周练三角函数公式大全

合集下载

三角函数公式大全

三角函数公式大全

三角函数公式大全三角函数是数学中非常重要的一个分支,广泛应用于物理学、工程学、计算机科学等多个领域。

下面为大家带来一份三角函数公式大全。

一、基本三角函数1、正弦函数(sin):在直角三角形中,一个锐角的正弦是它的对边与斜边的比值。

即 sinA = a / c (其中 A 为锐角,a 为 A 的对边,c 为斜边)。

2、余弦函数(cos):一个锐角的余弦是它的邻边与斜边的比值。

即 cosA = b / c (其中 b 为 A 的邻边)。

3、正切函数(tan):一个锐角的正切是它的对边与邻边的比值。

即 tanA = a / b 。

二、同角三角函数基本关系1、平方关系:sin²A + cos²A = 1 。

2、商数关系:tanA = sinA / cosA 。

三、诱导公式1、终边相同的角的三角函数值相等:sin(2kπ + A) = sinA ,cos(2kπ + A) = cosA ,tan(2kπ + A) = tanA (k ∈ Z)。

2、关于 x 轴对称:sin(A) = sinA ,cos(A) = cosA ,tan(A) =tanA 。

3、关于 y 轴对称:sin(π A) = sinA ,cos(π A) = cosA ,tan(π A) = tanA 。

4、关于原点对称:sin(π + A) = sinA ,cos(π + A) = cosA ,tan(π + A) = tanA 。

5、 90°相关:sin(π/2 A) = cosA ,cos(π/2 A) = sinA 。

四、两角和与差的三角函数公式1、两角和的正弦:sin(A + B) = sinAcosB + cosAsinB 。

2、两角差的正弦:sin(A B) = sinAcosB cosAsinB 。

3、两角和的余弦:cos(A + B) = cosAcosB sinAsinB 。

4、两角差的余弦:cos(A B) = cosAcosB + sinAsinB 。

(完整版)三角函数三角函数公式表

(完整版)三角函数三角函数公式表

(完整版)三角函数公式表1. 正弦函数 (sin):定义:正弦函数是直角三角形中对边与斜边的比值。

公式:sin(θ) = 对边 / 斜边范围:1 ≤ sin(θ) ≤ 1特殊值:sin(0°) = 0, sin(30°) = 1/2, sin(45°) = √2/2, sin(60°) = √3/2, sin(90°) = 12. 余弦函数 (cos):定义:余弦函数是直角三角形中邻边与斜边的比值。

公式:cos(θ) = 邻边 / 斜边范围:1 ≤ cos(θ) ≤ 1特殊值:cos(0°) = 1, cos(30°) = √3/2, cos(45°) = √2/2, cos(60°) = 1/2, cos(90°) = 03. 正切函数 (tan):定义:正切函数是直角三角形中对边与邻边的比值。

公式:tan(θ) = 对边 / 邻边范围:tan(θ) 可以取任意实数值特殊值:tan(0°) = 0, tan(30°) = 1/√3, tan(45°) = 1, tan(60°)= √3, tan(90°) 不存在(无穷大)4. 余切函数 (cot):定义:余切函数是直角三角形中邻边与对边的比值。

公式:cot(θ) = 邻边 / 对边范围:cot(θ) 可以取任意实数值特殊值:cot(0°) 不存在(无穷大), cot(30°) = √3, cot(45°) = 1, cot(60°) = 1/√3, cot(90°) = 05. 正割函数 (sec):定义:正割函数是直角三角形中斜边与邻边的比值。

公式:sec(θ)= 1 / cos(θ)范围:sec(θ) 可以取任意实数值特殊值:sec(0°) = 1, sec(30°) = 2, sec(45°) = √2, sec(60°) = 2/√3, sec(90°) 不存在(无穷大)6. 余割函数 (csc):定义:余割函数是直角三角形中斜边与对边的比值。

三角函数公式(最全)

三角函数公式(最全)
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγsinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)÷(1tanα·tanβ-tanβ·tanγ-tanγ·tanα)
5、幂级数
c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞) c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)
cosh x = 1+x2/2!+x^4/4!+…+x2k/(2k)!+…, x∈R
arcsinh x =x - x3/(2*3) + (1*3)x5/(2*4*5) -(1*3*5)x7/(2*4* 6*7)…, x∈(-1,1)
arctanh x = x + x3/3 + x5/5 + …, x∈(-1,1)
上述两式相比可得: tan3a=tana·tan(60°-a) ·tan(60°+a)
6、四倍角公式
sin4a=-4*[cosa*sina*(2*sina^2-1)] cos4a=1+(-8*cosa^2+8*cosa^4) tan4a=(4*tana-4*tana^3)/(1-6*tana^2+tana^4)
7、五倍角公式
5
应用欧拉公式
8、n倍角公式
上式用于求n倍角的三角函数时,可变形为: 所以
其中,Re表示取实数部分,Im表示取虚数部分.而

高中生必备实用三角函数公式总表

高中生必备实用三角函数公式总表

高中生必备实用三角函数公式总表高中数学中,三角函数是一个非常重要的概念。

通过掌握三角函数的相关公式和性质,可以解决许多与角度和三角形相关的问题。

本文将为高中生提供一个实用的三角函数公式总表,以帮助他们更好地学习和理解这一领域。

一、基本三角函数公式:1. 正弦函数(Sine function):sin(A + B) = sinA · cosB + cosA · sinBsin(A - B) = sinA · cosB - cosA · sinB2. 余弦函数(Cosine function):cos(A + B) = cosA · cosB - sinA · sinBcos(A - B) = cosA · cosB + sinA · sinB3. 正切函数(Tangent function):tan(A + B) = (tanA + tanB) / (1 - tanA · tanB)tan(A - B) = (tanA - tanB) / (1 + tanA · tanB)二、和差公式:1. 正弦函数公式:sin(A + B) = sinA · cosB + cosA · sinBsin(A - B) = sinA · cosB - cosA · sinBsin2A = 2 · sinA · cosAsin2A = 1 - cos2A2. 余弦函数公式:cos(A + B) = cosA · cosB - sinA · sinBcos(A - B) = cosA · cosB + sinA · sinBcos2A = cos2A - sin2Acos2A = 1 - sin2A3. 正切函数公式:tan(A + B) = (tanA + tanB) / (1 - tanA · tanB) tan(A - B) = (tanA - tanB) / (1 + tanA · tanB)三、倍角公式:1. 正弦函数公式:sin2A = 2 · sinA · cosAsin2A = 1 - cos2A2. 余弦函数公式:cos2A = cos2A - sin2Acos2A = 1 - sin2A3. 正切函数公式:tan2A = (2 · tanA) / (1 - tan2A)四、半角公式:1. 正弦函数公式:sin(A/2) = ±√((1 - cosA) / 2)2. 余弦函数公式:cos(A/2) = ±√((1 + cosA) / 2)3. 正切函数公式:tan(A/2) = ±√((1 - cosA) / (1 + cosA))五、和角公式:1. 正弦函数公式:sin2A = 2 · sinA · cosA2. 余弦函数公式:cos2A = cos2A - sin2A3. 正切函数公式:tan(A + B) = (tanA + tanB) / (1 - tanA · tanB)六、其他常见公式:1. 正切与余切的关系:tanA = 1 / cotAcotA = 1 / tanA2. 正弦与余弦的关系:sin2A + cos2A = 13. 正切与正弦、余弦的关系:tanA = sinA / cosA通过掌握这些三角函数的公式,高中生可以更好地解决与角度和三角形相关的问题。

三角函数公式大全

三角函数公式大全

三角函数公式大全1.三角函数的基本定义:- 正弦函数:sinθ = 对边/斜边- 余弦函数:cosθ = 邻边/斜边- 正切函数:tanθ = 对边/邻边- 余切函数:cotθ = 1/tanθ- 正割函数:secθ = 1/cosθ- 余割函数:cscθ = 1/sinθ2.三角函数的周期性:- 正弦函数的周期为2π:sin(θ+2π) = sinθ- 余弦函数的周期为2π:cos(θ+2π) = cosθ- 正切函数的周期为π:tan(θ+π) = tanθ3.三角函数的平方和差公式:- 正弦函数的平方和差公式:sin(A±B) = sinAcosB ± cosAsinB - 余弦函数的平方和差公式:cos(A±B) = cosAcosB ∓ sinAsinB - 正切函数的平方和差公式:tan(A±B) = (tanA ± tanB)/(1 ∓tanAtanB)4.三角函数的倍角公式:- 正弦函数的倍角公式:sin2θ = 2sinθcosθ- 余弦函数的倍角公式:cos2θ = cos²θ - sin²θ- 正切函数的倍角公式:tan2θ = (2tanθ)/(1 - tan²θ)5.三角函数的半角公式:- 正弦函数的半角公式:sin(θ/2) = ±√((1 - cosθ)/2)- 余弦函数的半角公式:cos(θ/2) = ±√((1 + cosθ)/2)- 正切函数的半角公式:tan(θ/2) = ±√((1 - cosθ)/(1 +cosθ))6.三角函数的和差化积公式:- 正弦函数的和差化积公式:sinA + sinB = 2sin((A+B)/2)cos((A-B)/2)- 余弦函数的和差化积公式:cosA + cosB = 2cos((A+B)/2)cos((A-B)/2)- 正弦函数的差化积公式:sinA - sinB = 2cos((A+B)/2)sin((A-B)/2)- 余弦函数的差化积公式:cosA - cosB = 2sin((A+B)/2)sin((A-B)/2)7.其他重要公式:- 三角函数的平方公式:sin²θ + cos²θ = 1- 三角函数的倒数公式:sin(π/2 - θ) = cosθ,cos(π/2 - θ) = sinθ,tan(π/2 - θ) = cotθ- 三角函数的和差化差公式:cos(A-B) = cosAcosB + sinAsinB,cos(A+B) = cosAcosB - sinAsinB这些是三角函数中一些重要的公式,对于理解和应用三角函数有很大的帮助。

三角函数公式表(全)

三角函数公式表(全)

三角函数公式表同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα ·cotα=1 sinα ·cscα=1 sinα/cosα=tanαsin2α+cos2α=11+tan2α=sec2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

”)诱导公式(口诀:奇变偶不变,符号看象限。

)sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=co sαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=———----———1-tanα ·tanβtanα-tanβtan(α-β)=—————-------—1+tanα ·tanβ2tan(α/2)sinα=——————1+tan2(α/2)1-tan2(α/2) cosα=——————1+tan2(α/2)2tan(α/2)tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式Sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2] cos α+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2 ] 1sinα ·cosβ=-[sin(α+β)+sin(α-β)]21cosα ·sinβ=-[sin(α+β)-sin(α-β)]21cosα ·cosβ=-[cos(α+β)+cos(α-β)]21sinα ·sinβ=— -[cos(α+β)-cos(α-β)]2化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)。

最全的三角函数公式

最全的三角函数公式

最全的三角函数公式三角函数是研究三角形边长与角度之间关系的数学函数。

在数学和物理等领域中,三角函数具有广泛的应用。

下面将介绍三角函数的定义、性质和常用公式。

一、正弦函数(sin)正弦函数的周期为2π,即sin(x)=sin(x+2π)。

常用的正弦函数的性质和公式如下:1. sin(π/2 - θ) = cosθ:这个公式表明正弦函数和余弦函数之间存在关系,可以用余弦函数表示正弦函数。

2. sin(-θ) = -sinθ:表示角的负数的正弦值等于负数乘以角的正弦值。

3. sin(θ + 2πn)= sinθ:这个公式表示正弦函数的周期性。

4. sin2θ = 2sinθcosθ:这个公式称为正弦函数的倍角公式。

5. sin(θ + φ) = sinθcosφ + cosθsinφ:这个公式称为正弦函数的和角公式。

二、余弦函数(cos)余弦函数的周期为2π,即cos(x)=cos(x+2π)。

常用的余弦函数的性质和公式如下:1. cos(π/2 - θ) = sinθ:这个公式表明余弦函数和正弦函数之间存在关系,可以用正弦函数表示余弦函数。

2. cos(-θ) = cosθ:表示角的负数的余弦值等于角的余弦值。

3. cos(θ + 2πn) = cosθ:这个公式表示余弦函数的周期性。

4. cos2θ = cos²θ - sin²θ:这个公式称为余弦函数的倍角公式。

5. cos(θ + φ) = cosθcosφ - sinθsinφ:这个公式称为余弦函数的和角公式。

三、正切函数(tan)正切函数的周期为π,即tan(x)=tan(x+π)。

常用的正切函数的性质和公式如下:1. tanθ = sinθ/cosθ:这个公式表示正切函数可以用正弦函数和余弦函数来表示。

2. tan(-θ) = -tanθ:表示角的负数的正切值等于负数乘以角的正切值。

3. tan(θ + πn) = tanθ:这个公式表示正切函数的周期性。

最最完整版--三角函数公式大全

最最完整版--三角函数公式大全

同学们,这是最最完整的三角函数公式,绝对包你够用,并且这些公式完了,后面还有一些、专对高中所有涉及的三角函数的公式。

第一部分三角函数公式·两角和与差的三角函数cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sin α)^2tan(2α)=2tanα/(1-tan^2α)cot(2α)=(cot^2α-1)/(2cotα)sec(2α)=sec^2α/(1-tan^2α)csc(2α)=1/2*secα·cscα·三倍角公式:sin(3α) = 3sinα-4sin^3α = 4sinα·sin(60°+α)sin(60°-α)cos(3α) = 4cos^3α-3cosα = 4cosα·cos(60°+α)cos(60°-α)tan(3α) = (3tanα-tan^3α)/(1-3tan^2α) = tanαtan(π/3+α)tan(π/3-α)cot(3α)=(cot^3α-3cotα)/(3cot^2α-1) ·n倍角公式:sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α-…·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cos α)=(1-cosα)/sinαcot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα)sec(α/2)=±√((2secα/(secα+1))csc(α/2)=±√((2secα/(secα-1))·辅助角公式:Asinα+Bcosα=√(A^2+B^2)sin(α+φ)(tanφ=B/A)Asinα+Bcosα=√(A^2+B^2)cos(α-φ)(tanφ=A/B)·万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))·降幂公式sin^2α=(1-cos(2α))/2=versin(2α)/2cos^2α=(1+cos(2α))/2=covers(2α)/2tan^2α=(1-cos(2α))/(1+cos(2α))·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cos γ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sin γ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tan γ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) ·其它公式·两角和与差的三角函数cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sin α)^2tan(2α)=2tanα/(1-tan^2α)cot(2α)=(cot^2α-1)/(2cotα)sec(2α)=sec^2α/(1-tan^2α)csc(2α)=1/2*secα·cscα·三倍角公式:sin(3α) = 3sinα-4sin^3α = 4sinα·sin(60°+α)sin(60°-α)cos(3α) = 4cos^3α-3cosα = 4cosα·cos(60°+α)cos(60°-α)tan(3α) = (3tanα-tan^3α)/(1-3tan^2α) = tanαtan(π/3+α)tan(π/3-α)cot(3α)=(cot^3α-3cotα)/(3cot^2α-1)·n倍角公式:sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α-…·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cos α)=(1-cosα)/sinαcot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα)sec(α/2)=±√((2secα/(secα+1))csc(α/2)=±√((2secα/(secα-1))·辅助角公式:Asinα+Bcosα=√(A^2+B^2)sin(α+φ)(tanφ=B/A)Asinα+Bcosα=√(A^2+B^2)cos(α-φ)(tanφ=A/B)·万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))·降幂公式sin^2α=(1-cos(2α))/2=versin(2α)/2cos^2α=(1+cos(2α))/2=covers(2α)/2tan^2α=(1-cos(2α))/(1+cos(2α))·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cos γ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sin γ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tan γ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) ·其它公式1+sin(a)=(sin(a/2)+cos(a/2))^21-sin(a)=(sin(a/2)-cos(a/2))^2csc(a)=1/sin(a) sec(a)=1/cos(a)cos30=sin60sin30=cos60·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=[sin(α/2)+cos(α/2)]^21+sin(a)=(sin(a/2)+cos(a/2))^21-sin(a)=(sin(a/2)-cos(a/2))^2csc(a)=1/sin(a) sec(a)=1/cos(a)cos30=sin60sin30=cos60·推导公式tan α+cot α=2/sin2αtan α-cot α=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sin α=[sin(α/2)+cos(α/2)]^2这是一些高中公式、高中三角函数公式大全三角函数公式两角和公式 sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanBtanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotA cotB 1cotAcotB -+倍角公式tan2A =A tan 12tanA2-Sin2A=2SinA •CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)半角公式 sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2ba +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 21[sin(a+b)-sin(a-b)]诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosacos(2π+a) = -sinasin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2)2(tan 12tan 2aa+ cosa=22)2(tan 1)2(tan 1aa+- tana=2)2(tan 12tan 2aa- 其它公式 a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=a b ] a•sin(a)-b•cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2a )2 1-sin(a) = (sin2a -cos 2a )2 其他非重点三角函数 csc(a) =asin 1sec(a) =a cos 1双曲函数 sinh(a)=2e-e -a a cosh(a)=2ee -a a + tg h(a)=)cosh()sinh(a a公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinαcos (2kπ+α)= cosαtan (2kπ+α)= tanαcot (2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin (π+α)= -sinαcos (π+α)= -cosαtan (π+α)= tanαcot (π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)= -sinαcos (-α)= cosαtan (-α)= -tanαcot (-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin (π-α)= sinαcos (π-α)= -cosαtan (π-α)= -tanαcot (π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin (2π-α)= -sinαcos (2π-α)= cosαtan (2π-α)= -tanαcot (2π-α)= -cotα公式六:2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosαcos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosα cos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα (以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部)公式表达式乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a -b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角正切定理:[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h-----------------------三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβ sin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)tan(α+β)=(1+m)/(1-m)tanβ。

三角函数公式大全-精选.

三角函数公式大全-精选.

三角函数公式 1.正弦定理:A asin B b sin Cc sin 2R (R 为三角形外接圆半径)2.余弦定理:2222A cos 2222B cos2222C cos bca cb A 2cos 222-+=3⊿21ah ⋅21C sin 21A sin 21Bsin Rabc42R 2A sin B sin C sin A C B a sin 2sin sin 2B C A b sin 2sin sin 2CB A c sin 2sin sin 2))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径)4.诱导公试三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限注释:xx tan 1cot =5.和差角公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos(μ=± ③βαβαβαtan tan 1tan tan )tan(•-+=+④βαβαβαtan tan 1tan -tan )tan(•+=-公式七:6.二倍角公式:(含万能公式)①θθθcos sin 22sin =②θθθθθ2222sin 211cos 2sin cos 2cos -=-=-==θθ22tan 1tan 1+-③θθθ2tan 1tan 22tan -=④ 22cos 1sin 2θθ-=⑤ 22cos 1cos 2θθ+=⑥ 221 ⑦ 122x ⑧ 122x7.半角公式:(符号的选择由2θ所在的象限确定)①2cos 12sinθθ-±= ②2cos 12sin 2θθ-=③2cos 12cosθθ+±= ④2cos 12cos 2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+⑦2sin 2cos )2sin 2(cos sin 12θθθθθ±=±=±8.积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(21sin sin9.和差化积公式: ①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos2cos2cos cos βαβαβα-+=+ ④2sin2sin2cos cos βαβαβα-+-=-高等数学必备公式1、指数函数(4个): 幂函数5-8(1)nm n maa a +=⋅ (2)n m n ma aa -=(3)nmnmaa = (4)mm a a 1=-(5) nm nmxx x +=⋅2、对数函数(4个):(1)b a ab ln ln ln += (2)b a ba ln ln ln -=(3)a b a b ln ln = (4)N N e e N ln ln == 3、三角函数(10个):(1)1cos sin 22=+x x (2)x x x cos sin 22sin = (3)x x x x x 2222sin 211cos 2sin cos 2cos -=-=-= (4)21cos 2sin2x x -=(5)21cos 2cos 2x x +=(6)x x 22sec tan 1=+ (7) xx 22csc cot 1=+(8)x x csc 1sin = (9)x x sec 1cos =(10)xx cot 1tan =4、等价无穷小(11个):(等价无穷小量只能用于乘、除法)23330sin ~ arcsin ~ tan ~ arctan ~ 1~ln(1)~ 1cos ~1~20tan sin ~ tan ~ sin ~236e nx x x x x x x x x x →-+-→---WW W W W W W W W WW WW W W W 当时: 当时:5、求导公式(18个) 幂函数:(1))('c =0 (2)1)(-='μμμx x(3)211x x '⎛⎫=-⎪⎝⎭(4)'指数对数:(5)a a a x xln )(=' (6)x x e e =')((7)a x x a ln 1)(log =' (8)x x 1)(ln ='三角函数:(9)x x cos )(sin =' (10)x x sin )(cos -='(11)x x 2sec )(tan =' (12)x x 2csc )(cot -='(13)x x x tan sec )(sec =' (14)x x x cot csc )(csc -=' 反三角函数:(15)211)(arcsin x x -=' (16)211)(arccos x x --=' (17)211)(arctan x x +=' (18)211)cot (x x arc +-='求导法则: 设(x)(x)1. (—+)’’—+v ’ 2. ()’’(c 为常数)3. ()’’’4. (vu )’=2''u v uv v -6、积分公式(24个) 幂函数:(1)⎰+=C kx kdx (2)⎰-≠++=+)1(11μμμμC x dx x(3)211dx C x x =-+⎰ (4)C =(5)C x dx x +=⎰ln 1指数函数:(6)C a a dx a xx+=⎰ln (7)⎰+=C e dx e x x三角函数:(8) ⎰+-=C x xdx cos sin (9) ⎰+=C x xdx sin cos (10) tan ln cos xdx x C =-+⎰ (11)cot ln sin xdx x C =+⎰ (12)⎰+=C x xdx x sec tan sec (13)⎰+-=C x xdx x csc cot csc (14)⎰⎰+==Cx xdx xdxtan sec cos22(15)⎰⎰+-==Cx xdx dx x cot csc sin 122(16)sec ln sec tan xdx x x C =++⎰ (17)csc ln csc cot xdx x x C =-+⎰(18)Cx dx x +=-⎰arcsin 112(19)arcsinx C a=+ (20)C x dx x +=+⎰arctan 112 (21)2211arctan x dx C a x a a =++⎰(22)Ca x x dx a x +++=+⎰2222ln 1(23)Ca x x dx a x +-+=-⎰2222ln 1 (24)2211ln 2x adx Cx a a x a -=+-+⎰补充:完全平方差:222)(b ab a b a +-=- 完全平方和:222)(b ab a b a ++=+ 平方差:))((22b a b a b a +-=- 立方差:))((2233b ab a b a b a ++-=- 立方和:))((2233b ab a b a b a +-+=+常见的三角函数值奇/偶函的班别方法: 偶函数:f()= f(x) 奇函数:f()= (x)常见的奇函数: , , , , , x 21常见的有界函数: , , , , ,极限运算法则: 若 f(x) g(x),则有:1. [f(x)—+g(x)] f(x)—+ g(x)—+ 2. [f(x).g(x)] f(x).—+ g(x).3.又B 不等于0,则BAx g x f x f ==)(lim )(lim g(x ))(lim两个重要极限:11sin lim 0=→x x x 1)()(sin lim 0)(=−−→−→x g x g x g 推广 2.e x g e x e xx g x xx x x =+−−→−=+=+∞→∞→∞→)(11))(1(lim )1(lim )11(lim 推广;;.无穷小的比较: 设:α0β01. 若αβ0,则称β是比α较高价的无穷小量2. 若αβ ,(c 不等于0),则称β是比α是同阶的无穷小量3. 若αβ1,则称β是比α是等价的无穷小量4. 若αβ∞,则称β是比α较低价的无穷小量抓大头公式:mm m mn n n n b x b a x a a xx xx +⋯⋯++++⋯⋯++----11101110b b a lim={mn m n mn b >∞<=,,0,a 0积分:1.直接积分(带公式)2.换元法:① 简单根式代换a. 方程中含nb ax +,令n bax +b. 方程中含ndcx b ax ++,令ndcx b ax ++c. 方程中含nb ax +和mb ax +,令pb ax +(其中p 为的最小公倍数)② 三角代换:a. 方程中含22a x -,令; t ⊂(-2π,2π)b. 方程中含22a x +,令; t ⊂(-2π,2π)c. 方程中含22x a -,令; t ⊂(0,2π)③ 分部积分∫’ ∫u ’v反(反三角函数)对幂指三,谁在后面,谁为v ’,根据v ’求出v.无穷级数:1. 等比级数:∑∞=1n n aq ,{发散收敛,1q ,1q ≥<2. P 级数:∑∞=11n pn,{发散收敛,1p ,1p ≤>3. 正项级数:nn n u u 10lim +→=ρ ,{判别法,无法判断,改用比较发散收敛1,1,1=><ρρρ4.比较判别法:重找一个 (一般为p 级数),敛散性一致与,∑∑∞=∞=∞→=1n 1n n lim n n v u A nnv u5. 交错级数:)0()1(1>-∑∞=n n n n u u ,莱布尼茨判别法:{0lim 1=∞→+≥u n n n u u ,则级数收敛。

三角函数公式表整理

三角函数公式表整理

三角函数公式表整理一、基本关系公式。

1. 平方关系。

- sin^2α+cos^2α = 1- 1+tan^2α=sec^2α(其中secα=(1)/(cosα))- 1 + cot^2α=csc^2α(其中cscα=(1)/(sinα))2. 商数关系。

- tanα=(sinα)/(cosα)- cotα=(cosα)/(sinα)二、诱导公式。

1. 终边相同的角的三角函数值。

- sin(α + 2kπ)=sinα,k∈ Z- cos(α+ 2kπ)=cosα,k∈ Z- tan(α + 2kπ)=tanα,k∈ Z2. 关于x轴对称的角的三角函数值。

- sin(-α)=-sinα- cos(-α)=cosα- tan(-α)=-tanα3. 关于y轴对称的角的三角函数值。

- sin(π-α)=sinα- cos(π-α)=-cosα- tan(π-α)=-tanα4. 关于原点对称的角的三角函数值。

- sin(π+α)=-sinα- cos(π+α)=-cosα- tan(π+α)=tanα5. 关于直线y = x对称的角的三角函数值(α与(π)/(2)-α) - sin((π)/(2)-α)=cosα- cos((π)/(2)-α)=sinα- tan((π)/(2)-α)=cotα- sin((π)/(2)+α)=cosα- cos((π)/(2)+α)=-sinα- tan((π)/(2)+α)=-cotα三、两角和与差的三角函数公式。

1. 两角和公式。

- sin(A + B)=sin Acos B+cos Asin B- cos(A + B)=cos Acos B-sin Asin B- tan(A + B)=(tan A+tan B)/(1-tan Atan B)2. 两角差公式。

- sin(A - B)=sin Acos B-cos Asin B- cos(A - B)=cos Acos B+sin Asin B- tan(A - B)=(tan A-tan B)/(1 + tan Atan B)四、二倍角公式。

三角函数公式大全

三角函数公式大全

三角函数公式大全一、基本定义及性质1. 正弦函数(sin):sin A = 对边 / 斜边cos A = 临边 / 斜边tan A = 对边 / 临边余切函数(cot):cot A = 临边 / 对边2.零度三角函数:sin 0° = 0, cos 0° = 1, tan 0° = 0, cot 0° = ∞3.π/6弧度三角函数:sin (π/6) = 1/2, cos (π/6) = √3/2, tan (π/6) = 1/√3, cot (π/6) = √34.π/4弧度三角函数:sin (π/4) = √2/2, cos (π/4) = √2/2, tan (π/4) = 1, cot (π/4) = 15.π/3弧度三角函数:sin (π/3) = √3/2, cos (π/3) = 1/2, tan (π/3) = √3, cot (π/3) = 1/√36.相反角关系:sin (-A) = -sin A, cos (-A) = cos A, tan (-A) = -tan A, cot (-A) = -cot A7.90°三角函数:sin 90° = 1, cos 90° = 0, tan 90° = ∞, cot 90° = 08.π/2弧度三角函数:sin (π/2) = 1, cos (π/2) = 0, tan (π/2) = ∞, cot (π/2) = 09.倒数关系:sin (π - A) = sin A, cos (π - A) = -cos A, tan (π - A) = -tan A, cot (π - A) = -cot A10.余角关系:sin (π/2 - A) = cos A, cos (π/2 - A) = sin A, tan (π/2 -A) = cot A, cot (π/2 - A) = tan A二、和差与倍角公式1.和差公式:sin (A ± B) = sin A cos B ± cos A sin Bcos (A ± B) = cos A cos B ∓ sin A sin Btan (A ± B) = (tan A ± tan B) / (1 ∓ tan A tan B)2.二倍角公式:sin 2A = 2 sin A cos Acos 2A = cos^2 A - sin^2 A = 2 cos^2 A - 1 = 1 - 2 sin^2 A tan 2A = (2 tan A) / (1 - tan^2 A)三、万能角公式(三角函数的倒数、减角公式、二倍角公式的推广形式)1.正弦函数倒数公式:csc A = 1 / sin A2.余弦函数倒数公式:sec A = 1 / cos A3.正切函数倒数公式:cot A = 1 / tan A4.减角公式:sin (A - B) = sin A cos B - cos A sin Bcos (A - B) = cos A cos B + sin A sin Btan (A - B) = (tan A - tan B) / (1 + tan A tan B)5.二倍角公式推广形式:sin 2A = 2 sin A cos Acos 2A = cos^2 A - sin^2 A = 2 cos^2 A - 1 = 1 - 2 sin^2 A tan 2A = (2 tan A) / (1 - tan^2 A)四、积和差公式1.积公式:sin A sin B = (1/2)[cos(A-B) - cos(A+B)]cos A cos B = (1/2)[cos(A-B) + cos(A+B)]sin A cos B = (1/2)[sin(A-B) + sin(A+B)]2.差公式:sin A - sin B = 2 cos[(A+B)/2] sin[(A-B)/2]cos A - cos B = -2 sin[(A+B)/2] sin[(A-B)/2]sin A + sin B = 2 sin[(A+B)/2] cos[(A-B)/2]cos A + cos B = 2 cos[(A+B)/2] cos[(A-B)/2]五、其他重要性质1. 正弦函数的周期:2π,即sin (x + 2π) = sin x余弦函数的周期:2π,即cos (x + 2π) = cos x2.正弦函数的奇偶性:sin (-x) = -sin x,即 sin 函数是奇函数sin (π + x) = -sin x,即 sin 函数是周期为2π的周期函数3.余弦函数的奇偶性:cos (-x) = cos x,即 cos 函数是偶函数cos (π + x) = -cos x,即 cos 函数是周期为2π的周期函数4.正弦函数和余弦函数的间接关系:sin^2 x + cos^2 x = 1。

三角函数公式全集合 三角函数公式

三角函数公式全集合 三角函数公式

三角函数公式 . 三角函数 1.诱导公式 sin(-a) = - sin(a) cos(-a) = cos(a) sin(π/2 - a) = cos(a) cos(π/2 - a) = sin(a) sin(π/2 + a) = cos(a) cos(π/2 + a) = - sin(a) sin(π - a) = sin(a) cos(π - a) = - cos(a) sin(π + a) = - sin(a) cos(π+ a) = - cos(a) 2.两角和与差的三角函数 sin(a + b) = sin(a)cos(b) + cos(α)sin(b) cos(a + b) = cos(a)cos(b) - sin(a)sin(b) sin(a - b) = sin(a)cos(b) - cos(a)sin(b) cos(a - b) = cos(a)cos(b) + sin(a)sin(b) tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)] tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)] .. 3.和差化积公式 sin(a) + sin(b) = 2sin[(a + b)/2]cos[(a - b)/2] sin(a) - sin(b) = 2sin[(a - b)/2]cos[(a + b)/2] cos(a) + cos(b) = 2cos[(a + b)/2]cos[(a - b)/2] cos(a) - cos(b) = - 2sin[(a + b)/2]sin[(a - b)/2] 4.积化和差公式 sin(a)sin(b) = - 1/2[cos(a + b) - cos(a - b)] cos(a)cos(b) = 1/2[cos(a + b) + cos(a -b)] sin(a)cos(b) = 1/2[sin(a + b) + sin(a - b)] 5.二倍角公式 sin(2a) = 2sin(a)cos(a) cos 2a = cosa - sina = 2cosa - 1= 1 - 2sina 6.半角公式 sina = (1 - cos 2a)/ 2 222222cosa = (1 + cos 2a)/ 2 tan a = [1 - cos 2a] /sin 2a = sin 2a / [1 + cos 2a ] 7.万能公式 sin(a) = 2tan(a/2) / [1+tan2(a/2)] cos(a) = [1-tan2(a/2)] / [1+tan2(a/2)] tan(a) = 2tan(a/2) / [1-tan2(a/2)] 三角函数公式三角函数是数学中属于初等函数中的超越函数的一类函数。

(完整版)三角函数公式大全

(完整版)三角函数公式大全

三角函数公式一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=,正弦函数:r y =αsin 余弦函数:r x =αcos 正切函数:x y=αtan 余切函数:y x =αcot 正割函数:xr=αsec 余割函数:y r =αcsc 二、同角三角函数的基本关系式六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

”倒数关系:1csc sin =⋅x x ,1sec cos =⋅x x ,1cot tan =⋅x x 。

商数关系:x x x cos sin tan =,xxx sin cos cot =。

平方关系:1cos sin 22=+x x ,x x 22sec tan 1=+,x x 22csc cot 1=+。

积的关系:sinx=tanx·cosx cosx=sinx·cotx tanx=sinx·secxcotx=cosx·cscx secx=tanx·cscx cscx=secx·cotx三、诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)=sinα cos (2kπ+α)=cosαtan (2kπ+α)=tanα cot (2kπ+α)=cotα (其中k ∈Z)公式二:设α为任意角,π+α的三角函数的值与α的三角函数值之间的关系: sin (π+α)=-sinα cos (π+α)=-cosα tan (π+α)=tanα cot (π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin (-α)=-sinα cos (-α)=cosα tan (-α)=-tanα cot (-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)=sinα cos (π-α)=-cosα tan (π-α)=-tanα cot (π-α)=-cotα 公式五:απ-2与α的三角函数值之间的关系:sin (απ-2)=cosα cos (απ-2)=sinα tan (απ-2)=cotα cot (απ-2)=tanα公式六:απ+2与α的三角函数值之间的关系:sin (απ+2)=cosα cos (απ+2)=-sinα tan (απ+2)=-cotα cot (απ+2)=-tanα公式七:απ-23与α的三角函数值之间的关系: sin (απ-23)=-cosα cos (απ-23)=-sinαtan (απ-23)=cotα cot (απ-23)=tanα公式八:απ+23与α的三角函数值之间的关系:sin (απ+23)=-cosα cos (απ+23)=sinαtan (απ+23)=-cotα cot (απ+23)=-tanα公式九:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)=-sinα cos (2π-α)=cosα tan (2π-α)=-tanα cot (2π-α)=-cotα⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。

三角函数公式大全

三角函数公式大全

第一部分三角函数公式·两角和与差的三角函数cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2tan(2α)=2tanα/(1-tan^2α)cot(2α)=(cot^2α-1)/(2cotα)sec(2α)=sec^2α/(1-tan^2α)csc(2α)=1/2*secα·cscα·三倍角公式:sin(3α) = 3sinα-4sin^3α = 4sinα·sin(60°+α)sin(60°-α)cos(3α) = 4cos^3α-3cosα = 4cosα·cos(60°+α)cos(60°-α)tan(3α) = (3tanα-tan^3α)/(1-3tan^2α) = tanαtan(π/3+α)tan(π/3-α) cot(3α)=(cot^3α-3cotα)/(3cot^2α-1)·n倍角公式:sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α-…·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinαcot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα)sec(α/2)=±√((2secα/(secα+1))csc(α/2)=±√((2secα/(secα-1))·辅助角公式:Asinα+Bcosα=√(A^2+B^2)sin(α+φ)(tanφ=B/A)Asinα+Bcosα=√(A^2+B^2)cos(α-φ)(tanφ=A/B)·万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))·降幂公式sin^2α=(1-cos(2α))/2=versin(2α)/2cos^2α=(1+cos(2α))/2=covers(2α)/2tan^2α=(1-cos(2α))/(1+cos(2α))·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) ·其它公式·两角和与差的三角函数cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2tan(2α)=2tanα/(1-tan^2α)cot(2α)=(cot^2α-1)/(2cotα)sec(2α)=sec^2α/(1-tan^2α)csc(2α)=1/2*secα·cscα·三倍角公式:sin(3α) = 3sinα-4sin^3α = 4sinα·sin(60°+α)sin(60°-α)cos(3α) = 4cos^3α-3cosα = 4cosα·cos(60°+α)cos(60°-α)tan(3α) = (3tanα-tan^3α)/(1-3tan^2α) = tanαtan(π/3+α)tan(π/3-α) cot(3α)=(cot^3α-3cotα)/(3cot^2α-1)·n倍角公式:sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α-…·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinαcot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα)sec(α/2)=±√((2secα/(secα+1))csc(α/2)=±√((2secα/(secα-1))·辅助角公式:Asinα+Bcosα=√(A^2+B^2)sin(α+φ)(tanφ=B/A)Asinα+Bcosα=√(A^2+B^2)cos(α-φ)(tanφ=A/B)·万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))·降幂公式sin^2α=(1-cos(2α))/2=versin(2α)/2cos^2α=(1+cos(2α))/2=covers(2α)/2tan^2α=(1-cos(2α))/(1+cos(2α))·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) ·其它公式1+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2csc(a)=1/sin(a) sec(a)=1/cos(a)cos30=sin60sin30=cos60·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=[sin(α/2)+cos(α/2)]^21+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2 csc(a)=1/sin(a) sec(a)=1/cos(a)cos30=sin60sin30=cos60·推导公式ta nα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=[sin(α/2)+cos(α/2)]^2a/sinA=b/sinB=c/sinC=2R正弦定理(Sine theorem)(1)已知三角形的两角与一边,解三角形(2)已知三角形的两边和其中一边所对的角,解三角形(3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系三角形一个锐角的对边与斜边的比叫做这个角的正弦。

三角函数公式全集合

三角函数公式全集合

三角函数公式全集合三角函数是数学中的一门重要内容,它与三角形的形状、角度和边长等相关,是解决各种数学问题的基础。

下面,我将为你介绍三角函数的公式集合。

1. 正弦函数(sin):正弦函数表示一个角的斜边与斜边所在的直角三角形斜边的比值。

其中,角度用弧度制表示。

- 基本公式:sinθ = 对边/斜边- 值域范围:-1 ≤ sinθ ≤ 1- 奇偶性:sin(-θ) = -sinθ- 周期性:sin(θ + 2π) = sinθ- 正弦函数的反函数:arcsin表示sin的反函数2. 余弦函数(cos):余弦函数表示一个角的邻边与斜边所在的直角三角形斜边的比值。

- 基本公式:cosθ = 邻边/斜边- 值域范围:-1 ≤ cosθ ≤ 1- 奇偶性:cos(-θ) = cosθ- 周期性:cos(θ + 2π) = cosθ- 余弦函数的反函数:arccos表示cos的反函数3. 正切函数(tan):正切函数表示一个角的对边与邻边的比值。

- 基本公式:tanθ = 对边/邻边- 值域范围:tanθ ∈ R- 奇偶性:tan(-θ) = -tanθ- 周期性:tan(θ + π) = tanθ- 正切函数的反函数:arctan表示tan的反函数4. 余切函数(cot):余切函数表示一个角的邻边与对边的比值。

- 基本公式:cotθ = 邻边/对边- 值域范围:cotθ ∈ R- 奇偶性:cot(-θ) = -cotθ- 周期性:cot(θ + π) = cotθ- 余切函数的反函数:arccot表示cot的反函数5. 正割函数(sec):正割函数表示一个角的斜边与邻边的比值。

- 基本公式:secθ = 斜边/邻边- 值域范围:secθ ≥ 1 或secθ ≤ -1- 奇偶性:sec(-θ) = secθ- 周期性:sec(θ + 2π) = secθ- 正割函数的反函数:arcsec表示sec的反函数6. 余割函数(csc):余割函数表示一个角的斜边与对边的比值。

三角函数公式大全整理通用7篇

三角函数公式大全整理通用7篇

三角函数公式大全整理通用7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、计划大全、策划方案、报告大全、心得体会、演讲致辞、条据文书、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as work summaries, plan summaries, planning plans, report summaries, insights, speeches, written documents, essay summaries, lesson plan materials, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!三角函数公式大全整理通用7篇三角函数学习技巧,三角函数是函数的一种,各位同学在学校学习的时候总是会觉得难,下面是本店铺辛苦为朋友们带来的7篇《三角函数公式大全整理》,希望可以启发、帮助到大朋友、小朋友们。

三角函数公式大全

三角函数公式大全

常用三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA +tan(A-B) =tanAtanB1tanB tanA +-二倍角公式 tan2A =Atan 12tanA 2-Sin2A=2SinA•CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A半角公式 sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+-tan(2A )=A A sin cos 1-=A A cos 1sin + 和差化积(了解一下) sina+sinb=2sin 2b a +cos 2b a -sina-sinb=2cos 2b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a -cosa-cosb = -2sin 2b a +sin 2b a - tana+tanb=ba b a cos cos )sin(+ 积化和差 sinasinb = -21[cos(a+b)-cos(a-b)]cosacosb = 21[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)] 诱导公式sin(-a) = -sinacos(-a) = cosa sin(2π-a) = cosacos(2π-a) = sina sin(2π+a) = cosacos(2π+a) = -sina sin(π-a) = sinacos(π-a) = -cosasin(π+a) = -sinacos(π+a) = -cosa万能公式(了解一下) sina=2)2(tan 12tan 2a a +cosa=22)2(tan 1)2(tan 1a a +-tana=2)2(tan 12tan 2a a - 其它公式 a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=ab ] a•sin(a)-b•cos(a) =)b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2a )21-sin(a) = (sin 2a -cos 2a )2公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα tan (2kπ+α)= tanαcos (2kπ+α)= cosα cot (2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα tan (π+α)= tanαcos (π+α)= -cosα cot (π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)= -sinα tan (-α)= -tanαcos (-α)= cosα cot (-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα tan (π-α)= -tanαcos (π-α)= -cosα cot (π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα tan (2π-α)= -tanαcos (2π-α)= cosα cot (2π-α)= -cotα公式六:2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosα cos (2π+α)= -sinα sin (2π-α)= cosα cos (2π-α)= sinα sin (23π+α)= -cosα cos (23π+α)= sinα sin (23π-α)= -cosα cos (23π-α)= -sinα。

三角函数计算公式大全

三角函数计算公式大全

三角函数计算公式大全三角函数的公式有很多,掌握三角函数的内部规律及本质也是学好三角函数的关键所在。

接下来给大家分享三角函数计算公式,供参考!三角函数两角和与差计算公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cossinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)三角函数积化和差计算公式sinAsinB=-[cos(A+B)-cos(A-B)]/2cosAcosB=[cos(A+B)+cos(A-B)]/2sinAcosB=[sin(A+B)+sin(A-B)]/2cosAsinB=[sin(A+B)-sin(A-B)]/2三角函数和差化积计算公式sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2]sinA-sinB=2cos[(A+B)/2]sin[(A-B)/2]cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2]cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)三角函数万能公式sin(a)=[2tan(a/2)]/[1+tan2(a/2)]cos(a)=[1-tan2(a/2)]/[1+tan2(a/2)]tan(a)=[2tan(a/2)]/[1-tan2(a/2)]三角函数记忆口诀三角函数是函数,象限符号坐标注。

函数图像单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割;中心记上数字一,连结顶点三角形。

三角函数公式大全

三角函数公式大全

三角函数公式大全几个一定要掌握的角(其中还有120,135,150根据公式自行推出)sin30°=1/2sin45°=√2/2sin60°=√3/2cos30°=√3/2cos45°=√2/2cos60°=1/2tan3 0°=√3/3tan45°=1tan60°=√3cot30°=√3cot45°=1cot60°=√3/3几个可以存有几率托福至角度(这些就是根据下面的公式面世去的)sin15°=(√6-√2)/4sin75°=(√6+√2)/4cos15°=(√6+√2)/4cos75°=(√6-√2)/4(这四个可以根据sin(45°±30°)=sin45°cos30°±cos45°sin30°得出结论)sin18°=(√5-1)/4(这个值在高中竞赛和自招中可以比较有价值,即为黄金分割的一半)正弦定理:在△abc中,a/sina=b/sinb=c/sinc=2r(其中,r为△abc的外接圆的半径。

)余弦定理:在△abc中,cosa=(b^2+c^2-a^2)/2a。

或者转换2a*cosa=b^2+c^2-a^2.两角和差公式sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-cosasinbcos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbtana?tanb1-tanatanbtana?tanbtan(a-b)=1?tanatanbtan(a+b)=倍角公式(如果把2a改成a就是怎么样子的)2tanatan2a=21?tanasin2a=2sina?cosacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a(重点)半角公式(实际上就是二倍角公式反解出来的)sin(a1?2)=cosa2cos(a12)=?cosa2tan(a1?cosa2)=1?cosacot(a1?cos2)=a1?cosatan(a2)=1?cosasina=sina1?cosa三角函数的诱导公式(六公式)公式一:(周期性)sin(α+k*2π)=sinαcos(α+k*2π)=cosα公式二:(可根据图像来理解)sin(π+α)=-sinαcos(π+α)=-cosα公式三:(奇偶性,看看图像去认知)sin(-α)=-sinαcos(-α)=cosα公式四:(背公式,和差公式)sin(π-α)=sinαcos(π-α)=-cosα公式五:(其实不必记,只要忘记和差公式进行就不好了)sin(π/2-α)=cosαcos(π/2-α)=sinα由于π/2+α=π-(π/2-α),由公式四和公式五只须公式六:(还是和差公式,融合图像来看)tan(α+k*2π)=tanαtan(π+α)=tanαtan(-α)=-tanαtan(π-α)=-tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-co sαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档