广西壮族自治区南宁市广西第八中学2020届九年级下学期数学中考一模试卷及参考答案
广西南宁市2020年中考数学模拟考试试卷(二)
16.【解答】解:连接 、 ,
由题意得. ,
由勾股定理得, ,
,
∴ ,
∴ ,
则图中阴影部分的面积=扇形 的面积 的面积-扇形 的面积
,故答案为: .
17.【解答】解:∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,
∴正方形和等边三角形的和 ;
∵第2个图由11个正方形和10个等边三角形组成,
B、本题中为了了解某校1200名学生的视力情况,随机抽取该校120名学生进行调查就
具有代表性.故选B.
6.【解答】解:A、 ,错误;
B、 ,正确;
C、 ,错误;
D、 ,错误;
故选:B.
7.【解答】解:画树状图得:
∵共有12种等可能的结果,两次摸出的小球标号之和等于6的有2种情况,
∴两次摸出的小球标号之和等于6的概率 .
A. B. C. D.
4.如图,直线 、 被直线 、 所截,若 , ,则 的度数为()
A. B. C. D.
5.下列的调查中,选取的样本具有代表性的有()
A.为了解某地区居民的防火意识,对该地区的初中生进行调查
B.为了解某校1200名学生的视力情况,随机抽取该校120名学生进行调查
C.为了解某商场的平均日营业额,选在周末进行调查
D.为了解全校学生课外小组的活动情况,对该校的男生进行调查
6.下列运算正确的是()
A. B. C. D.
7.一个不透明的口袋中装有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于6的概率为()
A. B. C. D.
8.如图,在 中, , 为 边上的高,若点 关于 所在直线的对称点 恰好为 的中点,则 的度数是()
广西南宁市2020年中考数学一模试卷(含解析)
2020 年广西南宁市中考数学一模试卷( 04 月)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上,在试卷上作答无效,选择题需使用1.2019的相反数是(2.如图是由 4 个相同的小立方体搭成的几何体,则它的主视图是(全长约 55000 米. 55000 这个数用科学记数法可表示为(A . 5.5×103 B .55×103 C . 0.55 ×105 D . 5.5 ×1044.如图是邻居张大爷去公园锻炼及原路返回时离家的距离 图象,根据图象信息,下列说法正确的是( )绝密 ★ 启用前 、选择题(本大题共 12 小题,每小题 3分,共 36 分) 2B 铅笔填涂 A . B . C .|2019| D .﹣20192018 年 10 月 24 日正式开通营运, 它是迄今为止世界上最长的跨海大桥,y (千米)与时间 t (分钟)之间的函数B .张大爷在公园锻炼了 40 分钟C .张大爷去时走上坡路,回家时走下坡路D .张大爷去时速度比回家时的速度慢 5.下列事件为必然事件的是( )A .五边形的外角和是 360 °B .打开电视机,它正在播广告C .明天太阳从西方升起列运算中,正确的是(若抛物线 y= ﹣ x 2向右平移 3个单位,再向下平移 2 个单位,所得的抛物线的解析式为(若一个圆锥的底面圆的半径为 1,母线长为 3,则该圆锥侧面展开图的圆心角是(10.如图,⊙ O 的直径 AB=20cm ,CD 是⊙O 的弦, AB ⊥CD ,垂足为 E ,OE :EB=3:2,则 CD 的长是( )D .抛掷一枚硬币, 定正面朝上A . 3a+2b=5abB .2a 3+3a 2=5a 5C .3a 2b ﹣ 3ba 2=0D .5a 2﹣ 4a 2=17.的解集在数轴上表示为(C . 8.A .y=﹣( x+3) 2+2 B . y= ﹣( x ﹣3)2+2 C . y =﹣( x ﹣3)2﹣ 2 D . y= ﹣( x+3 ) 2﹣ 29.A .90° B .120°C .150 °D . 180° 不等式组 A. B . D .11.如图,△OAB 与△OCD 是以点 O 为位似中心的位似图形, 相似比为 1:2,∠ OCD=90°,CO=CD .若D .(2,1)12.如图, Rt △ABC 的边 BC 在 x 轴正半轴上,点 D 为 AC 的中点, DB 的延长线交 y 轴负半轴于点 E ,反比例函数 y= ( x >0)的图象经过点 A ,若S △BEC =6,则 k 的值为(D .12二、填空题(本大题共 6 小题,每小题 3分,共 18分)13.在 2,1,﹣4,﹣1,0 这五个数中,最小的数是. 14.要使分式 有意义,则字母 x 的取值范围是 .15.分解因式: x 2﹣ 9= .16.如图,一个含有 30°角的直角三角形的两个顶点放在一个矩形的对边上,若 ∠1=20 °,则 ∠ 2= .C . 15cmD . 16cm C .10 B . 14c m 1)17.如图,在数学活动课中,小敏为了测量校园内旗杆AB 的高度.站在教学楼的 C 处测得旗杆底端 B 的俯角为45°,测得旗杆顶端 A 的仰角为30°.若旗杆与教学楼的距离为9m ,则旗杆AB 的高度是m (结果保留根号)行最后一个数是2017 .三、解答题(本大题共8 小题,共66 分)19.计算:(﹣2020)0+|﹣2|﹣4ocs30 °+(﹣)﹣2.20.先化简,再求值:÷(1+ ),其中x=﹣2.21.如图,方格纸中的每个小方格都是边长为 1 个单位的正方形,△ ABC 的顶点均在格点上.建立平面直角坐标系后,点 A 的坐标为(﹣4,1),点 B 的坐标为(﹣1,1).(1)请画出△ABC 关于y 轴对称的△A1B1C1.(2)将△ABC 绕点O 逆时针旋转90°后得到△A2B2C2,试在图中画出图形△A2B2C2,并计算点 C 旋转到点C2 所经过的路径长.(结果保留π)22.2019 年南宁市教育局组织全市中小学时候参加安全知识网络竞赛,在安全知识竞赛结束后,赛后发现所有参赛学生会的成绩都高于50 分.为了了解本次大赛的成绩分布情况,某校随机抽取了其中200 名学生的成绩(成绩x 取整数,总分为100 分)作为样本进行统计分析,得到如下不完整的统计图表,请根据图标中的信息解答下列各题:成绩(分)频数频数50<x≤6010b60<x≤70200.1070<x≤80300.1580<x≤90a0.3090< x≤100800.401)频数分布表中a=,b=;本次比赛成绩的中位数会落在分数段;2)请补全频数分布直方图;(3)该校安全知识竞赛成绩满分共有4人,其中男生2名,女生2名,为了激励学生增强安全意识,现需要从这 4 人中随机抽取 2 人介绍学习经验,请用“列表法”或“画树状图”,求恰好选到一男一女的概率.23.如图,已知Rt△ABC 中,∠ACB=90°,以BC 为直径作⊙O交AB 于点D,E是AC 上一点,且 DE=CE ,连接 OE .(1)请判断 DE 与⊙O 的位置关系,并证明你的结论;(2)求证: E 为 AC 的中点.其中芒果干与桂圆干是大家非常喜爱的两种特产,某旅行经销店欲购进一批芒果干与桂圆干,已知购买 1袋芒果干和 1袋桂圆干共需 75元,3 袋芒果干和 2 袋桂圆干共 需 205 元.1)求芒果干与桂圆干的进货单价;2)若芒果干与桂圆干的售价如表:该旅游经销店打算用不超过 干共 100 袋,如何进货能够使两种特产全部售完后获得最大利润,最大利润是多少?(不考虑其他 因素) 商品售价(元 芒果干65 桂圆干 28ABCD ,P 为直线 CD 上的一点, 以 PC 为边作正方形 PCNM ,使点 N 在直线BC上,DC 上,当 P 为 DC 的中点时,判断△PMD 的形状,并说明理由;和点 B (1, 0),交 y 轴于点 C .1)求抛物线的函数表达式及抛物线的对称轴;2700 元的货款购进芒果干与桂圆 25.已知正方形 连接 MB 、 M D .1) 如图 1,若点 P 在线段 DC 的延长线上,求证: MB=MD ;时,求 ∠ DMB 的度数.2,若点 如图 P 在线段 2) 26.抛物线 y=ax 2+bx+3 交 x 轴于点 A (﹣3, 0)(2)如图a,点P 是抛物线上第二象限内的一动点,若以AP,AO 为邻边的平行四边形第四个顶点恰好落在抛物线上,求出此时点P 的坐标;3)如图b,点 D 是抛物线上第二象限内的一动点,过点O,D 的直线y=kx 交AC 于点E,若S△ CDE:参考答案与试题解析分析】 主视图有 2 列,每列小正方形数目分别为 1, 2.故选: B .【点评】 此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.3.举世瞩目的港珠澳大桥于 2018 年 10 月 24 日正式开通营运,它是迄今为止世界上最长的跨海 大桥,全长约 55000 米. 55000 这个数用科学记数法可表示为() 、选择题(本大题共 12 小题,每小题 3分,共 36 分)1.2019 的相反数是( )A .B .﹣ 【解答】 解: 2019 的相反数是﹣2019,C .|2019|D .﹣ 2019 故选: D .2.如图是由 4 个相同的小立方体搭成的几何体,则它的主视图是(C .解答】 解:如图所示:它的主视图是:A . 5.5 ×103B .55×103C . 0.55 ×105D . 5.5 ×104【分析】科学记数法的表示形式为a×10 n的形式,其中1≤a||<10,n 为整数.确定n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10 时,n 是正数;当原数的绝对值小于1时,n 是负数.【解答】解:55000 这个数用科学记数法可表示为 5.5 ×104,故选: D .【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤a|| <10,n为整数,表示时关键要正确确定a的值以及n 的值.y (千米)与时间t(分钟)之间的函数B.张大爷在公园锻炼了40 分钟4.如图是邻居张大爷去公园锻炼及原路返回时离家的距离C.张大爷去时走上坡路,回家时走下坡路D.张大爷去时速度比回家时的速度慢【考点】E6:函数的图象.【分析】根据图象可以得到张大爷去时所用的时间和回家所用的时间,在公园锻炼了多少分钟,也可以求出去时的速度和回家的速度,根据可以图象判断去时是否走上坡路,回家时是否走下坡路.【解答】解:如图,A、张大爷去时所用的时间为15 分钟,回家所用的时间为 5 分钟,故选项错误;B、张大爷在公园锻炼了40﹣15=25 分钟,故选项错误;C、据 A 张大爷去时走下坡路,回家时走上坡路,故选项错误.D、张大爷去时用了15 分钟,回家时候用了 5 分钟,因此去时的速度比回家时的速度慢,故选项正确.故选 D .5.下列事件为必然事件的是(A.五边形的外角和是360 °B.打开电视机,它正在播广告C.明天太阳从西方升起D.抛掷一枚硬币,一定正面朝上【考点】X1 :随机事件.【分析】分别利用必然事件以及不可能事件、随机事件的定义分析得出答案.【解答】解: A 、五边形的外角和是360°,是必然事件,符合题意;B、打开电视机,它正在播广告,是随机事件,不合题意;C、明天太阳从西方升起,是不可能事件,不合题意;D、抛掷一枚硬币,一定正面朝上,是随机事件,不合题意;故选: A .6.下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5 C.3a2b﹣3ba2=0 D.5a2﹣4a2=1【考点】35:合并同类项.【分析】先根据同类项的概念进行判断是否是同类项,然后根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变计算进行判断.【解答】解:A、3a和2b不是同类项,不能合并, A 错误;B、2a3和3a2不是同类项,不能合并, B 错误;C、3a2b﹣3ba2=0,C 正确;D、5a2﹣4a2=a2,D 错误,故选:C.考点】C4:在数轴上表示不等式的解集分析】根据在数轴上表示不等式解集的方法进行解答即可.解答】解:原不等式组的解集为1< x≤2,1 处是空心圆点且折线向右; 2 处是实心圆点且折线向左,故选: B .8.若抛物线y= ﹣x 2向右平移3个单位,再向下平移 2 个单位,所得的抛物线的解析式为(A.y=﹣(x+3)2+2 B.y=﹣(x﹣3)2+2 C.y=﹣(x﹣3)2﹣2 D.y=﹣(x+3)2﹣ 2 【考点】H6:二次函数图象与几何变换.【分析】根据平移规律,可得答案.【解答】解:由题意,得y=﹣(x﹣3)2﹣2,故选:C.9.若一个圆锥的底面圆的半径为1,母线长为3,则该圆锥侧面展开图的圆心角是()A.90° B.120°C.150 °D.180°【考点】MP :圆锥的计算.【分析】根据圆锥的底面周长等于圆锥的侧面展开图的弧长,首先求得展开图的弧长,然后根据弧长公式即可求解.【解答】解:圆锥侧面展开图的弧长是:2π× 1=2(πcm),设圆心角的度数是n 度.则=2π,解得:n=120.故选 B .10.如图,⊙O 的直径AB=20cm ,CD 是⊙O 的弦,AB ⊥ CD ,垂足为E,OE:EB=3:2,考点】M2:垂径定理;KQ :勾股定理.则CD15cm D.16cm分析】根据垂径定理与勾股定理即可求出答案.【解答】解:连接OC,设OE=3x,EB=2x ,∴ OB=OC=5x ,∵ AB=20∴ 10x=20∴ x=2 ,∴ 由勾股定理可知:CE=4x=8 ,∴ CD=2CE=16故选(D)11.如图,△OAB 与△OCD 是以点O 为位似中心的位似图形,相似比为1:2,∠ OCD=90°,CO=CD .若B(1,0),则点 C 的坐标为()A.(1,2) B .(1,1)C.(,)D.(2,1)【考点】SC:位似变换;D5 :坐标与图形性质.【分析】首先利用等腰直角三角形的性质得出 A 点坐标,再利用位似是特殊的相似,若两个图形△ABC 和△A′ B′以C原′点为位似中心,相似比是k,△ABC 上一点的坐标是(x,y),则在△ A′ B′ C′ 中,它的对应点的坐标是(kx ,ky )或(﹣kx ,ky),进而求出即可.【解答】解:∵∠ OAB= ∠OCD=9°0 ,AO=AB ,CO=CD ,等腰Rt△OAB 与等腰Rt△OCD 是位似图形,点 B 的坐标为(1,0),∵ 等腰 Rt △ OAB 与等腰 Rt △OCD 是位似图形, O 为位似中心,相似比为 1:2,∴ 点 C 的坐标为:(1, 1).故选: B .12.如图, Rt △ABC 的边 BC 在 x 轴正半轴上,点 D 为 AC 的中点, 点 E ,反比例函数 y= (x >0)的图象经过点 A ,若 S △BEC =6,则 kG5:反比例函数系数 k 的几何意义.再由函数所在的象限确定 k 的值.解答】 解: ∵BD 为 Rt △ABC 的斜边 AC 上的中线, ∴ BD=DC ,∠DBC=∠ACB , 又∵∠ DBC= ∠ EBO , ∴∠ EBO= ∠ ACB , 又∵∠ BOE=∠CBA=90° , ∴△ BOE ∽△ CBA , 又 ∵S △ BEC =6 ,∴ BC?EO=6 ,即 BC × OE=12=B ×O AB=|k| .又∵反比例函数图象在第一象限,, ,即 BC ×OE=B ×O AB . DB 的延长线交 y 轴负半轴于的值为( )分析】 先根据题意证明 △BOE ∽△ CBA ,根据相似比及面积公式得出 BO × AB 的值即为 |k|的值, k >0.考点】D .12∴k 等于12.故选 D .二、填空题(本大题共 6 小题,每小题3分,共18分)13.在2,1,﹣4,﹣1,0 这五个数中,最小的数是﹣4 .【考点】18:有理数大小比较.【分析】先根据各数的符号找出其中的负数,再根据其绝对值的大小,找出其中最小的数.【解答】解:∵正数大于负数和0,∴可排除2、1和0,又∵|﹣4|>|﹣1|,∴﹣4<﹣1∴ 最小的数是﹣ 4 .故答案为:﹣4.14.要使分式有意义,则字母x 的取值范围是x≠﹣ 3 .【考点】62:分式有意义的条件.【分析】根据分母不能为零,可得答案.【解答】解:由题意,得x+3 ≠0,解得x≠=﹣3,故答案为:x≠﹣3.15.分解因式:x2﹣9= (x+3 )(x﹣3).【考点】54:因式分解﹣运用公式法.【分析】本题中两个平方项的符号相反,直接运用平方差公式分解因式.【解答】解:x2﹣9=(x+3)(x﹣3).故答案(x+3)(x﹣3).16.如图,一个含有30 °角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=20°,则∠2=110【分析】将矩形各顶点标上字母,根据平行线的性质可得∠2=∠DEG= ∠1+∠FEG,从而可得出答案.【解答】解:如图,∵四边形ABCD 是矩形,∴AD ∥BC,∴∠ 2=∠DEG= ∠1+∠FEG=11°0 .故答案为:110°.17.如图,在数学活动课中,小敏为了测量校园内旗杆AB 的高度.站在教学楼的 C 处测得旗杆底端 B 的俯角为45°,测得旗杆顶端 A 的仰角为30°.若旗杆与教学楼的距离为9m ,则旗杆AB 的高度是 3 +9 m(结果保留根号)【考点】TA :解直角三角形的应用﹣仰角俯角问题.【分析】根据在Rt△ ACD 中,tan∠ACD= ,求出AD 的值,再根据在Rt△BCD 中,tan∠ BCD= ,求出BD 的值,最后根据AB=AD+BD ,即可求出答案.【解答】解:在Rt△ ACD 中,∵ tan∠ACD= ,∴ tan30 °= ,∴=,∴ AD=3 m ,在Rt△ BCD 中,∵∠ BCD=4°5 ,∴ BD=CD=9m ,∴ AB=AD+BD=3 +9 (m ).故答案为: 3 +9.18.如图,按此规律,第673 行最后一个数是2017.【考点】37:规律型:数字的变化类.【分析】每一行的最后一个数字分别是1,4,7,10⋯,易得第n 行的最后一个数字为1+3(n﹣1)=3n﹣2,由此建立方程求得最后一个数是2017 在哪一行.【解答】解:∵每一行的最后一个数分别是1,4,7,10⋯,∴第n 行的最后一个数字为1+3(n﹣1)=3n﹣2,∴3n﹣2=2017解得n=673 .因此第673 行最后一个数是2017.故答案为:673.三、解答题(本大题共8 小题,共66 分)19.计算:(﹣2020)0+|﹣2|﹣4ocs30 °+(﹣)﹣2.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】直接利用零指数幂的性质、负指数幂的性质、特殊角的三角函数值、绝对值的性质分别化简,然后根据实数的运算法则求得计算结果.【解答】解:(﹣2017)0+|﹣2|﹣4ocs30 +°(﹣)﹣2=12﹣ 2 .20.先化简,再求值: ÷(1+ ),其中 x=﹣ 2.考点】 6D :分式的化简求值.21.如图,方格纸中的每个小方格都是边长为 1 个单位的正方形, △ ABC 的顶点均在格点上.建立 平面直角坐标系后,点 A 的坐标为(﹣ 4, 1),点 B 的坐标为(﹣ 1, 1). 1)请画出 △ABC 关于 y 轴对称的 △A 1B 1C 1.2)将△ ABC 绕点 O 逆时针旋转 90°后得到△A 2B 2C 2,试在图中画出图形 △A 2B 2C 2,并计算点 C考点】 R8:作图﹣旋转变换; MN :弧长的计算; P7:作图﹣轴对称变换.=1+2﹣4 × +9分析】先根据分式的混合运算顺序和法则化简原式, 再将 x 代入求值即可得.÷(1解答】 解:原式 = ++====)旋转到点 C 2 所经过的路径长. (结果保留π)【分析】(1)根据轴对称的性质,找出点 A 、B 、C 关于 y 轴的对称点 A 1、B 1、C 1 的位置,然后顺 次连接即可;(2)分别找出点 A 、B 、C 绕点 O 逆时针旋转 90°的对应点 A 2、B 2、C 2的位置, 然后顺次连接即可, 根据点 C 所经过的路线是半径为 ,圆心角是 90°的扇形,然后根据弧长公式进行计算即可求解. 解答】 解:( 1)如图所示, △A 1B 1C 1 即为所求;( 2)如图所示, △A 2B 2C 2 即为所求;∵ OC= = ,∴点 C 旋转到点 C 2 所经过的路径长为: l= = .22.2019 年南宁市教育局组织全市中小学时候参加安全知识网络竞赛,在安全知识竞赛结束后,赛 后发现所有参赛学生会的成绩都高于 50 分.为了了解本次大赛的成绩分布情况, 某校随机抽取了其 中 200 名学生的成绩(成绩 x 取整数,总分为 100 分)作为样本进行统计分析,得到如下不完整的 统计图表,请根据图标中的信息解答下列各题:成绩(分)频数频数 50<x ≤ 6010 b 60<x ≤ 7020 0.10 70< x ≤8030 0.15 80<x ≤ 90a 0.30 90< x ≤10080 0.40 1)频数分布表中 a= 60 , b= 0.05 ;本次比赛成绩的中位数会落在 80≤x < 90 分数段;(2)请补全频数分布直方图;(3)该校安全知识竞赛成绩满分共有4人,其中男生 2 名,女生2名,为了激励学生增强安全意识,现需要从这 4 人中随机抽取 2 人介绍学习经验,请用“列表法”或“画树状图”,求恰好选到一男一女的概率.【分析】(1)根据第二组的频数是20,频率是0.10,求得数据总数,再用数据总数乘以第四组频率可得 a 的值,用第三组频数除以数据总数可得 b 的值;根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(2)根据(1)的计算结果即可补全频数分布直方图;(3)画树状图得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率.【解答】解:(1)样本容量是:20÷0.10=200,a=200 ×0.30=60,b=10 ÷200=0.05;因为一共有200 个数据,按照从小到大的顺序排列后,第100 个与第101 个数据都落在第四个分数段,所以这次比赛成绩的中位数会落在80≤x<90 分数段;W4:中V8 :频数(率)分布直方图;位数.2)补全频数分布直方图,如下:3)画树状图如下:所有等可能的情况有12种,其中一男一女有8 种,∴ 恰好选到一男一女的概率= = .故答案为60,0.05;80≤x<90.23.如图,已知Rt△ABC 中,∠ACB=90°,以BC 为直径作⊙O交AB 于点D,E是AC 上一点,且DE=CE ,连接OE.(1)请判断DE 与⊙O 的位置关系,并证明你的结论;(2)求证:E为AC 的中点.【考点】MB :直线与圆的位置关系;KD :全等三角形的判定与性质;S9:相似三角形的判定与性质.【分析】(1)连接OD,根据全等三角形的性质得到∠ ODE= ∠ ACB=90° ,于是得到结论;(2)根据全等三角形的性质得到∠DOE= ∠COE= COD ,根据圆周角定理得到∠ B= COD,等量代换得到∠COE=∠B,推出OE∥AB ,根据平行线分线段成比例定理得到,于是得到结论.【解答】解:(1)DE 与⊙O 相切,理由:连接OD ,在△ODE 与△ OCE 中,,∴△ODE ≌△ OCE ,∴∠ ODE= ∠ACB=90° ,∴OD ⊥DE ,∴ DE 与⊙ O 相切;( 2)证明:由( 1)证得 △ ODE ≌△ OCE ,∴∠ DOE= ∠COE=COD ,∴∠ B= COD , ∴∠ COE= ∠B , ∴OE ∥AB ,∴,∴,∵ OC=OB ,=124.南宁盛产各种特色食品,其中芒果干与桂圆干是大家非常喜爱的两种特产,某旅行经销店欲购 进一批芒果干与桂圆干,已知购买1袋芒果干和 1袋桂圆干共需 75元,3 袋芒果干和 2 袋桂圆干共需 205 元. (1)求芒果干与桂圆干的进货单价;( 2)若芒果干与桂圆干的售价如表:该旅游经销店打算用不超过 2700 元的货款购进芒果干与桂圆 干共 100 袋,如何进货能够使两种特产全部售完后获得最大利润,最大利润是多少?(不考虑其他 因素)商品售价(元 /袋)芒果干 65桂圆干 考点】 FH :一次函数的应用.28∴CE=AE ,【分析】(1)设芒果干的进货单价为 x 元,桂圆干的进货单价为 y 元,根据购买 1 袋芒果干和 1 袋 桂圆干共需 75元, 3袋芒果干和 2 袋桂圆干共需 205元,建立方程组求出其解即可;( 2)设该旅游经销店购进芒果干 m 袋,获得的利润为 W 元,根据进价不超过 2700 元建立不等式 组求出 m 的取值范围;再根据利润 =m 袋芒果干的利润 +袋桂圆干的利润建立 W 与 m 之间的关系式, 由一次函数的性质求出其解即可.解答】 解:( 1)设芒果干的进货单价为 x 元,桂圆干的进货单价为 由题意解得:答:芒果干的进货单价为 55 元,桂圆干的进货单价为 (2)设该旅游经销店购进芒果干 m 袋,获得的利润为 W 元,由题意,得 55m+20≤2700 ,解得: m ≤20.W=(65﹣55) m+(28﹣20)=2m+800.∴k=2>0,∴W 随 m 的增大而增大,∴当 m=20 时,W 最大=2×20+800=840,此时 100﹣m=80.答:购进芒果干 20袋,桂圆干 80袋,全部售完后获得最大利润,最大利润是 840 元.25.已知正方形 ABCD ,P 为直线 CD 上的一点, 以 PC 为边作正方形 PCNM ,使点 N 在直线 BC 上, 连接 MB 、MD .(1)如图 1,若点 P 在线段 DC 的延长线上,求证: MB=MD ;(2)如图 2,若点 P 在线段 DC 上,当 P 为 DC 的中点时,判断 △PMD 的形状,并说明理由; (3)如图 3,若点 P 在线段 DC 上,连接 BD ,当 MP 平分 ∠DMB 时,求 ∠DMB 的度数.y 元,20 元;【考点】LO :四边形综合题.【分析】(1)根据正方形的性质证明△BNM ≌△ DPM ,可得MB=MD ;(2)根据小正方形的性质得:∠DPM= ∠CPM=9°0 ,由中点结合得:PD=PM ,所以△PMD 是等腰直角三角形;(3)如图3,作辅助线,构建等腰直角三角形EFD,设CD=a,PC=b,则PD=a﹣b,由PM ∥BC,得△ PME ∽△ CBE ,所以,代入可计算得:a= b,根据正方形对角线平分直角得:∠CDB=4°5 ,得△ DEF 是等腰直角三角形,求EF和CE 的长,得EF=EC,根据角平分线的逆定理得:BE 平分∠DBC,最后由平行线和已知的角平分线可得结论.【解答】证明:(1)如图1,∵四边形ABCD 和四边形CPMN 是正方形,∴ BC=DC ,CN=CP ,∠ P=∠ N=90°,∴ BC+CN=DC+PC ,即BN=DP ,∴△BNM ≌△ DPM,∴ MB=MD ;(2)△ PMD 是等腰直角三角形;理由如下:如图2,∵P是CD 的中点,∴PD=PC ,∵ 四边形CPMN 是正方形,∴PM=PC ,∠DPM= ∠ CPM=9°0 ,∴ PD=PM ,∴△ PMD 是等腰直角三角形;3)如图3,设PC与BM 相交于点E,过点E作EF⊥ BD ,垂足为F,设CD=a,PC=b,则PD=a﹣b,∵MP 平分∠DME ,MP⊥DE,∴PE=PD=a ﹣b,CE=a﹣(2a﹣2b)=2b﹣a,∵PM∥BC,∴△PME ∽△ CBE ,∴ ,即,∴ a= b ,∵∠ CDB=4°5 ,∴ EF=DE?sin45°= ?2(a﹣b)= (b﹣b)=2b﹣b,∵ CE=2b﹣a=2b﹣b,∴EF=EC,EF⊥BD ,EC⊥BC,∴BE 平分∠ DBC,∴∠ EBF= ∠EBC= ∠ DBC=22.5°,∵PM∥BC,∴∠ PME= ∠EBC=22.5°,∴∠ DMB=4°5 .26.抛物线y=ax2+bx+3 交x轴于点A(﹣3,0)和点B(1,0),交y 轴于点C.(1)求抛物线的函数表达式及抛物线的对称轴;(2)如图a,点P 是抛物线上第二象限内的一动点,若以AP,AO 为邻边的平行四边形第四个顶点恰好落在抛物线上,求出此时点P 的坐标;(3)如图b,点D 是抛物线上第二象限内的一动点,过点O,D的直线y=kx 交AC 于点E,若S△CDE:S△ CEO=2 :3,求k 的值.【分析】(1)把点 A 、B 的坐标分别代入函数解析式,列出关于系数的方程组,通过解方程组求得 它们的值即可;利用抛物线对称轴方程解答求得抛物线的对称轴方程; (2)根据平行四边形的对边平行且相等的性质得到: PQ ∥ AO ,PQ=AO=3 ,由抛物线的对称性质推 知点 P 的横坐标,然后根据二次函数图象上点的坐标特征求得点 P 的纵坐标即可; (3)欲求 k 的值,只需推知点 D 的坐标即可; 利用抛物线的解析式 y=x 2﹣ 2x+3 中求得 C (0,3).由待定系数法解得直线 AC 的解析式为: y=x+3 ,如图 b ,过点 D 作 DQ ⊥AB 于点 Q ,交 AC 于点 F ,点 F (x ,3x ),点 D 的坐标为( x ,﹣x 2﹣2x+3),利用两点间的距离公式不难求得 x 的值,则易得 点 D 的坐标.解答】 解:( 1)把 A (﹣3,0)和 B (1,0)代入 y=ax 2+bx+3 ,得故抛物线的解析式是: y=﹣ x 2﹣ 2x+3,( 2)如图 a ,∵以 AP 、AO 为邻边的平行四边形的第四个顶点 Q 恰好在抛物线上, ∴PQ ∥AO ,PQ=AO=3 . ∵点 P 、Q 都在抛物线上,∴P 、Q 关于直线 x=﹣ 1对称,则 DF ∥OC ,构建相似三角形: △DEF ∽△ OEC ,结合该相似三角形的对应边成比例推知 DF=2 .设对称轴 x= ﹣ ==﹣1;考点】 HF :二次函数综合题.∴P 点的横坐标是﹣ .(3)在抛物线 y=x 2﹣ 2x+3 中,当 x=0 时, y=3,则 C (0,3). 设直线 AC 的解析式为 y=kx+b ( k ≠0), 将 A (﹣ 3,0)、C ( 0,3)代入,得,','解得 ,故直线 AC 的解析式为: y=x+3 ,如图 b ,过点 D 作 DQ ⊥AB 于点 Q ,交 AC 于点 F ,则 DF ∥ OC .∵ S △ CDE : S △ CEO =2 :3,∴DE :OE=2:3.∵DF ∥OC ,∴△ DEF ∽△ OEC ,又 DE :OE=2 : 3,OC=3 ,∴DF=2.设点 F ( x ,3x ),点 D 的坐标为( x ,﹣ x 2﹣2x+3), DF= (﹣ x 2 ﹣2x+3 )﹣( x+3)=﹣x 2﹣3x .∴﹣x 2﹣ 3x=2,解得 x 1=﹣ 1,x 2=﹣2,当 x=﹣1 时, y=4.当 x=﹣2 时, y=3.即点 D 的坐标是(﹣ 1, 4)或(﹣ 2,3). 又点 D 在直线 y=kx 上,∴当 x=﹣ 时, y=﹣( )2﹣2×(﹣)+3= ∴点 P 的坐标是(﹣∴ k=﹣ 4 或k=﹣.。
2020年广西南宁八中中考数学一模试题(附带详细解析)
2020年广西南宁八中中考数学一模试题
考试范围:xxx;考试时间:100分钟;命题人:xxx
题号
一
二
三
总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一、单选题
1.下列各数中,是无理数的是( )
23.如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.
(1)求证:四边形CEFG是菱形;
(2)若AB=6,AD=10,求四边形CEFG的面积.
24.南岸区正全力争创全国卫生城区和全国文明城区(简称“两城同创”).某街道积极响应“两城同创”活动,投入一定资金绿化一块闲置空地,购买了甲、乙两种树木共72棵,甲种树木单价是乙种树木单价的 ,且乙种树木每棵80元,共用去资金6160元.
A.16B.20C.32D.40
12.如图,AB为 的直径,BC为 的切线,弦AD∥OC,直线CD交的BA延长线于点E,连接BD.下列结论:①CD)
A.4个B.3个C.2个D.1个
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
16.一个不透明的口袋中有四个完全相同的小球,其上分别标有数字1,2,4,8.随机摸取一个小球后不放回,再随机摸取一个小球,则两次取出的小球上数字之积等于8的概率是_____.
17.如图,为测量旗杆AB的高度,在教学楼一楼点C处测得旗杆顶部的仰角为60 ,在四楼点处测得旗杆顶部的仰角为30 ,点C与点B在同一水平线上.已CD=9.6m知,则旗杆AB的高度为_____m.
南宁市2020年中考数学模拟试题及答案
南宁市2020年中考数学模拟试题及答案注意事项:1.考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。
2.考生必须把答案写在答题卡上,在试卷上答题一律无效。
考试结束后,本试卷和答题卡一并交回。
3.本试卷满分120分,考试时间120分钟。
一、选择题(本题共12小题。
每小题3分,共36分。
在每小题给出的四个选项中,只有一项是正确的。
)1.下列计算正确的是()A.x2﹣3x2=﹣2x4B.(﹣3x2)2=6x2C.x2y•2x3=2x6y D.6x3y2÷(3x)=2x2y22.据统计,截止2019年2月,我市实际居住人口约4210000人,4210000这个数用科学记数法表示为()A.42.1×105B.4.21×105C.4.21×106D.4.21×1073.如右图是某个几何体的侧面展开图,则该几何体是()A.三棱锥B.四棱锥C.三棱柱D.四棱柱4.一元二次方程2x2﹣2x﹣1=0的较大实数根在下列哪两个相邻的整数之间()A.4,3 B.3,2 C.2,1 D.1,05.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A.20 B.300 C.500 D.8006.下列图形中既是轴对称图形,又是中心对称图形的是()A. B.C. D.7.关于一次函数y=5x﹣3的描述,下列说法正确的是()A.图象经过第一、二、三象限B.向下平移3个单位长度,可得到y=5xC.函数的图象与x轴的交点坐标是(0,﹣3)D.图象经过点(1,2)8.如右图,AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG⊥FG于点G,若∠CFN=110°,则∠BEG=()A.20°B.25°C.35°D.40°9.下列计算正确的有()个。
①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6 ③(x﹣2)2=x2﹣4④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.310.小李双休日爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t分钟,所走的路程为s米,s与t之间的函数关系式如图所示,下列说法错误的是()A.小李中途休息了20分钟B.小李休息前爬山的速度为每分钟70米C.小李在上述过程中所走的路程为6600米D.小李休息前爬山的平均速度大于休息后爬山的平均速度11. 如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A. 110°B. 90°C. 70°D. 50°12.图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束.在整个运动过程中,点C运动的路程是()A.4 B.6 C.4﹣2 D.10﹣4二、填空题(本题共6小题,满分18分。
2024年广西南宁市中考数学一模试卷及参考答案
2024年广西南宁市中考数学一模试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑)1.(3分)下列各数中,最大的是()A.﹣3B.0C.2D.|﹣1|2.(3分)下列四个图片表述的是宪法赋予我们的基本权利,其图标为中心对称图形的是()A.男女平等B.受教育权C.宗教信仰权D.人身自由权3.(3分)中国古代数学名著《九章算术注》中记载:“邪解立方,得两堑堵.”意即把一长方体沿对角面一分为二,这相同的两块叫做“堑堵”.如图是“堑堵”的立体图形,它的左视图为()A.B.C.D.4.(3分)下列说法中,正确的是()A.了解一批口罩的质量情况适合全面调查B.要反映南宁市一周内每天的最高气温的变化情况宜采用条形统计图C.“经过有交通信号灯的路口,遇到绿灯”是必然事件D.“任意画一个三角形,其内角和是360°”是不可能事件5.(3分)如图,直线CD,EF被射线OA,OB所截,CD∥EF,若∠1=107°,则∠2的度数为()A.63°B.73°C.83°D.107°6.(3分)下列运算正确的是()A.4a+b=4ab B.a2•a3=a5C.3a2﹣2a2=1D.(a﹣b)2=a2﹣b27.(3分)关于x的一元二次方程x2+mx﹣4=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根8.(3分)如图,某水库堤坝横断面迎水坡的坡角为α,sinα=,堤坝高BC=15m,则迎水坡面AB的长度为()A.20m B.25m C.30m D.35m9.(3分)在平面直角坐标系中,将二次函数y=x2的图象向右平移2个单位长度,再向下平移1个单位长度,所得抛物线对应的函数表达式为()A.y=(x+2)2+1B.y=(x+2)2﹣1C.y=(x﹣2)2﹣1D.y=(x﹣2)2+110.(3分)如图,⊙O是△ABC的外接圆,AC是⊙O的直径,点P在⊙O上,若∠ACB=35°,则∠BPC的度数是()A.35°B.45°C.55°D.65°11.(3分)某种商品原来每件售价为150元,经过连续两次降价后,该种商品每件售价为96元,设平均每次降价的百分率为x,根据题意,所列方程正确的是()A.150(1+x)2=96B.150(1﹣2x)=96C.150(1﹣x2)=96D.150(1﹣x)2=9612.(3分)如图,在△ABC中,∠C=90°,AC=BC=4,P为边AB上一动点,作PD⊥BC于点D,PE⊥AC于点E,则DE的最小值为()A.B.C.D.二、填空题(本题共计6小题,每小题2分,共计12分,请将答案填在答题卡上)13.(2分)当x=时,分式=0.14.(2分)因式分解:2x2﹣18=.15.(2分)在数学这个英语单词“maths”中,随机选中一个字母是t的概率为.16.(2分)不等式组的解集是.17.(2分)一个圆锥的母线长为6,底面圆的直径为8,那么这个圆锥的侧面积是.18.(2分)如图,在平面直角坐标系内,四边形OABC是矩形,四边形ADEF是正方形,点A,D在x轴的负半轴上,点F在AB上,点B,E均在反比例函数的图象上,若点B的坐标为(﹣1,6),则正方形ADEF的周长为.三、解答题(本大题共8小题,共72分,解答应写出文字说明、证明过程或演算步骤)19.(6分)计算:.20.(6分)解分式方程:.21.(10分)在格点图中,已知△ABC的三个顶点A,B,C均在格点上.(1)将△ABC向上移五格,得到△A1B1C1;(2)用直尺作出△ABC的外接圆圆心O.(保留作图痕迹)22.(10分)为全面提升中小学生体质健康水平,我市开展了儿童青少年“正脊行动”.人民医院专家组随机抽取某校各年级部分学生进行了脊柱健康状况筛查.根据筛查情况,李老师绘制了两幅不完整的统计图表,请根据图表信息解答下列问题:抽取的学生脊柱健康情况统计表类别检查结果人数A正常170B轻度侧弯C中度侧弯7D重度侧弯(1)求所抽取的学生总人数;(2)该校共有学生1600人,请估算脊柱侧弯程度为中度和重度的总人数;(3)为保护学生脊柱健康,请结合上述统计数据,提出一条合理的建议.23.(10分)已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若AE⊥BC,垂足为M,⊙O的半径为10,求AE的长.24.(10分)2010年秋冬北方严重干旱,凤凰社区人畜饮用水紧张.每天需从社区外调运饮用水120吨,有关部门紧急部署,从甲、乙两水厂调运饮用水到社区供水点,甲厂每天最多可调出80吨,乙厂每天最多可调出90吨.从两水厂运水到凤凰社区供水点的路程和运费如下表:到凤凰社区供水点的路程(千米)运费(元/吨•千米)甲厂2012乙厂1415(1)若某天调运水的总运费为26700元,则从甲、乙两水厂各调运了多少吨饮用水?(2)设从甲厂调运饮用水x吨,总运费为W元.试写出W关于与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?25.(10分)已知二次函数y=﹣(x﹣2)2+7.(1)写出该函数图象的对称轴.(2)求出该函数图象与x轴的交点坐标.(3)当﹣1≤x≤3时,求y的取值范围.26.(10分)综合与实践问题情境:“综合与实践”课上,老师将图1中的矩形纸片沿对角线剪开,得到两个全等的三角形纸片,表示为△ABC和△DFE,∠ACB=∠DEF=90°,其中∠A=∠D,之后,将△ABC和△DFE按图2所示方式摆放,其中点B与点F重合(标记为点B),当∠ABE =∠A时,延长DE交AB于点H,交AC于点G.(1)试判断图2中的四边形BCGE的形状,并说明理由.(2)在图2中,若AC=6,BC=4,求出HE的长.(3)如图3,当∠ABE=∠BAC时,过点A作AM⊥BE,AM交BE的延长线于点M,BM与AC交于点N.试猜想线段AM和BE的数量关系,并加以证明.2024年广西南宁市中考数学一模试卷参考答案一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑)1.C;2.A;3.C;4.D;5.B;6.B;7.A;8.B;9.C;10.C;11.D;12.A二、填空题(本题共计6小题,每小题2分,共计12分,请将答案填在答题卡上)13.1;14.2(x+3)(x﹣3);15.;16.﹣1≤x<5;17.24π;18.8三、解答题(本大题共8小题,共72分,解答应写出文字说明、证明过程或演算步骤)19.﹣2.;20.x=﹣2.;21.作图见解析.;22.20;3;23.10.;24.;25.直线x=2;26.(1)矩形BCGE为正方形,理由详见解答;(2)HE的长为;(3)AM=BE,证明详见解答.。
2024年广西南宁市中考数学一模试卷及答案解析
2024年广西南宁市中考数学一模试卷一、选择题(共12小题,每小题3分,共36分.每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.(3分)下列各数中,最小的是()A.﹣3B.0C.1D.2.(3分)铜鼓是我国古代南方少数民族使用的打击乐器和礼器,世界上最重的铜鼓王出土于广西.如图是接铜鼓的实物图,它的左视图是()A.B.C.D.3.(3分)据统计,近五年来南宁市累计完成植树造林约1466000亩,在保护森林生态方面作出了积极贡献.数据“1466000”用科学记数法表示为()A.1.466×106B.1.466×107C.0.1466×107D.14.66×1054.(3分)将一副三角尺按如图所示的位置摆放,若∠1=70°,则∠2的度数是()A.10°B.15°C.20°D.25°5.(3分)不等式x<﹣2的解集在数轴上表示为()A.B.C.D.6.(3分)下列调查中,最适宜全面调查的是()A.检测某城市的空气质量B.检查一枚运载火箭的各零部件C.调查某款节能灯的使用寿命D.调查观众对春节联欢晚会的满意度7.(3分)已知蓄电池的电压U(单位:V)为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,则蓄电池的电压是()A.B.C.18V D.36V8.(3分)下列运算正确的是()A.3a2•a=3a3B.(a2)3=a5C.a3+a3=a6D.a6÷a2=a39.(3分)如图,将△ABC绕点A逆时针旋转一定的角度得到△AB'C',此时边AC′经过点B,若AB=4,AC=7,则BC′的长是()A.5B.4C.3D.210.(3分)中国古代数学专著《九章算术》第一章“方田”中记载了如下问题:“今有宛田,下周三十步,径十六步,问为田几何?”意思为:现有一块扇形的田,弧长是30步,其所在圆的直径是16步,则这块田的面积是()A.200平方步B.120平方步C.平方步D.平方步11.(3分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,若设现在平均每天生产机器x台,根据题意可列分式方程为()A.B.C.D.12.(3分)如图1,先将一张长方形纸片对折,然后沿图2的虚线折叠得到图3,再按图3所示沿BC剪下△ABC.若展开后是图4所示的正五角星(每个锐角都是36°),则图3中∠ABC的度数是()A.108°B.114°C.126°D.144°二、填空题(本大题共6小题,每小题2分,共12分.)13.(2分)分解因式:x2﹣5x=.14.(2分)若在实数范围内有意义,则x的取值范围是.15.(2分)小楠一家计划“五一”假期出游,从北海银滩、乐业天坑、德天瀑布这三个景点中随机选择一个,恰好选中“德天瀑布”的概率是.16.(2分)直线y=x+1向上平移5个单位长度后与y轴交点坐标是.17.(2分)如图,无人机于空中A处探测到目标C,此时飞行高度AC=10m,从无人机上观测遥控点B 的俯角α=23°31',则点A与点B的距离是m.(结果保留整数,参考数据:sin23°31'≈0.40cos23°31=0.92,tan23°31'≈0.43).18.(2分)如图,已知正方形ABCD的顶点A,C在二次函数第一象限的图象上,当点B在y轴上时,设点A,C的横坐标分别为m,n,且m<n,则m,n满足的等量关系式是(用含m的式子表示n).三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:32÷(4﹣5)+6×.20.(6分)先化简,再求值:(a+b)2+b(2a﹣b),其中a=2,.21.(10分)如图,在Rt△ABC中,∠ACB=90°,点D为AB中点,连接CD.(1)作∠BCD的平分线交AB于点E(要求:尺规作图,不写作法,保留作图痕迹,标明字母);(2)若∠A=40°,求∠AEC的度数.22.(10分)某校想了解八年级学生对食品安全知识的掌握情况,随机抽取了部分学生进行测试,测试成绩(百分制)整理如下:信息一:抽取学生的测试成绩分布表组别成绩/分频数A90≤x≤100aB80≤x<9016C70≤x<808D x<704合计m信息二:B组的成绩(单位:分)分别为:80,80,82,82,84,85,85,85,85,85,85,86,86,88,88,89.请根据以上信息回答下列问题:(1)填空:m=,a=,n%=%;(2)本次所抽取学生成绩的平均分为83分,小邕说:“我的成绩是84分,比平均分高,所以我的成绩超过了一半的同学.”你认为他的说法正确吗?请说明理由;(3)成绩不低于80分的学生食品安全知识掌握情况良好,若八年级学生约有500人,试估计八年级食品安全知识掌握情况良好的学生人数.23.(10分)如图,点B,F,C,E在一条直线上,AB∥DE,AB=DE,BF=CE.(1)求证:△ABC≌△DEF;(2)若,FC=4,求四边形ACDF的面积.24.(10分)4月23日是“世界读书日”,小宁计划通过微信团购群为班级网购图书,他在两个团购群中看到同款图书出售:(1)团购群1中《儒林外史》和《简•爱》的单价分别是多少元?(2)小宁买15本《儒林外史》和15本《简•爱》,选择在哪一个团购群购买更合算?25.(10分)如图,已知AB经过⊙O上的点C,CA=CB.连接OA,OB分别交⊙O于点D,E,并且OA=OB.延长AO交⊙O于点F,连接FE并延长交AB于点G.(1)求证:AB是⊙O的切线;(2)若BE=2,AB=8,求EF的长.26.(10分)综合与实践【问题提出】某班开展课外锻炼,有7位同学组队参加跳长绳运动,如何才能顺利开展活动呢?【实践活动】在体育老师的指导下,队员们进行了以下实践:步骤一:收集身高数据如下:队员甲乙丙丁戊己庚身高/m 1.70 1.70 1.73 1.60 1.68 1.80 1.60步骤二:为增加甩绳的稳定度,确定两位身高较高且相近的甲、乙队员甩绳,其余队员跳绳;步骤三:所有队员站成一排,跳绳队员按照中间高、两端低的方式排列,同时7名队员每两人间的距离至少为0.5m才能保证安全;步骤四:如图1,两位甩绳队员通过多次实践发现,当两人的水平距离AC=4m,手离地面的高度AB =CD=1.2m,绳子最高点距离地面2m时,效果最佳;【问题解决】如图2,当绳子甩动到最高点时的形状近似看成一条抛物线,若以AC所在直线为x轴,AB所在的直线为y轴,建立平面直角坐标系.(1)求抛物线的解析式;(2)最高的队员位于AC中点,其余跳绳队员对称安排在其两侧.①当跳绳队员之间正好保持0.5m的距离时,长绳能否高过所有跳绳队员的头顶?②在保证安全的情况下,求最左边的跳绳队员与离他最近的甩绳队员之间距离的取值范围.2024年广西南宁市中考数学一模试卷参考答案与试题解析一、选择题(共12小题,每小题3分,共36分.每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.【分析】有理数大小比较的法则:(1)正数>0>负数;(2)两个负数比较大小,绝对值大的其值反而小,据此判断即可.【解答】解:∵﹣3<0<1<,∴其中最小的是﹣3.故选:A.【点评】此题主要考查了有理数大小比较的方法,解答此题的关键是掌握有理数大小比较方法.2.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看,可得选项B的图形.故选:B.【点评】本题主要考查了简单组合体的三视图.用到的知识点为:主视图指从物体的正面看,左视图是指从物体的左面看,俯视图是指从物体的上面看.准确掌握定义是解题的关键.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:1466000=1.466×106.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】根据图形中的等量关系得:∠1+∠2=90°,再由∠1的度数,即可得出答案.【解答】解:∵图中为两个三角板,∴两个三角形是直角三角形,∵∠1=70°,∴∠2=180°﹣90°﹣∠1=20°.故选:C.【点评】本题考查了余角和补角,找准各角的关系是解题的关键.5.【分析】把解集表示在数轴上即可.【解答】解:不等式x<﹣2的解集在数轴上表示为,故选:D.【点评】此题考查了在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.6.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A.检测某城市的空气质量,适合抽样调查,故本选项不符合题意;B.检查一枚运载火箭的各零部件,适合全面调查,故本选项符合题意;C.调查某款节能灯的使用寿命,适合抽样调查,故本选项不符合题意;D.调查观众对春节联欢晚会的满意度,适合抽样调查,故本选项不符合题意.故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.【分析】根据题意,先列出反比例函数解析式I=,根据函数图象过(9,4)代入计算出U值即可.【解答】解:∵电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,∴I=,由图象可知,当R=9时,I=4,∴U=I•R=4×9=36(v).答:蓄电池的电压是36v.故选:D.【点评】本题考查了反比例函数的应用,熟练掌握反比例函数的性质是关键.8.【分析】根据单项式乘单项式运算法则系数与系数相乘,相同字母的幂相乘,分析判断即可.【解答】解:A、3a2•a=3a3,原计算正确,符合题意;B、(a2)3=a6,原计算错误,不符合题意;C、不能合并,原计算错误,不符合题意;D、a6÷a2=a4,计算错误,不符合题意;故选:A.【点评】本题考查了单项式乘单项式,熟练掌握运算法则是关键.9.【分析】根据旋转的性质,得出AC′=AC,据此可解决问题.【解答】解:∵△AB′C′由△ABC绕点A逆时针旋转一定的角度得到,∴AC′=AC=7,∴BC′=AC′﹣AB=7﹣4=3.故选:C.【点评】本题考查旋转的性质,熟知图形旋转的性质是解题的关键.10.【分析】根据扇形的面积公式即可解决问题.【解答】解:由题知,扇形所在圆的直径是16步,所以半径为8步,又因为扇形的弧长为30步,=(平方步).所以S扇形故选:B.【点评】本题考查扇形面积的计算,熟知扇形的面积公式是解题的关键.11.【分析】根据现在生产600台机器所需时间与原计划生产450台机器所需时间相同,可以列出相应的方程.【解答】解:设现在平均每天生产机器x台,则原计划平均每天生产(x﹣50)台,由题意可得:,故选:C.【点评】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.12.【分析】根据剪纸的特点和多边形内角和定理解题.【解答】解:将A,B,C标在展开图中,连接AB,AC,如图,∵∠A==36°,∵正五角星的5个角都是36°,∴∠ACB=×36°=18°,∵三角形内角和为180°,∴∠ABC=180°﹣18°﹣36°=126°.故选:C.【点评】本题以剪纸为背景,考查多边形内角与外角,需要一定的空间现象能力,解题的关键是能灵活运用相关知识.二、填空题(本大题共6小题,每小题2分,共12分.)13.【分析】直接提取公因式x分解因式即可.【解答】解:x2﹣5x=x(x﹣5).故答案为:x(x﹣5).【点评】此题考查的是提取公因式分解因式,关键是找出公因式.14.【分析】根据被开方数大于等于0列式进行计算即可求解.【解答】解:根据题意得x﹣3≥0,解得x≥3.故答案为:x≥3.【点评】本题考查了二次根式有意义的条件,知识点为:二次根式的被开方数是非负数.15.【分析】直接由概率公式求解即可.【解答】解:∵从北海银滩、乐业天坑、德天瀑布这三个景点中随机选择一个,∴恰好选中“德天瀑布”的概率是,故答案为:.【点评】本题考查了概率公式:概率=所求情况数与总情况数之比.熟记概率公式是解题的关键.16.【分析】先求出直线y=x+1向上平移5个单位长度后的解析式,再令x=0,求出y的值即可.【解答】解:直线y=x+1向上平移5个单位长度后的函数解析式为y=x+1+5=x+6,∵当x=0时,y=6,∴直线与y轴交点坐标是(0,6).故答案为:(0,6).【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解题的关键.17.【分析】先利用平行线的性质得到∠B=α=23°31',然后利用∠B的正弦计算AB的长.【解答】解:如图,∠B=α=23°31′,在Rt△ABC中,∵sin B=,∴AB=≈=25(m).答:点A与点B的距离是25m.故答案为:25.【点评】本题考查了解直角三角形的应用﹣仰角俯角:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形.18.【分析】依据题意,连接AC、BD交于点E,过点A作MN⊥y轴于点M,过点D作DN⊥MN于点N,先证明△AMB≌△DNA,得A(m,m2),C(n,n2),从而E(,),M(0,m2),设B(0,b),则D(m+n,),N(m+n,m2),又AM=ND,BM=AN,故b﹣m2=n,m=n2﹣b,则(n+m)(n﹣m)=m+n,再结合m+n≠0,进而可以判断得解.【解答】解:如图,连接AC、BD交于点E,过点A作MN⊥y轴于点M,过点D作DN⊥MN于点N,∵四边形ABCD是正方形,∴AC、BD互相平分,AB=AD,∠BAD=90°,∴∠BAM+∠DAN=90°,∠DAN+∠ADN=90°,∴∠BAM=∠ADN.∵∠BMA=∠AND=90°,BA=AD,∴△AMB≌△DNA(AAS).∴AM=ND,BM=AN.∵点A、C的横坐标分别为m、n,∴A(m,m2),C(n,n2).∴E(,),M(0,m2),设B(0,b),则D(m+n,),N(m+n,m2),∴BM=b﹣m2,AN=n,AM=m,DN=n2﹣b.又AM=ND,BM=AN,∴b﹣m2=n,m=n2﹣b.∴b=n2﹣m.∴n2﹣m﹣m2=n.∴(n+m)(n﹣m)=m+n.∵点A、C在y轴的同侧,且点A在点C的左侧,∴m+n≠0.∴n﹣m=2.∴n=m+2.故答案为:n=m+2.【点评】本题主要考查了二次函数的图象与性质、正方形的性质、全等三角形的判定与性质,解题时要熟练掌握并能灵活运用是关键.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.【分析】先算乘方,再算乘除法,然后计算加法即可.【解答】解:32÷(4﹣5)+6×=9÷(﹣1)+6×=﹣9+2=﹣7.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.20.【分析】先利用完全平方公式,单项式乘多项式的法则进行计算,然后把a,b的值代入化简后的式子进行计算,即可解答.【解答】解:(a+b)2+b(2a﹣b)=a2+2ab+b2+2ab﹣b2=a2+4ab,当a=2,时,原式=22+4×2×(﹣)=4+(﹣2)=2.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.21.【分析】(1)利用基本作图作∠BCD的平分线即可;(2)先利用斜边上的中线性质得到AD=CD,则∠ACD=∠A=40°,再利用互余计算出∠BCD=50°,接着根据角平分线的定义得∠DCE=25°,然后根据三角形内角和定理计算出∠AEC的度数.【解答】解:(1)如图,CE为所作;(2)∵∠ACB=90°,点D为AB中点,∴AD=CD,∴∠ACD=∠A=40°,∴∠BCD=∠ACB﹣∠ACD=90°﹣40°=50°,∵CE平分∠BCD,∴∠DCE=∠BCD=25°,∴∠ACE=40°+25°=65°,∵∠AEC+∠ACE+∠A=180°,∴∠AEC=180°﹣40°﹣65°=75°.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了直角三角形斜边上的中线性质.22.【分析】(1)根据C组的频数和所占是百分比求m,根据A组所占的百分比计算a的值,根据B组的频数计算n%即可;(2)根据中位数的定义求解即可;(3)用总人数乘以成绩不低于80分的学生所占的百分比即可.【解答】解:(1)m=8÷20%=40,a=40×30%=12,n%=×100%=40%;故答案为:40,12,40;(2)不正确,理由:这次测试成绩的中位数是第20、21个数据的平均数,所以这组数据的中位数是=85,因为小邕的成绩是84分低于中位数85分,所以小邕的成绩没有超过一半的同学;(3)500×(30%+40%)=350(人),答:估计八年级食品安全知识掌握情况良好的学生人数为350人.【点评】本题考查了统计表和扇形统计图的综合运用.读懂统计图表,从中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.也考查了中位数,利用样本估计总体.23.【分析】(1)由“SAS”可证△ABC≌△DEF;(2)先证四边形ACDF是菱形,可得AO=DO,AD⊥CF,CO=FO=2,由菱形的面积公式可求解.【解答】(1)证明:∵AB∥DE,∴∠B=∠E,∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);(2)解:如图,连接AD交CF于O,∵△ABC≌△DEF,∴AC=DF,∠ACB=∠DFE,∴AC∥DF,∴四边形ACDF是平行四边形,∵AF=DF,∴四边形ACDF是菱形,∴AO=DO,AD⊥CF,CO=FO=2,∴AO===3,∴AD=6,∴四边形ACDF的面积==12.【点评】本题考查了全等三角形的判定和性质,菱形的判定和性质,证明三角形全等是解题的关键.24.【分析】(1)设团购群1中《儒林外史》单价为x元,《简•爱》的单价为y元,根据团购群1中《儒林外史》和《简•爱》的出售信息,列出二元一次方程组,解方程组即可;(2)分别求出选择团购群1费用和选择团购群2费用,再比较即可.【解答】解:(1)设团购群1中《儒林外史》单价为x元,《简•爱》的单价为y元,由题意得:,解得:,答:团购群1中《儒林外史》单价为48元,《简•爱》的单价为32元;(2)小宁买15本《儒林外史》和15本《简•爱》,选择团购群1费用为:(48+32)×15×0.7=840(元),∵70×15=1050(元),=3.5,∴选择团购群2费用为:1050﹣3×40=930(元),∵840<930,∴选择在团购群1购买更合算,答:选择在团购群1购买更合算.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.25.【分析】(1)连接OC,由OA=OB,CA=CB,根据等腰三角形的“三线合一”证明OC⊥AB,即可证明AB是⊙O的切线;(2)设OD=OC=OE=OF=r,因为BE=2,AB=8,所以OB=r+2,CA=CB=AB=4,由勾股定理得r2+42=(r+2)2,得r=3,则OC=OF=3,OA=OB=5,AF=8,再证明∠F=∠AOC,则FG∥OC,所以∠EGB=∠FGA=90°,由==sin B=,==sin A=,求得EG=,FG=,则EF=.【解答】(1)证明:连接OC,∵OA=OB,CA=CB,∴OC⊥AB,∵OC是⊙O的半径,且AB⊥OC,∴AB是⊙O的切线.(2)解:设OD=OC=OE=OF=r,∵BE=2,AB=8,∴OB=r+2,CA=CB=AB=4,∵∠OCE=90°,∴OC2+CB2=OB2,∴r2+42=(r+2)2,解得r=3,∴OC=OF=3,OA=OB=3+2=5,∴AF=OA+OF=5+3=8,∵∠F=∠AOB,∠AOC=∠BOC=∠AOB,∴∠F=∠AOC,∴FG∥OC,∴∠EGB=∠OCB=90°,∠FGA=∠OCA=90°,∴==sin B=,==sin A=,∴EG=BE=×2=,∴FG=AF=×8=,∴EF=FG﹣EG=﹣=,∴EF的长是.【点评】此题重点考查等腰三角形的“三线合一”、切线的判定定理、勾股定理、圆周角定理、锐角三角函数与解直角三角形等知识,正确地作出辅助线是解题的关键.26.【分析】(1)用待定系数法可得抛物线的函数表达式为y=﹣x2+x+;(2)①求出当x=1时,当x=1.5时的函数值,再和队员身高比较即可;②求出y=1.6时,2+或x=2﹣,即可得到答案.【解答】解:(1)以AC所在直线为x轴,AB所在的直线为y轴,建立平面直角坐标系.如图:由已知可得,(0,1.2),(4,1.2)在抛物线上,且抛物线顶点坐标为(2,2),设抛物线解析式为y=ax2+bx+c,∴,解得,∴抛物线的函数表达式为y=﹣x2+x+;(2)①∵y=﹣x2+x+=﹣(x﹣2)2+2,∴抛物线的对称轴为直线x=2,5名同学,以直线x=2为对称轴,分布在对称轴两侧,对称轴左侧的2名队员所在位置横坐标分布是2﹣0.5=1.5,1.5﹣0.5=1,对称轴右侧的2名队员所在位置横坐标分布是2+0.5=2.5,2.5+0.5=3,当x=1时,y=﹣(1﹣2)2+2==1.8>1.73,当x=1.5时,y=﹣(1.5﹣2)2+2=1.95>1.73,∴长绳能高过所有跳绳队员的头顶;②当y=1.6时,﹣x2+x+=1.6,解得x=2+或x=2﹣,∴最左边的跳绳队员与离他最近的甩绳队员之间距离的最小值为2,∵两人的水平距离AC=4m,7名队员每两人间的距离至少为0.5m才能保证安全,∴最左边的跳绳队员与离他最近的甩绳队员之间距离的最大值为(4﹣4×0.5)÷2=1,∴最左边的跳绳队员与离他最近的甩绳队员之间距离的取值范围为2≤x≤1.【点评】本题是二次函数综合题,考查的是二次函数的实际应用,读懂题意,把二次函数同实际生活结合起来,建立坐标系求解函数解析式是解本题的关键。
2020年南宁市初三数学下期中一模试题(含答案)
A. 4 2 3
B.2 2
C. 8 2 3
D.3 2
10.如图,在以 O 为原点的直角坐标系中,矩形 OABC 的两边 OC、OA 分别在 x 轴、y 轴
的正半轴上,反比例函数 y k (x>0)与 AB 相交于点 D,与 BC 相交于点 E,若 x
BD=3AD,且△ODE 的面积是 9,则 k 的值是( )
∴△BDE∽△BAC,
∴ DE BQ . AC BP
设
DE=x,则有:
x 5
12 5 12
x
,
5
解得 x= 60 , 37
故选 D.
2.A
解析:A 【解析】
【分析】
利用反比例函数的增减性,y 随 x 的增大而减小,则求解不等式 1-k>0 即可. 【详解】
∵反比例函数 y=1−kx 图象的每一条曲线上,y 随 x 的增大而减小, ∴1−k>0, 解得 k<1. 故选 A. 【点睛】
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D 解析:D 【解析】 试题解析:如图,过点 B 作 BP⊥AC,垂足为 P,BP 交 DE 于 Q.
∵S△ABC= 1 AB•BC= 1 AC•BP,
2
2
∴BP= AB·BC 3 4 12 .
AC
55
∵DE∥AC,
∴∠BDE=∠A,∠BED=∠C,
6.D
解析:D 【解析】 A 选项,在△OAB∽△OCD 中,OB 和 CD 不是对应边,因此它们的比值不一定等于相似 比,所以 A 选项不一定成立;
B 选项,在△OAB∽△OCD 中,∠A 和∠C 是对应角,因此 ,所以 B 选项不成立;
C 选项,因为相似三角形的面积比等于相似比的平方,所以 C 选项不成立; D 选项,因为相似三角形的周长比等于相似比,所以 D 选项一定成立. 故选 D.
广西2024届九年级下学期中考一模数学试卷(含解析)
2024年广西初中学业水平考试模拟卷(一)数学(考试时间:120分钟满分:120分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑)1. 下列图案是我国几家银行的标志,其中是中心对称图形的为( )A. B. C. D.答案:A解析:试题分析:根据中心对称图形的概念,观察可知,只有第1个是中心对称图形,其它三个都不是中心对称图形.故选A.考点:1.中心对称图形;2.生活中的旋转现象.2. 多么小的问题乘14亿,都会变得很大;多么大的经济总量,除以14亿都会变得很小.将1400000000用科学记数法表示为( )A. B. C. D.答案:C解析:解:将1400000000用科学记数法表示为,故选:C.3. 如图,在中,点在的延长线上,若,,则的度数是()A. B.C. D.答案:D解析:∵∠ACD是三角形ABC的一个外角∴∠ACD=∠A+∠B=100°故答案选择D.4. 若分式有意义,则的取值范围是()A. B. C. D.答案:C解析:解:由题意得:,解得:,故选:C.5. 下列各点中不在直线上的是( )A. B. C. D.答案:C解析:解:A、当时,,点在直线上;B、当时,,点在直线上;C、当时,,点不在直线上;D、当时,,点在直线上;故选:C.6. 下列调查中,适宜采用全面调查方式的是()A. 检测“神舟十四号”载人飞船零件的质量B. 检测一批LED灯的使用寿命C. 检测黄冈、孝感、咸宁三市的空气质量D. 检测一批家用汽车的抗撞击能力答案:A解析:解:A、检测“神舟十四号”载人飞船零件的质量,适宜采用全面调查的方式,故A符合题意;B、检测一批LED灯的使用寿命,适宜采用抽样调查的方式,故B不符合题意;C、检测黄冈、孝感、咸宁三市的空气质量,适宜采用抽样调查的方式,故C不符合题意;D、检测一批家用汽车的抗撞击能力,适宜采用抽样调查的方式,故D不符合题意.故选:A.7. 某射击运动员在同一条件下的射击成绩记录如下:射击次数20801002004001000“射中九环以上”的次数186882168327823“射中九环以上”的频率(结果保留两位小数)0900.850.820.840.820.82根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是( )A. 0.90B. 0.82C. 0.85D. 0.84答案:B解析:解:∵从频率的波动情况可以发现频率稳定在0.82附近,∴这名运动员射击一次时“射中九环以上”的概率是0.82.故选:B.8. 如图,一块四边形绿化园地,四角都做有半径为2的圆形喷水池,则这四个喷水池占去的绿化园地的面积为()A. B. C. D.答案:B解析:解:绿化园地为四边形,四边形的内角和为360°,阴影部分的面积和为一个圆面积,故这四个喷水池占去的绿化园地的面积为.故选B.9. 二次函数的顶点坐标是( )A. B. C. D.答案:B解析:解:∵∴顶点坐标为.故选:B.10. 我校图书馆三月份借出图书本,计划四、五月份共借出图书本,设四、五月份借出的图书每月平均增长率为,则根据题意列出的方程是()A. B.C. D.答案:B解析:解:设四、五月份借出的图书每月平均增长率为,则四月份借出图书本,五月份借出图书本,根据题意列出的方程是,故选:B.11. 唐代李皋发明了“桨轮船”,这种船是原始形态轮船,是近代明轮航行模式之先导,如图,某桨轮船的轮子被水面截得的弦长,轮子的吃水深度为,则该浆轮船的轮子半径为( )A. B. C. D.答案:D解析:解:设半径为,则在中,有,即解得故选:D12. 如图,在等边中,,点,分别在边,上,且,连接,交于点,在点D从点B运动到点C的过程中,图中阴影部分的面积的最小值为( )A. B. C. D.答案:B解析:解:如图,是等边三角形,,,,,,,∴,又,,,,点的运动轨迹是为圆心,为半径的弧上运动,连接交于,当点与重合时,的面积最大,则阴影部分的面积的值最小,此时点是等边的中心,∴阴影部分的面积的最小值为,故选:B.二、填空题(本大题共6小题,每小题2分,共12分)13. 化简:______.答案:3解析:解:因为32=9,所以=3.故答案为:3.14. 分解因式:________.答案:解析:原式=.故答案为15. 从1﹣9的数字卡片中,任意抽一张,抽到奇数的可能性是__.答案:解析:∵1﹣9的数字卡片中奇数有1,3,5,7,9,共5个数,则抽到奇数的可能性是.故答案为:.16. 如图,函数的图象过点,则不等式的解集是_______.答案:##解析:观察图象得:当时,,即,∴不等式的解集为.故答案为:17. 若一条抛物线的开口向下,且与y轴交于,则该抛物线的解析式可能是___________(答案不唯一).答案:解析:解:开口向下,并且与y轴交于点的抛物线的表达式为,故答案为:(答案不唯一).18. 如图,在边长为6的正方形中,E,F分别是边上的点,且,,连接,于点G,交于点H,则___________.答案:##解析:解:延长到,使,连接,∵四边形是正方形,∴,,∴,∴,∵边长为6的正方形中,,,∴,,,∴,,即,∴,∴,∵,∴,∴,∵,∴,∴,∴,故答案为:.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤)19. 计算:.答案:解析:解:.20. 先化简,再求值:,其中.答案:,3解析:解:原式=,当时,原式.21. 如图,在平面直角坐标系内,三个顶点的坐标分别为,,.(1)平移,使点B移动到点,画出平移后的,并写出点,的坐标;(2)画出关于原点O对称的;(3)线段的长度为___________.答案:21. 画图见解析,点,.22. 画图见解析23.小问1解析:解:平移后的如图所示,点,.小问2解析:解:关于原点O对称的如图所示.,小问3解析:解:∵,,.故答案为:22. 近年来,未成年人遭电信网络诈骗的案例呈现增长趋势,为了提高学生防范电信网络诈骗安全意识,某学校八年级480名同学参加了防范电信网络诈骗安全知识竞赛(满分100分).现随机抽取八(2)、八(3)两班各15名同学的测试成绩(设为x)进行整理分析,结果如下:收集数据八(2)班抽取的测试成绩为:78,83,89,97,98,85,100,94,87,90,93,92,99,95,100.八(3)班抽取的测试成绩中,的成绩为:91,92,94,90,93.整理数据:班级八(2)班11346八(3)班12354根据以上信息,解答下列问题:(1)八(2)班成绩的众数为___________,八(3)班成绩的中位数为___________;(2)若规定测试成绩在92分及其以上为优秀,请估计该校八年级学生中成绩为优秀的人数;(3)根据以上数据,若八(3)班平均分为90分,方差为50.2,你认为哪个班学生掌握防范电信网络诈骗安全知识的整体水平较好?请说明理由(写出一个理由即可).答案:22. ,23. 名学生中成绩为优秀的学生共有人24. 八(2)班的学生掌握防范电信网络诈骗安全知识的整体水平较好小问1解析:解:八(2)班名学生的测试成绩出现次数最多的是,出现了2次,∴八(2)班成绩的众数为,∵八(3)班成绩中位数是第位同学的成绩,第位同学的成绩在阶段(成绩从小到大排列)的第二名同学,即,,,,,∴八(3)班成绩的中位数是,故答案为:,;小问2解析:解:八(2)班成绩在分及其以上的人数有人,八(3)班成绩在分及其以上的人数有(人),∴成绩在分及其以上的人数有(人),∴(人),∴名学生中成绩为优秀的学生共有人;小问3解析:解:八(2)班的学生掌握防范电信网络诈骗安全知识的整体水平较好,理由如下:八(2)班学生竞赛成绩的平均分为(分),八(2)班学生竞赛成绩的方差为,∵八(2)班的平均分为分,方差是,八(3)班的平均分为90分,方差是,∴八(2)班学生竞赛成绩的平均分高于八(3)班的平均分,八(2)班学生竞赛成绩的方差低于八(3)班的方差,∴八(2)班学生竞赛成绩更好,八(2)班的学生掌握防范电信网络诈骗安全知识的整体水平较好;综上所述,八(2)班的学生掌握防范电信网络诈骗安全知识的整体水平较好.23. 如图,已知是的直径,是的弦,延长到C,使,连接,过点D 作,垂足为E.(1)求证:是的切线;(2)若的半径为6,,求.答案:(1)证明见解析(2)小问1解析:证明:如图1,连接,∵,∴为的中点,∵为的中点,∴是的中位线,∴,∵,∴,又∵是半径,∴是的切线;小问2解析:解:如图2,过作于,则四边形是矩形,∴,∵,∴,∴,由勾股定理得,,∴,∴的长为.24. 某中学计划将该校足球场改造为元旦晚会举办场地.改造方案如下:撤除足球场球门,在原球门处布置舞台,舞台占地为长度为40m,宽度为18m的矩形,师生观众席规划在足球场区域中距离舞台10m的隔离栏外.已知足球场宽度为72m,长度为105m(观众席不一定要占满球场宽度),以隔离栏为一边,其他三边利用总长为140m的移动围栏围成一个矩形的观众席,并在观众席内按行、按列摆放单人座椅,要求每个座位占地面积为1m(如图所示),且矩形观众席内都安排了座位.(1)若观众席内有x行座椅,用含x代数式表示每行的座椅数,并求x的最小值.(2)若全校师生共2400人,座位是否足够?请说明理由.答案:(1)每行的座椅数为个,x的最小值为34;(2)若全校师生共2400人,那么座位够坐.小问1解析:解:移动围栏的总长为,且观众席内有行座椅,每行的座椅数为个.,,的最小值为34;小问2解析:解:座位够坐,理由如下:依题意得:,整理得:,解得:(不符合题意,舍去),,若全校师生共2400人,那么座位够坐.25. 为了进一步探究三角形中线的作用,数学兴趣小组合作交流时,小丽在组内做了如下尝试:如图1,在中,是边上的中线,延长到,使,连接.(1)探究发现图1中与的数量关系是___________,位置关系是___________;(2)初步应用如图2,在中,是边上的中线,若,,,判断的形状;(3)探究提升如图3,在中,若,,D为边上的点,且,求的取值范围.答案:(1),(2)是直角三角形;(3).小问1解析:解:延长到,使,连接.是的中线,,在和中,,,,,,故答案为:,;小问2解析:解:如图2,延长到,使,连接,由(1)可知,,,,,在中,,,∴,∴是直角三角形,且,∴,∴是直角三角形;小问3解析:解:延长到,使得,连接,则,∵,,∴,且,∴,∴,∴,即,∴.26. 如图,已知抛物线交x轴于,两点,交y轴于点C,P是抛物线上一点,连接、.(1)求抛物线的解析式;(2)连接,,若,求点P的坐标;(3)若,直接写出点P的坐标.答案:(1)(2)点P的坐标为或;(3)点P的坐标为或.小问1解析:解:将,两点代入,,解得,;小问2解析:解:令,则,,,,,,,,设,,,,解得或,∴点P的坐标为或;小问3解析:解:设交y轴于点,∵,,,∴,,∵,∴,∴,即,∴,设直线的解析式为,∴,解得,∴直线的解析式为,联立,解得或,∴点P的坐标为;当直线经过点关于原点的对称点时,也符合题意,同理求得直线的解析式为,联立,解得或,∴点P的坐标为;综上,点P的坐标为或.。
广西南宁市2020年中考数学一模试卷(含解析)
绝密★启用前2020年广西南宁市中考数学一模试卷(04月)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上,在试卷上作答无效,选择题需使用2B铅笔填涂一、选择题(本大题共12小题,每小题3分,共36分)1.2019的相反数是()A.B.﹣C.|2019| D.﹣20192.如图是由4个相同的小立方体搭成的几何体,则它的主视图是()A.B.C.D.3.举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为()A.5.5×103B.55×103C.0.55×105D.5.5×1044.如图是邻居张大爷去公园锻炼及原路返回时离家的距离y(千米)与时间t(分钟)之间的函数图象,根据图象信息,下列说法正确的是()A.张大爷去时所用的时间少于回家的时间B.张大爷在公园锻炼了40分钟C.张大爷去时走上坡路,回家时走下坡路D.张大爷去时速度比回家时的速度慢5.下列事件为必然事件的是()A.五边形的外角和是360°B.打开电视机,它正在播广告C.明天太阳从西方升起D.抛掷一枚硬币,一定正面朝上6.下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b﹣3ba2=0 D.5a2﹣4a2=17.不等式组的解集在数轴上表示为()A.B.C.D.8.若抛物线y=﹣x2向右平移3个单位,再向下平移2个单位,所得的抛物线的解析式为()A.y=﹣(x+3)2+2 B.y=﹣(x﹣3)2+2C.y=﹣(x﹣3)2﹣2 D.y=﹣(x+3)2﹣29.若一个圆锥的底面圆的半径为1,母线长为3,则该圆锥侧面展开图的圆心角是()A.90°B.120°C.150°D.180°10.如图,⊙O的直径AB=20cm,CD是⊙O的弦,AB⊥CD,垂足为E,OE:EB=3:2,则CD 的长是()A.10cm B.14cm C.15cm D.16cm11.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A.(1,2)B.(1,1)C.(,)D.(2,1)12.如图,Rt△ABC的边BC在x轴正半轴上,点D为AC的中点,DB的延长线交y轴负半轴于点E,反比例函数y=(x>0)的图象经过点A,若S△BEC=6,则k的值为()A.6 B.8 C.10 D.12二、填空题(本大题共6小题,每小题3分,共18分)13.在2,1,﹣4,﹣1,0这五个数中,最小的数是.14.要使分式有意义,则字母x的取值范围是.15.分解因式:x2﹣9=.16.如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=20°,则∠2=.17.如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度.站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.若旗杆与教学楼的距离为9m,则旗杆AB的高度是m(结果保留根号)18.如图,按此规律,第行最后一个数是2017.三、解答题(本大题共8小题,共66分)19.计算:(﹣2020)0+|﹣2|﹣4ocs30°+(﹣)﹣2.20.先化简,再求值:÷(1+),其中x=﹣2.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上.建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).(1)请画出△ABC关于y轴对称的△A1B1C1.(2)将△ABC绕点O逆时针旋转90°后得到△A2B2C2,试在图中画出图形△A2B2C2,并计算点C 旋转到点C2所经过的路径长.(结果保留π)22.2019年南宁市教育局组织全市中小学时候参加安全知识网络竞赛,在安全知识竞赛结束后,赛后发现所有参赛学生会的成绩都高于50分.为了了解本次大赛的成绩分布情况,某校随机抽取了其中200名学生的成绩(成绩x取整数,总分为100分)作为样本进行统计分析,得到如下不完整的统计图表,请根据图标中的信息解答下列各题:成绩(分)频数频数50<x≤6010 b60<x≤7020 0.1070<x≤8030 0.1580<x≤90 a 0.3090<x≤10080 0.40(1)频数分布表中a=,b=;本次比赛成绩的中位数会落在分数段;(2)请补全频数分布直方图;(3)该校安全知识竞赛成绩满分共有4人,其中男生2名,女生2名,为了激励学生增强安全意识,现需要从这4人中随机抽取2人介绍学习经验,请用“列表法”或“画树状图”,求恰好选到一男一女的概率.23.如图,已知Rt△ABC中,∠ACB=90°,以BC为直径作⊙O交AB于点D,E是AC上一点,且DE=CE,连接OE.(1)请判断DE与⊙O的位置关系,并证明你的结论;(2)求证:E为AC的中点.24.南宁盛产各种特色食品,其中芒果干与桂圆干是大家非常喜爱的两种特产,某旅行经销店欲购进一批芒果干与桂圆干,已知购买1袋芒果干和1袋桂圆干共需75元,3袋芒果干和2袋桂圆干共需205元.(1)求芒果干与桂圆干的进货单价;(2)若芒果干与桂圆干的售价如表:该旅游经销店打算用不超过2700元的货款购进芒果干与桂圆干共100袋,如何进货能够使两种特产全部售完后获得最大利润,最大利润是多少?(不考虑其他因素)商品售价(元/袋)芒果干65桂圆干2825.已知正方形ABCD,P为直线CD上的一点,以PC为边作正方形PCNM,使点N在直线BC上,连接MB、MD.(1)如图1,若点P在线段DC的延长线上,求证:MB=MD;(2)如图2,若点P在线段DC上,当P为DC的中点时,判断△PMD的形状,并说明理由;(3)如图3,若点P在线段DC上,连接BD,当MP平分∠DMB时,求∠DMB的度数.26.抛物线y=ax2+bx+3交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.(1)求抛物线的函数表达式及抛物线的对称轴;(2)如图a,点P是抛物线上第二象限内的一动点,若以AP,AO为邻边的平行四边形第四个顶点恰好落在抛物线上,求出此时点P的坐标;(3)如图b,点D是抛物线上第二象限内的一动点,过点O,D的直线y=kx交AC于点E,若S△CDE:S△CEO=2:3,求k的值.参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.2019的相反数是()A.B.﹣C.|2019| D.﹣2019【解答】解:2019的相反数是﹣2019,故选:D.2.如图是由4个相同的小立方体搭成的几何体,则它的主视图是()A.B.C.D.【分析】主视图有2列,每列小正方形数目分别为1,2.【解答】解:如图所示:它的主视图是:.故选:B.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.3.举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为()A.5.5×103B.55×103C.0.55×105D.5.5×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:55000这个数用科学记数法可表示为5.5×104,故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图是邻居张大爷去公园锻炼及原路返回时离家的距离y(千米)与时间t(分钟)之间的函数图象,根据图象信息,下列说法正确的是()A.张大爷去时所用的时间少于回家的时间B.张大爷在公园锻炼了40分钟C.张大爷去时走上坡路,回家时走下坡路D.张大爷去时速度比回家时的速度慢【考点】E6:函数的图象.【分析】根据图象可以得到张大爷去时所用的时间和回家所用的时间,在公园锻炼了多少分钟,也可以求出去时的速度和回家的速度,根据可以图象判断去时是否走上坡路,回家时是否走下坡路.【解答】解:如图,A、张大爷去时所用的时间为15分钟,回家所用的时间为5分钟,故选项错误;B、张大爷在公园锻炼了40﹣15=25分钟,故选项错误;C、据A张大爷去时走下坡路,回家时走上坡路,故选项错误.D、张大爷去时用了15分钟,回家时候用了5分钟,因此去时的速度比回家时的速度慢,故选项正确.故选D.5.下列事件为必然事件的是()A.五边形的外角和是360°B.打开电视机,它正在播广告C.明天太阳从西方升起D.抛掷一枚硬币,一定正面朝上【考点】X1:随机事件.【分析】分别利用必然事件以及不可能事件、随机事件的定义分析得出答案.【解答】解:A、五边形的外角和是360°,是必然事件,符合题意;B、打开电视机,它正在播广告,是随机事件,不合题意;C、明天太阳从西方升起,是不可能事件,不合题意;D、抛掷一枚硬币,一定正面朝上,是随机事件,不合题意;故选:A.6.下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b﹣3ba2=0 D.5a2﹣4a2=1【考点】35:合并同类项.【分析】先根据同类项的概念进行判断是否是同类项,然后根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变计算进行判断.【解答】解:A、3a和2b不是同类项,不能合并,A错误;B、2a3和3a2不是同类项,不能合并,B错误;C、3a2b﹣3ba2=0,C正确;D、5a2﹣4a2=a2,D错误,故选:C.7.不等式组的解集在数轴上表示为()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【分析】根据在数轴上表示不等式解集的方法进行解答即可.【解答】解:原不等式组的解集为1<x≤2,1处是空心圆点且折线向右;2处是实心圆点且折线向左,故选:B.8.若抛物线y=﹣x2向右平移3个单位,再向下平移2个单位,所得的抛物线的解析式为()A.y=﹣(x+3)2+2 B.y=﹣(x﹣3)2+2 C.y=﹣(x﹣3)2﹣2 D.y=﹣(x+3)2﹣2【考点】H6:二次函数图象与几何变换.【分析】根据平移规律,可得答案.【解答】解:由题意,得y=﹣(x﹣3)2﹣2,故选:C.9.若一个圆锥的底面圆的半径为1,母线长为3,则该圆锥侧面展开图的圆心角是()A.90°B.120°C.150°D.180°【考点】MP:圆锥的计算.【分析】根据圆锥的底面周长等于圆锥的侧面展开图的弧长,首先求得展开图的弧长,然后根据弧长公式即可求解.【解答】解:圆锥侧面展开图的弧长是:2π×1=2π(cm),设圆心角的度数是n度.则=2π,解得:n=120.故选B.10.如图,⊙O的直径AB=20cm,CD是⊙O的弦,AB⊥CD,垂足为E,OE:EB=3:2,则CD 的长是()A.10cm B.14cm C.15cm D.16cm【考点】M2:垂径定理;KQ:勾股定理.【分析】根据垂径定理与勾股定理即可求出答案.【解答】解:连接OC,设OE=3x,EB=2x,∴OB=OC=5x,∵AB=20∴10x=20∴x=2,∴由勾股定理可知:CE=4x=8,∴CD=2CE=16故选(D)11.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A.(1,2)B.(1,1)C.(,)D.(2,1)【考点】SC:位似变换;D5:坐标与图形性质.【分析】首先利用等腰直角三角形的性质得出A点坐标,再利用位似是特殊的相似,若两个图形△ABC和△A′B′C′以原点为位似中心,相似比是k,△ABC上一点的坐标是(x,y),则在△A′B′C′中,它的对应点的坐标是(kx,ky)或(﹣kx,ky),进而求出即可.【解答】解:∵∠OAB=∠OCD=90°,AO=AB,CO=CD,等腰Rt△OAB与等腰Rt△OCD是位似图形,点B的坐标为(1,0),∴BO=1,则AO=AB=,∴A(,),∵等腰Rt△OAB与等腰Rt△OCD是位似图形,O为位似中心,相似比为1:2,∴点C的坐标为:(1,1).故选:B.12.如图,Rt△ABC的边BC在x轴正半轴上,点D为AC的中点,DB的延长线交y轴负半轴于点E,反比例函数y=(x>0)的图象经过点A,若S△BEC=6,则k的值为()A.6 B.8 C.10 D.12【考点】G5:反比例函数系数k的几何意义.【分析】先根据题意证明△BOE∽△CBA,根据相似比及面积公式得出BO×AB的值即为|k|的值,再由函数所在的象限确定k的值.【解答】解:∵BD为Rt△ABC的斜边AC上的中线,∴BD=DC,∠DBC=∠ACB,又∵∠DBC=∠EBO,∴∠EBO=∠ACB,又∵∠BOE=∠CBA=90°,∴△BOE∽△CBA,∴=,即BC×OE=BO×AB.又∵S△BEC=6,∴BC•EO=6,即BC×OE=12=BO×AB=|k|.又∵反比例函数图象在第一象限,k>0.∴k等于12.故选D.二、填空题(本大题共6小题,每小题3分,共18分)13.在2,1,﹣4,﹣1,0这五个数中,最小的数是﹣4.【考点】18:有理数大小比较.【分析】先根据各数的符号找出其中的负数,再根据其绝对值的大小,找出其中最小的数.【解答】解:∵正数大于负数和0,∴可排除2、1和0,又∵|﹣4|>|﹣1|,∴﹣4<﹣1∴最小的数是﹣4.故答案为:﹣4.14.要使分式有意义,则字母x的取值范围是x≠﹣3.【考点】62:分式有意义的条件.【分析】根据分母不能为零,可得答案.【解答】解:由题意,得x+3≠0,解得x≠=﹣3,故答案为:x≠﹣3.15.分解因式:x2﹣9=(x+3)(x﹣3).【考点】54:因式分解﹣运用公式法.【分析】本题中两个平方项的符号相反,直接运用平方差公式分解因式.【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).16.如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=20°,则∠2=110°.【考点】JA:平行线的性质.【分析】将矩形各顶点标上字母,根据平行线的性质可得∠2=∠DEG=∠1+∠FEG,从而可得出答案.【解答】解:如图,∵四边形ABCD是矩形,∴AD∥BC,∴∠2=∠DEG=∠1+∠FEG=110°.故答案为:110°.17.如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度.站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.若旗杆与教学楼的距离为9m,则旗杆AB的高度是3+9m(结果保留根号)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】根据在Rt△ACD中,tan∠ACD=,求出AD的值,再根据在Rt△BCD中,tan∠BCD=,求出BD的值,最后根据AB=AD+BD,即可求出答案.【解答】解:在Rt△ACD中,∵tan∠ACD=,∴tan30°=,∴=,∴AD=3m,在Rt△BCD中,∵∠BCD=45°,∴BD=CD=9m,∴AB=AD+BD=3+9(m).故答案为:3+9.18.如图,按此规律,第673行最后一个数是2017.【考点】37:规律型:数字的变化类.【分析】每一行的最后一个数字分别是1,4,7,10…,易得第n行的最后一个数字为1+3(n﹣1)=3n﹣2,由此建立方程求得最后一个数是2017在哪一行.【解答】解:∵每一行的最后一个数分别是1,4,7,10…,∴第n行的最后一个数字为1+3(n﹣1)=3n﹣2,∴3n﹣2=2017解得n=673.因此第673行最后一个数是2017.故答案为:673.三、解答题(本大题共8小题,共66分)19.计算:(﹣2020)0+|﹣2|﹣4ocs30°+(﹣)﹣2.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】直接利用零指数幂的性质、负指数幂的性质、特殊角的三角函数值、绝对值的性质分别化简,然后根据实数的运算法则求得计算结果.【解答】解:(﹣2017)0+|﹣2|﹣4ocs30°+(﹣)﹣2=1+2﹣4×+9=12﹣2.20.先化简,再求值:÷(1+),其中x=﹣2.【考点】6D:分式的化简求值.【分析】先根据分式的混合运算顺序和法则化简原式,再将x代入求值即可得.÷(1+)【解答】解:原式=÷(+)=÷=•=,当x=﹣2时,原式==.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上.建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).(1)请画出△ABC关于y轴对称的△A1B1C1.(2)将△ABC绕点O逆时针旋转90°后得到△A2B2C2,试在图中画出图形△A2B2C2,并计算点C 旋转到点C2所经过的路径长.(结果保留π)【考点】R8:作图﹣旋转变换;MN:弧长的计算;P7:作图﹣轴对称变换.【分析】(1)根据轴对称的性质,找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可;(2)分别找出点A、B、C绕点O逆时针旋转90°的对应点A2、B2、C2的位置,然后顺次连接即可,根据点C所经过的路线是半径为,圆心角是90°的扇形,然后根据弧长公式进行计算即可求解.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;∵OC==,∴点C旋转到点C2所经过的路径长为:l==.22.2019年南宁市教育局组织全市中小学时候参加安全知识网络竞赛,在安全知识竞赛结束后,赛后发现所有参赛学生会的成绩都高于50分.为了了解本次大赛的成绩分布情况,某校随机抽取了其中200名学生的成绩(成绩x取整数,总分为100分)作为样本进行统计分析,得到如下不完整的统计图表,请根据图标中的信息解答下列各题:成绩(分)频数频数50<x≤6010 b60<x≤7020 0.1070<x≤80 30 0.1580<x≤90 a 0.3090<x≤10080 0.40(1)频数分布表中a=60,b=0.05;本次比赛成绩的中位数会落在80≤x<90分数段;(2)请补全频数分布直方图;(3)该校安全知识竞赛成绩满分共有4人,其中男生2名,女生2名,为了激励学生增强安全意识,现需要从这4人中随机抽取2人介绍学习经验,请用“列表法”或“画树状图”,求恰好选到一男一女的概率.【考点】X6:列表法与树状图法;V7:频数(率)分布表;V8:频数(率)分布直方图;W4:中位数.【分析】(1)根据第二组的频数是20,频率是0.10,求得数据总数,再用数据总数乘以第四组频率可得a的值,用第三组频数除以数据总数可得b的值;根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(2)根据(1)的计算结果即可补全频数分布直方图;(3)画树状图得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率.【解答】解:(1)样本容量是:20÷0.10=200,a=200×0.30=60,b=10÷200=0.05;因为一共有200个数据,按照从小到大的顺序排列后,第100个与第101个数据都落在第四个分数段,所以这次比赛成绩的中位数会落在80≤x<90分数段;(2)补全频数分布直方图,如下:(3)画树状图如下:所有等可能的情况有12种,其中一男一女有8种,∴恰好选到一男一女的概率==.故答案为60,0.05;80≤x<90.23.如图,已知Rt△ABC中,∠ACB=90°,以BC为直径作⊙O交AB于点D,E是AC上一点,且DE=CE,连接OE.(1)请判断DE与⊙O的位置关系,并证明你的结论;(2)求证:E为AC的中点.【考点】MB:直线与圆的位置关系;KD:全等三角形的判定与性质;S9:相似三角形的判定与性质.【分析】(1)连接OD,根据全等三角形的性质得到∠ODE=∠ACB=90°,于是得到结论;(2)根据全等三角形的性质得到∠DOE=∠COE=COD,根据圆周角定理得到∠B=COD,等量代换得到∠COE=∠B,推出OE∥AB,根据平行线分线段成比例定理得到,于是得到结论.【解答】解:(1)DE与⊙O相切,理由:连接OD,在△ODE与△OCE中,,∴△ODE≌△OCE,∴∠ODE=∠ACB=90°,∴OD⊥DE,∴DE与⊙O相切;(2)证明:由(1)证得△ODE≌△OCE,∴∠DOE=∠COE=COD,∴∠B=COD,∴∠COE=∠B,∴OE∥AB,∴,∵OC=OB,∴==1,∴CE=AE,∴E为AC的中点.24.南宁盛产各种特色食品,其中芒果干与桂圆干是大家非常喜爱的两种特产,某旅行经销店欲购进一批芒果干与桂圆干,已知购买1袋芒果干和1袋桂圆干共需75元,3袋芒果干和2袋桂圆干共需205元.(1)求芒果干与桂圆干的进货单价;(2)若芒果干与桂圆干的售价如表:该旅游经销店打算用不超过2700元的货款购进芒果干与桂圆干共100袋,如何进货能够使两种特产全部售完后获得最大利润,最大利润是多少?(不考虑其他因素)商品售价(元/袋)芒果干65桂圆干28【考点】FH:一次函数的应用.【分析】(1)设芒果干的进货单价为x元,桂圆干的进货单价为y元,根据购买1袋芒果干和1袋桂圆干共需75元,3袋芒果干和2袋桂圆干共需205元,建立方程组求出其解即可;(2)设该旅游经销店购进芒果干m袋,获得的利润为W元,根据进价不超过2700元建立不等式组求出m的取值范围;再根据利润=m袋芒果干的利润+袋桂圆干的利润建立W与m之间的关系式,由一次函数的性质求出其解即可.【解答】解:(1)设芒果干的进货单价为x元,桂圆干的进货单价为y元,由题意,得,解得:.答:芒果干的进货单价为55元,桂圆干的进货单价为20元;(2)设该旅游经销店购进芒果干m袋,获得的利润为W元,由题意,得55m+20≤2700,解得:m≤20.W=(65﹣55)m+(28﹣20)=2m+800.∴k=2>0,∴W随m的增大而增大,∴当m=20时,W最大=2×20+800=840,此时100﹣m=80.答:购进芒果干20袋,桂圆干80袋,全部售完后获得最大利润,最大利润是840元.25.已知正方形ABCD,P为直线CD上的一点,以PC为边作正方形PCNM,使点N在直线BC上,连接MB、MD.(1)如图1,若点P在线段DC的延长线上,求证:MB=MD;(2)如图2,若点P在线段DC上,当P为DC的中点时,判断△PMD的形状,并说明理由;(3)如图3,若点P在线段DC上,连接BD,当MP平分∠DMB时,求∠DMB的度数.【考点】LO:四边形综合题.【分析】(1)根据正方形的性质证明△BNM≌△DPM,可得MB=MD;(2)根据小正方形的性质得:∠DPM=∠CPM=90°,由中点结合得:PD=PM,所以△PMD是等腰直角三角形;(3)如图3,作辅助线,构建等腰直角三角形EFD,设CD=a,PC=b,则PD=a﹣b,由PM∥BC,得△PME∽△CBE,所以,代入可计算得:a=b,根据正方形对角线平分直角得:∠CDB=45°,得△DEF是等腰直角三角形,求EF和CE的长,得EF=EC,根据角平分线的逆定理得:BE平分∠DBC,最后由平行线和已知的角平分线可得结论.【解答】证明:(1)如图1,∵四边形ABCD和四边形CPMN是正方形,∴BC=DC,CN=CP,∠P=∠N=90°,∴BC+CN=DC+PC,即BN=DP,∴△BNM≌△DPM,∴MB=MD;(2)△PMD是等腰直角三角形;理由如下:如图2,∵P是CD的中点,∴PD=PC,∵四边形CPMN是正方形,∴PM=PC,∠DPM=∠CPM=90°,∴PD=PM,∴△PMD是等腰直角三角形;(3)如图3,设PC与BM相交于点E,过点E作EF⊥BD,垂足为F,设CD=a,PC=b,则PD=a﹣b,∵MP平分∠DME,MP⊥DE,∴PE=PD=a﹣b,CE=a﹣(2a﹣2b)=2b﹣a,∵PM∥BC,∴△PME∽△CBE,∴,即,∴a=b,∵∠CDB=45°,∴EF=DE•sin45°=•2(a﹣b)=(b﹣b)=2b﹣b,∵CE=2b﹣a=2b﹣b,∴EF=EC,EF⊥BD,EC⊥BC,∴BE平分∠DBC,∴∠EBF=∠EBC=∠DBC=22.5°,∵PM∥BC,∴∠PME=∠EBC=22.5°,∴∠DMB=45°.26.抛物线y=ax2+bx+3交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.(1)求抛物线的函数表达式及抛物线的对称轴;(2)如图a,点P是抛物线上第二象限内的一动点,若以AP,AO为邻边的平行四边形第四个顶点恰好落在抛物线上,求出此时点P的坐标;(3)如图b,点D是抛物线上第二象限内的一动点,过点O,D的直线y=kx交AC于点E,若S△CDE:S△CEO=2:3,求k的值.【考点】HF:二次函数综合题.【分析】(1)把点A、B的坐标分别代入函数解析式,列出关于系数的方程组,通过解方程组求得它们的值即可;利用抛物线对称轴方程解答求得抛物线的对称轴方程;(2)根据平行四边形的对边平行且相等的性质得到:PQ∥AO,PQ=AO=3,由抛物线的对称性质推知点P的横坐标,然后根据二次函数图象上点的坐标特征求得点P的纵坐标即可;(3)欲求k的值,只需推知点D的坐标即可;利用抛物线的解析式y=x2﹣2x+3中求得C(0,3).由待定系数法解得直线AC的解析式为:y=x+3,如图b,过点D作DQ⊥AB于点Q,交AC于点F,则DF∥OC,构建相似三角形:△DEF∽△OEC,结合该相似三角形的对应边成比例推知DF=2.设点F(x,3x),点D的坐标为(x,﹣x2﹣2x+3),利用两点间的距离公式不难求得x的值,则易得点D的坐标.【解答】解:(1)把A(﹣3,0)和B(1,0)代入y=ax2+bx+3,得,解得,故抛物线的解析式是:y=﹣x2﹣2x+3,对称轴x=﹣=﹣=﹣1;(2)如图a,∵以AP、AO为邻边的平行四边形的第四个顶点Q恰好在抛物线上,∴PQ∥AO,PQ=AO=3.∵点P、Q都在抛物线上,∴P、Q关于直线x=﹣1对称,∴P点的横坐标是﹣.∴当x=﹣时,y=﹣()2﹣2×(﹣)+3=,∴点P的坐标是(﹣,);(3)在抛物线y=x2﹣2x+3中,当x=0时,y=3,则C(0,3).设直线AC的解析式为y=kx+b(k≠0),将A(﹣3,0)、C(0,3)代入,得,’解得,故直线AC的解析式为:y=x+3,如图b,过点D作DQ⊥AB于点Q,交AC于点F,则DF∥OC.∵S△CDE:S△CEO=2:3,∴DE:OE=2:3.∵DF∥OC,∴△DEF∽△OEC,∴=.又DE:OE=2:3,OC=3,∴DF=2.设点F(x,3x),点D的坐标为(x,﹣x2﹣2x+3),DF=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x.∴﹣x2﹣3x=2,解得x1=﹣1,x2=﹣2,当x=﹣1时,y=4.当x=﹣2时,y=3.即点D的坐标是(﹣1,4)或(﹣2,3).又点D在直线y=kx上,∴k=﹣4或k=﹣.。
2020-2021学年广西省中考数学模拟试题及答案解析
@学无止境!@广西最新下学期九年级数学综合模拟训练(2)(本试卷分第Ⅰ卷和第Ⅱ卷,考试时间120分钟,赋分120分) 第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出标号为(A )、(B )、(C )、(D )的四个选项,其中只有一个是正确的.1.2014的倒数是( )A .12014B .12014- C .2014 D .2014- 2.1.四边相等的四边形是( ) A. 正方形 B.矩形 C. 菱形D.梯形 3.下列各式中,与2a 是同类项的是( )A .3aB .2abC .23a -D .a 2b4.在下面的四个几何体中,同一几何体的主视图与俯视图相同的是( ) A .B . C . D .5.在平面直角坐标系中,已知点A (2,3),则点A 关于x 轴的对称点坐标为( )A .(3,2)B .(2,3-)C .(2-,3)D .(2-,3-)6.一次函数y=kx+b (k ≠0)的图像如图1所示,则下列结论正确的是( )A .k=2B .k=3C .b=2D .b=37.下列命题中,是真命题的是( )A .等腰三角形都相似B .等边三角形都相似C .锐角三角形都相似D .直角三角形都相似8.⊙O 的半径为5cm ,点A 到圆心O 的距离OA=3cm ,则点A 与圆O的位置关系为( )A .点A 在圆上B . 点A 在圆内C . 点A 在圆外D .无法确定9.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .10.一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球。
则下列事件是必然事件的是( )A .摸出的4个球中至少有一个球是白球B .摸出的4个球中至少有一个球是黑球@学无止境!@ C .摸出的4个球中至少有两个球是黑球D .摸出的4个球中至少有两个球11.如图2,在△ABC 中,∠CAB=70°,将△ABC 绕点A 逆时针旋转到△AB'C'的位置,使得CC'∥AB ,则∠BAB'的度数是( )A .70°B .35°C .40°D .50°12.如图3,在等腰梯形ABCD 中(图(1)),∠B=60°,P 、Q 同时从B 出发,以每秒1单位长度分别沿B-A-D-C 和B-C-D 方向运动至相遇时停止,设运动时间为t (秒),△BPQ 的面积为S (平房单位),S 与t 的函数图象如图(2)所示,则下列结论错误的是( )A .当t=4秒时,S=43B .AD=4C .当4≤t ≤8时,S=23tD .当t=9秒时,BP 平分梯形ABCD 的面积第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式:a 2+2a=.14.震惊世界的马航MH370失联事件发生后第30天,中国“海巡01”轮在南印度洋海域搜索过程中首次侦听到疑似飞机黑匣子的脉冲信号,探测到的信号源所在海域水深4500米左右,把4500米用科学记数法表示为米.15.如图4,在矩形ABCD 中,AB <BC ,AC,BD 相交于点O ,则图中等腰三角形的个数是.16.关于x 的一元二次方程x 2+a=0没有实数根,则实数a 的取值范围是 a >0 ..17.已知关于x 的一元二次方程()22x 2k 1x k 20+++-=的两根x 1和x 2,且()()112x 2x x 0--=,则k 的值是.18.观察下列运算:81=8,82=64,83=512,84=4096,85=32768,86=262144,…,则:81+82+83+84+…+82014的和的个位数字是.三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)19.(本题满分10分,每小题5分)(1)计算:()20142sin45421--+︒+-(2)解不等式:4x 3>x 6-+,并把解集在数轴上表示出来.20.(本题6分)在ABCD 中,对角线AC 、BD 交于点O ,过点O 作直线EF 分别交线段AD 、BC 于点E 、F.(1)根据题意,画出图形,并标上正确的字母;(2)求证:DE=BF.图421.(本题6分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.22.(本题6分)电动自行车已成为市民日常出行的首选工具。
2020-2021学年广西南宁市中考数学模拟试卷及答案解析
广西省九年级数学中考模拟试卷一、选择题:1.某超市出售的三种品牌月饼袋上,分别标有质量为(500±5)g,(500±10)g,(500±20)g的字样,从中任意拿出两袋,它们的质量最多..相差()A,10g B.20g C.30g D.40g2.如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是()A.5个B.6个C.7个D.8个3.若a=﹣2×32,b=(﹣2×3)2,c=﹣(2×3)2,则下列大小关系中正确的是()A.a>b>c B.b>c>a C.b>a>c D.c>a>b4.在下列四个图案中既是轴对称图形,又是中心对称图形的是( )5.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A.105°B.110°C.115°D.120°6.如图所示是甲、乙两户居民家庭全年支出费用的扇形统计图,根据统计图,下面对全年食品支出费用判断正确的是()A.甲户比乙户多B.乙户比甲户多C.甲、乙两户一样多D.无法确定哪一户多7.下列运算正确的是()A.a3+a3=a6 B.a3•a3=a9C.(a+b)2=a2+b2 D.(a+b)(a﹣b)=a2﹣b28.若函数y=(2m+6)x2+(1-m)x是正比例函数,则m的值是()A.m=-3B.m=1C.m=3D.m>-39.△ABC中,CA=CB,D为BA中点,P为直线CD上的任一点,那么PA与PB的大小关系是( )A.PA>PBB.PA<PBC.PA=PBD.不能确定10.已知m,n是方程x2-2x-1=0的两实数根,则+的值为( )A.-2B.-C. D.211.如图,若将正方形分成k个全等的矩形,期中上、下各横排两个,中间竖排若干个,则k的值为()A.6;B.8;C.10;D.1212.如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a+b+c,则P的取值范围是()A.﹣3<P<﹣1B.﹣6<P<0C.﹣3<P<0D.﹣6<P<﹣3二、填空题:13.若∣x+y∣+∣y-3∣=0,则x-y的值为。
2024年广西壮族自治区南宁市部分学校九年级一模考试数学模拟试题(含解析)
2024年初中学业水平学科素养调研卷(一)数学(全卷满分120分,考试时间120分钟)注意事项:1.答题前,考生务必将姓名、准考证号填写在试卷和答题卡上.2.考生作答时,请在答题卡上作答(答题注意事项见答题卡),在本试卷、草稿纸上作答无效.3.不能使用计算器.4.考试结束后,将本试卷和答题卡一并交回.一、选择题(共12小题,每小题3分,共36分,每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡上对应题目的答案标号涂黑.)1.2024年2月1日,某地记录到四个时刻的气温(单位:℃)分别为,0,1,,其中最低的气温是( )A .B .0C .1D .2.如图所示的几何体是由6个完全相同的小正方体搭成,其主视图是( )A .B .C .D .3.截至2023年底,中国新能源汽车保有量已达辆,此数据用科学记数法表示为( )A .B .C .D.3-2-3-2-204100004204110⨯5204.110⨯620.4110⨯72.04110⨯4.如图,四边形内接于,若,则的度数是( )A .B .C .D .5.在一个不透明的袋子里装有5个小球,这些小球除颜色外无其他差别,其中红球2个,白球3个,摇匀后,从这个袋子中任意摸出一个球,则这个球是白球的概率是( )A.B .C .D .6.在平面直角坐标系中,点关于原点对称的点的坐标是( )A .B .C .D .7.一元二次方程的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根8.下列计算正确的是( )A .B .C .D .9.某旅游景区内有一块三角形绿地,现要在绿地内建一个休息点,使它到,,三边的距离相等,下列作法正确的是( )A .B .C .ABCD O 70A ∠=︒C ∠70︒90︒110︒140︒23253556()2,1()2,1-()2,1-()1,2()2,1--210x x +-=842x x x ÷=523x x -=()236x x =()33xy xy =()ABC AC BC ≠ABC O AB BC ACD .10.根据物理学知识,作用于物体上的压力所产生的压强与物体受力面积三者之间满足关系式,如果压力为,压强要大于,则下列关于的说法正确的是( )A .小于B .大于C .小于D .大于11.如图,在□中,平分,交边于点,过点作于点,交于点.若,则的长为( )A .8B .10C .12D .1612.我们知道,小明同学据此画出了函数的大致图象,你认为小明同学所作图象正确的是( )A .B .C .D .二、填空题(本大题共6小题,每小题2分,共12分.)13.的相反数是.14.分解因式:.15.李校医对九(1)班50名学生的血型作了统计,列出如下边的统计表,则九(1)班()N F ()Pa p ()2m S Fp S=500N 5000Pa S S 20.1m S 20.1m S 210m S 210m ABCD 8AB =BE ABC ∠AD E C CF BE ⊥F AD G AG GE =BC ()()00xx x xx ⎧≥⎪=⎨-<⎪⎩1y x =--5-23x x -=A型血的人数是 .血型型型型型频率16.已知是方程的解,则的值为 .17.如图,当一个摆钟的钟摆从最左侧处摆到最右侧处时,摆角,点是弧的中点,连接交于点,若,则的长为 cm .(结果用含的式子表示)18.如图,将一个边长为4的菱形沿着直线折叠,使点落在延长线上的点处,若,则的长为 .三、解答题(本大题共8小题,共72分,解答应写出文字说明、证明过程或演算步骤.)19.计算:.20.先化简,再求值:,其中,.21.如图,在平面直角坐标系中,的三个顶点坐标分别为,,.ABAB O0.30.20.10.411x y =⎧⎨=⎩2ax y +=a OA OB 2AOB α∠=C AB OC AB D 20cm OA =AB αABCD AE D BC F EF BC ⊥DE ()2121312⨯--÷()()()22224x y x y x y y ⎡⎤+-+-÷⎣⎦1x =1y =-ABC ()1,1A ()3,4B ()4,2C(1)在图中画出关于轴对称的;(2)将先向左平移4个单位长度,再向上平移2个单位长度,画出平移后的;(3)在中有一点,则经过以上两次变换后点的对应点的坐标为______.22.2023年12月14日,一股冷空气开始影响我市,我市连续7天的天气情况如下:上述天气情况包括了每天的天气状况(如阴转小雨,小雨转多云等),气温(如“4/”指当天最低和最高气温分别是和),风向和风级.(1)这7天最高气温的众数是______,中位数是______;(2)计算这7天最低气温的平均数;(3)阅读冷空气等级标准表:序号等级冷空气来临的48小时内气温变化情况①弱冷空气降温幅度小于6②中等强度冷空气降温幅度大于或等于6,但小于8③较强冷空气降温幅度大于或等于8,且日最低气温超过8ABC x 111A B C △111A B C △222A B C △ABC (),P m n P 2P 17℃4℃17℃℃℃℃℃℃℃℃④强冷空气降温幅度大于或等于8,且日最低气温不超过8⑤寒潮降温幅度大于或等于10,且日最低气温不超过4本次来临的冷空气的等级是______.(填序号)23.我国第一届全国学生(青年)运动会于2023年11月5日在广西南宁开幕,吉祥物“壮壮”和“美美”毛绒玩具在市场出现热销,已知“壮壮”比“美美”每个便宜40元,某商场用6400元购买“壮壮”的数量是用4800元购买“美美”数量的2倍.(1)求购买一个“美美”和一个“壮壮”各需多少元?(2)为满足顾客需求,商场从厂家一次性购买“壮壮”和“美美”共100个,要求购买的总费用不超过11020元,求最多可以购买“美美”多少个?24.如图,已知,以为直径作交于点,连接,,作的平分线,交于点,交于点.(1)求证:是的切线;(2)求证:.25.综合与实践中国旅游研究院2024年1月5日发布的“2024年冰雪旅游十佳城市”中,哈尔滨位列榜首,火爆出圈,其中帽儿山的滑雪运动深受欢迎.滑雪爱好者小李为了得出滑行距离(单位:m )与滑行时间(单位:s )之间的关系,以便更好地享受此项运动所带来的乐趣,他在滑道A 上设置了若干个观测点,收集一些数据,如下表所示:点位1点位2点位3点位4点位5点位6点位7℃℃℃℃ABC AB O BC D AD =B CAD ∠∠ACB ∠AD E AB F AC O AC AFBC BF=y x滑行时间00.51 1.52 2.53…滑行距离0 1.625 4.58.6251420.62528.5(1)请你在平面直角坐标系中描出表中数据所对应的7个点,并用平滑的曲线连接它们;(2)观察由(1)所得的图象,请你依图象选用一个函数近似地表示与之间的函数关系,并求出这个近似函数的关系式(不要求写出自变量的取值范围);(3)若另一名滑雪爱好者小张在小李出发5秒后沿着滑道B 滑行(两条滑道互相平行,且起点在同一直线上),他的滑行距离(单位:m )与滑行时间(单位:s )可近似地看成二次函数,当小李滑行距离为384m 时,他比小张多滑行的距离不超过160m ,求的最小值.(参考数据:)26.应用与探究【情境呈现】在一次数学兴趣小组活动中,小明同学将一大一小两个三角板按照如图1所示的方式摆放,其中,,.他把三角板固定好后,将三角板从图1所示的位置开始绕点按顺时针方向旋转,每秒转动,设转动时间为秒.s x my y x y x 23y x dx =+d 212415376=90ACB DEB ∠=∠=︒30ABC DBE ∠=∠=︒4BD AC ==ABC DEB B 5︒t ()0130<≤【问题应用】(1)请直接写出图1中线段的值;(2)如图2,在三角板旋转的过程中,连接,当四边形是矩形时,求值;【问题探究】(3)如图3,在三角板旋转的过程中,取的中点,连接,是否存在最大值?若存在,请求出的最大值,并直接写出此时的值:若不存在,请说明理由.参考答案与解析1.A 【分析】本题考查有理数比较大小的实际应用,根据负数小于0小于正数,两个负数相比较,绝对值大的反而小,进行判断即可.【详解】解:∵,∴最低的气温是℃;故选A .2.D【分析】从正面看:共有2列,从左往右分别有2,1个小正方形;据此可画出图形.【详解】解:如图所示的几何体的主视图是.故选:D.AD DEB AD ACBD t DEB AD G CG CG CG t 3201-<-<<3-【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.3.D【分析】本题考查用科学记数法表示绝对值大于1的数.科学记数法的表示形式为的形式,其中为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值时,n 是正数;当原数的绝对值时,n 是负数.熟记相关结论即可.【详解】解:∵故选:D 4.C 【分析】本题主要考查了圆内接四边形的性质,解题的关键是根据圆内接四边形,两对角互补,求出的度数即可.【详解】解:∵四边形内接于,,∴.故选:C .5.C 【分析】本题考查了概率的求法:如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种可能,那么事件的概率,用白球的个数除以球的总数即可求得答案.【详解】解:∵从这个袋子中任意摸出一个球共有种等可能的情况,这个球是白球的有种可能,∴从这个袋子中任意摸出一个球,则这个球是白球的概率,故选:C .6.D 【分析】根据“平面直角坐标系中任意一点,关于原点的对称点是,即关于原点的对称点,横纵坐标都变成相反数”解答即可.10n a ⨯110a n ≤<,1>1<2041000072.04110=⨯C ∠ABCD O 70A ∠=︒18070110C ∠=︒-︒=︒n A m A ()mP A n=5335=(),P x y (),x y --【详解】在平面直角坐标系中,点关于原点对称的点的坐标是.故选:D .【点睛】本题主要考查了关于原点对称的点的坐标的特点,熟记关于原点的对称点,横、纵坐标都互为相反数是解题的关键.7.A 【分析】先计算出根的判别式的值,根据判别式的值就可以判断根的情况.【详解】解:∵在方程中,,∴方程有两个不相等的实数根.故选:A .【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式的关系:(1)⇔方程有两个不相等的实数根;(2)⇔方程有两个相等的实数;(3)⇔方程没有实数根,掌握一元二次方程根的情况与判别式的关系是解题的关键.8.C 【分析】本题考查整数的运算,利用同底数幂的除法,合并同类项,积的乘方,幂的乘方逐一计算,判断即可.【详解】解:A 、,选项计算错误;B 、,选项计算错误;C 、,选项计算正确;D 、,选项计算错误;故选:C .9.D 【分析】本题考查作图-基本作图,角平分线的性质等知识,解题的关键是理解题意,读懂图象信息.根据三角形内心的性质判断即可.()2,1()2,1--210x x +-=()214115∆=-⨯⨯-=210x x +-=∆0∆>Δ0=Δ0<∆844x x x ÷=523x x x -=()236x x =()333xy x y =【详解】解:∵点O 到三边的距离相等,∴点O 是的内心,即点O 是角平分线的交点,故选:D .10.A【分析】本题考查了反比例的应用,根据已知条件利用压强公式推导即可得到答案,熟练掌握其性质是解决此题的关键.【详解】解:∵,,∴,∵产生的压强要大于,∴小于,故选:A .11.C【分析】本题考查了平行四边形的性质、角平分线的定义、等腰三角形的性质等知识点,熟记相关结论是解题关键.根据题意可得、,据此即可求解.【详解】解:∵平分,∴∵四边形是平行四边形,∴∴,∴∵∴,∴∵∴∴∵AB BC AC 、、ABC 500N F =F p S =500p S=5000Pa S 20.1m 8AE AB ==8DG DC AB ===BE ABC ∠ABE CBE∠=∠ABCD AB CD AD CB∥∥,CBE AEB ABE ∠=∠=∠()()180ABE CBE BCG DCG ∠+∠+∠+∠=︒8AE AB ==CF BE⊥90CBE BCG ∠+∠=︒90AEB DGC ∠+∠=︒90ABE DCG ∠+∠=︒90AEB DGC ∠+∠=︒DCG DGC∠=∠8DG DC AB ===AG GE=∴∴故选:C12.B【分析】本题考查函数的图象和性质,根据时,,得到图象一定过点,即可得出结果.【详解】解:∵,∴当时,,∴图象一定过点,故满足题意的只有选项B ,故选:B .13.5【分析】本题主要考查相反数的定义,根据相反数的概念求出相反数即可,解题的关键是掌握只有符号不同的两个数互为相反数,0的相反数是0.【详解】∵的相反数是5,故答案为:5.14.【分析】根据提取公因式法因式分解进行计算即可.【详解】解:,故答案为:.【点睛】此题考查了提公因式法因式分解,熟练掌握提取公因式的方法是解本题的关键.15.【分析】142AG AE ==12BC AD AG DG ==+=0x =1y =-()0,1-1y x =--0x =1y =-()0,1-5-()3x x -()233x x x x -=-()3x x -15本题考查了频数和频率,根据频数频率数据总数求解,解答本题的关键是掌握频数频率数据总数.【详解】解:由题意可知,九(1)班型血的人数是(人),故答案为:.16.【分析】本题考查了二元一次方程的解,把方程组的解代入方程,得到关于的一元一次方程,解方程即可,把方程组的解代入方程,得到关于的一元一次方程是解题的关键.【详解】解:∵是方程的解,∴,∴,故答案为:.17.【分析】本题考查了解直角三角形的应用,圆的性质,全等三角形的判定与性质,由点是弧的中点,得出,,已知的长,用正弦公式可表示, 即可求解,关键是掌握正弦的定义.【详解】解:∵点是弧的中点,∴,又∵,∴,∵,∴,∴,,∴,又∵∴=⨯=⨯A 500.315⨯=151-a a 11x y =⎧⎨=⎩2ax y +=12a +=1a =-1-40sin αC AB AC BC =12AOD BOC AOB α∠==∠=∠OA AD C AB AC BC=2AOB α∠=12AOD BOC AOB α∠==∠=∠,OD OD OA OB ==()SAS OAD OBD ≌V V 90ODA ODB ∠=∠=︒AD BD =sin sin AD AOD OAα∠==20cmOA =n 2020sin si sin AD OA ααα=⋅==⨯∴故答案为:.18.【分析】本题考查了菱形的性质,折叠的性质,勾股定理,等腰三角形的判定与性质,由菱形得到,,由折叠得:,,再由勾股定理求出【详解】解:如图:在菱形中,,,∴,由折叠得:,,∵,∴,∴,∴,∴,∴,∴,∴,()2020m sin sin s 0in 4c AB AD BD ααα=+=+=40sin α4-4AB AD BC CD ====,∥∥AD BC AB CD 4AF AD ==3,D FE DE ∠=∠=BF =ABCD 4AB ADBC CD ====AD BC AB CD ,12DAF B ∠=∠∠=∠,4AF AD ==3D FE DE ∠=∠=,EF BC ⊥90CFE ∠=︒1+3=90∠∠︒90DAF D ∠+∠=︒()418090DAF D ∠=︒-∠+∠=︒490BAF ∠=∠=︒BF ===4CF BF BC =-=-∵,∴,∵,∴∴,∴,∴,∴,∴,故答案为:.19.【分析】本题考查有理数的混合运算,根据混合运算的法则,进行计算即可.【详解】解:原式.20.【分析】本题考查整式的混合运算及因式分解的应用,熟知乘法公式、整式的四则运算法则和因式分解的方法是正确解决本题的关键.按整式运算法则或先运用因式分解化简再代入计算即可.【详解】解:化简方法一:化简方法二:4AB AF ==1B ∠=∠190B ∠+∠=︒45B ∠=︒245∠=︒590245∠=︒-∠=︒25∠=∠CF FE=4DE CF ==410-()42128210=⨯--⨯=--=-21x y,+-()()()22224x y x y x y y ⎡⎤+-+-÷⎣⎦()()2224x y x y x y y⎡⎤=++-+÷⎣⎦()244x y y y⎡⎤=+⨯÷⎣⎦2x y=+()()()22224x y x y x y y ⎡⎤+-+-÷⎣⎦()()22224444x xy y x y y ⎡⎤=++--÷⎣⎦当,时,原式.21.(1)图见解析(2)图见解析(3)【分析】本题考查坐标与图形变换:(1)根据轴对称的性质,画出即可;(2)根据平移的性质,画出;(3)根据轴对称和平移规则,求出点的坐标即可.【详解】(1)解:如图,即为所求;(2)如图,即为所求;(3)点关于轴的对称点为,再将先向左平移4个单位长度,再向()222244+44x xy y x y y =++-÷()24+84xy y y =÷244+84xy y y y=÷÷2x y=+1x =1y =-()1211=+⨯-=-()4,2m n --+111A B C △222A B C △2P 111A B C △222A B C △(),P m n x (),m n -(),m n -上平移2个单位长度,得到:;故;故答案为:.22.(1),;(2);(3)①.【分析】本题考查了众数,中位数,平均数,掌握相关的定义是解题的关键.(1)直接用众数,中位数的定义即可求解;(2)根据平均数的定义列式计算即可求解;(3)参照天气情况图可得答案.【详解】(1)解:这7天的最高气温分别是:,∴这7天最高气温的众数是,中位数是.(2)解:这7天最低气温的平均数为.(3)解:周四周五的温差为,降温幅度小于6∴本次来临的冷空气的等级是①.23.(1)购买一个“美美”和一个“壮壮”分别需120元,80元(2)75个【分析】本题考查分式方程的实际应用,一元一次不等式的实际应用:(1)设购买一个“美美”需要元,根据“壮壮”比“美美”每个便宜40元,某商场用6400元购买“壮壮”的数量是用4800元购买“美美”数量的2倍,列出分式方程进行求解即可;(2)设购买“美美”个,根据题意,列出不等式进行求解即可.【详解】(1)解:设购买一个“美美”需要元,则购买一个“壮壮”需要元,由题意,得:()4,2m n --+()24,2P m n --+()4,2m n --+6℃6℃2℃1768467℃、5℃、℃、℃、℃、℃、℃6℃6℃421311227++++++=℃422-=℃℃x a x ()40x -,解得:,经检验是原方程的解,∴;答:购买一个“美美”和一个“壮壮”分别需120元,80元;(2)设购买“美美”个,则购买“壮壮”个,由题意,得:,解得:,又为整数,∴最多可以购买“美美”75个.24.(1)见解析;(2)见解析.【分析】本题考查了切线的判定,角平分线的性质,相似三角形的判定与性质,掌握相关性质是解题的关键.(1)由是直径,得到,由,进而得到即可求证;(2)作,交于点,分别求证,即可得出结论.【详解】(1)证明:∵是直径,∴,∴,∵,∴,∴是切线.(2)证明:作,交于点,如图:48006400240x x ⋅=-120x =120x =4080x -=a ()100a -()1208010011020a a +-≤1512a ≤a AB O 90ADB ∠=︒=B CAD ∠∠90BAC ∠=︒FH BC ⊥BC H FHB ADB ∽ CAB ADB ∽AB O 90ADB ∠=︒90ABD BAD ∠+∠=︒ABD CAD ∠=∠90CAD BAD BAC ∠+∠=︒=∠AC O FH BC ⊥BC H∵是的角平分线,,∴,∵,∴,∴ ,∵,∴,∴ ,∴,综上,.25.(1)图见解析(2)(3)11【分析】本题考查二次函数的实际应用,正确的求出函数解析式,是解题的关键.(1)描点,连线画出图象即可;(2)设函数解析式为,待定系数法求出函数解析式即可;(3)求出小李滑行距离为384m 时,所用的时间,进而求出小张滑行的距离,根据小李比小张多滑行的距离不超过160m ,列出不等式进行求解即可.【详解】(1)解:根据表格数据,描点,连线如图:CF ACB ∠90FAC FHC ∠=∠=︒AF HF =,90FBH ABD FHB ADB ∠=∠∠=∠=︒FHB ADB ∽ FH AD AF BF AB BF==,90CBA ABD CAB ADB ∠=∠∠=∠=︒CAB ADB ∽AD AC AB BC =AF AD AC BF AB BC==AC AF BC BF =2522y x x =+2y ax bx c =++(2)由图象可知,图象近似为二次函数的图象,∴设解析式为,将表格中的点位1,点位3,点位5的坐标代入得:,解得:,∴;(3)∵,∴当时,,解得:(负值已舍去);∴小张的滑行时间为,∵,∴当时,,由题意,得:,解得:,∴的最小值为:11.26.(1);(2);(3)存在,最大值为,此时的值为.【分析】本题考查了旋转的性质,三角形的中位线定理,三角形的三边关系,掌握相关性质是解题的关键.(1)由,,得到,即可求解;2y ax bx c =++0 4.54214c a b c a b c =⎧⎪++=⎨⎪++=⎩0522c a b =⎧⎪⎪=⎨⎪=⎪⎩2522y x x =+2522y x x =+384y =2523842x x +=12x =1257s -=23y x dx =+7x =23777147y d d =⨯+=+3847147160d --≤11d ≥d 4=AD 12t =CG 6t 2490ACB ∠=︒30ABC ∠=︒12AC AB =(2)当四边形是矩形时,,求出旋转角,即可求解;(3)取中点,连接,当三点共线时,最大值,可求出最大值为,此时的值为.【详解】解:(1)∵,,∴,∵,∴;(2)如图:当四边形是矩形时,∴,∵,∴旋转角,∴(秒),∴的值为;(3)取中点,连接,如图:∵是中点,∴中位线,在中,,∴,∴ ,∵是斜边上中线,ACBD 90CBD ∠=︒60ABD ∠=︒AB O OG OC 、O C G 、、CG 6t 2490ACB ∠=︒30ABC ∠=︒12AC AB =4BD AC ==4AD BD ==ACBD 90CBD ∠=︒30ABC DBE ∠=∠=︒9060ABD ABC ∠=︒-∠=︒60512t =︒÷︒=t 12AB O OG OC 、G AD 114222OG BD ==⨯=Rt ABC △90,30ACB ABC ∠=︒∠=︒12AC AB =2248AB AC ==⨯=OC Rt ABC △∴,当不在同一直线上时, ,当在线段上时, ,,∴三点共线时,最大值,此时,如图,,,∴,∵,∴,∴旋转角为,∴(秒),综上,存在最大值为,此时的值为.142OC AB ==O C G 、、CG OC OG <+O CG CG OC OG =+CG OC OG ∴≤+O C G 、、CG 426OC OG =+=+=OC OA OB ==30OBC CCB ∠=∠=︒120AOG ∠=︒OG BD ∥120ABD AOG ∠=∠=︒120︒120524t =︒÷︒=CG 6t 24。
2020年广西南宁市中考数学一模试卷 (含答案解析)
2020年广西南宁市中考数学一模试卷一、选择题(本大题共12小题,共36.0分)1.在下列实数中,无理数是()D. −9A. 0B. √2C. 122.下列图形是中心对称图形的是()A. B. C. D.3.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为()A. 3.5×107B. 3.5×108C. 3.5×109D. 3.5×10104.下列运算中,计算结果正确的是()A. a2⋅a3=a6B. (a2)3=a5C. a3+a3=2a3D. (a2b)2=a2b25.以下问题不适合全面调查的是()A. 调查某班学生每周课前预习的时间B. 调查某中学在职教师的身体健康状况C. 调查全国中小学生课外阅读情况D. 调查某校篮球队员的身高6.一元二次方程2x2−5x−4=0根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判定该方程根的情况7.如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A. 40°B. 45°C. 50°D. 60°8.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.若3枚鸟卵全部成功孵化,则3只雏鸟中恰有2只雄鸟的概率是()A. 23B. 58C. 38D. 169.如图,在边长为9的正方形ABCD中,F为AB上一点,连接CF.过点F作FE⊥CF,交AD于点E,若AF=3,则AE等于()A. 1B. 1.5C. 2D. 2.510.某次列车平均提速20km/ℎ.用相同的时间,列车提速前行驶400km,提速后比提速前多行驶100km.设提速前列车的平均速度为xkm/ℎ,下列方程正确的是()A. 400x =400+100x+20B. 400x=400−100x−20C. 400x =400+100x−20D. 400x=400−100x+2011.老师要求同学们设计一个测量某池塘两端A、B距离的方案,王兵设计的方案如下:如图,在池塘外选一点C,测得∠CAB=90°,∠C=30°,AC=36m,则可知AB的距离为()A. 19√3mB. 19mC. 12√3mD. 12√2m12.如图,点A,B为直线y=x上的两点,过A,B两点分别作y轴的平行线交y=1x(x>0)于C,D两点,若BD=2AC,则4OC2−OD2的值为()A. 5B. 6C. 7D. 8二、填空题(本大题共6小题,共18.0分)13.不等式的解集在数轴上表示如图所示,则该不等式可能是______ .14.计算:√18−√32=______.15.某射击运动员在同一条件下的射击成绩记录如下:射击次数501002004008001000“射中9环以上”的次数3882157317640801“射中9环以上”的频率0.7600.8200.7850.7930.8000.801根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率是______.(结果保留小数点后一位)16.某礼堂的座位排列呈圆弧形,横排座位按下列方式设置:排数1234…座位数20242832…根据提供的数据得出第n排有________个座位.17.在平面直角坐标系中,点A(4,2),B(1,0),将点A绕点B逆时针旋转90°得到点C,则点C的坐标为.18.已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB、DC相交于点E、F,且∠EAF=60°.如图,当点E在线段CB的延长线上,且∠EAB=15°时,点F到BC的距离为______.三、解答题(本大题共8小题,共66.0分))2.19.计算:24÷(−2)3−9×(−1320.先化简,再求x−3x ÷(x−9x),其中x=√7−3.21.如图,点B,E,C,F在一条直线上,AB=DF,AC=DE,BE=FC.(1)求证:△ABC≅△DFE;(2)连结AF,BD,求证:四边形ABDF是平行四边形.22.为了调查学生对垃圾分类及投放知识的了解情况,从甲、乙两校各随机抽取40名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.a.甲、乙两校40名学生成绩的频数分布统计表如下:(说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)b.甲校成绩在70≤x<80这一组的是:70707071727373737475767778c.甲、乙两校成绩的平均分、中位数、众数如下:根据以上信息,回答下列问题:(1)写出表中n的值;(2)在此次测试中,某学生的成绩是74分,在他所属学校排在前20名,由表中数据可知该学生是______校的学生(填“甲”或“乙”),理由是______;(3)假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数.23.如图,一艘轮船在A处测得灯塔P在船的北偏东30°的方向,轮船沿着北偏东60°的方向航行16km后到达B处,这时灯塔P在船的北偏西75°的方向.求灯塔P与B之间的距离(结果保留根号).24.入冬以来,我省的雾霾天气烦发,空气质量较差,容易引起多种上呼吸道疾病,某电器商场代理销售A、B两种型号的家用空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价高200元;2台A型空气净化器的进价与3台B型空气净化器的进价相同,(1)求A、B两种型号的家用空气净化器的进价分别是多少元;(2)若商场购进这两种型号的家用空气净化器共50台,其中A型家用空气净化器的数量不超过B型家用空气净化器的数量,且不少于16台,设购进A型家用空气净化器m台.①求m的取值范围;②已知A型家用空气净化器的售价为800元每台,销售成本为每台2n元;B型家用空气净化器的售价为每台550元,销售成本为每台n元,若25≤n≤100,求售完这批家用空气净化器的最大利润w(元)与n(元)的函数关系式(每台销售利润=售价−进价−销售成本)25.如图,已知AB是⊙O的直径,且AB=4,点C在半径OA上(点C与点O、点A不重合),过点C作AB的垂线交⊙O于点D.连接OD,过点B作OD的平行线交⊙O于点E,交CD的延长线于点F.(1)若点E是BD⏜的中点,求∠F的度数;(2)求证:BE=2OC;(3)设AC=x,则当x为何值时BE⋅EF的值最大?最大值是多少?26.在平面直角坐标系中,直线AB过点A(94,74)、点B(4,0),直线AC为y=13x+1交x轴于C,交y轴于D,点E为直线AB上的动点,(1)求C、D两点的坐标和直线AB的解析式;(2)求△ADE与△ABC相似时,点E的坐标.-------- 答案与解析 --------1.答案:B解析:解:A、0是有理数;B、√2是无理数;C、1是分数,为有理数;2D、−9是有理数;故选:B.先把能化简的数化简,然后根据无理数的定义逐一判断即可得.本题主要考查无理数的定义,属于简单题.2.答案:D解析:本题主要考查了中心对称图形,关键是要寻找对称中心,旋转180度后两部分重合.根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.解:A.不是中心对称图形,故此选项错误;B.不是中心对称图形,故此选项错误;C.不是中心对称图形,故此选项错误;D.是中心对称图形,故此选项正确;故选D.3.答案:B解析:解:350 000 000=3.5×108.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于350 000 000有9位,所以可以确定n=9−1=8.此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.答案:C解析:解:A、a2⋅a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、a3+a3=2a3,正确;D、(a2b)2=a4b2,故此选项错误;故选:C.根据题意,逐项判断即可.本题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确掌握相关运算法则是解题关键.5.答案:C解析:解:调查某班学生每周课前预习的时间适合全面调查;调查某中学在职教师的身体健康状况适合全面调查;调查全国中小学生课外阅读情况适合抽样调查,不适合全面调查;调查某校篮球队员的身高适合全面调查,故选:C.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.答案:A解析:解:△=(−5)2−4×2×(−4)=57>0,所以方程有两个不相等的实数根.故选:A.先计算出判别式的值,然后根据判别式的意义确定方程根的情况.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.解析:本题考查了作图−基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线),也考查了等腰三角形的性质,属于基础题.利用等腰三角形的性质和基本作图得到CG⊥AB,则CG平分∠ACB,利用∠A=∠B和三角形内角和计算出∠ACB,从而得到∠BCG的度数.解:由作法得CG⊥AB,∵AC=BC,∴CG平分∠ACB,∠A=∠B,∵∠ACB=180°−40°−40°=100°,∠ACB=50°.∴∠BCG=12故选:C.8.答案:C解析:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.画树状图得出所有等可能的情况数,找出恰有两只雄鸟的情况数,即可求出所求的概率.解:画树状图,如图所示:所有等可能的情况数有8种,其中三只雏鸟中恰有两只雄鸟的情况数有3种,.则P=38故选C.解析:解:∵四边形ABCD是正方形,∴AD=AB=BC=9,∠A=∠B=90°,∵FE⊥CF,∴∠EFC=90°,∴∠AEF+∠EFA=90°,∠AFE+∠CFB=90°,∴∠AEF=∠CFB,∴△AEF∽△BFC,∴AEBF =AFBC,∴AE9−3=39,∴AE=2,故选:C.根据正方形性质得出AD=AB=BC=9,∠A=∠B=90°,求出∠AEF=∠CFB,证△AEF∽△BFC,得出比例式,即可求出答案.本题考查了正方形的性质,相似三角形的性质和判定的应用,解此题的关键是推出△AEF∽△BFC,注意:相似三角形的对应边的比相等.10.答案:A解析:本题考查了由实际问题抽象出分式方程.根据“提速前后的时间相同”列出方程即可.解:提速前列车的平均速度为xkm/ℎ,则提速后列车的平均速度为(x+20)km/ℎ,提速前行驶400km需要400xℎ,提速后行驶(400+100)km需要400+100x+20ℎ,根据时间相等可得400x =400+100x+20,故选A.11.答案:C解析:解:∵∠CAB=90°,∠C=30°,AC=36m,∴设AB=x,则BC=2x,∴AC2+AB2=BC2,即362+x2=(2x)2,解得:x=12√3.故选:C.直接利用直角三角形的性质结合勾股定理得出答案.此题主要考查了勾股定理的应用,正确应用勾股定理是解题关键.12.答案:B解析:本题考查了反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征以及勾股定理,利用勾股定理及配方找出4OC2−OD2是解题的关键.设点A的坐标为(m,m),点B的坐标为(n,n),则点C的坐标为(m,1m ),点D的坐标为(n,1n),利用勾股定理进一步求得答案.解:设点A的坐标为(m,m),点B的坐标为(n,n),则点C的坐标为(m,1m ),点D的坐标为(n,1n),∴BD=n−1n ,AC=1m−m,∵BD=2AC,∴n−1n =2(1m−m),4OC2−OD2=4(m2+1m2)−(n2+1n2),=4[(m−1m)2+2]−[(n−1n)2+2]=4(m−1m)2+8−4(m−1m)2−2=6.故选B.解析:不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.数轴的某一段上面表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.解:由图示可看出,从1出发向左画出的线且1处是实心圆,表示x≤1.所以这个不等式为x≤1.故答案为x≤1.14.答案:−√2解析:此题考查二次根式的加减,注意先化简再合并.先化简,再进一步合并同类二次根式即可.解:原式=3√2−4√2=−√215.答案:0.8解析:本题考查的是利用频率估计概率,熟知大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率是解答此题的关键.根据大量的实验结果稳定在0.8左右即可得出结论.解:∵从频率的波动情况可以发现频率稳定在0.8附近,∴这名运动员射击一次时“射中9环以上”的概率是0.8.故答案为0.8.解析:解:根据表格中数据所显示的规律可知:第1排有16+4=20个座位,第2排有16+4×2=24个座位,第3排有16+4×3=28个座位,故第n排有16+4n个座位.通过分析数据可知,后面每加个排,就加四个座位,再通过计算推断得出第n排的座位数.主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.17.答案:(−1,3)解析:本题主要考查了旋转变换和三角形全等的判定与性质有关知识,根据题意画出图形,易证△ABE≌△BCD,求出CD、OD的长即可求出C的坐标.解:如图所示,点A绕点B逆时针旋转90°得到点C,∵A(4,2),B(1,0),∴AE=2,BE=4−1=3,由旋转的性质可得∠ABC=90°,AB=BC,∴∠CBD+∠ABE=90°,∵∠ABE+∠A=90°,∴∠A=∠CBD,在△ABE和△CBD中{∠A=∠CBD∠AEB=∠CDB=90°AB=BC,∴△ABE≅△BCD(AAS),∴CD=BE=3,BD=AE=2,∵OB=1,∴OD=2−1=1,∴点C的坐标为(−1,3).故答案为(−1,3).18.答案:3−√3解析:【试题解析】解:过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,∵∠EAB=15°,∠ABC=60°,在Rt△AGB中,∵∠ABC=60°,AB=4,∴BG=2,AG=2√3,在Rt△AEG中,∵∠AEG=∠EAG=45°,∴AG=GE=2√3,∴EB=EG−BG=2√3−2,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAF,在△BAE和△CAF中,{∠BAE=∠CAF BA=AC∠B=∠ACF,∴△BAE≌△CAF(ASA),∴∠ABE=∠ACF=120°,EB=CF=2√3−2,∴∠FCE=60°,在Rt△CHF中,∵∠CFH=30°,CF=2√3−2,∴CH=√3−1.∴FH=√3(√3−1)=3−√3.∴点F到BC的距离为3−√3,故答案为3−√3过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,解直角三角形求出AG和BE的长度,再证明△BAE≌△CAF,于是证明得到BE=CF,最后解直角三角形求出FH的长度即可.本题主要考查了菱形的性质、全等三角形的判定与性质以及等边三角形的知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线,属于中考常考题目.19.答案:解:原式=24÷(−8)−9×19=−4.解析:此题主要考查了有理数的混合运算,正确掌握相关运算法则是解题关键.直接利用有理数的混合运算法则计算得出答案.20.答案:解:原式=x−3x ÷x 2−9x=x −3x ×x (x +3)(x −3) =1x +3当x =√7−3时,原式=1√7−3+3=1√7=√77.解析:本题主要考查的是分式的化简求值,掌握法则是解题的关键.先把括号里的通分,再根据分式减法的法则计算,然后把除法转化为乘法,再约分把原式化简,最后把x 的值代入化简后的代数式计算即可.21.答案:证明:(1)∵BE =FC ,∴BC =EF ,在△ABC 和△DFE 中,{AB =DFAC =DE BC =EF,∴△ABC≌△DFE(SSS);(2)解:如下图所示:由(1)知△ABC≌△DFE ,∴∠ABC =∠DFE ,∴AB//DF ,∵AB =DF ,∴四边形ABDF 是平行四边形.解析:本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.(1)由SSS 证明△ABC≌△DFE 即可;(2)连接AF 、BD ,由全等三角形的性质得出∠ABC =∠DFE ,证出AB//DF ,即可得出结论. 22.答案:解:(1)这组数据的中位数是第20、21个数据的平均数,=72.5;所以中位数n=72+732(2)甲;这名学生的成绩为74分,大于甲校样本数据的中位数72.5分,小于乙校样本数据的中位数76分,故选甲;(3)在样本中,乙校成绩优秀的学生人数为14+2=16.=320.假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数为800×1640解析:本题主要考查频数分布表、中位数及样本估计总体,解题的关键是根据表格得出解题所需数据及中位数的定义和意义、样本估计总体思想的运用.(1)根据中位数的定义求解可得;(2)根据甲这名学生的成绩为74分,大于甲校样本数据的中位数72.5分,小于乙校样本数据的中位数76分可得;(3)利用样本估计总体思想求解可得.23.答案:解:过点P作PH⊥AB于点H,由题意得∠PAB=30°,∠PBA=45°,设PH=x,则AH=√3x,BH=x,PB=√2x,∵AB=16,∴√3x+x=16,解得:x=8√3−8,∴PB=√2x=8√6−8√2,答:灯塔P与B之间的距离为(8√6−8√2)km.解析:本题考查的是解直角三角形的应用−方向角问题,注意在解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.作PH ⊥AB ,由题意得∠PAB =30°,∠PBA =45°,设PH =x ,则AH =√3x ,BH =x ,PB =√2x ,由AB =16可得关于x 的方程,解之可得.24.答案:解:(1)设A 型号的家用空气净化器的进价是x 元,B 型号的家用空气净化器的进价为y 元. 根据题意可列方程组为{x −200=y 2x =3y解得{x =600y =400. 答:A 型号的家用空气净化器的进价是600元,B 型号的家用空气净化器的进价是400元.(2)①∵A 型家用空气净化器为m 台,∴B 型家用空气净化器为(50−m)台.根据题意{m ≤50−m m ≥16, 解得16≤m ≤25.∴m 的取值范围为16≤m ≤25.②根据题意,w =m(800−600−2n)+(50−m)(550−400−n)=(50−n)m −50n +7500 ∵25≤n ≤100,当25≤n <50时,50−n >0,w 随着m 的增大而增大,∵16≤m ≤25,∴当m =25时,w 最大,此时w =8750−70n ;当n =50时,m 的取值不会对w 用影响,此时w =7500−50n ;当50<n ≤100时,50−n <0,w 随着m 的增大而减小,∴当m 取16时,w 最大,此时w =8300−66n .综上,最大利润w(元)与n(元)的函数关系式为{w =8750−70n(25≤n <50)w =7500−50n(n =50)w =8300−66n(50<n ≤100).解析:(1)为二元一次方程组的应用题,根据一台A 型空气净化器的进价比一台B 型空气净化器的进价高200元;2台A 型空气净化器的进价与3台B 型空气净化器的进价相同,找到等量关系列式即可.(2)①根据商场购进这两种型号的家用空气净化器共50台,其中A 型家用空气净化器的数量不超过B 型家用空气净化器的数量,且不少于16台,列出不等关系求m 得取值范围即可.②根据一次函数得性质,当k>0时,w随m的增大而增大,当k<0时,w随m的增大而减小.先对n的范围进行讨论,再对m的取值进行讨论.此题考查了二元一次方程组的实际应用,一元一次不等式组的实际应用,及一次函数的性质.25.答案:解:(1)如图1,连接OE.∵ED⏜=BE⏜,∴∠BOE=∠EOD,∵OD//BF,∴∠DOE=∠BEO,∵OB=OE,∴∠OBE=∠OEB,∴∠OBE=∠OEB=∠BOE=60°,∵CF⊥AB,∴∠FCB=90°,∴∠F=30°;(2)连接OE,过O作OM⊥BE于M,∵OB=OE,∴BE=2BM,∵OD//BF,∴∠COD=∠B,在△OBM与△ODC中{∠OCD=∠OMB=90°∠COD=∠BOD=OM,∴△OBM≌△ODC,∴BM=OC,∴BE=2OC;(3)∵OD//BF,∴△COD∽△CBF,∴OCBC =ODBF,∵AC=x,AB=4,∴OA=OB=OD=2,∴OC=2−x,BE=2OC=4−2x,∴2−x4−x =2BF,∴BF=8−2x2−x,∴EF=BF−BE=−2x2+6x2−x,∴BE⋅EF=−2x2+6x2−x ⋅2(2−x)=−4x2+12x=−4(x−32)2+9,∴当x=32时,最大值=9.解析:(1)首先连接OE,由ED⏜=BE⏜,OD//BF,易得∠OBE=∠OEB=∠BOE=60°,又由CF⊥AB,即可求得∠F的度数;(2)连接OE,过O作OM⊥BE于M,由等腰三角形的性质得到BE=2BM,根据平行线的性质得到∠COD=∠B,根据全等三角形的性质得到BM=OC,等量代换即可得到结论.(3)根据相似三角形的性质得到OCBC =ODBF,求得BF=8−2x2−x,于是得到EF=BF−BE=−2x2+6x2−x,推出BE⋅EF=−4x2+12x=−4(x−32)2+9,即可得到结论.本题考查了相似三角形的判定和性质,全等三角形的判定和性质,二次函数的最大值,圆周角定理,平行线的性质,证得△COD∽△CBF是解决(3)小题的关键.26.答案:解:(1)∵直线AC为y=x+1交x轴于C,交y轴于D,∴当x=0时,y=1,即D(0,1),当y=0时,x=−3,即C(−3,0),设直线AB为y=kx+b,∵点A(94,74)、点B(4,0),∴代入得方程组74=94x+b和0=4k+b,解得:k=−1,b=4,即直线AB的解析式为y=−x+4.(2)∵A(94,74),B(4,0),C(−3,0),D(0,1),∴AB =√(94)2+(74−0)2=7√24,AD =3√104,AC =7√104, ∵点E 在直线AB :y =−x +4上,∴可设E(x,−x +4),∵∠CAB 为钝角,∴x >94, ∴AE =√(94−x)2+(74−x +4)2=√2(x −94), ∵∠DAE =∠CAB(公共角),当△ADE∽△ACB 时,ADAC =AEAB ,∴3√1047√104=√2(x−94)7√24,∴x =3,即E(3,1),当△ADE∽△ABC 时,AD AB =AE AC ,即3√1047√24=√2(x−94)7√104,解得x =6,即E(6,−2),综上所述,当E 为(3,1)或(6,−2)时满足题意.解析:本题考查的是待定系数法求解析式,两点间的距离公式,一次函数的图象和性质,一次函数的应用等有关知识.(1)先求出D,C点的坐标,设直线AB为y=kx+b,将点A(94,74)、点B(4,0)代入得方程组,求解即可;(2)先分别求得AB,AD,AC,然后再根据△ADE∽△ACB进行解答即可.。
南宁市初三中考数学一模模拟试卷【含答案】
南宁市初三中考数学一模模拟试卷【含答案】一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.(3分)﹣3的相反数是()A.3B.﹣3C.±3D.2.(3分)下列计算正确的是()A.2a+3b=5ab B.=±6C.a2b÷2ab=a2D.(2ab2)3=8a3b63.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.4.(3分)一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差5.(3分)如图,AB是⊙O的直径,直线P A与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20°B.25°C.40°D.50°6.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2C.D.7.(3分)已知实数x、y满足:x﹣y﹣3=0和2y3+y﹣6=0.则﹣y2的值为()A.0B.C.1D.8.(3分)如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,当y<0时x的取值范围是()A.x>2B.0<x<4C.﹣1<x<4D.x<﹣1 或x>4二、填空题(本大题共10小题,每小题3分,共30分.)9.(3分)“五一”小长假期间,扬州市区8家主要封闭式景区共接待游客528600人次,同比增长20.56%.用科学记数法表示528600为.10.(3分)若有意义,则x的取值范围是.11.(3分)分解因式:mx2﹣4m=.12.(3分)若方程x2+kx+9=0有两个相等的实数根,则k=.13.(3分)一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.14.(3分)如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是.15.(3分)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为.16.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.17.(3分)如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn=.18.(3分)如图,⊙O的直径AB=8,C为弧AB的中点,P为弧BC上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,连接BD,则BD的最小值是.三、解答题(本大题有10小题,共96分.)19.(8分)(1)计算:|﹣3|﹣tan30°+20180﹣()﹣1;(2)化简:(1+a)(1﹣a)+a(a﹣2).20.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.21.(8分)若关于x的分式方程=1的解是正数,求m的取值范围.22.(8分)小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n个路口,则小明在每个路口都没有遇到红灯的概率是.23.(10分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6m的B处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留根号)24.(10分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且ED⊥DB,FB ⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.25.(10分)观察下表:我们把某一格中所有字母相加得到的多项式称为特征多项式,例如:第1格的“特征多项式”为x+4y.回答下列问题:(1)第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第1格的“特征多项式”的值为2,第2格的“特征多项式”的值为﹣6.①求x,y的值;②在①的条件下,第n格的“特征多项式的值”随着n的变化而变化,求“特征多项式的值”的最大值及此时n值.26.如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,E为BC的中点,连接DE.(1)求证:DE为⊙O的切线;(2)如果⊙O的半径为3,ED=4,延长EO交⊙O于F,连接DF,与OA交于点G,求OG的长.27.(12分)在平面直角坐标系中,点O为原点,点A的坐标为(﹣8,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=45°,OE=OA,求直线EF的函数表达式;(2)如图3,若α为锐角,且tanα=,当EA⊥x轴时,正方形对角线EG与OF相交于点M,求线段AM的长;(3)当正方形OEFG的顶点F落在y轴正半轴上时,直线AE与直线FG相交于点P,是否存在△OEP的两边之比为:1?若存在,求出点P的坐标;若不存在,试说明理由.28.如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△P AD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.参考答案与试题解析一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是﹣(﹣3)=3.故选:A.2.【分析】直接利用合并同类项法则以及算术平方根、整式的除法运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、2a+3b无法计算,故此选项错误;B、=6,故此选项错误;C、a2b÷2ab=a,故此选项错误;D、(2ab2)3=8a3b6,正确.故选:D.3.【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.【解答】解:从上面看,图2的俯视图是正方形,有一条对角线.故选:C.4.【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A、原来数据的平均数是3,添加数字3后平均数仍为3,故A与要求不符;B、原来数据的众数是3,添加数字3后众数仍为3,故B与要求不符;C、原来数据的中位数是3,添加数字3后中位数仍为3,故C与要求不符;D、原来数据的方差==,添加数字3后的方差==,故方差发生了变化.故选:D.5.【分析】利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠P AO的度数,然后利用圆周角定理来求∠ABC的度数.【解答】解:如图,∵AB是⊙O的直径,直线P A与⊙O相切于点A,∴∠P AO=90°.又∵∠P=40°,∴∠POA=50°,∴∠ABC=∠POA=25°.故选:B.6.【分析】求出AB=3,由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴==.故选:A.7.【分析】根据x﹣y﹣3=0和2y3+y﹣6=0,可以得到x与y的关系和y2﹣的值,从而可以求得所求式子的值.【解答】解:∵x﹣y﹣3=0和2y3+y﹣6=0,∴x=y+3,y2+﹣=0,∴y2﹣=﹣∴﹣y2==1+=1﹣(﹣)=1+=,故选:D.8.【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【解答】解:∵y3=(kx+b)(mx+n),y<0,∴(kx+b)(mx+n)<0,∵y1=kx+b,y2=mx+n,即y1•y2<0,有以下两种情况:(1)当y1>0,y2<0时,此时,x<﹣1;(2)当y1<0,y2>0时,此时,x>4,故选:D.二、填空题(本大题共10小题,每小题3分,共30分.)9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:528600=5.286×105,故答案为:5.286×10510.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意,得:x﹣2≠0,解得:x≠2.故答案是:x≠2.11.【分析】首先提取公因式m,进而利用平方差公式分解因式即可.【解答】解:mx2﹣4m=m(x2﹣4)=m(x+2)(x﹣2).故答案为:m(x+2)(x﹣2).12.【分析】根据根判别式△=b2﹣4ac的意义得到△=0,即k2﹣4×1×9=0,然后解方程即可.【解答】解:∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2﹣4•1•9=0,解得k=±6.故答案为±6.13.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π•5=10π,∴圆锥的侧面积=•10π•2=10π(cm2).故答案为:10π.14.【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,∴k=﹣8.故答案为:﹣8.15.【分析】根据平行线的性质可得出∠3=∠4+∠5,结合对顶角相等可得出∠3=∠1+∠2,代入∠1=30°、∠3=45°,即可求出∠2的度数.【解答】解:给各角标上序号,如图所示.∵∠3=∠4+∠5,∠1=∠4,∠2=∠5,∴∠3=∠1+∠2.又∵∠1=30°,∠3=45°,∴∠2=15°.故答案为:15°.16.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.17.【分析】依据题意可得,A,C之间的水平距离为6,点Q与点P的水平距离为7,A,B之间的水平距离为2,双曲线解析式为y=,依据点P'、点B离x轴的距离相同,都为6,即点P的纵坐标m=6,点Q“、点Q'离x轴的距离相同,都为4,即点Q的纵坐标n=4,即可得到mn的值.【解答】解:由图可得,A,C之间的水平距离为6,2018÷6=336…2,由抛物线y=﹣x2+4x+2可得,顶点B(2,6),即A,B之间的水平距离为2,∴点P'、点B离x轴的距离相同,都为6,即点P的纵坐标m=6,由抛物线解析式可得AO=2,即点C的纵坐标为2,∴C(6,2),∴k=2×6=12,∴双曲线解析式为y=,2025﹣2018=7,故点Q与点P的水平距离为7,∵点P'、Q“之间的水平距离=(2+7)﹣(2+6)=1,∴点Q“的横坐标=2+1=3,∴在y=中,令x=3,则y=4,∴点Q“、点Q'离x轴的距离相同,都为4,即点Q的纵坐标n=4,∴mn=6×4=24,故答案为:24.18.【分析】以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,依据∠ADC=135°,可得点D的运动轨迹为以Q为圆心,AQ为半径的,依据△ACQ中,AQ=4,【解答】解:如图所示,以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,连接AC,BC,BQ.∵⊙O的直径为AB,C为的中点,∴∠APC=45°,又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴点D的运动轨迹为以Q为圆心,AQ为半径的,又∵AB=8,C为的中点,∴△ACB是等腰直角三角形,∴AC=4,∴△ACQ中,AQ=4,∴BQ==4,∵BD≥BQ﹣DQ,∴BD的最小值为4﹣4.故答案为:4﹣4.三、解答题(本大题有10小题,共96分.)19.【分析】(1)根据实数的混合计算解答即可;(2)根据整式的混合计算解答即可.【解答】解:(1)原式==﹣1.(2)原式=1﹣a2+a2﹣2a=1﹣2a20.【分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数;(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数;【解答】解:(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,故答案为:200;(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示:(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.21.【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程的解为正数确定出m的范围即可.【解答】解:去分母得:1+m=x﹣2,解得:x=m+3,由分式方程的解为正数,得到m+3>0,且m+3≠2,解得:m>﹣3且m≠﹣1.22.【分析】(1)画树状图列出所有等可能结果,从中找到到第二个路口时第一次遇到红灯的结果数,根据概率公式计算可得.(2)根据在第1个路口没有遇到红灯的概率为,到第2个路口还没有遇到红灯的概率为=()2可得答案.【解答】解:(1)画树状图如下:由树状图知,共有9种等可能结果,其中到第二个路口时第一次遇到红灯的结果数为2,所以到第二个路口时第一次遇到红灯的概率为;(2)∵在第1个路口没有遇到红灯的概率为,到第2个路口还没有遇到红灯的概率为=()2,∴到第n个路口都没有遇到红灯的概率为()n,故答案为:()n.23.【分析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【解答】解:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×=2(米),∵DH=1.5,∴CD=2 +1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==(4+)(米),答:拉线CE的长约为(4+)米.24.【分析】(1)由四边形ABCD为平行四边形,利用平行四边形的性质得到对边平行且相等,对角相等,再由垂直的定义得到一对直角相等,利用等式的性质得到一对角相等,利用ASA即可得证;(2)过D作DH垂直于AB,在直角三角形ADH中,利用30度所对的直角边等于斜边的一半得到AD=2DH,在直角三角形DEB中,利用斜边上的中线等于斜边的一半得到EB=2DH,易得四边形EBFD为平行四边形,利用平行四边形的对边相等得到EB=DF,等量代换即可得证.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,AD∥CB,AB∥CD,∴∠ADB=∠CBD,∵ED⊥DB,FB⊥BD,∴∠EDB=∠FBD=90°,∴∠ADE=∠CBF,在△AED和△CFB中,,∴△AED≌△CFB(ASA);(2)作DH⊥AB,垂足为H,在Rt△ADH中,∠A=30°,∴AD=2DH,在Rt△DEB中,∠DEB=45°,∴EB=2DH,∵ED⊥DB,FB⊥BD.∴DE∥BF,∵AB∥CD,∴四边形EBFD为平行四边形,∴FD=EB,∴DA=DF.25.【分析】(1)利用已知表格中x,y个数变化规律得出第2格的“特征多项式”以及第n 格的“特征多项式”;(2)①利用(1)中所求得出关于x,y的等式组成方程组求出答案;②利用二次函数最值求法得出答案.【解答】解:(1)由表格中数据可得:第4格的“特征多项式”为:16x+25y,第n格的“特征多项式”为:n2x+(n+1)2y(n为正整数);故答案为:16x+25y,n2x+(n+1)2y(n为正整数);(2)①由题意可得:,解得:答:x的值为﹣6,y的值为2.②设W=n2x+(n+1)2y当x=﹣6,y=2时:W=﹣6n2+2(n+1)2=,此函数开口向下,对称轴为,∴当时,W随n的增大而减小,又∵n为正整数∴当n=1时,W有最大值,W最大=﹣4×(1﹣)2+3=2,即:第1格的特征多项式的值有最大值,最大值为2.26.【分析】(1)首先连接OD,由BE=EC,CO=OA,得出OE∥AB,根据平行线与等腰三角形的性质,易证得△COE≌△DOE,即可得∠ODE=∠OCE=90°,则可证得ED 为⊙O的切线;(2)只要证明OE∥AB,推出,由此构建方程即可解决问题;【解答】解:(1)证明:连接OD,∵E为BC的中点,AC为直径,∴BE=EC,CO=OA,∴OE∥AB,∴∠COE=∠CAD,∠EOD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠COE=∠DOE,在△COE和△DOE中,,∴△COE≌△DOE(SAS),∴∠ODE=∠OCE=90°,∴ED⊥OD,∴ED是圆O的切线;(2)连接CD;由题意EC、ED是⊙O的切线,∴EC=ED,∵OC=OD,∴OE⊥CD,∵AC是直径,∴∠CDA=90°,∴CD⊥AB,∴OE∥AB,∴,在Rt△ECO中,EO==5,∵∠EOC=∠CAD,∴cos∠CAD=cos∠EOC=,∴AD=,设OG=x,则有,∴x=,∴OG=.27.【分析】(1)求出E、F两点坐标,利用待定系数法即可解决问题;(2)如图3中,作MH⊥OA于H,MK⊥AE交AE的延长线于K.只要证明四边形AOMK 是正方形,证明AE+OA=2AH即可解决问题;(3)如图2中,设F(0,2a),则E(﹣a,a).构建一次函数利用方程组求出交点P 坐标,分三种情形讨论求解即可;【解答】解:(1)∵OE=OA=8,α=45°,∴E(﹣4,4),F(0,8),设直线EF的解析式为y=kx+b,则有,解得∴直线EF的解析式为y=x+8.(2)如图3中,作MH⊥OA于H,MK⊥AE交AE的延长线于K.在Rt△AEO中,tan∠AOE==,OA=8,∴AE=4,∵四边形EOGF是正方形,∴∠EMO=90°,∵∠EAO=∠EMO=90°,∴E、A、O、M四点共圆,∴∠EAM=∠EOM=45°,∴∠MAK=∠MAH=45°,∵MK⊥AE,MH⊥OA,∴MK=MH,四边形KAOM是正方形,∵EM=OM,∴△MKE≌△MHO,∴EK=OH,∴AK+AH=2AH=AE+EK+OA﹣OH=12,∴AH=6,∴AM=AH=6.(3)如图2中,设F(0,2a),则E(﹣a,a).∵A(﹣8,0),E(﹣a,a),∴直线AP的解析式为y=x+,直线FG的解析式为y=﹣x+2a,由,解得,∴P(,).①当PO=OE时,∴PO2=2OE2,则有:+=4a2,解得a=4或﹣4(舍弃)或0(舍弃),此时P(0,8).②当PO=PE时,则有:+=2[(+a)2+(﹣a)2],解得:a=4或12,此时P(0,8)或(﹣24,48),③当PE=EO时,[(+a)2+(﹣a)2]=4a2,解得a=8或0(舍弃),∴P(﹣8,24)综上所述,满足条件的点P的坐标为(0,8),(﹣8,24),(﹣24,48).28.【分析】(1)由点C的坐标为(0,3),可知﹣9a=3,故此可求得a的值,然后令y=0得到关于x的方程,解关于x的方程可得到点A和点B的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO=60°,依据AE为∠BAC的角平分线可求得∠DAO=30°,然后利用特殊锐角三角函数值可求得OD=1,则可得到点D的坐标.设点P的坐标为(,a).依据两点的距离公式可求得AD、AP、DP的长,然后分为AD =P A、AD=DP、AP=DP三种情况列方程求解即可;(3)设直线MN的解析式为y=kx+1,接下来求得点M和点N的横坐标,于是可得到AN的长,然后利用特殊锐角三角函数值可求得AM的长,最后将AM和AN的长代入化简即可.【解答】解:(1)∵C(0,3).∴﹣9a=3,解得:a=﹣.令y=0得:ax2﹣2 ax﹣9a=0,∵a≠0,∴x2﹣2 x﹣9=0,解得:x=﹣或x=3.∴点A的坐标为(﹣,0),B(3,0).∴抛物线的对称轴为x=.(2)∵OA=,OC=3,∴tan∠CAO=,∴∠CAO=60°.∵AE为∠BAC的平分线,∴∠DAO=30°.∴DO=AO=1.∴点D的坐标为(0,1)设点P的坐标为(,a).依据两点间的距离公式可知:AD2=4,AP2=12+a2,DP2=3+(a﹣1)2.当AD=P A时,4=12+a2,方程无解.当AD=DP时,4=3+(a﹣1)2,解得a=0或a=2(舍去),∴点P的坐标为(,0).当AP=DP时,12+a2=3+(a﹣1)2,解得a=﹣4.∴点P的坐标为(,﹣4).综上所述,点P的坐标为(,0)或(,﹣4).(3)设直线AC的解析式为y=mx+3,将点A的坐标代入得:﹣m+3=0,解得:m =,∴直线AC的解析式为y=x+3.设直线MN的解析式为y=kx+1.把y=0代入y=kx+1得:kx+1=0,解得:x=﹣,∴点N的坐标为(﹣,0).∴AN=﹣+=.将y=x+3与y=kx+1联立解得:x=.∴点M的横坐标为.过点M作MG⊥x轴,垂足为G.则AG=+.∵∠MAG=60°,∠AGM=90°,∴AM=2AG=+2=.∴+=+=+===.中学数学一模模拟试卷一.选择题(满分36分,每小题3分)1.﹣2的绝对值是()A.﹣2 B.﹣C.2 D.2.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.3.下列计算正确的是()A.x3+x2=x6B.a3•a2=a6C.3﹣=3 D.×=74.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣6D.2.5×10﹣55.今年3月份某周,我市每天的最高气温(单位:℃):12,9,10,6,11,12,17,则这组数据的中位数与极差分别是()A.8,11 B.8,17 C.11,11 D.11,176.若一个多边形的内角和是1080度,则这个多边形的边数为()A.6 B.7 C.8 D.107.不等式组的解集在数轴上应表示为()A.B.C.D.8.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A 时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A.=15 B.=15C.=D.9.下列命题中是假命题的有()A.一组邻边相等的平行四边形是菱形B.对角线互相垂直的四边形是矩形C.一组邻边相等的矩形是正方形D.一组对边平行且相等的四边形是平行四边形10.如图,点C在以O为圆心的半圆内一点,直AB=4cm,∠BCO=90°,∠OBC=30°,将△BOC绕圆心O逆时针旋转到使点C的对应点C′在半径OA上,则边BC扫过区域(图中阴影部分)的面积为()A . cm 2B .πcm 2C .cm 2D .()cm 211.已知二次函数y =ax 2+bx +c (a ≠0)图象的一部分如图所示,给出以下结论:①abc >0;②当x =﹣1时,函数有最大值;③方程ax 2+bx +c =0的解是x 1=1,x 2=﹣3;④4a +2b +c >0,其中结论错误的个数是( )A .1B .2C .3D .412.如图,一次函数y 1=kx +b (k ≠0)的图象与反比例函数y 2=(m 为常数且m ≠0)的图象都经过A (﹣1,2),B (2,﹣1),结合图象,则不等式kx +b >的解集是( )A .x <﹣1B .﹣1<x <0C .x <﹣1或0<x <2D .﹣1<x <0或x >2二.填空题(满分12分,每小题3分)13.把多项式bx 2+2abx +a 2b 分解因式的结果是 . 14.函数y =中,自变量x 的取值范围是 .15.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是 ,2016是第 个三角形数.16.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,取EF 的中点G ,连接CG ,BG ,BD ,DG ,下列结论: ①BE =CD ; ②∠DGF =135°; ③△BEG ≌△DCG ; ④∠ABG +∠ADG =180°; ⑤若=,则3S △BDG =13S△DGF.其中正确的结论是 .(请填写所有正确结论的序号)三.解答题17.(5分)计算:(tan60°)﹣1×﹣|﹣|+23×0.125.18.先化简,再求值:(1﹣),其中m =2019.19.(7分)“校园手机”现象越来越受到社会的关注.“五一”期间,小记者刘铭随机调查了城区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图: (1)求这次调查的家长人数,并补全图1; (2)求图2中表示家长“赞成”的圆心角的度数;(3)如果该市有8万名初中生,持“无所谓”态度的学生大约有多少人?(4)从这次接受调查的家长与学生中随机抽查一个,恰好是“无所谓”态度的概率是多少?20.(8分)童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售,经市场调查发现:每降价1元,每星期可多卖10件,已知该款童装每件成本30元,设降价后该款童装每件售价x元,每星期的销售量为y件,(1)降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?21.(8分)科技改变着人们的生活,“高铁出行”已成为人们的日常重要交通方式,如今,河南高铁也在发生着日新月异的变化,2018年我省为连接A、B两座城市之间的高铁运行,某工程勘测队在点E处测得城市A在北偏西16°方向上,城市B在北偏东60°方向上,该勘测队沿正东方向行进了7.5km到达点F处,此时测得城市A在北偏西30°方向上,城市B在北偏东30°方向上(1)请结合所学的知识判断AB、AE的数量关系,并说明理由;(2)求城市A和城市B之间的距离为多少公里?(结果精确到1km)(参考数据:≈1.73,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24,sin16°≈0.28,cos16°≈0.96)22.(9分)如图,△ABC内接于半径为的⊙O,AC为直径,AB=,弦BD与AC交于点E,点P为BD延长线上一点,且∠PAD=∠ABD,过点A作AF⊥BD于点F,连接OF.(1)求证:AP是⊙O的切线;(2)求证:∠AOF=∠PAD;(3)若tan∠PAD=,求OF的长.23.(9分)如图1,抛物线y=ax2﹣x+c交x轴于A,B两点,交y轴于点C.直线y=﹣x+3经过点B,C.(1)求抛物线的解析式;(2)若点P为直线BC下方的抛物线上一动点(不与点B,C重合),则△PBC的面积能够等于△BOC的面积吗?若能,求出相应的点P的坐标;若不能,请说明理由;(3)如图2,现把△BOC平移至如图所示的位置,此时三角形水平方向一边的两个端点点O′与点B′都在抛物线上,称点O′和点B′为△BOC在抛物线上的一“卡点对”;如果把△BOC旋转一定角度,使得其余边位于水平方向然后平移,能够得到这个三角形在抛物线上新的“卡点对”.请直接写出△BOC在已知抛物线上所有“卡点对”的坐标.参考答案一.选择题1.解:因为|﹣2|=2,故选:C.2.解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.3.解:A.不是同类项,不能合并,故A错误;B.a3•a2=a3+2=a5,故错误;C.3﹣=(3﹣1)=2,故C错误;D.,故D正确.故选:D.4.解:0.0000025=2.5×10﹣6,故选:C.5.解:把已知数据按照由小到大的顺序排序后为6、9、10、11、12、12、17,∴这组数据的中位数是11;极差是17﹣6=11.故选:C.6.解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故选:C.7.解:,∵解不等式①得:x>1,解不等式②得:x≤2,∴不等式组的解集为1<x≤2,在数轴上表示不等式组的解集为故选:C .8.解:设走路线A 时的平均速度为x 千米/小时, 根据题意,得﹣=.故选:D .9.解:A 、一组邻边相等的平行四边形是菱形,正确,是真命题;B 、对角线相等的平行四边形是矩形,故错误,是假命题;C 、一组邻边相等的矩形是正方形,正确,是真命题;D 、一组对边平行且相等的四边形是平行四边形,正确,是真命题,故选:B .10.解:∵∠BCO =90°,∠OBC =30°, ∴OC =OB =1,BC =,则边BC 扫过区域的面积为:=πcm 2.故选:B .11.解:由图象可得,a <0,b <0,c >0,∴abc >0,故①正确,当x =﹣1时,函数有最大值,故②正确,方程ax 2+bx +c =0的解是x 1=1,x 2=﹣1﹣[1﹣(﹣1)]=﹣3,故③正确, 当x =2时,y =4a +2b +c <0,故④错误, 故选:A .12.解:由函数图象可知,当一次函数y 1=kx +b (k ≠0)的图象在反比例函数y 2=(m 为常数且m ≠0)的图象上方时,x 的取值范围是:x <﹣1或0<x <2, ∴不等式kx +b >的解集是x <﹣1或0<x <2 故选:C .二.填空题13.解:原式=b(x2+2ax+a2)=b(x+a)2,故答案为:b(x+a)2.14.解:根据题意得:x﹣1>0,解得:x>1.15.解:第9个三角形数是1+2+3+4+5+6+7+8+9=45,1+2+3+4+…+n=2016,n(n+1)=4032,解得:n=63.故答案为:45,63.16.解:①∵四边形ABCD是矩形,∴∠BAD=∠ABC=90°,AB=CD,∵AE是∠BAD的角平分线,∴∠BAE=∠DAE=45°,∴∠AEB=90°﹣∠BAE=45°=∠BAE,∴BE=AB=CD,①正确;②∵AB∥CD,∴∠CFE=∠BAE=45°,∠CEF=∠AEB=45°,∴△CEF为等腰直角三角形,∵点G为EF的中点,∴CG⊥EF,∠CGF=90°,∠FCG=45°,∵∠FCG=∠CGD+∠CDG=45°,∴∠CGD<45°,∴∠DGF=∠CGD+∠CGF<45°+90°=135°,②不正确;③∵△CEF为等腰直角三角形,∴CG=EG.∵∠BEG=180°﹣∠CEF=135°,∠DCG=180°﹣∠FCG=135°,∴∠BEG=∠DCG,在△BEG和△DCG中,有,∴△BEG≌△DCG(SAS),③正确;④∵△BEG≌△DCG,∴∠EBG=∠CDG,∵∠ABG=∠ABC+∠EBG,∠ADG=∠ADC﹣∠CDG,∴∠ABG+∠ADG=∠ABC+∠ADC=180°,④正确;⑤过点G作GM⊥DF于点M,如图所示.∵=,∴设AB=2a(a>0),则AD=3a.∵∠DAF=45°,∠ADF=90°,∴△ADF为等腰直角三角形,∴DF=AD=3a.∵△CGF为等腰直角三角形,∴GM=CM=CF=(DF﹣CD)=a,∴S△DGF=DF•GM=×3a×a=.S△BDG =S△BCD+S梯形BGMC﹣S△DGM=×2a×3a+×(3a+a)×a﹣×a×(2a+a)=.∴3S△BDG =13S△DGF,⑤正确.综上可知:正确的结论有①③④⑤.故答案为:①③④⑤.三.解答题17.解:原式=()﹣1•﹣+8×0.125==1.18.解:原式=(﹣)•=•=,当m=2019时,原式==.19.解:(1)由题意可得出:80÷20%=400(人);家长反对人数:400﹣40﹣80=280(人);(2)家长“赞成”的圆心角的度数为:×360°=36°;(3)该市有8万名初中生,持“无所谓”态度的学生大约有:80000×=12000(人);(4)从这次接受调查的家长与学生中随机抽查一个,恰好是“无所谓”态度的概率是:=.20.解:(1)根据题意得,(60﹣x)×10+100=3×100,解得:x=40,60﹣40=20元,答:这一星期中每件童装降价20元;(2)设利润为w,根据题意得,w=(x﹣30)[(60﹣x)×10+100]=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.21.解:(1)AB=AE理由如下:如图∵城市A在点E处北偏西16°方向上,城市B在点北偏东60°方向上.∴∠AEH=90°﹣16°=74°,∠BEF=90°﹣60°=30°又∵城市A在点F北偏西30°方向上,城市B在点F处北偏东30°方向上.∴∠AFE=90°﹣30°=60°.∠BFN=90°﹣30°=60°∴∠EBF=60°﹣30°=30°∴EF=BF又∵∠BFA=30°+30°=60°在△AEF与△ABF中∴△AEF≌△ABF(SAS)∴AB=AE(2)过A作AH⊥MN于点H.设AE=x,则AH=x•sin(90°﹣16°)=x•sin74°,HE=x•cos(90°﹣16°)=x•cos74°∴HF=x•cos74°+7.5∴在Rt△AHF中,AH=HF•tan60°∴x•sin74°=(x•cos74°+7.5)•tan60°即0.96x=(0.28x+7.5)×1.73解得x≈27,即AB≈27答:城市A和城市B之间距离约为27km.22.(1)证明:∵AC是⊙O的直径,∴∠ABC=90°,即∠ABD+∠CBD=90°,∵=,∴∠CAD=∠CBD,∵∠PAD=∠ABD,∴∠PAD+∠CAD=∠ABD+∠CBD=90°,即PA⊥AC,∵AC是⊙O的直径,∴AP是⊙O的切线;(2)解:∵在Rt△ABC中,AB=,AC=,∴sin C==,∴∠C=45°,∵=,∴∠ADB=∠C=45°,∵AF⊥BD,∴∠FAD=∠ADB=45°,∴FA=FD,连接OD,∵OA=OD,OF=OF,F A=FD,∴△AOF≌△DOF(SSS),∴∠AOF=∠DOF,∴∠AOD=2∠AOF,∵=,∴∠AOD=2∠ABD,∴∠AOF=∠ABD,∵∠ABD=∠PAD,∴∠AOF=∠PA D;(3)解:延长OF交AD于点G,∵OA=OD,∠AOG=∠DOG,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金绿化一块闲置空地,购买了甲、乙两种树木共72棵,甲种树木单价是乙种树木单价的 ,且乙种树木每棵80元,共用
去资金6160元. (1) 求甲、乙两种树木各购买了多少棵? (2) 经过一段时间后,种植的这批树木成活率高,绿化效果好。该街道决定再购买一批这两种树木绿化另一块闲置
空地,两种树木的购买数量均与第一批相同,购买时发现甲种树木单价上涨了a%,乙种树木单价下降了 a%,且总费用
三 、 解 答 题 ( 本 大 题 共 11个 小 题 , 满 分 66分 .)
19. 计算: 5÷[(-1)3-4]+32×(-1).
20. 先化简,再求值:(1-
)÷
,其中x= +1.
21. △ABC在边长为1的正方形网格中如图所示. ①以点C为位似中心,作出△ABC的位似图形△A1B1C,使其位似比为1:2.且△A1B1C位于点C的异侧,并表示出A1
广西壮族自治区南宁市广西第八中学2020届九年级下学期数学中考一模试卷
一 、 选 择 题 ( 本 大 题 共 12个 小 题 , 每 小 题 3分 , 满 分 36分 )
1. 下列各数中,是无理数的是( ) A . 3.1415 B . C . D . 2. 如图是由4个相同的小正方体组成的一个立体图形,其主视图是( )
A.
B.
C.
D.
3. 据海关统计,今年第一季度我国外贸进出口总额是7010 000 000 000元人民币,比去年同期增长了3.7%,数7010 0 00 000 000用科学记数法表示为( )
A . 7.01×104 B . 7.01×1011 C . 7.01×1012 D . 7.01×1013 4. 下列说法正确的是( ) A . 了解我市市民知晓“礼让行人”交通新规的情况,适合全面调查 B . 甲、乙两人跳远成绩的方差分别为S甲2=3,S乙2=4,说明 乙的跳远成绩比甲稳定 C . 一组数据2,2,3,4的众数是2,中位数是2.5 D . 可能性是1%的事件在一次试验中一定不会发生
20.
21. 22.
23.
24. 25.
26.
16. 一个不透明的口袋中有四个完全相同的小球,其上分别标有数字1,2,4,8.随机摸取一个小球后不放回,再随 机摸取一个小球,则两次取出的小球上数字之积等于8的概率是________.
17. 如图,为测量旗杆AB的高度,在教学楼一楼点C处测得旗杆顶部的仰角为60°,在四楼点D处测得旗杆顶部的仰角 为30°,点C与点B在同一水平线上.已知CD=9.6m,则旗杆AB的高度为________m.
(1) 接受问卷调查的学生共有人,条形统计图中m的值为;
(2) 扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为;
(3) 若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基
本了解”程度的总人数为人;
(4) 若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表
或画树状图的方法,求恰好抽到1名男生和1名女生的概率.
23. 如图,矩形
中,点 在边 上,将
沿 折叠,点 落在 边上的点 处,过点 作
交 于点 ,连接 .
(1) 求证:四边形
是菱形;
(2) 若
,求四边形
的面积.
24. 南岸区正全力争创全国卫生城区和全国文明城区(简称“两城同创”).某街道积极响应“两城同创”活动,投入一定资
8. 若方程x2-2x-4=0的两个实数根为 , ,则
的值为( )
A . 12 B . 10 C . 4 D . -4.
9. 把一根9m长的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a
的值可能有( )
A . 3种 B . 4种 C . 5种 D . 9种
18. 如图,在平面直角坐标系中,四边形OA1B1C1 , A1 A2B2C2 , A2A3B3C3 , …都是菱形,点A1 , A2 , A3 , …
都在x轴上,点C1 , C2 , C3 , …都在直线
上,且∠C1OA1 =∠C2A1 A2=∠C3A2A3=…=60°,OA1=1,
则点C6的坐标是________.
(1) 求抛物线的表达式; (2) 在直线AC的上方的抛物线上,有一点P(不与点M重合),使△ACP的面积等于△ACM的面积,请求出点P的
坐标;
(3) 在y轴上是否存在一点Q,使得△QAM为直角三角形?若存在,请直接写出点Q的坐标:若不存在,请说明理由.
参考答案
1.
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.
5. 如图,CD∥AB , 点O在AB上,OE平分∠BOD , OF⊥OE , ∠D=110°,则∠AOF的度数是( )
A . 20° B . 25° C . 30° D . 35°
6. 不等式组
的解集在数轴上表示正确的是( )
A.
B.
C.
D.
7. 反比例函数y=- ,下列说法不正确的是( )
A . 图象经过点(1,-3) B . 图象位于第二、四象限 C . 图象关于直线y=x对称 D . y随x的增大而增大
10. 如图,二次函数y=ax2+bx+c的图象经过点A(1,0),B(5,0),下列说法正确的是( )
A . c<0 B . b2-4ac<0 C . a-b+c<0 D . 图象的对称轴是直线x=3 11. 如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y= 0,x>0)的图象经过矩形对角线的交点E.若点A(2,0),D(0,4),则k的值为( )
(k>
A . 16 B . 20 C . 32 D . 40
12. 如图,AB为⊙O的直径,BC为⊙O的切线,弦AD∥OC , 直线CD交BA的延长线于点E , 连接BD . 下列结论: ①CD是⊙O的切线;②CO⊥DB;③△EDA∽△EBD;④ED·BC=BO·BE .5. 如图,在正方形ABCD中,点M是边BC上的一点(不与B、C重合),点N在CD边的延长线上,且满足∠MAN=90°
,联结MN、AC,N与边AD交于点E.
(1) 求证:AM=AN; (2) 如果∠CAD=2∠NAD,求证:AM2=AC·AE; (3) MN和AC相交于O点,若BM=1,AB=3,试猜想线段OM,ON的数量关系并证明. 26. 如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(3,0),B(-1,0)两点,与y轴交于点C
A . 4个 B . 3个 C . 2个 D . 1个
二 、 填 空 题 ( 本 大 题 共 6个 小 题 , 每 小 题 3分 , 满 分 18分 。 )
13. 分解因式:x4-4x2=________. 14. 用半径为10cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为________cm. 15. 如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为 半径画弧分别与菱形的边相交,则图中阴影部分的面积为________.(结果保留π)
的坐标。
②作出△ABC绕点C顺时针旋转90°后的图形△A2B2C. ③在②的条件下求出点B经过的路径长.
22. “校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式 ,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题: