人教版数学六年级上册圆的面积教案(精选3篇)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学六年级上册圆的面积教案(精选3篇)
〖人教版数学六年级上册圆的面积教案第【1】篇〗
一、教学内容:小学数学北师大版六年级上册第一单元“圆”的第三节——《圆的面积》
二、教材分析
圆的面积是在学生了解和掌握了圆的特征、学会计算圆周长的计算以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。
而圆这样的曲边图形的面积计算,学生还是第一次接触到,如果学生完全自主地探索如何把圆转化成长方形或其他平面图形是有很大难度的,所以教材首先出示了估算图,再让学生利用学具进行操作,让学生自主发现圆的面积与拼成的长方形的面积的关系,推导出圆的面积计算公式。
所以本课的教学活动将化曲为直和极限的数学思想纳入到学生原有的认知结构之中,从而完成新知的构建。
三、学情分析
学生从认识直线图形发展到认识曲线图形,是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已具有一定的逻辑思维能力,已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比、推理的数学经验,并具有了转化的数学思想。
所以在教学中应注意联系现实生活,组织学生利用学具开展探究性的数学活动,注重知识发现和探索过程,使学生从中获得数学学习的积极情感体验和感受数学的价值。
四、教学目标
1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。
2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。
3、在估一估和探究面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
五、教学重难点
教学重点:圆面积计算公式的推导和应用
教学难点:理解把圆转化为平行四边形,长方形推导出圆的面积的计算公式的过程。
六、教具准备:多媒体课件,等分好的圆形纸片。
七、教学流程
(一)创设情境,激发兴趣。
师:红岸公园为了减轻工人们的负担,在公园的草坪上安装了许多个自动喷水头,它喷射的距离为5米,喷水头转动一周是什么图形?
(生回答:圆形)
师:喷水头转动一周可以浇灌多大的面积呢?(课件演示喷射的过程)
这个面积就是谁的面积?(圆的面积)
(板书:定义:我们把圆所占平面的大小叫做圆的面积)
同学们会求圆的面积吗?这节课我们就来研究这个问题。
(板
书:圆的面积)
[设计意图:创设问题情境让学生在生活中发现问题,激发学生探究新知的兴趣、欲望,从而主动自觉地学习新知]
(二)尝试估算、探究思考。
师:这个圆的面积到底有多大呢?我们先来估算一下这个圆的面积。
(课件出示16页图,将这个圆置于边长是10米×10米的正方形中)请同学们仔细观察,先试着估算一下这个圆的面积。
学生独立思考,师巡视。
学生交流估算的方法:
1。
利用正方形的面积估算,大的正方形的面积是100平方米,小正方形的面积是50平方米,圆的面积在大正方形和小正方形的面积之间,即50平方米<圆的面积<100平方米。
2、利用数格子的方法估算,先数出四分之一个圆的面积约是20平方米,整个圆的面积约是80平方米。
我们估计了半天,也没有得到精确的数值,那么,它一定有一个具体的计算方法,就像圆的周长= dπ或2π r一样,我们继续往下探究。
[设计意图:让学生通过独立思考,初步尝试解决的方法,为后面的深入探究作好辅垫]
(三)合作交流,探索规律
1、由旧知引入。
师:同学们还记得我们在学习平行四边形、梯形面积时是怎样推导公式的吗?我们利用的就是把新的图形经过分割、拼合等方法转化成我们所熟悉的图形。
那么,我们能否也用同样的方法推出圆面积的计算公式。
[设计意图:让学生回忆旧知,引导学生利用旧知类比迁移。
为学生打开思路,找到了继续往下探究的方向,对由直线图形过度到曲线图形有了初步的感知。
]
2、探究公式
(1)学生操作:
师:请大家拿出圆片,把它等分成8份,再分成16份,然后和组内成员剪一剪、拼一拼,看看能拼成什么图形。
思考:拼成的图形和圆形有什么关系?
学生操作,教师巡视。
(2)学生汇报:可拼成平行四边形、长方形、梯形。
(3)以长方形和平行四边形为例:师一边倾听一边课件演示拼的过程。
(4)操作思考:
学生接着剪拼32等分的圆形,边拼边观察和16等分的圆拼成的图形进行比较,你发现了什么?(生回答:更接近平行四边形和长方形)
(课件演示拼的过程,再现等分16份的圆拼成的图形)
(5)如果把圆等分为64份,128份……大家想拼成的图形会怎么样?
(生:分的分数越多拼成的图形越接近长方形)
(6)观察思考:请同学们看大屏幕,接成的近似长方形的长和宽和圆的哪部分相等。
(学生观察、思考,小组交流一下。
)
生:长方形的长相当于圆周长的一半(πr),长方形的宽相当于圆的半径(r)。
师:长方形的面积公式为s=长×宽,那么圆的面积公式应怎样写?
生:s=长×宽
= π r×r= π r2
师:π r2 中r2表示r×r即2个r相乘。
师:我们终于找到了圆的面积和半径的关系。
[设计意图:教师放手让学生自己拼剪,为学生提供了解决问题的方法和途径,并面向全体学生,促进不同层次的学生在原有水平上得到不同程度的发展与提高,培养了学生的空间想象力。
]
四、巩固强化,应用拓展。
1、计算喷水头转动一周浇灌的面积是多少?
(学生利用公式进行计算,师巡视)(强调估算的作用)
2.已知圆的直径0.2分米,求圆的面积。
3.北京天坛公园的回音壁是闻名世界的声学奇迹,它是一道圆形围墙。
圆的直径为65.2米,周长与面积分别是多少?
4.有一圆形蓄水池。
它的周长约是31.4米,它的占地面积约是
多少?
5.教材19页第5题。
[设计意图:让学生灵活掌握圆的面积教师大胆放手,让学生独立解答,经过尝试,他的观察力,动手操作能力想象力都会得到进一步的发展。
]
五、总结收获,激励结束(略)
〖人教版数学六年级上册圆的面积教案第【2】篇〗
【教材分析】
圆是小学数学平面图形教学中唯一的曲线图形。
本课是在学生了解和掌握了圆的特征、学会计算圆周长的计算以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。
教材将理解“化曲为直”的转化思想贯穿在活动之中。
通过一系列的活动将新的数学思想纳入到学生原有的认知结构之中,从而完成新知的建构过程。
学好这节课的知识,对今后进一步探究“圆柱圆锥”的体积起着举足轻重的作用。
【教学目标】
1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。
2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。
3、在估一估和探究圆面积公式的活动中,体会“化曲为直”的
思想,初步感受极限思想。
【教学重点】
探索并掌握圆的面积公式。
【教学难点】
探索推导圆的面积公式,体会“化曲为直”思想。
【教具准备】
投影仪,多煤体课件,圆形纸片。
【学具准备】
圆形纸片。
【教学设计】
一、创设情境,提出问题
(投影出示P16中草坪喷水插图)这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。
(板书:圆的面积)
二、探究思考,解决问题
1、估计圆面积大小
师:请大家估计半径为5米的圆面积大约是多大?(让同学们充分发挥自己感官,估计草坪面积大小)
2、用数方格的方法求圆面积大小
①投影出示P16方格图,让同学们看懂图意后估算圆的面积,学生可以讨论交流。
②指明反馈估算结果,并说明估算方法及依据。
1、根据圆里面的`正方形来估计
2、用数方格的方法来估计。
三、探索规律
1、由旧知引入新知
师:大家还记得我们以前学习的平行四边形、三角形、梯形面积分别是由哪些图形的面积来的吗?(学生回答,教师订正。
那么圆形的面积可由什么图形面积得来呢。
2、探索圆面积公式
师:拿出我们剪好的图形拼一拼,看看能成为一个什么图形?并考虑你拼成的图形与原来的圆形有什么关系?(同学们开始操作,教师巡视)
指名汇报(学生在说的同时教师注意板书)
请大家来观察一下刚才拼成的哪个图形更接近长方形呢?[等分为32份的更接近长方形。
]
想象一下,如果把一个圆等分的份数越多,拼成的图形越接近什么图形呢?[等分的份数越多,就越接近长方形。
]
观察黑板上的板书,你能否由平行四边形或者长方形的面积公式得到圆形面积公式呢?并说出你的理由。
(生说,教师板书)因为拼成的平行四边形的底也就是圆形周长的一半;平行四边形的高就是圆形的半径。
而平行四边形面积=底×高,那么圆形面积公式=圆周长的1/2×半径即可。
因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。
而长方形面积=长×宽,那么那么圆形面积=圆周长的1/2
×半径即可。
用字母怎么表示圆面积公式呢?
S=∏RR还可以写作S=∏R2
师:这说明求圆的面积只需要知道半径即可,那我只告诉你们圆的直径又如何求出圆的面积呢,请大家自己把这个公式写出来。
教师板书。
3、应用圆面积公式
根据下面的条件,求圆的面积。
r=6厘米 d =0.8厘米 r=1.5分米
师:现在请大家用圆面积公式计算喷水头转动一周可以浇灌多大面积的农田。
(学生独立解答,指名回答)
四、拓展应用
习题设计:
1、填空:
(1)圆的周长计算公式为(),圆的周长计算公式为()。
(2)一个圆的半径是3厘米,求它的周长,列式(),求它的面积,列式()。
(3)一个圆的周长是18、84分米,这个圆的直径是()分米,面积是()平方分米。
2、判断:
(1)半径是2厘米的圆,周长和面积相等()[让孩子知道得数虽然相同,但计量单位不同,不能进行比较。
]
(2)一个圆形纽扣的半径是1.5厘米,它的面积是多少?列式:3.14X1.52=3.14X3=9.42平方厘米。
(3)直径相等的两个圆,面积不一定相等。
()
(4)一个圆的半径扩大3倍,面积也扩大3倍。
()
(5)两个不一样大的圆,大圆的圆周率比小圆的圆周率大。
()
3、实际应用:一块圆形铁板的半径是3分米,它的面积是多少平方分米?
4、要求一张圆形纸片的面积,需测量哪些有关数据?比比看谁先做完,谁想的办法多?
(1)可测圆的半径,根据S=πr2求出面积。
(2)可测圆的直径,根据S=π(d/2)2求出面积。
(3)可测圆的周长,根据S=π·(c/2π)2求出面积。
实践练习:
圆形的物体生活中随处可见,公园的露天广场是个圆形,怎样才能计算广场的面积呢?[让学生讨论,你有哪些方案?并留给学生课后去实践。
这样,使学生意犹未尽,感到课虽尽,但疑未了,为下一课已知周长求面积埋下伏笔。
]
〖人教版数学六年级上册圆的面积教案第【3】篇〗
教学内容:
义务教育课程标准实验教科书(人教版)数学六年级上册第67-68页,圆的面积。
教学目标:
知识与技能:
让学生经历操作、观察、验证、讨论和归纳等数学活动过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能运用公式解决相关的简单实际问题。
过程与方法:
(1)让学生进一步体会“转化”的数学思想方法,培养运用已有知识解决新问题的能力,增强空间观念,渗透极限数学思想,发展数学思维。
(2)、通过小组合作交流,培养学生合作探究精神和创新意识,提高学生动手实践和数学交流能力,体验数学探究的乐趣。
情感与态度:培养学生能积极主动地参与各种探索和操作活动,进一步体会“转化”方法的价值;培养运用已有知识解决新问题的能力,发展空间观念和初步的推理能力。
教学重点:
推导圆的面积计算公式并能正确地应用圆面积的计算公式进行圆面积的计算。
教学难点:
引导学生进一步体会“转化”的数学思想,利用已有知识并结合渗透“极限”的思想推导圆的面积计算公式。
教具准备:
多媒体课件,圆片等。
教学方法:
自主探究法
教学过程:
一.以旧引新、导入新课
1、以前我们学过哪些平面图形的面积?
2、长方形的面积怎样计算?
3、回忆一下三角形的面积公式是怎样推导的?
4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。
(板书:转化)
5、圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容——(板书课题:圆的面积)
二、动手实践、探索新知
1、补充感知、理解意义
(1)(出示圆片):那位同学来指一指圆的面积是哪一部分?
(2)同学们再用手指一指自己带来的圆的面积。
(3)谁来说说什么叫做圆的面积?(板出:圆所占平面的大小叫圆的面积。
)学生齐读。
2、比较猜测、探明方向
(1)提问:猜猜圆面积的大小与什么有关?
(2)下面我们来动手验证一下是否与半径有关:
①你们想通过什么方法来推导圆的面积计算公式?
②想把圆转化成什么图形?(先独立思考,再把你的想法与同桌互相说说。
)
(3)活动要求:折一折手中的圆片能折出什么图形
(4)把16等份圆和32等份圆分别剪开(在黑板上贴出这两个圆),拼成两个长方形,拼好后一起思考黑板上的两个问题:
①圆和(近似的)长方形有什么关系?(形状变,面积相等)
②课件演示:圆16等份和32等份后,拼成什么图形?(分的份数越多就越像长方形)
(教师配合课件演示作适当说明)我把一个圆平均分成16份,并剪成2个半圆,重新拼组成一个近似的长方形。
把一个圆平均分成32份,剪成2个半圆重新拼组成一个更接近长方形。
小结:它们的面积没有改变,圆的面积=拼成的近似长方形的面积。