一元一次不等式与一元一次不等式组典型例题分类和中考真题练习

合集下载

(完整版)一元一次不等式组含参数经典练习题

(完整版)一元一次不等式组含参数经典练习题

一元一次不等式组练习题1、已知方程⎩⎨⎧-=++=+②①m 1y 2x m 31y x 2满足0y x <+,则( )A. 1m ->B. 1m >C. 1m -<D. 1m <2、若不等式组⎩⎨⎧+>+<+1m x 1x 59x 的解集为2x >,则m 的取值范围是( )A. 2m ≤B. 2m ≥C. 1m ≤D. 1m >3、若不等式组⎩⎨⎧>+>-01x 0x a 无解,则a 的取值范围是( )A. 1a -≤B. 1a -≥C. 1a -<D. 1a ->4、如果不等式组⎩⎨⎧<->-m x x x )2(312的解集是x <2,那么m 的取值范围是( )A 、m=2B 、m >2C 、m <2D 、m ≥25、如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .6、若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是( )A .1a >-B .1a -≥C .1a ≤D .1a < 7、关于x 的不等式组12x m x m >->+⎧⎨⎩的解集是1x >-,则m = .8、已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是 ____9、若不等式组530,0x x m -⎧⎨-⎩≥≥有实数解,则实数m 的取值范围是( )A.m ≤53 B.m <53C.m >53 D.m ≥5310、关于x 的不等式组⎩⎨⎧x +152>x -32x +23<x +a 只有4个整数解,则a 的取值范围是 ( )A. -5≤a ≤-143B. -5≤a <-143C. -5<a ≤-143D. -5<a <-14311、已知关于x 的不等式组0321x a x -≥⎧⎨->-⎩有五个整数解,这五个整数是____________,a 的取值范围是________________。

一元一次不等式(组)知识总结及经典例题分析

一元一次不等式(组)知识总结及经典例题分析

一元一次不等式(组)知识总结及经典例题分析一元一次不等式和不等式组【知识要点】一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。

2.一元一次不等式的解集:使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。

一元一次不等式的所有解组成的集合是一元一次不等式的解集。

注:其标准形式: ax+b <0或ax+b ≤0, ax+b >0或ax+b ≥0(a ≠0).二、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a<(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。

说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!x <a x >a x ≤a x ≥a五、不等式组解集的确定方法,可以归纳为以下四种类型(b a <)①⎩⎨⎧>>b x a x 的解集是b x >,如下图: ②⎩⎨⎧<<b x a x 的解集是a x <,如下图:同大取大 同小取小③⎩⎨⎧<>b xa x 的解集是b x a <<,如下图:④⎩⎨⎧><bx a x 无解,如下图:大小交叉取中间 大小分离解为空六、解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.七、一元一次不等式的综合应用1.列不等式解决问题比列方程解决问题的应用更广泛、更实际。

有些问题用方程不能解决,而用不等式却能轻易解决。

数学_一元一次不等式和一元一次不等式组练习题(带解析)

数学_一元一次不等式和一元一次不等式组练习题(带解析)
39、解不等式 ≥ ,将解集在数轴上表示出来,且写出它的正整数解。
40、解不等式组:
41、某校餐厅计划购买12张餐桌和一批餐椅,现从甲、乙两商场了解到:同一型号的餐桌报价每张均为200元,餐椅报价每把均为50元.甲商场称:每购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌椅均按报价的八五折销售.那么,什么情况下到甲商场购买更优惠?
本题考查了一元一次不等式组的解法本题考查了一元一次不等式组的解法本题考查了一元一次不等式组的解法在数轴上表示不等式组的解集在数轴上表示不等式组的解集在数轴上表示不等式组的解集需要把每个不需要把每个不需要把每个不等式的解集在数轴上表示出来等式的解集在数轴上表示出来等式的解集在数轴上表示出来向右画
31、解不等式组 .
解:去分母,得2(x﹣1)﹣3(x+4)>﹣12,
去括号,得2x﹣2﹣3x﹣12>﹣12,
即﹣x﹣14>﹣12,
移项,得﹣x>2,
系数化为1,得x<﹣2.
在数轴上表示为:
点评:本题主要考查对解一元一次不等式,在数轴上表示不等式的解集,不等式的性质等知识点的理解和掌握,能根据不等式的性质正确解不等式是解此题的关键.
∴不等式组的解集为x>3。
33.解得: <x≤2
34.(1) (2)
35.m(m+1)(m-1);
36. ;当x=1时,x-1=0
37.
38.(1) (2)
39. 正整数解为 ,
40.﹣1<x<2
41.【解析】
试题分析:设学校购买12张餐桌和 把餐椅,到购买甲商场的费用为 元,到乙商场购买的费用为 元,根据“甲商场称:每购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌椅均按报价的八五折销售”即可列不等式求解.

北京市2023年九年级中考数学一轮复习——一元一次不等式和一元一次不等式组 练习题(解析版)

北京市2023年九年级中考数学一轮复习——一元一次不等式和一元一次不等式组 练习题(解析版)

北京市2023年九年级中考数学一轮复习——一元一次不等式和一元一次不等式组 练习题一、单选题1.(2022·北京十一学校一分校模拟预测)设m 是非零实数,给出下列四个命题:①若-1<m<0,则1m<m<2m ;②若m>1,则1m <2m <m ;③若m<1m <2m ,则m<0;④2m <m<1m,则0<m<1.其中命题成立的序号是( ) A .①③B .①④C .②③D .③④2.(2022·北京·东直门中学模拟预测)实数a 在数轴上的对应点的位置如图所示,那么下列结论正确的是( )A .1a >B .<1a -C .10a +>D .11a<- 3.(2022·北京市三帆中学模拟预测)已知1x =是不等式20x b -<的解,b 的值可以是( ) A .-4B .-2C .2D .44.(2022·北京·九年级专题练习)实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .2a <-B .a b <C .a b -<-D .0ab >5.(2021·北京东城·一模)实数a ,b ,c 在数轴上的对应点的位置如图所示,下列式子正确的是( )A .b +c >0B .a -b >a -cC .ac >bcD .ab >ac6.(2021·北京海淀·一模)已知1x =是不等式20x b -<的解,b 的值可以是( ) A .4B .2C .0D .2-7.(2021·北京丰台·二模)若a b >,则下列不等式一定成立的是( ) A .33a b -<- B .22a b -<- C .44a b< D .22a b <8.(2020·北京·北理工附中一模)不等式组21512x x ①②->⎧⎪⎨+≥⎪⎩中,不等式①和②的解集在数轴上表示正确的是( )A .B .C .D .二、填空题9.(2022·北京市三帆中学模拟预测)已知三个实数a 、b 、c 满足20a b c -+=,20a b c ++<,则:①0b >,②0b <,③240b ac -≤,④20b ac -≥,以上4个结论中正确的是__________(写出正确的序号).10.(2022·北京·九年级专题练习)不等式组3021x x -<⎧⎨-<⎩的解集是______.11.(2022·北京·九年级专题练习)小琦跟几位同学在某快餐厅吃饭,如下为此快餐厅的菜单、若他们所点的餐食总共为10份盖饭,x 杯饮料,y 份凉拌菜.(1)他们点了______份A 套餐(用含x 或y 的代数式表示);(2)若6x =,且A 、B 、C 套餐均至少点了1份,则最多有______种点餐方案.12.(2022·北京·九年级专题练习)用一组a 、b 、c 的值说明命题“若a >b ,则ac >bc ”错误的,这组值可以是a = ,b= ,c = .13.(2021·北京西城·一模)某商家需要更换店面的瓷砖,商家打算用1500元购买彩色和单色两种地砖进行搭配,并且把1500元全部花完.已知每块彩色地砖25元,每块单色地砖15元,根据需要,购买的单色地砖数要超过彩色地砖数的2倍,并且单色地砖数要少于彩色地砖数的3倍,那么符合要求的一种购买方案是________.14.(2021·北京朝阳·一模)某校初三年级共有8个班级的190名学生需要进行体检,各班学生人数如下表所示:若已经有7个班级的学生完成了体检,且已经完成体检的男生、女生的人数之比为4:3,则还没有体检的班级可能是_____.15.(2021·北京房山·二模)已知a b <,且实数c 满足ac bc >,请你写出一个符合题意的实数c 的值___. 16.(2020·北京密云·二模)已知“若a b >,则ac bc <”是真命题,请写出一个满足条件的c 的值是__________. 17.(2020·北京四中模拟预测)某校初三年级84名师生参加社会实践活动,计划租车前往,租车收费标准如下:则租车一天的最低费用为___________元.三、解答题18.(2022·北京·中考真题)解不等式组:274,4.2x x x x +>-⎧⎪⎨+<⎪⎩19.(2022·北京十一学校一分校模拟预测)解不等式组:4(1)7,32.4x x x x +≥+⎧⎪⎨+>⎪⎩ 20.(2022·北京市第十九中学三模)解不等式组:1251635341x x x x +-⎧>+⎪⎨⎪+≥-⎩,并写出其中的正整数解.21.(2022·北京·中国人民大学附属中学朝阳学校一模)解不等式组()4126{533x x x x +≤+--<,并写出它的所有非负..整数解.... 22.(2021·北京·中考真题)解不等式组:451342x x x x ->+⎧⎪⎨-<⎪⎩ 23.(2021·北京门头沟·一模)解不等式组:213(1)532x x xx ->-⎧⎪⎨-<+⎪⎩ 24.(2021·北京朝阳·二模)解不等式232(4)x x -≥-,并把它的解集在数轴上表示出来. 25.(2021·北京石景山·二模)解不等式113x x -≤-,并把它的解集在数轴上表示出来.26.(2021·北京顺义·一模)解不等式()3125x x -≥-,并把它的解集在数轴上表示出来.参考答案:1.B【分析】逐个进行一次判断即可,判断一个命题是假命题,只需举出一个反例. 【详解】解:①若-1<m <0,则1m<m<2m ,成立,是真命题; ②若m >1,取m=2时,m 2=4, m <m 2,原命题不成立; ③若m<1m <2m ,取m=-12时,1m =-2,m >1m ,原命题不成立; ④2m <m<1m,则0<m<1,成立,是真命题; 成立的有①④, 故选:B .【点睛】此题考查了命题和不等式,解题的关键是理解不等式的性质. 2.A【分析】直接利用a 在数轴上位置进而通过绝对值的几何意义:绝对值表示一个点与原点的距离,及不等式的性质分别分析得出答案.【详解】解:由数轴上a 与1的位置可知:||1a >,故选项A 正确;因为a <-1,不等号两边同时乘以-1,改变不等号方向,得1a ->,故选项B 错误; 因为a <-1,不等号两边同时加1,得10a +<,故选项C 错误;因为a <-1,不等号两边同时除以a ,0a <,∴改变不等号方向,得11a->,不等号两边同时除以-1,改变不等号方向,得11a-<,故选项D 错误;故选:A .【点睛】此题主要考查了绝对值的几何意义、不等式的性质,结合数轴分析各选项,掌握不等式的性质是解题关键. 3.D【分析】将x =1代入不等式求出b 的取值范围即可得出答案. 【详解】解:∵x =1是不等式2x -b <0的解, ∴2-b <0, ∴b >2, 故选:D .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4.D【分析】先根据数轴的性质可得20a b -<<<,再根据绝对值的性质、不等式的性质、有理数乘法法则逐项判断即可得.【详解】解:由数轴的性质得:20a b -<<<. A 、2a >-,此项错误,不符题意; B 、a b >,此项错误,不符题意; C 、a b ->-,此项错误,不符题意; D 、0ab >,此项正确,符合题意; 故选:D .【点睛】本题考查了数轴、绝对值、不等式的性质、有理数的乘法法则,熟练掌握数轴的性质是解题关键. 5.A【分析】先根据数轴的定义可得0a c b <<<,再根据不等式的基本性质逐项判断即可得. 【详解】由数轴的定义得:0a c b <<<, A 、0b c +>,此项正确,符合题意; B 、b c >,b c ∴-<-,a b a c ∴-<-,此项错误,不符题意;C 、,0a b c <>,ac bc ∴<,此项错误,不符题意;D 、,0b c a ><,ab ac ∴<,此项错误,不符题意;故选:A .【点睛】本题考查了数轴、不等式的基本性质,熟练掌握数轴的定义是解题关键. 6.A【分析】把x 的值代入不等式,求出b 的取值范围即可得解. 【详解】解:∵1x =是不等式20x b -<的解, ∴20b -<, 解得,2b >所以,选项A 符合题意, 故选:A .【点睛】此题主要考查了不等式的解和解不等式,熟练掌握不等式的解是解答此题的关键. 7.B【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案. 【详解】解:A 、不等式的两边都减去3,不等号的方向不变,故A 错误; B 、不等式的两边都乘以−2,不等号的方向改变,故B 正确; C 、不等式的两边都除以4,不等号的方向不变,故C 错误; D 、当a =1,b =-1时,a 2=b 2,故D 错误; 故选:B .【点睛】本题考查了不等式的基本性质,不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变. 8.B【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【详解】解:21512x x ①②->⎧⎪⎨+≥⎪⎩ 解不等式①可得x <1, 解不等式②得x≥-3,则不等式组的解集为:-3≤x <1, 由此可知用数轴表示为:故选B.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键 9.②④##④②【分析】根据条件得出b 的符号,再将2a cb +=代入,根据完全平方式的非负性即可进行判断. 【详解】解:20a bc -+=,2a c b ∴+=, 20a b c ++<,40b ∴<, 0b ∴<,∴①选项不符合题意,②选项符合题意;2a c b +=,2a cb +=∴, 0b <,0a c ∴+<,222()164()424a c a c acb ac ac ++-∴-=-=, ac 的符号不能确定,24b ac ∴-的符号不能确定,∴③选项不确定,222()()024a c a cb ac ac +--=-=≥,∴④选项符合题意,故答案为:②④.【点睛】本题考查了不等式与因式分解的综合,根据条件得出b 的符号以及b 的表达式是解题的关键. 10.13x <<【分析】分别解两个不等式,再根据“同大取大,同小取小,大小小大中间找,大大小小无解了”找到解集即可.【详解】解:3021x x -<⎧⎨-<⎩①②,解不等式①可得3x <, 解不等式②可得1x >, ∴不等式组的解集为13x <<, 故答案为:13x <<.【点睛】本题考查解一元 一次不等式组,掌握不等式组的解法是解决本题的关键. 11. (10-y ) 5【分析】(1)由三种套餐中均包含盖饭且只有A 套餐中不含凉拌菜,即可得出他们点了(10-y )份A 套餐; (2)由三种套餐中均包含盖饭且只有B 套餐中不含凉拌菜,即可得出他们点了4份B 套餐.设他们点了m 份A 套餐,则点了(10-4-m )份C 套餐,由A ,C 套餐均至少点了1份,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再结合m 为正整数即可得出点餐方案的个数.【详解】解:(1)∵B,C套餐中均含一份凉拌菜,且A套餐中不含凉拌菜,∴他们点了(10-y)份A套餐.故答案为:(10-y) .(2)∵A,C套餐均含一杯饮料,且B套餐中不含饮料,∴他们点了4份B套餐.设他们点了m份A套餐,则点了(10-4-m)份C套餐,依题意得:11041 mm≥⎧⎨--≥⎩解得:1≤m≤5.又:m为正整数,∴m可以取1,2,3,4,5,最多有5种点餐方案.故答案为:5.【点睛】本题考查了一元一次不等式组的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含y的代数式表示出他们点A套餐的数量;(2)根据各数量之间的关系,正确列出一元一次不等式组.12.1;﹣1,0.(答案不唯一)【分析】根据题意选择a、b、c的值即可.【详解】解:当a=1,b=﹣1,c=0时,1>﹣1,而1×0=0×(﹣1),∴命题“若a>b,则ac>bc”是错误的,故答案为1;﹣1,0.(答案不唯一)【点睛】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.13.购买24块彩色地砖,60块单色地砖或购买27块彩色地砖,55块单色地砖【分析】设购买x块彩色地砖,购买单色地砖y块,进而由题意得到2x<y<3x,再根据总费用为1500元,且x、y均为正整数,将y用x的代数式表示,然后解一元一次不等式组即可求解.【详解】解:设购买x块彩色地砖,购买单色地砖y块,则2x<y<3x,25x+15y=1500,∴1500255100(1)153xy x,又已知有:23x y x,∴510033510023x x x x⎧-<⎪⎪⎨⎪->⎪⎩,解得3003001411x, 又x 为正整数,且30021.414,30027.311,∴x =22,23,24,25,26,27; 由(1)式中,x y ,均为正整数, ∴x 必须是3的倍数, ∴24x =或27x =,当24x =时,单色砖的块数为15002425=6015;当27x =时,单色砖的块数为15002725=5515; 故符合要求的购买方案为:购买24块彩色地砖,60块单色地砖 或 购买27块彩色地砖,55块单色地砖. 【点睛】本题考查了一元一次不等式的实际应用,本题的关键点是将单色砖的块数用彩色砖的块数的代数式表示,进而解不等式组,注意实际问题考虑解为正整数的情况. 14.1班或5班【分析】设已经完成体检的男生4x 人,女生3x 人,则完成体检的总人数7x 人,没完成体检的总人数(190﹣7x )人,根据题意和结合表格数据得19≤190﹣7x≤29,解之即可解答.【详解】解:设已经完成体检的男生4x 人,女生3x 人,则完成体检的总人数7x 人,没完成体检的总人数(190﹣7x )人,由题意,19≤190﹣7x ≤29, 解得:23≤x ≤3247,∵x 为整数, ∴x =23或24,当x =23时,190﹣7x =29, 当x =24时,190﹣7x =22,所以,还没有体检的班级可能是1班或5班, 故答案为:1班或5班.【点睛】本题考查统计表、一元一次不等式组的应用,理解题意,正确列出一元一次不等式组是解答的关键. 15.-3【分析】根据不等式的性质解答即可.<,【详解】解:∵a b<,∴当c>0时,ac bc>,当c<0时,ac bc故答案为:-3(答案不唯一).【点睛】此题考查不等式的性质,熟记不等式的性质是解题的关键.16.1-(答案不唯一,负数即可)【分析】当a b>,要使符号变号,则只需不等式两边同时乘同一个负数c即可.<成立,即不等式两边同时乘一个c符号会变号,则使c是负数即可,则可使【详解】当a b>,要使ac bcc=-.1【点睛】本题考查了真命题和不等式的性质知识点,不等式符号要变号,就使不等式两边同时乘或除同一个负数即可,这一性质是解题的关键.17.3800【分析】将84名师生同时送到目的地,且花费是最少,只有优化租车方案方可达到节约,从同款型和不同车型组合两方面考虑求解.【详解】解:依题意得:租车费用最低的前题条件是将84名师生同时送到目的地,其方案如下:①全部一种车型:小巴车23座最少4辆,其费用为:4×1000=4000元,中巴车39座最少3辆,其费用为:3×1800=5400元,大巴车55座最少2辆,其费用为:2×2400=4800元∵4000<480<5400,∴同种车型应选取小巴车4辆费用最少.②搭配车型:2辆23座小巴车和1辆39座中巴车,其费用为:1000×2+1800=3800元,1辆39座中巴车和1辆55座大巴车,其费用为:1800+2400=4200元,∵3800<4200,∴搭配车型中2辆23座小巴车和1辆39座大巴车最少.综合①、②两种情况,费用最少为3800元.故答案为:3800.【点睛】本题考查了不等式的应用,主要考虑方案的可行性,正确分类并通过计算比较大小求解.18.14<<x【分析】分别解两个一元一次不等式,再求交集即可. 【详解】解:27442x x x x +>-⎧⎪⎨+<⎪⎩①② 解不等式①得1x >,解不等式②得4x <,故所给不等式组的解集为:14x <<.【点睛】本题考查解一元一次不等式组,属于基础题,正确计算是解题的关键.19.12x ≤<【分析】分别求得各不等式的解集,然后求得公共部分即可. 【详解】解:原不等式组为4(1)7,32.4x x x x +≥+⎧⎪⎨+>⎪⎩①② 解不等式①,得1x .解不等式②,得2x <.∴原不等式组的解集为12x <.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.543x -≤<;正整数解为1. 【分析】分别求出两个不等式得解集,找出两个解集的公共部分即可得不等式组得解集,再找出解集中得正整数解即可得答案. 【详解】1251635341x x x x +-⎧>+⎪⎨⎪+-⎩ 解不等式125163x x +->+得:53x <, 解不等式5341x x +≥-得:4x ≥-,∴不等式组得解集为543x -≤<, ∴不等式组的正整数解为:1.【点睛】本题考查解一元一次不等式组及求不等式组得正整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.不等式组的解集为1x ,所有非负整数解为0,1【分析】先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x 的所有非负整数解即可.【详解】解:原不等式组为4(1)26,53.3x x x x +≤+⎧⎪⎨--<⎪⎩①②解不等式①,得1x .解不等式②,得2x <.∴原不等式组的解集为1x .∴原不等式组的所有非负整数解为0,1.【点睛】本题考查的是解一元一次不等式组及求一元一次不等式组的非负整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.22.24x <<【分析】根据一元一次不等式组的解法可直接进行求解. 【详解】解:451342x x x x ->+⎧⎪⎨-<⎪⎩①② 由①可得:2x >,由②可得:4x <,∴原不等式组的解集为24x <<.【点睛】本题主要考查一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解题的关键.23.123x -<< . 【分析】先分别求解两个不等式的解集,再求两个解集的公共部分即得.【详解】解:()2131532x x x x ⎧->-⎪⎨-<+⎪⎩①②, 解不等式①得:2x <,解不等式②得:13x >-, ∴这个不等式的解集为123x -<< . 【点睛】本题考查了一元一次不等式组求解,解题关键是根据不等式的性质将不等式去分母、去括号、移项、合并同类项和系数化为1.24.2x ≤,数轴见解析【分析】按照解一元一次不等式的一般步骤解答,并把解集规范的表示在数轴上即可.【详解】解:2328x x -≥-.2328.x x --≥--510.x -≥-2.x ≤不等式的解集在数轴上表示如下:【点睛】此题主要考查了解一元一次不等式,关键是掌握解不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.25.1x ≥,数轴见解析【分析】正确解不等式,后根据大于向右,小于向左,有等号,实心圆,无等号,空心圆表示出来即可.【详解】解:去分母:133x x -≤-.移项,合并同类项:22x ≤.解得,1x ≥.【点睛】本题考查了不等式的解法,规范按照解不等式的基本步骤,扎实求解,理解数轴表示的符号意义是解题的关键.26.x ≥-2,在数轴上表示见解析【分析】去括号,移项,合并同类项,再在数轴上表示出不等式的解集即可.【详解】解:3(x −1)≥2x −5,去括号,得3x -3≥2x -5,移项,得3x -2x ≥-5+3,合并同类项,得x ≥-2,在数轴上表示不等式的解集为:.【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.。

北师大版数学八年级下册第二章一元一次不等式与一元一次不等式组第6节一元一次不等式组课后练习

北师大版数学八年级下册第二章一元一次不等式与一元一次不等式组第6节一元一次不等式组课后练习

第二章一元一次不等式与一元一次不等式组第6节一元一次不等式组课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分一、单选题1.若关于x的一元一次不等式组122x ax x->⎧⎨->-⎩无解,则a的取值范围是()A.1a≥B.1a>C.1a≤-D.1a<-2.若关于x的不等式组()212xa x⎧->⎨-<⎩的解集为x>a,则a的取值范围是() A.a<2B.a≤2C.a>2D.a≥23.已知关于x 的不等式组255332xxxt x+⎧->-⎪⎪⎨+⎪-<⎪⎩恰有5个整数解,则t的取值范围是()A.﹣6<t<112-B.1162t-≤<-C.1162t-<≤-D.1162t-≤<-4.把不等式组21123xx+>-⎧⎨+≤⎩的解集表示在数轴上,下列选项正确的是()A.B.C.D.5.若方程组3133x y kx y+=+⎧⎨+=⎩的解x,y满足01x y<+<,则k的取值范围是()A.10k-<<B.40k-<<C.08k<<D.4k>-6.如图所示为在数轴上表示的某不等式组的解集,则这个不等式组可能是()A.31215xx-≥⎧⎨->⎩B.31526xx->⎧⎨⎩C.35215xx+≥⎧⎨-<⎩D.322313x xxx<+⎧⎪+⎨--⎪⎩7.已知点M(1﹣2m,1﹣m)关于x轴的对称点在第四象限,则m的取值范围在数轴上表示正确的是()A.B .C.D.8.已知关于x的不等式组()()25513322xxxt x+⎧->⎪⎪⎨+⎪-<⎪⎩恰有5个整数解,则t的取值范围是()A.1992t<<B.1992t≤<C.1992t<≤D.1992t≤≤9.关于x的不等式组12xx m⎧≤-⎪⎨⎪>⎩的所有整数解的积为2,则m的取值范围为()A.m>-3B.m<-2C.m-3≤<-2D.m-3<≤-2 10.不等式组111324(1)2()xxx x a-⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a的取值范围是()A.65a-≤<-B.65a-<≤-C.65a-<<-D.65a-≤≤-评卷人得分二、填空题11.不等式组273(1)2342363x xxx+>+⎧⎪+⎨-≤⎪⎩的非负整数解有_____个.12.运行程序如图所示,从“输入实数x”到“结果是否>18”为一次程序操作,若输入x 后程序操作进行了两次停止,则x的取值范围是______.13.在平面直角坐标系中,已知点A(7-2m,5-m)在第二象限内,且m为整数,则点A的坐标为_________.14.不等式组2425x a x b +>⎧⎨-<⎩的解集是0<x <2,那么a+b 的值等于_____. 15.关于x 的不等式组,22213x b x b -≥⎧⎨-≤⎩无解,则常数b 的取值范围是__________ 16.关于x 的不等式组1234x m x +⎧⎨-≥-⎩有3个整数解,则m 的取值范围是_____. 17.同时满足332x x ->-和34x x +>的最大整数是_______. 18.若关于x 的不等式组1423x x x m+⎧-≥⎪⎨⎪>⎩的所有整数解的和是﹣9,则m 的取值范围是_____.19.已知x =3是方程2x a -—2=x—1的解,那么不等式(2—5a )x <13的解集是______.20.若数m 使关于x 的不等式组2122274x x x m -⎧≤-+⎪⎨⎪+>-⎩,有且仅有三个整数解,则m 的取值范围是______.评卷人得分 三、解答题 21.某校计划组织师生共310人参加一次野外研学活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多15个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了20人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.22.解下列不等式(组):(1)4123x x -<-(2)()543113125x x x x ⎧+<+⎪⎨--≥⎪⎩.23.涡阳苏果超市计划购进甲,乙两种商品共100件,这两种商品的进价、售价如表所示:进价(元/件)售价(元/件)甲种商品1015乙种商品2030设其中甲种商品购进x件,售完此两种商品总利润为y元.(1)写出y与x的函数关系式;(2)该商场计划最多投入1500元用于购进这两种商品共100 件,则至少要购进多少件甲种商品?若售完这些商品,商场可获得的最大利润是多少元?24.某汽车制造公司计划生产A、B两种新型汽车共40辆投放到市场销售.已知A型汽车每辆成本34万元,售价39万元;B型汽车每辆成本42万元,售价50万元.若该公司对此项计划的投资不低于1536万元,不高于1552万元.请解答下列问题:(1)该公司有哪几种生产方案?(2)该公司按照哪种方案生产汽车,才能在这批汽车全部售出后,所获利润最大,最大利润是多少?(3)在(2)的情况下,公司决定拿出利润的2.5%全部用于生产甲乙两种钢板(两种都生产),甲钢板每吨5000元,乙钢板每吨6000元,共有多少种生产方案?(直接写出答案)25.如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的相伴方程.(1)在方程320x -=①,210x +=①,()315x x -+=-①中,写出是不等式组25312x x x x -+>-⎧⎨->-+⎩的相伴方程的序号 . (2)写出不等式组213133x x x -<⎧⎨+>-+⎩的一个相伴方程,使得它的根是整数: . (3)若方程1, 2x x ==都是关于x 的不等式组22x x m x m <-⎧⎨-≤⎩的相伴方程,求m 的取值范围.26.阅读下面的材料,回答问题:如果(x-2)(6+2x)>0,求x 的取值范围. 解:根据题意,得20620x x ->⎧⎨+>⎩或20620x x -<⎧⎨+<⎩,分别解这两个不等式组,得第一个不等式组的解集为x >2,第二个不等式组的解集为x <-3.故当x >2或x <-3时,(x-2)(6+2x)>0.(1)由(x-2)(6+2x)>0,得出不等式组20620x x ->⎧⎨+>⎩或20620x x -<⎧⎨+<⎩,体现了_____思想; (2)试利用上述方法,求不等式(x-3)(1-x)<0的解集.27.某超市准备购进A、B两种品牌台灯,其中A每盏进价比B进价贵30元,A售价120元,B售价80元.已知用1040元购进的A数量与用650元购进B的数量相同.(1)求A、B的进价;(2)超市打算购进A、B台灯共100盏,要求A、B的总利润不得少于3400元,不得多于3550元,问有多少种进货方案?(3)在(2)的条件下,该超市决定对A进行降价促销,A台灯每盏降价m(8<m<15)元,B不变,超市如何进货获利最大?参考答案:1.A【解析】【分析】先求出不等式组中的每个不等式的解集,然后根据不等式组无解即可得出答案.【详解】解:解不等式122x x ->-,得1x <,解不等式0x a ->,得x a >,①不等式组1220x x x a ->-⎧⎨->⎩无解, ①1a ≥.故选:A .【点睛】本题考查了一元一次不等式组的解法,属于常考题型,正确理解题意、熟练掌握解一元一次不等式组的方法是解题的关键.2.D【解析】【分析】先求出每一个不等式的解集,然后根据不等式组有解根据已知给的解集即可得出答案.【详解】 ()2120x a x ⎧->⎨-<⎩①②, 由①得2x >,由①得x a >,又不等式组的解集是x >a ,根据同大取大的求解集的原则,①2a >,当2a =时,也满足不等式的解集为2x >,①2a ≥,故选D.【点睛】本题考查了解一元一次不等式组,不等式组的解集,熟练掌握不等式组解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.3.C【解析】【分析】本题首先求解不等式组的公共解集,继而按照整数解要求求解本题.【详解】①2553x x +->-, ①20x <;①32x t x +->, ①32x t >-;①不等式组的解集是:2032t x <<-.①不等式组恰有5个整数解,①这5个整数解只能为 15,16,17,18,19,故有143215t ≤-<,求解得:1162t -<≤-. 故选:C .【点睛】本题考查含参不等式组的求解,解题关键在于求解不等式时需将参数当做常量进行运算,其次注意运算仔细即可.4.B【解析】【分析】分别求出每一个不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则逐个判断即可.【详解】解:解不等式2x +1>-1,得:x >-1,解不等式x +2≤3,得:x ≤1,①不等式组的解集为:-1<x ≤1,故选:B .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.B【解析】【分析】理解清楚题意,运用二元一次方程组的知识,解出k 的取值范围.【详解】①0<x+y <1,观察方程组可知,上下两个方程相加可得:4x+4y=k+4,两边都除以4得,x+y=44k +, 所以44k +>0, 解得k >-4;44k +<1, 解得k <0.所以-4<k <0.故选B .【点睛】当给出两个未知数的和的取值范围时,应仔细观察找到题中所给式子与它们和的关系,进而求值.6.C【解析】【分析】数轴上表示的解集是2≤x <3,再根据不等式组的求法,先分别求出不等式组中每个不等式的解,即可得到不等式的解集,最后根据所求不等式组的解集是否与题干中的解集进行判断,即可得到答案.【详解】解:数轴上表示的解集是2≤x <3, A 、31215x x -≥⎧⎨->⎩①②,①解不等式①得:x≤2,解不等式①得:x>3,①不等式组无解,故本选项不符合题意;B、31526xx->⎧⎨⎩①②①解不等式①得:x>2,解不等式①得:x≤3,①不等式组的解集是2<x≤3,故本选项不符合题意;C、35 215 xx+≥⎧⎨-<⎩①②①解不等式①得:x≥2,解不等式①得:x<3,①不等式组的解集是2≤x<3,故本选项符合题意;D、322313x xxx<+⎧⎪⎨+--⎪⎩①②①解不等式①得:x<2,解不等式①得:x≥3,①不等式组无解,故本选项不符合题意;故选C.【点睛】本题考查数轴和求不等式组的解集,解题的关键是读懂数轴,掌握解不等式组的方法. 7.D【解析】【分析】直接利用关于x轴对称点的性质得出对应点坐标,进而利用第四象限内点的性质得出答案.【详解】解:①点M(1﹣2m,1﹣m)关于x轴的对称点在第四象限,①对称点坐标为:(1﹣2m,m﹣1),则1﹣2m>0,且m﹣1<0,解得:m<12,如图所示:.故选D .【点睛】本题考查了关于x 轴对称点的性质以及不等式的解法,正确得出m 的取值范围是解题的关键.8.C【解析】【分析】先求出不等式的解集,再根据x 有5个整数解确定含t 的式子的值的范围,特别要考虑清楚是否包含端点值,这点极易出错.再求出t 的范围即可.【详解】解:由(1)得x<-10,由(2)x>3-2t,,所以3-2t<x<-10, ①x 有5个整数解,即x=-11,-12,-13,-14,-15,①163215t -≤-<-①1992t <≤ 故答案为C .【点睛】本题考查根据含字母参数的不等式组的解集来求字母参数的取值范围,关键是通过解集确定含字母参数的式子的范围,特别要考虑清楚是否包含端点值,这点极易出错. 9.C【解析】【详解】分析:首先确定不等式组的解集,先利用含m 的式子表示,可表示出整数解,根据所有整数解的积为2就可以确定有哪些整数解,从而求出m 的范围.详解:原不等式组的解集为m <x ≤12-.整数解可能为-1,-2,-3…等又因为不等式组的所有整数解的积是2,而2=-1×(-2),由此可以得到-3≤m<-2.故选C.点睛:本题主要考查了一元一次不等式组的整数解,是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于m的不等式组,要借助数轴做出正确的取舍.10.B【解析】【分析】解不等式组,可得不等式组的解,根据不等式组有3个整数解,可得答案.【详解】解:不等式组11132412xxx x a-⎧--⎪⎨⎪-≤-⎩<()(),由13x-﹣12x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解为:4<x≤2﹣a,由关于x的不等式组11132412xxx x a-⎧--⎪⎨⎪-≤-⎩<()()有3个整数解,得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故选B.【点睛】本题考查了解一元一次不等式组,利用不等式的解得出关于a的不等式是解题的关键.11.4【解析】【分析】首先正确解不等式组,根据它的解集写出其非负整数解.【详解】解不等式2x+7>3(x+1),得:x<4,解不等式2342363xx+-≤,得:x≤8,则不等式组的解集为x<4,所以该不等式组的非负整数解为0、1、2、3这4个,故答案为4.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.148 3x<≤【解析】【分析】根据运行程序,第一次运算结果小于等于18,第二次运算结果大于18列出不等式组,然后求解即可.【详解】解:由题意得:36183(36)618xx-≤⎧⎨-->⎩①②,解不等式①,得:8x≤,解不等式①,得:143 x>,则x得取值范围是:148 3x<≤;故答案为148 3x<≤.【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运行程序并列出不等式组是解题的关键.13.(-1,1)【解析】【详解】根据平面直角坐标系的象限特点,第二象限的点的符号为(-,+),所以可得720 50mm-⎧⎨-⎩<>,解不等式可得72<m <5,由于m 为整数,所以m=4,代入可得7-2m=-1,5-m=1,即A 点的坐标为(-1,1).故答案为(-1,1).14.1【解析】【详解】试题分析:先分别用a 、b 表示出各不等式的解集,然后根据题中已知的解集,进行比对,从而得出两个方程,解答即可求出a 、b .24{25x a x b >①<②+-, ①由①得,x >4-2a ;由①得,x <5+2b , ①此不等式组的解集为:4-2a <x <5+2b , ①不等式组24{25x a x b +-><的解是0<x <2, ①4-2a=0,5+2b =2, 解得a=2,b=-1,①a+b=1考点:解一元一次不等式组.15.b >-3【解析】【分析】先求出不等式的解集,再根据不等式无解可得出b 的取值范围.【详解】22213x b x b -≥⎧⎨-≤⎩①② 解不等式①得:22≥+x b解不等式①得:312+≤b x所以不等式组的解集为31222++≤≤b b x ①此不等式无解,①31222++>b b 解得:3b >-故答案为:3b >-.【点睛】本题考查不等式组无解问题,关键是掌握不等式组解集的口诀:同大取大,同小取小,大小小大取中间,大大小小找不到(无解).16.01m ≤<【解析】【分析】解不等式组的两个不等式,根据其整数解的个数得m 的取值范围可得.【详解】解:解不等式x+1≥m ,得:x≥m ﹣1,解不等式2﹣3x≥﹣4,得:x≤2,①不等式组有3个整数解,①110m ≤﹣<﹣,即01m ≤<,故答案为0<m≤1.【点睛】本题是对不等式知识的考查,熟练掌握不等式知识是解决本题的关键.17.2【解析】【分析】根据题意列出不等式组,求出x 的取值范围,再找出符合条件的x 的整数值即可.【详解】根据题意得33234x x x x -⎧>-⎪⎨⎪+>⎩ 解得:-2<x<3.同时满足x 3x 32->-和3x 4x +>的最大整数是2, 故答案为2【点睛】本题考查的是求不等式组解集的方法,即同大取较大,同小去较小,大小小大中间找,大大小小解不了的原则.18.-5≤m <-4.【解析】【分析】先求出不等式的解集,根据已知不等式组的整数解得和为-9即可得出答案.【详解】解:1423x x x m +⎧-≥⎪⎨⎪>⎩①②解不等式①得:x≤-2,①m <x≤-2又①不等式组的所有整数解得和为-9,①-4+(-3)+(-2)=-9①-5≤m <-4;故答案为-5≤m <-4.【点睛】本题主要考查了解一元一次不等式组,是一道较为抽象的题,利用数轴就能直观的理解题意,列出关于m 的不等式组,临界数-5的取舍是易错的地方,要借助数轴做出正确的取舍.19.x <19 【解析】【详解】先根据x=3是方程2x a --2=x-1的解,代入可求出a=-5,再把a 的值代入所求不等式(2—5a )x <13,由不等式的基本性质求出x 的取值范围x <19. 故答案为x <19.20.114m -<≤-【解析】【分析】先解不等式组,求出解集,再根据“有且仅有三个整数解的条件”确定m 的范围.【详解】解:解不等式组2122274x x x m-⎧≤-+⎪⎨⎪+>-⎩ 得:437m x +-< 由有且仅有三个整数解即:3,2,1.则:4017m +-< 解得:114m -<≤-【点睛】本题考查了一元一次不等式组,利用不等式的解得出关于m 的不等式组是解题关键. 21.(1)每辆小客车的乘客座位数是20个,大客车的乘客座位数是35个(2)3【解析】【分析】(1)根据“每辆大客车的乘客座位数-小客车乘客座位数=15;6辆大客车乘客+5辆小客车乘客=310”列出二元一次方程组解之即可.(2)根据题意,设租用a 辆小客车才能将所有参加活动的师生装载完成,利用“大客车乘客+小客车乘客≥310+20”解之即可.【详解】(1)设每辆小客车的乘客座位数是x 个,大客车的乘客座位数是y 个,根据题意,得1556310y x x y -=⎧⎨+=⎩解得2035x y =⎧⎨=⎩ 答:每辆小客车的乘客座位数是20个,大客车的乘客座位数是35个.(2)设租用a 辆小客车才能将所有参加活动的师生装载完成,则20a+35(11-a)≥310+20,解得a≤323,符合条件的a 的最大整数为3.答:租用小客车数量的最大值为3.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解决本题的关键是找到题目中蕴含的数量关系.22.(1)x<-1;(2)x≤-3.【解析】【分析】(1)由移项,合并,系数化为1,即可得到答案;(2)先分别求出每个不等式的解集,然后取解集的公共部分,即可得到不等式组的解集.【详解】解:(1)4123x x -<-,①4231x x -<-+,①22x <-,①1x <-;(2)()543113125x x x x ⎧+<+⎪⎨--≥⎪⎩①②, 解不等式①,得:12x <-; 解不等式①,得:3x ≤-;①不等式组的解集为:3x ≤-.【点睛】 本题考查了解一元一次不等式组,解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤.23.(1)y=-5x+1000(0≤x≤100),(2)至少要购进50件甲种商品,商场可获得的最大利润是750元.【解析】【分析】(1)根据题意建立函数模型,利用利润=一件的利润×数量即可解题,(2)根据最多投入1500元建立不等式,再根据一次函数的性质求出最值即可.【详解】解:(1)①购进甲,乙两种商品共100件,设其中甲种商品购进x 件,①乙种商品购进(100-x )件,①y=(15-10)x+(30-20)(100-x)=-5x+1000(0≤x≤100),(2)由题意得,10x+20(100-x)≤1500,解得:x≥50,①至少要购进50件甲种商品,①y=-5x+1000,k=-5<0,①y 随着x 的减小而增大,①当x=50时,y 最大=750,①若售完这些商品,商场可获得的最大利润是750元.【点睛】本题考查了一次函数的实际应用,不等式的实际应用,函数的性质,中等难度,运用销售问题的等量关系求出一次函数的解析式是解题关键.24.(1)共有三种方案,分别为①A 型号16辆时, B 型号24辆;①A 型号17辆时,B 型号23辆;①A 型号18辆时,B 型号22辆;(2)当16x =时,272W =最大万元;(3)甲钢板4吨,乙钢板8吨;甲钢板10吨,乙钢板3吨两种生产方案.【解析】【分析】(1)设A 型号的轿车为x 辆,可根据题意列出不等式组,根据问题的实际意义推出整数值;(2)根据“利润=售价-成本”列出一次函数的解析式,然后根据一次函数的性质解答即可; (3)根据(2)中方案求出利润,然后设生产甲钢板m 吨,乙钢板n 吨,列方程求解即可.【详解】(1)设生产A 型号x 辆,则B 型号(40-x )辆,得:1536≤34x +42(40-x )≤1552,解得1618x ≤≤,x 可以取值16,17,18,共有三种方案,分别为:A 型号16辆时,B 型号24辆,A 型号17辆时,B 型号23辆,A 型号18辆时,B 型号22辆.(2)设总利润W 万元,则W =()5840x x +-=3320x -+30k =-<∴w 随x 的增大而减小当16x =时,272W =最大万元;(3)272 2.5%=6.8⨯(万元),设生产甲钢板m 吨,乙钢板n 吨,①50006000 6.810000m n +=⨯,化简得:5668m n +=,①当m =4,n =8时,甲钢板4吨,乙钢板8吨;当m =10,n =3时,甲钢板10吨,乙钢板3吨.【点睛】本题主要考查了一次函数的应用,以及一元一次不等式组的应用,此题是典型的数学建模问题,要先将实际问题转化为不等式组解应用题.25.(1)①;(2)1x =;(3)01m ≤<.【解析】【分析】(1)先求出方程的解和不等式组的解集,再判断即可;(2)解不等式组求得其整数解,根据关联方程的定义写出一个解为1的方程即可; (3)先求出方程的解和不等式组的解集,即可得出答案.【详解】(1)由不等式组25312x x x x -+>-⎧⎨->-+⎩得,3 3.54x <<, 由320x -=,解得,x =23,故方程①320x -=不是不等式组的相伴方程, 由210x +=,解得,x =1-2,故方程①210x +=不是不等式组25312x x x x -+>-⎧⎨->-+⎩的相伴方程,由 ()315x x -+=-,解得 x =2,故方程①()315x x -+=- 是不等式25312x x x x -+>-⎧⎨->-+⎩的相伴方程,故答案为①;(2)由不等式组213133x x x -<⎧⎨+>-+⎩,解得,122x << ,则它的相伴方程的解是整数, 相伴方程x=1故答案为1x =;(3)解不等式组22x x m x m <-⎧⎨-≤⎩得2m x m <≤+ 方程12x x ==,都是不等式组的相伴方程 122m m ∴<<≤+01m ∴≤<【点睛】本题主要考查解一元一次方程和一元一次不等式组,熟练掌握解一元一次方程和一元一次不等式组的技能是解题的关键.26.(1)转化;(2)x >3或x <1【解析】【分析】(1)将一个二次不等式转化为不等式组的形式,该过程体现了转化的数学思想; (2)根据两式相乘,同号得正,异号得负,则转化为30301010x x x x ->-<⎧⎧⎨⎨-<->⎩⎩或 ,再分别解两个不等式组即可.【详解】解:(1)转化;(2)由(x -3)(1-x )<0,可得3010x x -⎧⎨-⎩>,<或3010.x x -⎧⎨-⎩<,> 分别解这两个不等式组,得x >3或x <1.所以不等式(x -3)(1-x )<0的解集是x >3或x <1.【点睛】本题目是一道新型材料题目,考察学生的知识的迁移能力,根据两数相乘,同号得正,异号得负,将二次不等式转化为两个不等式组,解这两个不等式组,即可.27.(1)A 进价80元,B 进价50元;(2)16种;(3)当8<m<10时,A40盏,B60盏,利润最大;当m=10时,A 品牌灯数量在40至55间,利润均为3000;当8<m<10时,A55盏,B45盏,利润最大.【解析】【详解】试题分析:(1)根据:“1040元购进的A 品牌台灯的数量=650元购进的B 品牌台灯数量”相等关系,列方程求解可得;(2)根据:“3400≤A 、B 品牌台灯的总利润≤3550”不等关系,列不等式组,可知数量范围,确定方案数;(3)利用:总利润=A 品牌台灯利润+B 品牌台灯利润,列出函数关系式,结合函数增减性,分类讨论即可.试题解析:(1)设A 品牌台灯进价为x 元/盏,则B 品牌台灯进价为(x-30)元/盏,根据题意得104065030x x -=, 解得x=80,经检验x=80是原分式方程的解.则A 品牌台灯进价为80元/盏,B 品牌台灯进价为x-30=80-30=50(元/盏),答:A 、B 两种品牌台灯的进价分别是80元/盏,50元/盏.(2)设超市购进A 品牌台灯a 盏,则购进B 品牌台灯有(100-a )盏,根据题意,有 ()()()()()()12080805010034001208080501003550a a a a ⎧-+--≥⎪⎨-+--≤⎪⎩解得,40≤a≤55.①a 为整数,①该超市有16种进货方案.(3)令超市销售台灯所获总利润记作w ,根据题意,有w=(120-m-80)a+(80-50)(100-a )=(10-m)a+3000①8‹m‹15①①当8<m<10时,即10-m<0,w随a的增大而减小,故当a=40时,所获总利润w最大,即A品牌台灯40盏、B品牌台灯60盏;①当m=10时,w=3000;故当A品牌台灯数量在40至55间,利润均为3000;①当10<m<15时,即10-m>0,w随a的增大而增大,故当a=55时,所获总利润w最大,即A品牌台灯55盏、B品牌台灯45盏.。

(完整版)一元一次不等式和一元一次不等式组(经典难题)

(完整版)一元一次不等式和一元一次不等式组(经典难题)

一元一次不等式和一元一次不等式组1.某同学说213a a 一定比21a 大,你认为对吗?说明理由。

2.已知方程组23121x y m x y m (1)请列出x>y 成立的关于m 的不等式。

(2)运用不等式的基本性质将此不等式化为m>a 或m<a 的形式。

3.要使不等式(1)12a x x a 的解集为x<-1,求a 的取值范围。

4.已知关于x 的一元一次方程4131x m x 的解都是负数,求m 的取值范围.5.如果关于x 的不等式(1)524.a x a x a 和的解集相同,求的值6.x 取哪些非负整数时,322x 的值不小于213x 与1的差。

7.m 取何值时,关于x 的方程6151632x m m x 的解大于1?8.如果方程组24122x y m x y m 的解满足3x-y>0,求m 的取值范围.9.若关于x 的方程52)4(3a x 的解大于关于x 的方程3)43(4)14(x a x a 的解,求a 的取值范围.10.不等式组1,159m x x x 的解集是x >2,则m 的取值范围是.11.对于整数a ,b ,c ,d ,定义bd ac c d ba ,已知3411d b,则b +d 的值为_________.12.k 满足______时,方程组4,2y x k y x 中的x 大于1,y 小于1.13.解下列不等式或不等式组:.15)2(22537313x x x ).1(32)]1(21[21x x x x 2503.0.02.003.05.09.04.0x x x .3273,4536,7342x x x x x x14.当310)3(2k k 时,求关于x 的不等式k x x k 4)5(的解集.15.已知122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.16.已知a 是自然数,关于x 的不等式组02,43x a x 的解集是x >2,求a 的值.17.关于x 的不等式组123,0x a x 的整数解共有5个,求a 的取值范围.18.若关于x 的不等式组ax x x x 322,3215只有4个整数解,求a 的取值范围.22.某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.。

京改版七年级数学下册第四章一元一次不等式和一元一次不等式组专题练习试题(含答案解析)

京改版七年级数学下册第四章一元一次不等式和一元一次不等式组专题练习试题(含答案解析)

七年级数学下册第四章一元一次不等式和一元一次不等式组专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分) 1、若不等式(a +1)x >2的解集为x <21a +,则a 的取值范围是( ) A .a <1B .a <-1C .a >1D .a >-12、若a >b ,则下列不等式一定成立的是( ) A .﹣2a <﹣2bB .am <bmC .a ﹣3<b ﹣3D .3a +1<3b +13、关于x 的方程3﹣2x =3(k ﹣2)的解为非负整数,且关于x 的不等式组()21323x x k x x ⎧--≥⎪⎨+≤⎪⎩无解,则符合条件的整数k 的值的和为( ) A .5B .2C .4D .64、下列判断不正确的是( ) A .若a b >,则33a b +>+ B .若a b >,则33a b -<- C .若22a b >,则a b >D .若a b >,则22ac bc >5、如果a b <,那么下列不等式中正确的是( )A .22a b < B .11a b ->- C .a b -<-D .22a b -+<-+6、不等式组3x x a>⎧⎨>⎩的解是x >a ,则a 的取值范围是( )A .a <3B .a =3C .a >3D .a ≥37、如果关于x 的方程ax ﹣3(x +1)=1﹣x 有整数解,且关于y 的不等式组31252130y a y +⎧≤⎪⎨⎪+-≤⎩有解,那么符合条件的所有整数a 的个数为( ) A .3B .4C .5D .68、某次知识竞赛共有30道选择题,答对一题得10分,若答错或不答一道题,则扣3分,要使总得分不少于70分则应该至少答对几道题?若设答对x 题,可得式子为( ) A .10x ﹣3(30﹣x )>70 B .10x ﹣3(30﹣x )≤70 C .10x ﹣3x ≥0D .10x ﹣3(30﹣x )≥709、不等式34x x ≥+的解集在数轴上表示正确的是( ) A .B .C .D .10、对有理数a ,b 定义运算:a ✬b =ma +nb ,其中m ,n 是常数,如果3✬4=2,5✬8>2,那么n 的取值范围是( ) A .n >1-B .n <1-C .n >2D .n <2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分) 1﹣3<2x 的解集是 ___.2、如果关于x的不等式组3020x ax b-≥⎧⎨-≤⎩的整数解只有1,2,3,那么a的取值范围是______,b的取值范围是______.3、不等式组121aa a-<⎧⎨>-⎩的解集为____________.4、若不等式组9433x xx k+>+⎧⎨-<⎩的解集为2x<,则k的取值范围为__________.5、某种药品的说明书上贴有如下的标签,一次服用这种药品的剂量范围是_________mg.三、解答题(5小题,每小题10分,共计50分)1、(1)解不等式4x﹣1>3x;(2)解不等式组3(1)5(1)21531123x xx x-≤+-⎧⎪-+⎨>-⎪⎩.2、解不等式1226123x x++≥-,并将解集在数轴上表示;3、由于传染病防控形势严峻,妈妈让小明到药店购买口罩,某种包装的口罩标价每袋10元,请认真阅读老板与小明的对话:(1)结合两人的对话内容,小明原计划购买几袋口罩?(2)此时,妈妈来电话说:“口罩只需要购买8袋,另外还需要购买消毒液和洗手液共5瓶,并且三种物品购买总价不超过200元.”现已知消毒液标价每瓶20元,洗手液标价每瓶35元,经过沟通,老板答应三种物品都给予8折优惠,那么小明最多可购买洗手液多少瓶?4、某厨具店购进A型和B型两种电饭煲进行销售,其进价与售价如表:(1)一季度,厨具店购进这两种电饭煲共30台,用去了5600元,问该厨具店购进A,B型电饭煲各多少台?(2)为了满足市场需求,二季度厨具店决定用不超过9560元的资金采购两种电饭煲共50 台,且A 型电饭俣的数量不少于B型电饭煲数量,问厨具店有哪几种进货方案?(3)在(2)的条件下,全部售完,请你通过计算判断,哪种进货方案厨具店利润最大,并求出最大利润.5、阅读下列材料:根据绝对值的定义,||x表示数轴上表示数x的点与原点的距离,那么,如果数轴上两点P、Q表示的数为x1,x2时,点P与点Q之间的距离为PQ=12||.x x根据上述材料,解决下列问题:如图,在数轴上,点A、B表示的数分别是-4,8(A、B两点的距离用AB表示),点M是数轴上一个动点,表示数m.(1)AB = 个单位长度;(2)若48m m ++-=20,求m 的值;(写过程)(3)若关于x 的方程|1||1||5|x x x a -+++-=无解,则a 的取值范围是 .---------参考答案----------- 一、单选题 1、B 【解析】 【分析】根据不等式的性质可得10a +<,由此求出a 的取值范围. 【详解】解:不等式(1)2a x +>的解集为21x a <+, ∴不等式两边同时除以(1)a +时不等号的方向改变, 10a ∴+<,1a ∴<-,故选:B . 【点睛】本题考查了不等式的性质,解题的关键是掌握在不等式的两边同时乘以(或除以)同一个负数不等号的方向改变. 2、A【解析】 【分析】由题意直接依据不等式的基本性质对各个选项进行分析判断即可. 【详解】 解:A .∵a >b ,∴﹣2a <﹣2b ,故本选项符合题意;B .a >b ,当m >0时,am >bm ,故本选项不符合题意;C .∵a >b ,∴a ﹣3>b ﹣3,故本选项不符合题意;D .∵a >b ,∴33a b >,∴1133a b +>+,故本选项不符合题意; 故选:A . 【点睛】本题考查不等式的基本性质,注意掌握不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变. 3、C 【解析】 【分析】先求出3﹣2x =3(k ﹣2)的解为x 932k-=,从而推出3k ≤,整理不等式组可得整理得:1x x k≤-⎧⎨≥⎩,根据不等式组无解得到k>﹣1,则﹣1<k≤3,再由整数k和932kx-=是整数进行求解即可.【详解】解:解方程3﹣2x=3(k﹣2)得x932k-=,∵方程的解为非负整数,∴932k-≥0,∴3k≤,把()213x xx k⎧--≥⎨≥⎩整理得:1xx k≤-⎧⎨≥⎩,由不等式组无解,得到k>﹣1,∴﹣1<k≤3,即整数k=0,1,2,3,∵932kx-=是整数,∴k=1,3,综上,k=1,3,则符合条件的整数k的值的和为4.故选C.【点睛】本题主要考查了解一元一次方程,根据一元一次不等式组的解集情况求参数,解题的关键在于能够熟练掌握相关知识进行求解.4、D【解析】【分析】根据不等式得性质判断即可. 【详解】A. 若a b >,则不等式两边同时加3,不等号不变,选项正确;B. 若a b >,则不等式两边同时乘-3,不等号改变,选项正确;C. 若22a b >,则不等式两边同时除2,不等号不变,选项正确;D. 若a b >,则不等式两边同时乘2c ,有可能2c =0,选项错误; 故选:D . 【点睛】本题考查不等式得性质,需要特别注意不等式两边同时乘(除)一个正数不等号不变,同时乘(除)一个负数不等号改变. 5、A 【解析】 【分析】根据不等式的性质解答. 【详解】解:根据不等式的性质3两边同时除以2可得到22a b <,故A 选项符合题意; 根据不等式的性质1两边同时减去1可得到11a b -<-,故B 选项不符合题意;根据不等式的性质2两边同时乘以-1可得到a b ->-,故C 选项不符合题意;根据不等式的性质1和2:两边同时乘以-1,再加上2可得到22a b -+>-+,故D 选项不符合题意;故选:A.【点睛】此题考查不等式的性质:性质一:不等式两边加减同一个数,不等号方向不变;性质二:不等式两边同乘除同一个正数,不等号方向不变;性质三:不等式两边同乘除同一个负数,不等号方向改变.6、D【解析】【分析】根据不等式组的解集为x>a,结合每个不等式的解集,即可得出a的取值范围.【详解】解:∵不等式组3xx a>⎧⎨>⎩的解是x>a,∴3a≥,故选:D.【点睛】本题考查了求不等式组的解集的方法,熟记口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”是解本题的关键.7、C【解析】【分析】先解关于y的不等式组可得解集为2133ay+≤≤,根据关于y的不等式组有解可得2133a+≤,由此可得4a≤,再解关于x的方程可得解为42xa=-,根据关于x的方程ax﹣3(x+1)=1﹣x有整数解可得42a-的值为整数,由此可求得整数a的值,由此即可求得答案.【详解】解:31252130ya y+⎧≤⎪⎨⎪+-≤⎩①②,解不等式①,得:3y≤,解不等式②,得:213ay+≥,∴不等式组的解集为2133ay+≤≤,∵关于y的不等式组有解,∴2133a+≤,解得:4a≤,∵ax﹣3(x+1)=1﹣x,∴ax﹣3x﹣3=1﹣x,∴ax﹣3x+x=1+3,∴(a﹣2)x=4,∵关于x的方程ax﹣3(x+1)=1﹣x有整数解,a为整数,∴a﹣2=4,2,1,﹣1,﹣2,﹣4,解得:a=6,4,3,1,0,﹣2,又∵4a≤,∴a=4,3,1,0,﹣2,∴符合条件的所有整数a的个数为5个,故选:C【点睛】此题考查了解一元一次不等式组、解一元一次方程,熟练掌握相关运算法则是解本题的关键.【解析】【分析】根据得分−扣分不少于70分,可得出不等式.【详解】解:设答对x题,答错或不答(30−x),则10x−3(30−x)≥70.故选:D.【点睛】本题考查了由实际问题抽象出一元一次不等式的知识,解答本题的关键是找到不等关系.9、A【解析】【分析】先解不等式,再利用数轴的性质解答.【详解】解:34≥+x x解得2x≥,∴不等式34≥+的解集在数轴上表示为:x x故选:A.【点睛】此题考查解不等式及在数轴上表示不等式的解集,正确解不等式及掌握数轴的性质是解题的关键.【解析】【分析】先根据新运算的定义和3✬4=2将m用n表示出来,再代入5✬8>2可得一个关于n的一元一次不等式,解不等式即可得.【详解】解:由题意得:342m n+=,解得243nm-=,由5✬8>2得:582m n+>,将243nm-=代入582m n+>得:5(24)823nn-+>,解得1n>-,故选:A.【点睛】本题考查了一元一次不等式的应用,理解新运算的定义是解题关键.二、填空题1、6x>-.【解析】【分析】先移项,然后系数化为1,即可求出不等式的解集.【详解】32x-<,23x -<,∴2)3x <, ∴x∴2)x >-,∴6x >-.故答案为:6x >-.【点睛】本题考查了一元一次不等式的解法,是基础题,正确计算是解题的关键.2、 03a ≤< 68b ≤<【解析】【分析】 先解不等式组可得解集为:,32a b x ≤≤再利用整数解只有1,2,3,列不等式01,34,32a b ≤≤<< 再解不等式可得答案.【详解】解:3020x a x b -≥⎧⎨-≤⎩①② 由①得:,3a x ≥ 由②得:,2bx ≤ 因为不等式组有整数解,所以其解集为:,32ab x ≤≤又整数解只有1,2,3,01,34,32a b ∴≤≤<< 解得:03,68,a b ≤≤<<故答案为:03,68a b ≤≤<<【点睛】本题考查的是一元一次不等式组的解法,一元一次不等式组是整数解问题,解题过程中注意确定字母取值范围时的“等于号”的确定是解题的关键.3、132a <<【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式12a -<得: 3a <解不等式1a a 得:12a >∴原不等式组的解集为132a << 故答案为:132a <<【点睛】本题考查了解一元一次不等式组,掌握求不等式组的解集是解题的关键.4、1k ≥-【解析】【分析】先解一元一次不等式组中的两个不等式,再根据解集为2x <,可得32k +≥,从而可得答案.【详解】解:9433x x x k +>+⎧⎨-<⎩①② 由①得:36x ->-2x ∴<由②得:3x k <+不等式组9433x x x k +>+⎧⎨-<⎩的解集为2x <, 32k ∴+≥1∴≥-k故答案为:1k ≥-【点睛】本题考查的是一元一次不等式组的解法,利用一元一次不等式组的解集求解参数的取值范围,掌握一元一次不等式组的解法是解题的关键.5、20~45【解析】【分析】根据60≤2次服用的剂量≤90,60≤3次服用的剂量≤90,列出两个不等式组,求出解集,再求出解集的并集即可.【详解】解:设一次服用的剂量为x mg ,根据题意得;60≤2x≤90或60≤3x≤90,解得30≤x≤45或20≤x≤30,则一次服用这种药品的剂量范围是:20~45mg.故答案为:20~45.【点睛】此题考查一元一次不等式组的应用,得到不同次数服用剂量的数量关系是解决本题的关键.三、解答题1、(1)1x>;(2)133x-≤<.【解析】【分析】(1)直接移项化简即可求得(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:(1)4x﹣1>3x;431x x->解得1x>;(2)3(1)5(1)21531123x xx x-≤+-⎧⎪⎨-+>-⎪⎩①②解不等式①得:3x≥-,解不等式②得:13 x<∴不等式组的解集为133x -≤< 【点睛】本题考查了解不等式和解不等式组,正确的计算以及求不等式组的解集是解题的关键.2、7x ≥-,数轴表示见解析【解析】【分析】先去分母,然后再求解一元一次不等式即可.【详解】 解:1226123x x ++≥- 去分母得:()()3162226x x +≥-+,去括号得:336452x x +≥--,移项、合并同类项得:749x ≥-,系数化为1得:7x ≥-;数轴表示如下:【点睛】本题主要考查一元一次不等式的解法,熟练掌握一元一次不等式的解法是解题的关键.3、(10)10;(2)4【解析】【分析】(1)设小明原计划购买x 袋口罩,列方程0.8510(1) 6.510x x ⨯++=,求解即可;(2)设购买洗手液a 瓶,则购买消毒液(5-a )瓶,由题意得列不等式[]0.881020(5)35200a a ⨯+-+≤,求解即可.【详解】解:(1)设小明原计划购买x 袋口罩,由题意得0.8510(1) 6.510x x ⨯++=,解得x =10,∴小明原计划购买10袋口罩;(2)设购买洗手液a 瓶,则购买消毒液(5-a )瓶,由题意得[]0.881020(5)35200a a ⨯+-+≤, 解得243a ≤,∴小明最多可购买洗手液4瓶.【点睛】此题考查了一元一次方程的实际应用,一元一次不等式的实际应用,正确理解题意列出方程或不等式是解题的关键.4、(1)厨具店购进A ,B 型电饭煲各10台,20台;(2)有四种方案:①购买A 型电饭煲25台,购买B 型电饭煲25台;②购买A 型电饭煲26台,购买B 型电饭煲24台;③购买A 型电饭煲27台,购买B 型电饭煲23台,④购买A 型电饭煲28,购买B 型电饭煲22台;(3)购买A 型电饭煲28,购买B 型电饭煲22台时,橱具店赚钱最多.【解析】【分析】(1)设橱具店购进A 型电饭煲x 台,B 型电饭煲y 台,根据橱具店购进这两种电饭煲共30台且用去了5600元,即可得出关于x 、y 的二元一次方程组,解之即可得出x 、y 的值,即可;(2)设购买A型电饭煲a台,则购买B型电饭煲(50−a)台,根据橱具店决定用不超过9560元的资金采购电饭煲和电压锅共50个且A型电饭俣的数量不少于B型电饭煲数量,即可得出关于a的一元一次不等式组,解之即可得出a的取值范围,由此即可得出各进货方案;(3)根据总利润=单个利润×购进数量分别求出各进货方案的利润,比较后即可得出结论.【详解】解:(1)设橱具店购进A型电饭煲x台,B型电饭煲y台,根据题意得:302001805600x yx y+=⎧⎨+=⎩,解得:1020xy=⎧⎨=⎩,答:厨具店购进A,B型电饭煲各10台,20台;(2)设购买A型电饭煲a台,则购买B型电饭煲(50−a)台,根据题意得:() 20018050956050a aa a⎧+-≤⎨≥-⎩,解得:25≤a≤28.又∵a为正整数,∴a可取25,26,27,28,故有四种方案:①购买A型电饭煲25台,购买B型电饭煲25台;②购买A型电饭煲26台,购买B型电饭煲24台;③购买A型电饭煲27台,购买B型电饭煲23台,④购买A型电饭煲28,购买B型电饭煲22台;(3)设橱具店赚钱数额为w元,当a=25时,w=25×100+25×80=4500;当a=26时,w=26×100+24×80=4520;当a=27时,w=27×100+23×80=4540;当a=28时,w=28×100+22×80=4560;综上所述,当a=28时,w最大,即购买A 型电饭煲28,购买B 型电饭煲22台时,橱具店赚钱最多.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,列出关于x 、y 的二元一次方程组;(2)根据数量关系,列出关于a 的一元一次不等式组;(3)根据总利润=单个利润×购进数量分别求出各进货方案的利润.5、(1)12;(2)m =-8或12;(3)6a <【解析】【分析】(1)根据题中所给数轴上两点距离公式可直接进行求解;(2)由题意可分当4m <-,48m -≤≤,8m >三种情况进行分类求解即可;(3)由题意可分当1x <-,11x -≤≤,15x <≤,5x >四种情况进行分类求解,然后根据方程无解可得出a 的取值范围.【详解】解:(1)由题意得:()8412AB =--=;故答案为12;(2)由题意得:①当4m <-时,则有:4820m m ---+=,解得:8m =-;②当48m -≤≤时,则有4820m m +-+=,方程无解;③当8m >时,则有4820m m ++-=,解得:12m =,综上所述:m =-8或12;(3)由题意得:①当1x <-时,则有115x x x a -+---+=,解得:53a x -=, ∵方程无解, ∴513a -≥-,解得:8a ≤;②当11x -≤≤时,则有115x x x a -+++-+=,解得:7x a =-,∵方程无解,∴71a -<-或71a ->,解得:8a >或6a <;③当15x <≤时,则有115x x x a -++-+=,解得:5x a =-,∵方程无解,∴51a -≤或55a ->,解得:10a >或6a ≤;④当5x >时,则有115x x x a -+++-=,解得:53a x +=, ∵方程无解, ∴553a +≤,解得:10a ≤; 综上所述:当关于x 的方程|1||1||5|x x x a -+++-=无解,则a 的取值范围是6a <;故答案为6a <.【点睛】本题主要考查数轴上两点距离、一元一次不等式的解法及一元一次方程的解法,熟练掌握数轴上两点距离、一元一次不等式的解法及一元一次方程的解法是解题的关键.。

一元一次不等式与一元一次不等式组典型例题分类

一元一次不等式与一元一次不等式组典型例题分类

一元一次不等式(组)1.有一根长40mm 的金属棒,欲将其截成x 根7mm 长的小段和y 根9mm 长的小段,剩余部分作废料处理,若使废料最少,则正整数x ,y 应分别为( )A . 1x =,3y =B . 3x =,2y =C . 4x =,1y = D . 2x =,3y = 2.若关于x 的不等式组{23335x x x a >-->有实数解,则a 的取值范围是_______.3.不等式组的解集在数轴上表示为( )A .B .C .D .4.已知点M (1﹣2m ,m ﹣1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是( )A .B .C .D .5.为了抓住梵净山文化艺术节的商机,某商店决定购进A 、B 两种艺术节纪念品.若购进A 种纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件,需要800元.(1)求购进A 、B 两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?6.某楼盘一楼是车库(暂不销售),二楼至二十三楼均为商品房(对外销售).商品房售价方案如下:第八层售价为3000元/米2,从第八层起每上升一层,每平方米的售价增加40元;反之,楼层每下降一层,每平方米的售价减少20元.已知商品房每套面积均为120平方米.开发商为购买者制定了两种购房方案:方案一:购买者先交纳首付金额(商品房总价的30%),再办理分期付款(即贷款).方案二:购买者若一次付清所有房款,则享受8%的优惠,并免收五年物业管理费(已知每月物业管理费为a元)(1)请写出每平方米售价y(元/米2)与楼层x(2≤x≤23,x是正整数)之间的函数解析式;(2)小张已筹到120000元,若用方案一购房,他可以购买哪些楼层的商品房呢?(3)有人建议老王使用方案二购买第十六层,但他认为此方案还不如不免收物业管理费而直接享受9%的优惠划算.你认为老王的说法一定正确吗?请用具体的数据阐明你的看法。

人教版九年级数学中考一元一次不等式(组)专项练习及参考答案

人教版九年级数学中考一元一次不等式(组)专项练习及参考答案

人教版九年级数学中考一元一次不等式(组)专项练习【例1】. (1)下列式子中属于不等式的有( )①357x +≥;②253x -≤;③57≠;④217x +>-;⑤25x y +≤;⑥ 76x +;⑦35x z +=;⑧.112x +> A .6个B .8个C .7个D .5个 【答案】A(2)用不等式表示:a 与1的和是正数 ;x 的3倍与2的差不大于5 ;【答案】10a +>;325x -≤;【例2】. (1)利用不等式的基本性质,用“<”或“>”号填空.①若 a< b ,则 2 a -1 _______2b -1;②若 a >b ,则 -4a + 3_____-4b + 3;③若623>-x ,则 x ______-4; ④若 a >b ,c > 0 ,则 ac+ c ______ b c +c ;⑤若 x<0 ,y >0 ,z <0,则 ( x -y) z _______ 0 .【解析】 让学生说明每一步的依据.⑴<;⑵<;⑶<;⑷>;⑸>.(2)若a >b ,则下列不等式成立的是( )A . b -a <0B . ac< b cC .1>ba D .ab -<- 【解析】 A. 其中 B 选项中c 的值不确定,当 c >0时,ac> b c ;当 c <0时, ac< b c ;当 c =0 时, ac= bc . C 选项中当b>0 时成立,当 b ≤ 0 时不成立;D 选项中应为ab ->- .(3)下列变形正确的是( ) A .若223x <-,则3x >- B .若x y >,则1212x y ->- C .若a b >,则22ac bc >D .若a b -<-,则b a <【答案】D【例3】. (1)下列各式中,是一元一次不等式的为( )A .510x =B .510x y +>C .2510x >D .12x> E .510x > 【答案】E(2)下列说法中,正确的是( )A .x = 2是不等式 3x >-1的解B .x = 2是不等式3x >-1的唯一解C .x = 2不是不等式3x >-1的解D .x = 2是不等式3x >-1的解集【答案】A(3)把不等式10x +≥在数轴上表示出来,则正确的是( )A .B .C .D .【答案】B(4)在数轴上表示出下列不等式的解集: ①32x >-;②x ≥2.5;③ 3.5x <-;④14x ≤3.○5 1.5 3.5x -≤< 【答案】略【例4】. (1)解不等式:5122(43)x x --≤,并把它的解集在数轴上表示出来.【解析】51286x x --≤58126x x --≤36x -≤2x -≥【答案】2x -≥(2)解不等式 2151132x x -+-≥,并把它的解集在数轴上表示出来.【解析】去分母,得 2(21)3(51)6x x --+≥去括号,得 421536x x ---≥移项合并同类项,得 1111x -≥10101010-3-2-10123系数化为1,得 1x -≤所以,此不等式的解集为1x -≤ ,在数轴上表示如图所示(3)8236365>-+-x x ; 【解析】42>x ,图略 ;不等式的整数解问题【例5】. ⑴不等式x x +<-353的正整数解是 .⑵解不等式()1312423-+≥--x x x ,将解集在数轴上表示出来,并写出它的正整数解. 【解析】 ⑴ 1,2,3;⑵ x≤ 2 ,正整数解 1,2.不等式组的解集【例6】. (1)如图,写出下列数轴所表示的不等式的解集.①;②; ③;④.【答案】①2x <;②22x -≤≤;③34x -<≤;④33x -<<.(2) 不等式组⎩⎨⎧≤-->0112x x 的解集是( ). A. 21->x B. 21-<x C.1≤x D. 121≤<-x 【答案】D解不等式组并在数轴上表示解集【例7】. (1)()2311212x x x x -+⎧⎪⎨->+⎪⎩,≥. 【答案】5x >,图略(2)6341213x x x x ++⎧⎪+⎨>-⎪⎩≤ 【答案】⑵解不等式634x x ++≤,得1x ≥.3210-1-2-302-2204-3-330解不等式1213xx +>-,得4x <.因此,原不等式组的解集为14x <≤.图略解含三个不等式的不等式组与双向不等式【例8】. (1)解不等式组:233134x xx x <⎧⎪-⎨⎪->-⎩≥ 【答案】不等式组的解集为:443x <≤(2)4333152x x -<≤+【答案】 4932x ≤<【练习1】 不等式的定义与性质(1)下列式子中不属于不等式的有( )A.325x -<B.6≠6xC. 25x y +≤D. ()430%2c +=-【答案】D(2)若a b <,则下列不等式一定成立的是( )A .11a b -<-B .33a b> C .a b -<- D .ac bc <【答案】A【练习2】 数轴表示不等式与不等式组(1)不等式的解集2x ≤在数轴上表示为( )A B C D【答案】B(2)如图,把某不等式组中两个不等式的解集表示在数轴上,则这个不等式组可能是()A .41x x >⎧⎨-⎩≤ B . 41x x <⎧⎨-⎩≥ C .41x x >⎧⎨>-⎩ D .41x x ⎧⎨>-⎩≤【答案】B【练习3】 解不等式并在数轴上表示解集 (1)2(2)63x x --≤【答案】2x ≤ ,图略(2)5113x x -->,.【解析】5133x x -->24x >2x >【答案】2x >【练习4】 解不等式组(1)23821x x x >-⎧⎨--⎩≥ 【答案】332x -<≤(2)11224(1)x x x -⎧⎪⎨⎪-<+⎩≤【答案】23x -<≤【练习5】 解双向不等式31142x --<≤ 【答案】133x -<≤-3-2-10123-3-2-10123。

(完整版)《一元一次不等式组的应用》典型例题

(完整版)《一元一次不等式组的应用》典型例题

《一元一次不等式组的应用》典型例题例题1车站有待运的甲种货物1530吨,乙种货物1150吨,原计划用50节BA,两种型号的车厢将这批货物运至北京,已知每节A型货箱的运费为0.5万元,每节B型货箱的运费为0.8万元,甲种货物35吨和乙种货物15吨可装满一节A型货箱,甲种货物25吨和乙种货物35吨可装满一节B型货箱,按此要求安排BA,两种货箱的节数,共有哪几种方案?请你设计出来,并说明哪种方案的运费最少?例题2幼儿园大班分苹果,若每人分3个,则余8个,若前面每人分5个,则最后一个小朋友得到的苹果数不足3个,求有多少个小朋友和多少个苹果?例题3某班需要买一些笔记本和钢笔以表扬在数学竞赛中获奖的10名学生,已知笔记本的单价是3.5元,钢笔的单价是8元,且购买奖品的金额不超过70元.问至多能买几支钢笔?例题4某宾馆底楼客房比二楼少5间,某旅游团有48人,若全安排在底楼,每间4人,房间不够,每间5人,有房间没有住满,又若安排住二楼,每间3人,房间不够,每间4人,又有房间没有住满,问宾馆底楼有客房几间?例题5幼儿园有玩具若干件,分给小朋友,如果每人3件,那么还余59件,如果每人分5件,那么最后一个小朋友少几件,来这个幼儿园有多少玩具?多少个小朋友?例题6某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A、B两种产品共50件.已知生产一件A种产品需甲种原料9kg、乙种原料3kg;生产一件B种产品需甲种原料4kg、乙种原料10kg.(1)设生产x件A种产品,写出x应满足的不等式组;(2)如果x是整数,有哪几种符合题意的生产方案?请你帮助设计.例题7一条铁路线上E,,A,,各站之间的路程如图所示,单位为千米.一BDC列火车7:30从A站开出,向E站行驶,行驶速度为80km/h,每站停车时间约4min,问这列火车何时行驶在D站与E站之间(不包括D站、E站)的铁路线上.例题8某自行车厂今年生产销售一种新自行车,现向你提供以下有关信息:(1)该厂去年已备有这种自行车的车轮10000只,车轮车间今年平均每月可生产车轮1500只,每辆自行车需装配2只轮;(2)该厂装配车间(自行车生产最后一道工序的生产车间)每月至少可装配这种自行车1000辆,但不超过1200辆;(3)今年该厂已收到各地客户订购这种自行车共14500辆的订货单;(4)这种自行车出厂销售单价为500元/辆.设该厂今年这种自行车的销售金额为a万元,请你根据上述信息,判断a的取值范围.例题9某园林的门票每张10元,一次使用.考虑人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种购买个人年票的售票方法(个人年票从购买日起,可供持票者使用一年).年票分C,三类:A,BA类年票每张120元,持票者进入园林时,无需再买门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出进入该园林的次数最多的购票方式.(2)求一年中进入该园林至少超过多少次时,购买A在年票比较合算.例题10有两个学生参加四次测验,他们的平均分数不同,但都是低于90分的整数.他们又参加了第五次测验,测验后他们的平均成绩都提高到90分.问在第五次测验时,这两个学生的分数各是多少?(满分100分,得分都是整数)例题11大小盒子共装球99个,每个大盒装12个,小盒装5个,恰好装完,盒子个数大于10,问:大小盒子各多少个?参考答案例题1 分析 这是一道方案设计优化问题,要将货物运至北京,车厢的总装载重量必须大于或等于货物的总量,由此可列不等式。

一元一次不等式与不等式组经典例题

一元一次不等式与不等式组经典例题

一元一次不等式与不等式组经典例题下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一元一次不等式与不等式组经典例题在数学学习中,一元一次不等式以及不等式组是基础而重要的概念。

一元一次不等式与一元一次不等式组典型例题分类和中考真题练习

一元一次不等式与一元一次不等式组典型例题分类和中考真题练习

一元一次不等式(组)考点整合1、不等式基本概念与性质 :2、不等式的解集: 用数轴表示不等式的方法:大于往右拐,小于往左拐,有等画实心,无等画空心。

3、解一元一次不等式的一般步骤:去分母、去括号、移项、合并同类项、系数化为1。

4、一元一次不等式组的基本类型(以两个不等式组成的不等式组为例)类型(设a>b )不等式组的解集数轴表示1.(同大型,同大取大)x>a2.(同小型,同小取小) x<b3.(一大一小型,小大之间) b<x<a4.(比大的大,比小的小空集)无解考点精析考点一 不等式的基本概念和基本性质例题1:(2012•广州)已知a >b ,若c 是任意实数,则下列不等式中总是成立的是( )A .a +c <b +cB .a ﹣c >b ﹣cC .ac <bcD .ac >bc举一反三1.(2011江苏无锡,2,3分)若a >b ,则( )A .a >﹣bB .a <﹣bC .﹣2a >﹣2bD .﹣2a <﹣2b2.(11山东)若不等式2x <4的解都能使关于x 的一次不等式(a ﹣1)x <a+5成立,则a 的取值范围是( ) A .1<a≤7 B .a≤7 C .a <1或a≥7D .a=7 3.如果a >b ,c <0,那么下列不等式成立的是( )A 、a+c >b+cB 、c-a >c-bC 、ac >bcD 、4.(2011四川凉山,2,4分)下列不等式变形正确的是( )A .由a b >,得ac bc >B .由a b >,得-2a >-2bC .由a b >,得a b ->-D .由a b >,得22a b -<-考点二 一元一次不等式的解法例题2:(2012六盘水)已知不等式x ﹣1≥0,此不等式的解集在数轴上表示为( )A .B .C .D .举一反三 1.(2012•广州)不等式x ﹣1≤10的解集是________. 2.(2012广东)不等式3x ﹣9>0的解集是________..3.(2012贵州安顺)如图,a ,b ,c 三种物体的质量的大小关系是__________.4.(2012武汉)在数轴上表示不等式x ﹣1<0的解集,正确的是( )A .B .C .D .考点三 一元一次不等式的应用1.(2012黄石)有一根长40mm 的金属棒,欲将其截成x 根7mm 长的小段和y 根9mm 长的小段,剩余部分作废料处理,若使废料最少,则正整数x ,y 应分别为( )A . 1x =,3y = B . 3x =,2y =C . 4x =,1y =D . 2x =,3y =2.(2012•恩施州)小丁每天从某报社以每份0.5元买进报纸200分,然后以每份1元卖给读者,报纸卖不完,当天可退回报社,但报社只按每份0.2元退给小丁,如果小丁平均每天卖出报纸x 份,纯收入为y 元.(1)求y 与x 之间的函数关系式(要求写出自变量x 的取值范围);(2)如果每月以30天计算,小丁每天至少要买多少份报纸才能保证每月收入不低于2000元?考点四 一元一次不等式组的概念及特殊解例题4:(2012湖北黄石)若关于x 的不等式组{23335x x x a >-->有实数解,则a 的取值范围是_______. 举一反三1、(2012年江阴模拟)请你写出一个满足不等式612<-x 的正整数...x 的值:____________。

一元一次不等式组典型题型(经典)

一元一次不等式组典型题型(经典)

进阶练习题2
解不等式组$begin{cases}3(x - 1) < 4(x + 1) frac{x - 1}{2} > x + 1end{cases}$
综合练习题
要点一
综合练习题1
解不等式组$begin{cases}2x - 1 geq (x - 3) + 4 frac{x + 3}{2} > (x + 1) - 3end{cases}$
05
练习题与答案
基础练习题
基础练习题1
解不等式组$begin{cases}5x - 1 > 3x - 5 2x + 1 > 0end{cases}$
基础练习题2
解不等式组$begin{cases}3x - 2 < 4 -2x + 1 > -5end{cases}$
进阶练习题
进阶练习题1
解不等式组$begin{cases}2x - 1 > 3(x - 2) frac{x + 1}{2} > -3end{cases}$
02
典型例题解析
基础题型
01
02
03
基础解法
掌握一元一次不等式组的 解法,包括消元法、数轴 法等,能够准确求解不等 式组。
简单应用
能够将不等式组应用于简 单的实际问题中,如时间、 速度、距离等问题。
代数运算
能够正确进行代数运算, 包括加减乘除、乘方等, 确保解题过程中不出现计 算错误。
进阶题型
要点二
综合练习题2
解不等式组$begin{cases}3(x + 1) < (x - 5) + 4 frac{x + 1}{2} > x - 3end{cases}$

一元一次不等式典型例题

一元一次不等式典型例题

一元一次不等式典型例题类型一:一元一次不等式的解集问题1.若不等式﹣3x+n>0的解集是x<2,则不等式﹣3x+n<0的解集是.2.已知实数x、y满足2x﹣3y=4,并且x≥﹣1,y<2,现有k=x﹣y,则k的取值范围是.3.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为________4.若关于x的一元一次方程x﹣m+2=0的解是负数,则m的取值范围是_______ 类型二:一元一次不等式组无解的情况1.若关于x的一元一次不等式组无解,则a的取值范围是.2.已知不等式组无解,则a的取值范围是3.已知关于x的不等式组无解,则a的取值范围是类型三:明确一元一次不等式组的解集求范围1.若不等式的解集为x>3,则a的取值范围是2.若关于x的不等式的解集为x<2,则a的取值范围是.3.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是________4.若不等式组的解集为﹣1<x<1,那么(a+1)(b﹣1)的值等于5.已知不等式组的解集为﹣1<x<2,则(m+n)2008=类型四:一元一次不等式组有解求未知数的范围1.若有解,则a的取值范围是2.若关于x的不等式组有实数解,则a的取值范围是3._______类型五:一元一次不等式组有整数解求范围1.不等式组有3个整数解,则m的取值范围是.2.不等式组有3个整数解,则m的取值范围是.3.已知关于x的不等式组仅有三个整数解,则a的取值范围是.4.关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是.5.关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是______6.已知关于x的不等式组恰好有两个整数解,求实数a的取值范围.7.已知关于x的不等式组有四个整数解,求实数a的取值范围.类型六:一元一次不等式(组)应用题1.分配问题(1)学校现有若干个房间分配给初三(1)班的男生住宿,已知该班男生不足50人,若每间住4人,则余15人无住处;若每间住6人,则恰有一间不空也不满(其余均住满).那么该班的男生人数是多少人.2.一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若每人分4件,则最后一人最多分3件,问小朋友的人数至少有多少人。

一元一次不等式与一元一次不等式组习题练习(含答案)

一元一次不等式与一元一次不等式组习题练习(含答案)

一元一次不等式与一元一次不等式组习题练习(含答案)一、选择题(本大题共44小题,共132.0分)1.已知关于x的不等式x−a<1的解如图所示,则a的取值是()A. 0B. 1C. 2D. 32.若一次函数y=−x+m的图象经过点(−1,2),则不等式−x+m≥2的解集为()A. x≥0B. x≤0C. x≥−1D. x≤−13.有一根40cm的金属棒,欲将其截成x根7cm的小段和y根9cm的小段,剩余部分作废料处理,若使废料最少,则正整数x,y应分别为()A. x=1,y=3B. x=4,y=1C. x=3,y=2D. x=2,y=34.下列哪个选项中的不等式与不等式5x>8+2x组成的不等式组的解集为83<x< 5()A. x+5<0B. 2x>10C. 3x−15<0D. −x−5>05.小美将某服饰店的促销活动内容告诉小明后,小明假设某一商品的定价为x元,并列出关系式为0.7(2x−100)≤1000,则小美告诉小明的内容可能是()A. 买两件等值的商品可打7折,再减100元,最后不超过1000元B. 买两件等值的商品可减100元,再打7折,最后不超过1000元C. 买两件等值的商品可打7折,再减100元,最后不到1000元D. 买两件等值的商品可减100元,再打7折,最后不到1000元6.下列四个判断:其中正确的有()①若ac2>bc2,则a>b;②若a>b,则a|c|>b|c|;③若a>b,则ba<1;④若a>0,则b−a<b,A. 1个B. 2个C. 3个D. 3个7.用不等式表示:“a的12与b的和为正数”,正确的是()A. 12a+b>0 B. 12(a+b)>0 C. 12a+b≥0 D. 12(a+b)≥08.有不足30个苹果分给若干个小朋友,若每个小朋友分3个,则剩2个苹果;若每个小朋友分4个,则有一个小朋友没分到苹果,且最后一个分到苹果的小朋友分得的苹果数不足3个.已知小朋友人数是偶数个,那么苹果的个数是()A. 25B. 26C. 28D. 299.下列式子中,是不等式的有()①2x=7;②3x+4y;③−3<2;④2a−3≥0;⑤x>1;⑥a−b>1.A. 5个B. 4个C. 3个D. 1个10.不等式2x−1<1的解集在数轴上表示正确的是()A. B.C. D.11.若关于x的不等式组{2x+7>4x+1,x−k<2的解集为x<3,则k的取值范围为()A. k>1B. k<1C. k≥1D. k≤112.不等式组{2x+9>6x+1x−k<1的解集为x<2,则k的取值范围为()A. k>1B. k<1C. k≥1D. k≤113.若一个不等式的正整数解为1,2,则该不等式的解集在数轴上的表示可能是()A. B.C. D.14.不等式6−4x≥3x−8的非负整数解为()A. 2个B. 3个C. 4个D. 5个15.不等式3(x−2)≤x+4的非负整数解有()个A. 4B. 5C. 6D. 无数个2(x−1)>4的解集为x>3,那么a的取值范围为()16.关于x的不等式组{a−x<0A. a>3B. a<3C. a≥3D. a≤317.如图,射线OA是第三象限的角平分线,若点B(k−3,1−2k)在第三象限内且在射线OA的下方,则k的取值范围是()A. k<12B. 12<k<3C. 12<k<43D. 43<k<318.若关于x的不等式组{2−x2>2x−43,−3x>−2x−a的解集是x<2,则a的取值范围是()A. a≥2B. a<−2C. a>2D. a≤219.不等式3x+2≥5的解集是()A. x≥1B. x≥73C. x≤1D. x≤−120.有一道这样的题:“由★x>1得到x<1★”,则题中★表示的是()A. 非正数B. 正数C. 非负数D. 负数21.一次函数y=3x+b和y=ax−3的图象如图所示,其交点为P(−2,−5),则不等式3x+b>ax−3的解集在数轴上表示正确的是()A.B.C.D.22.不等式组{2x−6>0,4−x<−1的解集是()A. x>5B. 3<x<5C. x<5D. x>−523.已知点A(x+3,2x−4)在第四象限,则x的取值范围是()A. −3<x<2B. x>−3C. x<2D. x>224.已知x>y,若对任意实数a,以下结论:甲:ax>ay;乙:a2−x>a2−y;丙:a2+x≤a2+y;丁:a2x≥a2y,其中一定正确的是()A. 甲B. 乙C. 丙D. 丁25.小华拿24元钱购买火腿肠和方便面,已知一盒方便面3元,一根火腿肠2元,他买了4盒方便面,x根火腿肠,则关于x的不等式表示正确的是()A. 3×4+2x<24B. 3×4+2x≤24C. 3x+2×4≤24D. 3x+2×4≥2426.若12x2m−1−8>5是关于x的一元一次不等式,则m的值为()A. 0B. 1C. 2D. 327.两个数2−m和−1在数轴上从左到右排列,那么关于x的不等式(2−m)x+2>m的解集是()A. x>−1B. x<−1C. x>1D. x<128.已知关于x的不等式组{2x−a<1,x−2b>3的解集为−1<x<1,则(a+1)(b−1)的值为()A. 6B. −6C. 3D. −329.一次函数y=kx+b(k,b是常数,k≠0)的图象如图所示,则不等式kx+b>0的解集是()A. x>0B. x>3C. x<0D. x<330.某商品进价10元,标价15元,为了促销,现决定打折销售,但每件利润不少于2元,则最多打几折销售()A. 6折B. 7折C. 8折D. 9折31.不等式组{x+1>0,3x+12≥2x−1的解集在以下数轴中表示正确的是()A. B.C. D.32.如图,一次函数y=kx+3(k≠0)的图象与正比例函数y=mx(m≠0)的图象相交于点P,已知点P的横坐标为1,则关于x的不等式(k−m)x>−3的解集为()A. x<1B. 1<x<2C. 2<x<3D. x>333.现规定一种新运算,a★b=ab+a−b,其中a、b为常数,若(2★3)+(m★1)=6,则不等式3x−22<−m的解集是()A. x <−43B. x <0C. x >1D. x <234. 若关于x 的不等式组{x <3a +2,x >a −4无解,则a 的取值范围是 ( )A. a ≤−3B. a <−3C. a >3D. a ≥335. 用若干量载重量为6吨的火车运一批货物,若每辆货车只装4吨,则剩下18吨货物;若每辆货车装6吨,则最后一辆车装的货物不足5吨,若设有x 辆货车,则x 应满足的不等式组是( )A. {6x −(4x +18)>06x −(4x +18)≤5B. {(4x +18)−6(x −1)>0(4x +18)−6(x −1)≤5C. {6(x −1)−(4x +18)⩾06(x −1)−(4x +18)<5D. {(4x +18)−6(x −1)⩾0(4x +18)−6(x −1)<536. 在下列解不等式2+x 3>2x−15的过程中,错误的一步是( )A. 去分母得5(2+x)>3(2x −1)B. 去括号得10+5x >6x −3C. 移项得5x −6x >−3−10D. 系数化为1得x >1337. 已知x +3与y −5的和是负数,以下所列关系式正确的是( )A. (x +3)+(y −5)>0B. (x +3)+(y −5)<0C. (x +3)−(y −5)>0D. (x +3)+(y −5)≤038. 如果不等式组的解集是x <2,那么m 的取值范围是( )A. m =2B. m >2C. m <2D. m ≥239. 不等式−2x >12的解集是( )A. x <−14B. x <−1C. x >−14D. x >−140. 若−2a <−2b ,则a >b ,其根据是( )A. 不等式的基本性质1B. 不等式的基本性质2C. 不等式的基本性质3D. 等式的基本性质241. 已知关于x 的不等式ax +4<0的解集在数轴上表示如图所示,那么( )A. a >0B. a <0C. a =−2D. a =242. 一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型 办卡费用(元) 每次游泳收费(元) A 类 50 25 B 类 200 20 C 类40015例如,购买A 类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于40~50次之间,则最省钱的方式为 ( )A. 购买A 类会员年卡B. 购买B 类会员年卡C. 购买C 类会员年卡D. 不购买会员年卡43. 已知甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数关系式分别是y 1=k 1x +b 1,y 2=k 2x +b 2,其图象如图所示.当所挂物体质量均为2 kg 时,甲、乙两弹簧的长度y 1与y 2的大小关系为 ( )A. y 1>y 2B. y 1=y 2C. y 1<y 2D. 不能确定44. 下列各式中,一元一次不等式是( )A. x ≥5xB. 2x >1−x 2C. x +2y <1D. 2x +1≤3x二、填空题(本大题共15小题,共45.0分)45. 当a _________时,(2+a)x −7>5是关于x 的一元一次不等式.46. 某校组织开展了“诗词大会”的知识竞赛初赛,共有20道题.答对一题加10分,答错或不答一题扣5分,小辉在初赛得分超过160分顺利进入决赛.设他答对x 道题,根据题意,可列出关于x 的不等式为___________.47. 商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗.为了避免亏本,售价至少应定为______元/千克.48. 不等式组{x +1>0a −13x <0的解集是x >−1,则a 的取值范围是______.49. 已知关于x 的不等式组{x <2(x −3)+1,2x+13>x +a 有四个整数解,则a 的取值范围是________.50. 如果5a −3x 2+a >1是关于x 的一元一次不等式,则其解集为______ .51. 如图,直线y 1=k 1x +b 和直线y 2=k 2x +b 交于y 轴上一点,则不等式是k 1x +b >k 2x +b 的解集为 (1) .52. 已知|2x −1|=1−2x ,则x 的取值范围是 (1) . 53. 若−3x >9,则x ____−3.54. 如图,已知函数y =kx +b 和y =12x −2的图象相交于点P ,则不等式组kx +b <12x −2<0的解是________.55. 不等式组{x3≥−1,1+2x ≥−1的解集为 .56. 若不等式组{−1≤x ≤1,2x <a有解,那么a 必须满足________.57. 已知x −y =3,若y <1,则x 的取值范围是 .58. 若关于x 的不等式组{2x +1>3,a −x >1的解集为1<x <3,则a 的值为 (1) .59. 不等式2x <4x −6的最小整数解为 .三、计算题(本大题共5小题,共30.0分)60. 解不等式组{5x −3≤2x +9,①3x >x+102,②并写出它的所有整数解.61. 解不等式:2x−13−9x+26≤1.62. 解不等式组:{x −4≤32(2x −1),①2x −1+3x2<1,②把它的解集表示在数轴上,并求出不等式组的非负整数解.63. 解不等式:x3>1−x−22.64. 解不等式:x6−1>x−23,并把它的解集在数轴上表示出来.四、解答题(本大题共17小题,共136.0分)65.益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低,马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元.A,B两种产品原来的运费和现在的运费(单位:元/件)如下表所示:(1)求每次运输的农产品中A,B产品各有多少件?(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的产品总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元?66.我市在创建全国文明城市过程中,决定购买A,B两种树苗对某路段道路进行绿化改造,已知购买A种树苗8棵,B种树苗3棵,需要950元;若购买A种树苗5棵,B种树苗6棵,则需要800元.(1)求A,B两种树苗每棵各多少元?(2)考虑到绿化效果和资金周转,购进A种树苗不能少于52棵,且用于购买这两种树苗的资金不能超过7650元,若购进这两种树苗共100棵,则有哪几种购买方案?(3)某包工队承包种植任务,若种好一棵A种树苗可获工钱30元,种好一棵B种树苗可获工钱20元,在第(2)问的购买方案中,种好这100棵树苗,哪一种购买方案所付的种植工钱最少?最少工钱是多少元?67.用适当的符号表示下列关系:(1)x的绝对值是非负数;(2)a的3倍与b的1的和不小于3.568.为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为______辆;(3)在(2)的条件下,你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.69. 解不等式组{x +1≥2 ①5x ≤4x +3 ②请结合题意填空,完成本题的解答.(1)解不等式①,得______;(2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______.70. 如图,直线l 1的解析式为y =2x −2,直线l 1与x 轴交于点D ,直线l 2:y =kx +b 与x 轴交于点A ,且经过点B ,直线l 1、l 2交于点C(m,2).(1)求m ;(2)求直线l 2的解析式;(3)根据图象,直接写出1<kx +b <2x −2的解集.71. 已知关于x 、y 的二元一次方程组{2x +y =1+2m x +2y =2−m 的解满足不等式组{x −y <8x +y >1,则m 的取值范围是什么?72. 解不等式2x−13−5x+12≤1,并把它的解集在数轴上表示出来.73. 甲、乙两家商场平时以同样价格出售相同的商品.新冠疫情期间,为了减少库存,甲、乙两家商场打折促销.甲商场所有商品按9折出售,乙商场对一次购物中超过100元后的价格部分打8折.(1)以x(单位:元)表示商品原价,y(单位:元)表示实际购物金额,分别就两家商场的让利方式写出y 关于x 的函数表达式;(2)新冠疫情期间如何选择这两家商场去购物更省钱?74. 解下列不等式组,并把解集在数轴上表示出来.(1){2x ≥−9−x,①5x −1>3(x +1);②(2){x −3(x −2)≥4,①2x −15<x +12.②75. 小明解不等式1+x 2−2x+13≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.76. 解不等式组{x +3≥1,①4x ≤1+3x,②请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得________;(Ⅱ)解不等式②,得________;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为________.77.众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如表:现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数表达式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.78.我国沪深股市交易中,如果买、卖一次股票均需付交易金额的0.5%作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)79.比较大小:(1)如果a−1>b+2,那么a_____________b;(2)试比较2a与3a的大小:①当a>0时,2a_____________3a;②当a=0时,2a_____________3a;③当a<0时,2a_____________3a;(3)试比较a+b与a的大小;(4)试判断x2−3x+1与−3x+1的大小.80.已知(b+2)x b+1<−3是关于x的一元一次不等式,试求b的值,并解这个一元一次不等式.81. 若a ,b ,c 是△ABC 的三边长,且a ,b 满足关系式|a −3|+(b −4)2=0,c 是不等式组{x−33>x −4,2x +3<6x+12的最大整数解,求△ABC 的周长.答案和解析1.【答案】B【解析】【分析】本题考查了不等式的解集,从数轴上得出不等式的解集是解题的关键.先根据不等式的基本性质解不等式,再根据数轴得出不等式的解集,然后令二者相等即可解答;【解答】解:解不等式x−a<1,根据不等式的性质1,两边同时加a得x<a+1;由图可知,不等式的解集为x<2;故a+1=2,解得,a=1.故选:B.2.【答案】D【解析】【分析】本题考查了一次函数与一元一次不等式,先把(−1,2)代入y=−x+m中求出m,然后解不等式−x+m≥2即可.【解答】解:把(−1,2)代入y=−x+m得1+m=2,解得m=1,所以一次函数解析式为y=−x+1,解不等式−x+1≥2得x≤−1.故选:D.3.【答案】C【解析】【分析】本题考查了一次函数与不等式的应用,读懂题意,列出算式,正确确定出x,y的所有取值情况是本题的关键.根据金属棒的长度是40cm,则可以得到7x+9y≤40,再根据x,y都是正整数,即可求得所有可能的结果,分别计算出省料的长度即可确定.【解答】解:根据题意得:7x+9y≤40,,则x≤40−9y7∵由关于y的一次函数图像可知40−9y≥0且y是正整数,∴y的值可以是:1或2或3或4.,则x=4,此时,所剩的废料是:40−1×9−4×7=3cm;当y=1时,x≤317当y=2时,x≤22,则x=3,此时,所剩的废料是:40−2×9−3×7=1cm;7,则x=1,此时,所剩的废料是:40−3×9−7=6cm;当y=3时,x≤137,则x=0(舍去).当y=4时,x≤47则最小的是:x=3,y=2.故选:C.4.【答案】C【解析】解:5x>8+2x,,解得:x>83根据大小小大中间找可得另一个不等式的解集一定是x<5,故选:C.首先计算出不等式5x>8+2x的解集,再根据不等式的解集确定方法:大小小大中间找可确定另一个不等式的解集,进而选出答案.此题主要考查了不等式的解集,关键是正确理解不等式组解集的确定方法:大大取大,小小取小,大小小大中间找,大大小小找不着.5.【答案】B【解析】解:由关系式可知:0.7(2x−100)≤1000,由2x−100,得出两件商品减100元,以及由0.7(2x−100)得出买两件打7折,故可以理解为:买两件等值的商品可减100元,再打7折,最后不超过1000元.故选:B.根据0.7(2x −100)≤1000,可以理解为买两件减100元,再打7折得出总价小于等于1000元.此题主要考查了由实际问题抽象出一元一次不等式,根据已知最后打7折,再得出不等关系是解题关键.6.【答案】B【解析】【分析】本题主要考查不等式的性质,解题的关键是掌握不等式的基本性质.根据有理数的乘除运算法则及不等式的性质逐一判断可得答案.【解答】解:①由ac 2>bc 2知c 2>0,可得a >b ,故①正确;②∵|c|≥0,∴由a >b 可得a|c|≥b|c|,故②错误;③若a <0,则b a >1,故③错误;④若a >0,则b −a <b ,故④正确;故选:B . 7.【答案】A【解析】解:用不等式表示:“a 的12与b 的和为正数”为12a +b >0,故选:A .a 的12即12a ,正数可表示为“>0”,据此可得.本题考查了不等式,解答本题的关键是读懂题意,找出合适的不等关系,列不等式. 8.【答案】B【解析】【分析】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.设小朋友的人数为x 人,则苹果的个数为(3x +2)个,根据“若每个小朋友分4个,则有一个小朋友没分到苹果,且最后一个分到苹果的小朋友分得的苹果数不足3个”,即可得出关于x 的一元一次不等式组,解之即可得出x 的取值范围,结合x 为偶数即可得出x 的值,再将其代入(3x +2)中即可求出结论.【解答】解:设小朋友的人数为x 人,则苹果的个数为(3x +2)个,依题意,得:{3x +2>4(x −2)3x +2<4(x −2)+3, 解得:7<x <10.又∵x 为偶数,∴x =8,∴3x +2=26.故选B .9.【答案】B【解析】【分析】本题考查不等式的定义,需要熟练掌握不等式的定义.要依据不等式的定义,用不等号(>、≥、<、≤或≠)表示不相等关系的式子是不等式来判断.【解答】解:①2x =7是等式;②3x +4y 是代数式;③−3<2是不等式;④2a −3≥0是不等式;⑤x >1是不等式;⑥a −b >1是不等式,因此,是不等式的有4个.故选B .10.【答案】D【解析】【分析】本题考查的是在数轴上表示不等式的解集,熟知实心原点与空心原点的区别是解答此题的关键.先求出不等式的解集,再在数轴上表示出来即可.【解答】解:移项得,2x <1+1,合并同类项得,2x <2,x 的系数化为1得,x <1.在数轴上表示为:.故选D .11.【答案】C【解析】略12.【答案】C【解析】【分析】本题考查解一元一次不等式组,解此题的关键是能根据不等式的解集和已知得出关于k 的不等式,难度适中.求出每个不等式的解集,根据已知得出关于k 的不等式解出即可.【解答】解:解不等式组{2x +9>6x +1x −k <1, 得{x <2x <k +1. ∵不等式组{2x +9>6x +1x −k <1的解集为x <2, ∴k +1≥2,解得k ≥1.故选:C .13.【答案】D【解析】【分析】本题主要考查一元一次不等式的特殊解,在数轴上表示不等式的解集.根据正整数解得不等式是解题的关键.根据不等式的正整数解为1,2,可得不等式的解集为x <3,然后把不等式的解集在数轴上表示出来即可.解:∵不等式的正整数解为1,2,∴不等式的解集为x<3,不等式的解集在数轴上表示如下:.故选D.14.【答案】B【解析】【分析】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【解答】解:移项得,−4x−3x≥−8−6,合并同类项得,−7x≥−14,系数化为1得,x≤2.故其非负整数解为:0,1,2,共3个.故选B.15.【答案】C【解析】【分析】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数解即可.解:去括号得:3x −6≤x +4,解得:x ≤5,则满足不等式的非负整数解为:0,1,2,3,4,5共6个.故选C .16.【答案】D【解析】解:解不等式2(x −1)>4,得:x >3,解不等式a −x <0,得:x >a ,∵不等式组的解集为x >3,∴a ≤3,故选:D .先解第一个不等式得到x >3,由于不等式组的解集为x >3,则利用同大取大可得到a 的范围.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.17.【答案】D【解析】略18.【答案】A【解析】【分析】本题考查的是解一元一次不等式组,不等式的解集有关知识,分别求出每个不等式的解集,根据不等式组的解集为x <2可得关于a 的不等式,解之可得.【解答】解:解不等式组{2−x 2>2x−43①−3x >−2x −a②由①可得:x <2,由②可得:x <a ,因为关于x 的不等式组{2−x 2>2x−43−3x >−2x −a的解集是x <2, 所以,a ≥2,故选A .19.【答案】A【解析】【分析】本题考查一元一次不等式的解法,解题的关键是熟练运用一元一次不等式的解法,本题属于基础题型.根据一元一次不等式的解法即可求出答案.【解答】解:3x ≥3x ≥1故选:A .20.【答案】D【解析】略21.【答案】C【解析】略22.【答案】A【解析】解:{2x −6>0,4−x <−1解不等式2x −6>0,得:x >3,解不等式4−x <−1,得:x >5,则不等式组的解集为x >5.故选:A .先解不等式组中的每一个不等式的解集,再利用求不等式组解集的口诀“同大取大”来求不等式组的解集.主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).23.【答案】A【解析】略24.【答案】D【解析】略25.【答案】B【解析】解:根据题意,得3×4+2x≤24.故选B.此题中的不等关系:方便面与火腿肠的总价不能超过24元,也就是应小于或等于24元.本题主要考查不等关系,根据实际情况,抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.26.【答案】B【解析】略27.【答案】B【解析】略28.【答案】B【解析】略29.【答案】D【解析】【分析】此题主要考查了一次函数与一元一次不等式的关系有关知识,从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式kx+b>0的解集.【解答】解:函数y=kx+b的图象经过点(3,0),并且函数值y随x的增大而减小,所以当x<3时,函数值大于0,即关于x的不等式kx+b>0的解集是x<3.故选D.30.【答案】C【解析】略31.【答案】B【解析】略32.【答案】A【解析】【分析】本题考查了一次函数与一元一次不等式的联系和一次函数的图像的知识点,从图像得出直线y=mx在直线y=kx+3下方所对应的自变量的范围即可.【解答】解:当x<1时,kx+3>mx,所以关于x的不等式(k−m)x>−3的解集为x<1.故选A.33.【答案】B【解析】【分析】本题考查了新定义及解一元一次不等式:先去分母和括号,再移项、合并,然后把未知数的系数化为1得到不等式的解集.也考查了阅读理解能力.先根据新定义得到2×3+2−3+m×1+m−1=6,解得m=1,则不等式化为3x−2<−1,然后通过去分母、移项可得到不等式的解集.2【解答】解:∵(2★3)+(m★1)=6,a★b=ab+a−b,∴2×3+2−3+m×1+m−1=6,∴m=1,<−1,∴3x−22去分母得3x−2<−2,移项并合并得3x <0,系数化为1得x <0.故选B .34.【答案】A【解析】【分析】此题考查了解一元一次不等式组,解一元一次不等式有关知识,利用不等式组取解集的方法,根据不等式组无解求出a 的范围即可.【解答】解:∵不等式组{x <3a +2x >a −4无解, ∴a −4≥3a +2,解得:a ≤−3.故选A .35.【答案】D【解析】【分析】此题主要考查由实际问题抽象出一元一次不等式组,解题的关键是根据题中不等关系进行列式.设有x 辆货车,根据题中的不等关系即可得到不等式组.【解答】解:设有x 辆货车,由若每辆货车只装4吨,则剩下18吨货物;若每辆货车装6吨,则最后一辆车装的货物不足5吨,则可得不等式组为{(4x +18)−6(x −1)⩾0(4x +18)−6(x −1)<5, 故选D .36.【答案】D【解析】【分析】解不等式依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.特别是在系数化为1这一个过程中要注意不等号的方向的变化.根据不等式的基本性质,先两边同时乘以15去分母,再去括号,再移项,合并同类项,最后系数化1.【解答】解:解不等式2+x3>2x−15,不等式两边同时乘以15去分母得:5(2+x)>3(2x−1);去括号得10+5x>6x−3;移项,合并同类项得−x>−13;系数化为1,得x<13;所以,D错;故选D37.【答案】B【解析】【分析】此题主要考查了不等式的定义,正确理解和是负数是解题关键.直接利用不等式的定义分析得出答案.【解答】解:∵x+3与y−5的和是负数,∴(x+3)+(y−5)<0,故选:B.38.【答案】D【解析】【分析】本题考查的是一元一次不等式组的解,若x同时小于某一个数,那么解集为x小于较小的那个数.本题可根据2x−1>3(x−1)解出x的取值,然后结合x<2,可解出m的取值范围.【解答】解:{2x −1>3(x −1)x <m, 解得:{x <2x <m, ∵解集是x <2,∴m ≥2.故选D .39.【答案】A【解析】【分析】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.根据不等式的基本性质两边都除以−2可得.【解答】解:两边都除以−2可得:x <−14,故选A . 40.【答案】C【解析】【分析】此题考查不等式的性质,利用不等式的性质3解答即可,不等式两边同时乘以(或除以)同一个小于0的数,不等号方向改变.【解得】解:若−2a <−2b ,则a >b ”的根据是:不等式两边同时乘以(或除以)同一个小于0的数,不等号方向改变.故选C .41.【答案】C【解析】略42.【答案】C43.【答案】A【解析】略44.【答案】D【解析】【分析】本题考查一元一次不等式的定义:只含有1个未知数,并且未知数的最高次数是1,用不等号连接的整式叫做一元一次不等式.找到只含有1个未知数,并且未知数的最高次数是1,用不等号连接的整式即可.【解答】解:A.右边不是整式,不符合题意;B.未知数的最高次数是2,不符合题意;C.含有2个未知数,不符合题意;D.是只含有1个未知数,并且未知数的最高次数是1,用不等号连接的整式,符合题意;故选D.45.【答案】≠−2【解析】【分析】此题主要考查了一元一次不等式定义,关键是掌握含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.根据一元一次不等式定义可得2+a≠0,再解即可.【解答】解:由题意得:2+a≠0,解得:a≠−2.故答案为≠−2.46.【答案】10x−5(20−x)>160【解析】。

(完整word版)一元一次不等式与一元一次不等式组典型例题

(完整word版)一元一次不等式与一元一次不等式组典型例题

一元一次不等式与一元一次不等式组的解法知识点回顾1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “〉” 、 “<" 、 “≥”、 “≤”.2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。

解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。

说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点)(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a b >,那么__a c b c ±±(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果,0a b c >>,那么__ac bc (或___a b c c) (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果a b >,0c <那么__ac bc (或___a b c c) 说明:常见不等式所表示的基本语言与含义还有:①若a -b >0,则a 大于b ;②若a -b <0,则a 小于b ;③若a -b ≥0,则a 不小于b ;④若a -b ≤0,则a 不大于b ;⑤若ab >0或0a b>,则a 、b 同号;⑥若ab <0或0ab <,则a 、b 异号.任意两个实数a 、b 的大小关系:①a -b 〉O ⇔a>b;②a—b=O ⇔a=b;③a-b 〈O ⇔a<b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。

4.一元一次不等式(重点)只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式. 注:其标准形式:ax+b <0或ax+b ≤0,ax+b >0或ax+b ≥0(a ≠0). 5.解一元一次不等式的一般步骤(重难点)(1)去分母;(2)去括号;(3)移项; (4)合并同类项;(5)化系数为1.例:131321≤---x x 解不等式:6.一元一次不等式组含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组.说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.7.一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.8. 不等式组解集的确定方法,可以归纳为以下四种类型(设a 〉b )(重难点)不等式组 图示解集x ax b >⎧⎨>⎩ bax a >(同大取大)x ax b <⎧⎨<⎩ b ax b <(同小取小)x ax b <⎧⎨>⎩ bab x a <<(大小交叉取中间)x ax b >⎧⎨<⎩ba无解(大小分离解为空)9.解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集; (2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.(三)常见题型归纳和经典例题讲解1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次不等式(组)
考点整合
1、不等式基本概念与性质:
2、不等式的解集:
用数轴表示不等式的方法:大于往右拐,小于往左拐,有等画实心,无等画空心。

3、解一元一次不等式的一般步骤:去分母、去括号、移项、合并同类项、系数化为1。

4、一元一次不等式组的基本类型(以两个不等式组成的不等式组为例)
类型(设a>b)不等式组的解集数轴表示
1.(同大型,同大取大)x>a
2.(同小型,同小取小)x<b
3.(一大一小型,小大之间)b<x<a
4.(比大的大,比小的小空集)无解
考点精析
考点一不等式的基本概念和基本性质
例题1:(2012•广州)已知a>b,若c是任意实数,则下列不等式中总是成立的是()A.a+c<b+c B.a﹣c>b﹣c C.ac<bc D.ac>bc
举一反三
1.(2011江苏无锡,2,3分)若a>b,则()
A.a>﹣b B.a<﹣b C.﹣2a>﹣2b D.﹣2a<﹣2b
2.(11山东)若不等式2x<4的解都能使关于x的一次不等式(a﹣1)x<a+5成立,则a的取值范围是()
A .1<a≤7
B .a≤7
C .a <1或a≥7
D .a=7 3.如果a >b ,c <0,那么下列不等式成立的是( )
A 、a+c >b+c
B 、c-a >c-b
C 、ac >bc
D 、
4.(2011四川凉山,2,4分)下列不等式变形正确的是( )
A .由a b >,得ac bc >
B .由a b >,得-2a >-2b
C .由a b >,得a b ->-
D .由a b >,得22a b -<-
考点二 一元一次不等式的解法
例题2:(2012六盘水)已知不等式x ﹣1≥0,此不等式的解集在数轴上表示为( )
A .
B .
C .
D .
举一反三
1.(2012•广州)不等式x ﹣1≤10的解集是________.
2.(2012广东)不等式3x ﹣9>0的解集是________..
3.(2012贵州安顺)如图,a ,b ,c 三种物体的质量的大小关系是__________.
4.(2012武汉)在数轴上表示不等式x ﹣1<0的解集,正确的是( )
A .
B .
C .
D .
考点三 一元一次不等式的应用
1.(2012黄石)有一根长40mm 的金属棒,欲将其截成x 根7mm 长的小段和y 根9mm 长的小段,剩余
部分作废料处理,若使废料最少,则正整数x ,y 应分别为( )
A . 1x =,3y =
B . 3x =,2y =
C . 4x =,1y =
D . 2x =,3y =
2.(2012•恩施州)小丁每天从某报社以每份0.5元买进报纸200分,然后以每份1元卖给读者,报纸卖不完,当天可退回报社,但报社只按每份0.2元退给小丁,如果小丁平均每天卖出报纸x 份,纯收入为y 元.
(1)求y 与x 之间的函数关系式(要求写出自变量x 的取值范围);
(2)如果每月以30天计算,小丁每天至少要买多少份报纸才能保证每月收入不低于2000元?
考点四 一元一次不等式组的概念及特殊解
例题4:(2012湖北黄石)若关于x 的不等式组
{23335
x x x a >-->有实数解,则a 的取值范围是_______. 举一反三
1、(2012年江阴模拟)请你写出一个满足不等式612<-x 的正整数...x 的值:____________。

2、(. 2012江西省新余市一摸)若不等式3(2)x x a --≤的解为1-≥x ,则a 的为___________ .
考点五 一元一次不等式组的解法
例题5:(2012娄底)不等式组的解集在数轴上表示为( )
A .
B .
C .
D .
举一反三
1. (2012湖北荆门)已知点M (1﹣2m ,m ﹣1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是( )
A .
B .
C .
D .
2.(2012湖南长沙)一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为
A .
B .
C .
D .
3.(2012•益阳)如图,数轴上表示的是下列哪个不等式组的解集( )
A .
B .
C .
D .
4.(2012滨州)不等式211841
x x x x -≥+⎧⎨+≤-⎩的解集是( ) A .3x ≥ B .2x ≥ C .23x ≤≤ D .空集
考点六 一元一次不等式组的应用
例题6:(2012福州)(满分11分)某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分.
(1) 小明考了68分,那么小明答对了多少道题?
(2) 小亮获得二等奖(70~90分),请你算算小亮答对了几道题?
举一反三
1.(2012铜仁)为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A 种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?
(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?
(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?
2.(2012黄石)某楼盘一楼是车库(暂不销售),二楼至二十三楼均为商品房(对外销售).商品房售价方
案如下:第八层售价为3000元/米2,从第八层起每上升一层,每平方米的售价增加40元;反之,楼层每下降一层,每平方米的售价减少20元.已知商品房每套面积均为120平方米.开发商为购买者制定了两种购房方案:
方案一:购买者先交纳首付金额(商品房总价的30%),再办理分期付款(即贷款).
方案二:购买者若一次付清所有房款,则享受8%的优惠,并免收五年物业管理费(已知每月物业管理费为a元)
(1)请写出每平方米售价y(元/米2)与楼层x(2≤x≤23,x是正整数)之间的函数解析式;
(2)小张已筹到120000元,若用方案一购房,他可以购买哪些楼层的商品房呢?
(3)有人建议老王使用方案二购买第十六层,但他认为此方案还不如不免收物业管理费而直接享受9%的优惠划算.你认为老王的说法一定正确吗?请用具体的数据阐明你的看法。

相关文档
最新文档