相同相同,且相同的字母的指数也相同,可得答案.本题考查了同类项,相同的字母的指数也相同是解题关键.4.下列方程中,是一元一次方程的是A. B. C. D.【解析】解:A、是整式方程,未知数的次数也是1,但是含有两个未知数,所以不是一元一次方程B、是含有一个未知数的分式方程,所以不是一元一次方程C、是含有一个未知数的整式方程,未知数的次数也是1,所以是一元一次方程D、是含有一个未知数的整式方程,但未知数的次数是2,所以不是一元一次方程.故选:C.一元一次方程是指只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程就叫做一元一次方程;据此逐项分析再选择.此题考查一元一次方程,解决此题明确一元一次方程的意义是关键.5.多项式的次数是A. 4B. 5C. 3D. 2【答案】B【解析】解:多项式的次数是次数最高项的次数,故选:B.根据多项式的次数定义即可求出答案.本题考查多项式的概念,属于基础题型.6.下列等式变形错误的是A. 由得B. 由得C. 由得D. 由得【答案】D【解析】解:A、根据等式性质1,两边都加5,即可得到,变形正确,故选项错误;B、根据等式性质2,两边都除以,即可得到,变形正确,故选项错误;C、根据等式性质1,两边都减去2,即可得到,变形正确,故选项错误;D、根据等式性质2,两边都除以,即可得到,变形错误,故选项正确.故选:D.利用等式的性质对每个式子进行变形即可找出答案.本题考查了等式的性质等式性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数除数不为零,所得结果仍是等式.7.数轴上点A、B表示的数分别是5、,它们之间的距离可以表示为A. B. C. D.【解析】解:点A、B表示的数分别是5、,它们之间的距离,故选:D.由距离的定义和绝对值的关系容易得出结果.本题考查绝对值的意义、数轴上两点间的距离;理解数轴上两点间的距离与绝对值的关系是解决问题的关键.8.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是A. B. C. D.【答案】C【解析】解:A、,,,故选项A错误;B、,,故选项B错误;C、,,故选项C正确;D、,,故选项D错误.故选:C.本题要先观察a,b在数轴上的位置,得,然后对四个选项逐一分析.本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.9.当时,整式的值等于2012,那么当时,整式的值为A. 2013B.C. 2014D.【答案】D【解析】解:当时,整式的值等于2012,,,当时,整式,故选:D.根据题意代入求出,代入后变形,即可求出答案.本题考查了求代数式的值的应用,能求出是解此题的关键.10.如图,数轴上A、B、C三点所表示的数分别是a、6、已知,,且c是关于x的方程的一个解,则m的值为A. B. 2 C. 4 D. 6【解析】解:由已知可得,,,,得,,,得,是关于x的方程的一个解,,得,故选:A.根据题意,可以分别求得a、c的值,然后根据c是关于x的方程的一个解,从而可以求得m的值.本题考查实数与数轴、一元一次方程的解,解答本题的关键是明确题意,求出m的值.二、填空题(本大题共8小题,共33.0分)11.长城总长约为6700000,用科学记数法表示为______.【答案】【解析】解:.故答案为:.科学记数法的表示形式为的形式,其中,n为整数确定n的值是易错点,由于6700000有7位,所以可以确定.此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.12.的相反数是______,倒数是______.【答案】【解析】解:的相反数是,倒数是.故答案是:;.根据相反数和倒数的定义解答.考查了相反数和倒数的定义属于基础计算题,熟记概念即可解答.13.计算:______;______;______;______;______.【答案】 2 2 a【解析】解:;;;;,故答案为:,2,2,,a根据有理数的混合运算的法则计算即可.本题考查了有理数的混合运算,熟记法则是解题的关键.14.若是关于x的方程的解则______.【答案】【解析】解:把代入,得,解得.故答案为:.根据一元一次方程的解的定义把代入方程得到关于n的一次方程,然后解此一次方程即可.本题考查了一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解把方程的解代入原方程,等式左右两边相等.15.育才中学学生志愿服务小组在“重阳节”购买了一批牛奶到敬老院慰问老人,如果送给每位老人2盒牛奶,那么剩下16盒,如果送给每位老人3盒牛奶,则正好送完设敬老院有x位老人,依题意可列方程______.【答案】【解析】解:设有x位老人,则.故答案为:.设有x位老人,根据题中给出等量关系列出方程式即可解题.本题考查了一元一次方程的应用,本题中设有x位老人,根据牛奶数量相等列出方程式是解题的关键.16.若,则的值为______.【答案】【解析】解:根据题意得:,,解得:,.则.故答案是:.根据非负数的性质,可求出m、n的值,代入所求代数式计算即可.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.17.已知数轴有A、B、C三点,位置如图,分别对应的数为x、2、y,若,则______.【答案】10【解析】解:设,则,,,故答案为:10.设,用a表示出x,y,计算即可.本题考查的是数轴的概念,正确表示出x,y是解题的关键.18.用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案:第4个图案中有白色纸片______张;第n个图案中有白色纸片______张【答案】13【解析】解:先根据前三个图中的规律画出第四个图下图,第小题就迎刃而解了,第4个图案中有白色纸片13张对于第小题可以自己先列一个表格:从表中可以很清楚地看到规律第n个图案中有白色纸片张.通过观察,前三个图案中白色纸片的张数分别为:4,7,10,所以会发现后面的图案比它前面的图案多3个白色纸片,可得第n个图案有张白色纸片.本题考查学生的探究能力,解题时必须仔细观察规律,通过归纳得出结论注意由特殊到一般的分析方法,此题的规律为:第n个图案中有张白色纸片.三、计算题(本大题共3小题,共33.0分)19.计算:【答案】解:【解析】熟练运用有理数加减法法则进行计算;熟练运用有理数加减法法则,乘除法法则进行计算;熟练运用有理数乘法法则进行计算;熟练运用有理数加减法法则,乘除法法则,乘方的定义进行计算.本题考查了有理数的混合运算,熟练掌握有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.化简:;.【答案】解:原式;原式.【解析】合并同类项即可;先去括号,然后合并同类项即可.本题考查了有理数的混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.21.先化简,再求值:,其中,.【答案】解:原式,当,时,原式.【解析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的加减化简求值,熟练掌握运算法则是解本题的关键.四、解答题(本大题共7小题,共54.0分)22.画出数轴并表示下列各数,最后用“”号连接起来.2,,0,,【答案】解:在数轴上画出表示下列各数的点:用““号连接起来为:.【解析】把各个数在数轴上画出表示出来,根据数轴上的数右边的数总是大于左边的数,即可把各个数按由大到小的顺序“”连接起来.此题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.23.解方程:.【答案】解:,,,;,,,,.【解析】移项,合并同类项,化系数为1,即可求得x的值;去分母,移项,合并同类项,化系数为1,即可求得x的值.本题考查解一元一次方程的解法;解一元一次方程常见的过程有去括号、移项、系数化为1等.24.“囧”是近时期网络流行语,像一个人脸郁闷的神情如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案阴影部分设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.用含有x、y的代数式表示下图中“囧”的面积;当,时,求此时“囧”的面积.【答案】解:“囧”的面积:,,;当,时,“囧”的面积,,.【解析】根据图形,用正方形的面积减去两个直角三角形的面积和长方形的面积,列式整理即可;把x、y的值代入代数式进行计算即可得解.本题考查了列代数式和代数式求值,主要利用了正方形的面积,长方形的面积和三角形的面积公式,准确识图是解题的关键.25.某一食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:这批样品的平均质量比标准质量多还是少?多或少几克,若标准质量为450克,则抽样检测的总质量是多少?【答案】解:与标准质量的差值的和为,其平均数为,即这批样品的平均质量比标准质量多,多克.则抽样检测的总质量是克.【解析】根据表格中的数据计算与标准质量的差值的总数,再除以20,如果是正数,即多,如果是负数,即少;根据标准质量结合前边的结论进行计算抽样检测的总质量.此题要理解统计图,会计算加权平,另外计算时要细心.26.探索规律:将连续的偶2,4,6,8,,排成如下表:十字框中的五个数的和与中间的数16有什么关系?设中间的数为x,用代数式表示十字框中的五个数的和;若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于2010吗?如能,写出这五位数,如不能,说明理由.【答案】解:十字框中的五个数的和为,即是16的5倍;设中间的数为x,则十字框中的五个数的和为:,所以五个数的和为5x;假设能够框出满足条件的五个数,设中间的数为x,由得,所以,但402位于第41行的第一个数,在这个数的左边没有数,所以不能框住五个数,使它们的和等于2010.【解析】让方框中的5个数相加,看结果与中间的数的关系即可;根据上下相邻的数相隔10,左右相邻的数相隔2表示出其余数,相加即可;让得到的式子的结果等于2010,看有没有整数解,然后看有没有存在的可能即可.解决本题的关键是得到连续偶数中左右相邻及上下相邻的数的关系;注意根据实际情况判断是否存在可以框住的数.27.定义:若,则称a与b是关于1的平衡数.与______是关于1的平衡数,与______是关于1的平衡数用含x的代数式表示若,,判断a与b是否是关于1 的平衡数,并说明理由.【答案】【解析】解:设3的关于1的平衡数为a,则,解得,与是关于1的平衡数,设的关于1的平衡数为b,则,解得,与是关于1的平衡数,故答案为:;;与b不是关于1的平衡数,理由如下:,,,与b不是关于1的平衡数.由平衡数的定义可求得答案;计算是否等于1即可.本题主要考查整式的加减,理解题目中所给平衡数的定义是解题的关键.28.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表若2015年5月份,该市居民甲用电100千瓦时,交电费60元.上表中,______,若居民乙用电200千瓦时,交电费______元若某用户某月用电量超过300千瓦时,设用电量为x千瓦时,请你用含x的代数式表示应交的电费.试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过元?【答案】【解析】解:,,.若居民乙用电200千瓦时,应交电费元.故答案为:;.当时,应交的电费.设该居民用电x千瓦时,其当月的平均电价每千瓦时为元,当该居民用电处于第二档时,,解得:;当该居民用电处于第三档时,,解得:舍去.综上所述该居民用电不超过250千瓦时,其当月的平均电价每千瓦时不超过元.根据结合应交电费60元即可得出关于a的一元一次方程,解之即可得出a 值;再由,结合应交电费超出150千瓦时的部分即可求出结论;根据应交电费超出300千瓦时的部分,即可得出结论;设该居民用电x千瓦时,其当月的平均电价每千瓦时为元,分x在第二档及第三档考虑,根据总电费均价数量即可得出关于x的一元一次方程,解之即可得出x值,结合实际即可得出结论.本题考查了一元一次方程的应用以及列代数式,解题的关键是:根据数量关系列式计算;根据数量关系列出代数式;根据总电费均价数量列出关于x的一元一次方程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年初一上学期数学期中试卷含解析
一、选择题(每小题3分,共30分) 1、-2的倒数是( )
A .2
B .-2
C .
21 D .2
1- 2、在实数-2,0,2,3中,最小的实数是( ) A.-2 B.0 C.2 D.3
3、甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( ) A.1℃~3℃ B.3℃~5℃ C.5℃~8℃ D.1℃~8℃
4、在数0.25,﹣
2
1
,7,0,﹣3,100中,正数的个数是( ) A .1个 B .2个 C .3个 D .4个
5、实数a 在数轴上的位置如图所示,则下列说法不正确的是( )
A .a 的相反数大于2
B .a 的相反数是2
C .|a|>2
D .2a <0
6、多项式2x 2y 3﹣5xy 2﹣3的次数和项数分别是( ) A .5,3 B .5,2 C .8,3 D .3,3
7、若单项式﹣35
a b 与2
m a
+b 是同类项,则常数m 的值为( )
A.﹣3
B.4
C.3
D.2
8、若代数式22x +3x 的值是5,则代数式42x +6x ﹣9的值是( ) A.10 B.1 C.﹣4 D.﹣8
9、随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a 元后,再
次降价20%,现售价为b 元,则原售价为( )
A .(54a b +)元
B .(45a b +)元
C .(54b a +)元
D .(4
5
b a +)元
10、下列计算正确..
的是( ). A .2334a a a =+ B .()22a b a b --=-+ C . 541a a -=
D .2222a b a b a b -=-
二、填空题(每小题3分,共30分) 11、计算5x 2-2x 2的结果是 .
12、第六次人口普查显示,腾冲市常住人口数约为6 44 000人,数据6 44 000用科学记数法表示为 .
13、梯形的上底长为8,下底长为x ,高是6,那么梯形面积是 .
14、长方形的一边长为3a ﹣b ,另一边比它小a ﹣2b ,那么长方形的周长为 .
15、单项式b a 23
1
π-的系数是 ,次数是 .
16、按图所示的程序流程计算,若开始输入的值为x=3,则最后输出的结果是 .
17、某商品标价是a 元,现按标价打9折出售,则售价是 元.
18、甲、乙二人一起加工零件.甲平均每小时加工a 个零件,加工2小时;乙平均每小时加工b 个零件,加工3小时.甲、乙二人共加工零件 个.
19、数轴上到原点的距离等于4的数是 .
20、如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑩个图形中平行四边形的个数是 个.
三、计算题(共20分).
21、(每小题4分,共8分)计算: (1)1+(﹣4)÷2﹣(+5)
(2)﹣32×|﹣4|﹣4÷(﹣2)2.
22、计算:(每小题4分,共12分)
(1)、()()241211653223
-⨯⎪⎭
⎫ ⎝⎛+--+-.
(2)、42×(-23)÷7
2
-(-12)÷(-4).
(3)、32
x y ﹣[22
x y ﹣3(2xy ﹣2
x y )﹣xy]
四、解答题(共40分).
23、(8分)教师节当天,出租车司机小王在东西向的街道上免费接送教师,规定向东为正,向西为负,当天出租车的行程如下(单位:千米):+5,-4,-8,+10,+3,-6,+7,-11.
(1)将最后一名老师送到目的地时,小王距出发地多少千米?方位如何?
(2)若汽车耗油量为0.2升/千米,则当天耗油多少升?若汽油价格为6.20元/升,则小王共花费了多少元钱?
24、(6分)先简化,再求值:5(3a 2
﹣b )﹣4(3a 2
﹣b ),其中a=2,b=3.
25、(6分)已知:()02232
=++-y x ,化简 )3
123()3141(222y x y x x +-+-- 再求值.
26、(7分)某市区自2014年1月起,居民生活用水开始实行阶梯式计量水价,该阶梯式计量水价分为三级(如下表所示): 月用水量(吨)
水价(元/吨)
第一级 20吨以下(含20吨) 1.6 第二级 20吨﹣30吨(含30吨) 2.4
第三级 30吨以上
3.2
例:某用户的月用水量为32吨,按三级计量应缴交水费为:1.6×20+2.4×10+3.2
×2=62.4(元)
(1)如果甲用户的月用水量为12吨,则甲需缴交的水费为 元; (2)如果乙用户缴交的水费为39.2元,则乙月用水量 吨;
(3)如果丙用户的月用水量为a 吨,则丙用户该月应缴交水费多少元?(用含a 的代数式表示,并化简)
27、(6分) “囧”(jiǒng)是近时期网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为、,剪去的两个小直角三角形的两直角边长也分别为、.
(1)用含有、的代数式表示下图中“囧”的面积; (
2)当=6,=8时,求此时“囧”的面积.
28、(7分)如果a ,b 互为相反数,c ,d 互为倒数,x 的绝对值是1,求代数式
2a b
x cdx x
+++的值. x y x y x y y x
装订线内请勿答题
腾八中2015——2016学年初一上学期期中考试 数 学 答 题 卡 一、选择题(每小题3分,共30分). 题号 1
2 3 4 5 6 7 8 9 10 选项
二、填空题(每小题3分,共30分)
11、 .12、 .13、 .14、 .15、 , 16、 .17、 元.18、 个.19、 .20、 个.
三 、计算题(共20分). 21、(每小题4分,共8分)计算: (1)1+(﹣4)÷2﹣(+5) (2)﹣32×|﹣4|﹣4÷(﹣2)2
. 解: 解: 22、(每小题4分,共12分)计算: (1)、()()241211653223
-⨯⎪⎭
⎫ ⎝⎛+--+-. (2)、42×(-23)÷72-(-12)÷(-4). 解: 解:
(3)、32x y ﹣[22x y ﹣3(2xy ﹣2
x y )﹣xy]
解:
四、解答题(共40分). 23、(8分)
(1)将最后一名老师送到目的地时,小王距出发地多少千米?方位如何?
解:
(2)若汽车耗油量为0.2升/千米,则当天耗油多少升?若汽油价格为6.20元/升,则小王共花费了多少元钱? 解:
24、(6分)先简化,再求值:5(3a 2﹣b )﹣4(3a 2﹣b ),其中a=2,b=3. 解: 25、(6分)已知:()02232=++-y x ,化简 )3
123()3141(222y x y x x +-+-- 再求值.
解:
26、(7分)(1)如果甲用户的月用水量为12吨,则甲需缴交的水费为元;
(2)如果乙用户缴交的水费为39.2元,则乙月用水量吨;
(3)如果丙用户的月用水量为a吨,则丙用户该月应缴交水费多少元?(用含a 的代数式表示,并化简)
解:
27、(6分)(1)用含有、的代数式表示下图中“囧”的面积;
解:(2)当=6,=8时,求此时“囧”的面积.
解:
28.(7分)如果a,b互为相反数,c,d互为倒数,x的绝对值是1,求代数式2
a b
x cdx
x
+
++的值.
解:
新课标第一网
X k B 1 . c o m
新-课-标-第-一-网
x y
y x。

相关文档
最新文档