创新设计浙江专用2018版高考数学一轮复习第二章函数概念与基本初等函数I第4讲幂函数与二次函数课件
(浙江专用)2018版高考数学一轮复习 第二章 函数概念与基本初等函数I 第6讲 对数与对数函数练习
第二章 函数概念与基本初等函数I 第6讲 对数与对数函数练习基础巩固题组(建议用时:40分钟)一、选择题1.(2015·四川卷)设a ,b 为正实数,则“a >b >1”是“log 2a >log 2b >0”的( )A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析 因为y =log 2x 在(0,+∞)上单调递增,所以当a >b >1时,有log 2a >log 2b >log 21=0;当log 2a >log 2b >0=log 21时,有a >b >1.答案 A2.(2017·石家庄模拟)已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是( )A.a =b <cB.a =b >cC.a <b <cD.a >b >c解析 因为a =log 23+log 23=log 233=32log 23>1,b =log 29-log 23=log 233=a ,c =log 32<log 33=1.答案 B3.若函数y =log a x (a >0,且a ≠1)的图象如图所示,则下列函数图象正确的是( )解析 由题意y =log a x (a >0,且a ≠1)的图象过(3,1)点,可解得a =3.选项A 中,y =3-x =⎝ ⎛⎭⎪⎫13x,显然图象错误;选项B 中,y =x 3,由幂函数图象可知正确;选项C 中,y =(-x )3=-x 3,显然与所画图象不符;选项D 中,y =log 3(-x )的图象与y =log 3x 的图象关于y 轴对称,显然不符.故选B.答案 B4.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3-x +1,x ≤0,则f (f (1))+f ⎝ ⎛⎭⎪⎫log 312的值是( ) A.5 B.3 C.-1 D.72解析 由题意可知f (1)=log 21=0,f (f (1))=f (0)=30+1=2,f ⎝ ⎛⎭⎪⎫log 312=3-log 312+1=3log 32+1=2+1=3, 所以f (f (1))+f ⎝⎛⎭⎪⎫log 312=5. 答案 A5.(2016·浙江卷)已知a ,b >0且a ≠1,b ≠1,若log a b >1,则( )A.(a -1)(b -1)<0B.(a -1)(a -b )>0C.(b -1)(b -a )<0D.(b -1)(b -a )>0 解析 ∵a >0,b >0且a ≠1,b ≠1.由log a b >1得log a b a >0.∴a >1,且b a >1或0<a <1且0<b a <1,则b >a >1或0<b <a <1.故(b -a )(b -1)>0.答案 D二、填空题6.设f (x )=log ⎝ ⎛⎭⎪⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是________. 解析 由f (x )是奇函数可得a =-1,∴f (x )=lg 1+x 1-x,定义域为(-1,1). 由f (x )<0,可得0<1+x 1-x<1,∴-1<x <0. 答案 (-1,0)7.(2017·绍兴调研)已知5lg x=25,则x =________;已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)=________.解析 因为5lg x =25,所以lg x =log 525=2,所以x =102=100;又因为f (ab )=1,所以lg(ab )=1,即ab =10,所以f (a 2)+f (b 2)=lg a 2+lg b 2=lg(a 2b 2)=2lg(ab )=2.答案 100 28.(2015·福建卷)若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________.解析 当x ≤2时,f (x )≥4;又函数f (x )的值域为[4,+∞),所以⎩⎪⎨⎪⎧a >1,3+log a 2≥4,解1<a ≤2,所以实数a 的取值范围为(1,2].答案 (1,2]三、解答题9.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2.(1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值. 解 (1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得-1<x <3, ∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4],∴当x ∈(-1,1]时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数, 故函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2. 10.(2016·衡阳月考)已知函数f (x )是定义在R 上的偶函数,且f (0)=0,当x >0时,f (x )=log 12x .(1)求函数f (x )的解析式;(2)解不等式f (x 2-1)>-2.解 (1)当x <0时,-x >0,则f (-x )=log 12(-x ).因为函数f (x )是偶函数,所以f (-x )=f (x )=log 12(-x ),所以函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,0,x =0,log 12(-x ),x <0.(2)因为f (4)=log 124=-2,f (x )是偶函数,所以不等式f (x 2-1)>-2转化为f (|x 2-1|)>f (4).又因为函数f (x )在(0,+∞)上是减函数,所以|x 2-1|<4,解得-5<x <5,即不等式的解集为(-5,5).能力提升题组(建议用时:25分钟)11.(2017·长沙质检)设f (x )=ln x ,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A.q =r <pB.p =r <qC.q =r >pD.p =r >q 解析 ∵0<a <b ,∴a +b 2>ab , 又∵f (x )=ln x 在(0,+∞)上为增函数,∴f ⎝ ⎛⎭⎪⎫a +b 2>f (ab ),即q >p . 又r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =p , 故p =r <q .答案 B12.已知函数f (x )=lnx 1-x ,若f (a )+f (b )=0,且0<a <b <1,则ab 的取值范围是________.解析 由题意可知ln a 1-a +ln b1-b =0, 即ln ⎝ ⎛⎭⎪⎫a 1-a ×b 1-b =0,从而a 1-a ×b 1-b =1,化简得a +b =1,故ab =a (1-a )=-a 2+a =-⎝ ⎛⎭⎪⎫a -122+14, 又0<a <b <1,∴0<a <12,故0<-⎝ ⎛⎭⎪⎫a -122+14<14. 答案 ⎝ ⎛⎭⎪⎫0,14 13.(2016·浙江卷)已知a >b >1,若log a b +log b a =52,a b =b a ,则a =________,b =________. 解析 ∵log a b +log b a =log a b +1log a b =52, ∴log a b =2或12. ∵a >b >1,∴log a b <log a a =1,∴log a b =12,∴a =b 2. ∵a b =b a ,∴(b 2)b =bb 2,∴b 2b =bb 2,∴2b =b 2,∴b =2,∴a =4.答案 4 214.设x ∈[2,8]时,函数f (x )=12log a (ax )·log a (a 2x )(a >0,且a ≠1)的最大值是1,最小值是-18,求a 的值. 解 由题意知f (x )=12(log a x +1)(log a x +2) =12(log 2a x +3log a x +2) =12⎝⎛⎭⎪⎫log a x +322-18. 当f (x )取最小值-18时,log a x =-32. 又∵x ∈[2,8],∴a ∈(0,1).∵f (x )是关于log a x 的二次函数,∴函数f (x )的最大值必在x =2或x =8时取得.若12⎝ ⎛⎭⎪⎫log a 2+322-18=1,则a =2-13, 此时f (x )取得最小值时,x =(2-13)-32=2∉[2,8],舍去. 若12⎝ ⎛⎭⎪⎫log a 8+322-18=1,则a =12,此时f (x )取得最小值时,x =⎝ ⎛⎭⎪⎫12-32=22∈[2,8],符合题意,∴a =12.15.已知函数f (x )=lg 1+x1+ax (a ≠1)是奇函数.(1)求a 的值;(2)若g (x )=f (x )+21+2x ,x ∈(-1,1),求g ⎝ ⎛⎭⎪⎫12+g ⎝ ⎛⎭⎪⎫-12的值.解 (1)因为f (x )为奇函数,所以对定义域内任意x ,都有f (-x )+f (x )=0,即lg 1-x 1-ax +lg 1+x 1+ax =lg 1-x21-a 2x 2=0,a =±1,由条件知a ≠1,所以a =-1.(2)因为f (x )为奇函数,所以f ⎝ ⎛⎭⎪⎫-12+f ⎝ ⎛⎭⎪⎫12=0.令h (x )=21+2x ,则h ⎝ ⎛⎭⎪⎫12+h ⎝ ⎛⎭⎪⎫-12=21+2+21+12=2,所以g ⎝ ⎛⎭⎪⎫12+g ⎝ ⎛⎭⎪⎫-12=2.。
浙江专用2018版高考数学大一轮复习第二章函数概念与基本初等函数I2.1函数及其表示课件
在 函 数 y = f(x) , x∈A 中 , x 叫 做 自 变 量 , x 的 取 值 范 围 A 叫 做 函 数 的 定义域
;与x的值相对应的y值叫做 函数值 ,函数值的集合 {f(x)|x∈A}
叫做函数的 值域 .
(2)函数的三要素: 定义域 、 对应关系 和 值域 .
(3)函数的表示法
表示函数的常用方法有 解析法 、 图象法 和 列表法 .
解析
A.1
B.2
C.3
D.4
①中当x>0时,每一个x的值对应两个不同的y值,因此不是函数图象,
②中当x=x0时,y的值有两个,因此不是函数图象,
③④中每一个x的值对应唯一的y值,因此是函数图象,故选B.
(2)下列各组函数中,表示同一个函数的是 x2-1 A.y=x-1 和 y= x+1
答案
解析
B.y=x0 和 y=1 C.f(x)=x2 和 g(x)=(x+1)2 x2 x D.f(x)= x 和 g(x)= x2
解析
设f(x0)=t,则f(t)=2,
当t>0时,-t+10=2,得t=8,
当t<0时,t2+4=2,无解,
当x0>0时,由-x0+10=8,得x0=2,
当x0≤0时,由x2 0+4=8,得x0=-2,
所以x0=2或-2.
题型分类
深度剖析
题型一 函数的概念
1 |x| 例1 有以下判断: ①f(x)= 与 g(x)= x -1
5x+1 ∴f(x)= x2 (x≠0).
-x+10,x>0, 4.(2016· 诸暨期末)已知函数 f(x)= 2 则 f[f(0)]=________ ; 6 x +4,x≤0,
2018高考一轮数学(浙江专版)第2章函数导数及其应用
高三一轮总复习
18(2),约 4 7,5 分(理) 分(理) 20(1),约 4 15,4 分(理) 分(文) 7,5 分(理) 9,5 分(理) 8,5 分(文) 10,5 分(文) 21,约 4 分(文) 21,约 6 分 (文) 4,5 分(理) 16,5 分(文)
函数的单 调性
函数的奇 偶性与周 5,5 分(理) 11,3 分(理) 期性 18,15 分 10,5 分(理) 二次函数 18,7 分(理) (理) 15,4 分(理) 与幂函数 6,5 分(文) 20,15 分 7,5 分(理) (文) 9,5 分(文)
导数与极 值、最值
20,15 分(文)
22,14 分(理) 21,约 7 分(文)
高三一轮总复习
[ 重点关注] 从近五年浙江高考试题来看,函数导数及其应用是每年高考命题的重点与 热点,既有客观题,又有解答题,各种难度的题目均有.
高三一轮总复习
第二章
函数、导数及其应用
高三一轮总复习
[ 五年考情] 考ቤተ መጻሕፍቲ ባይዱ 2016 年
2015 年
2014 年
函数的概 念及其表 示
6,5 分(理) 7,5 分(理) 10,5 分(理) 18,15 分 22,14 分(理) (理) 10,5 分(文)
分段函数 及其应用
10,6 分(理) 15,4 分(理) 12,6 分(文) 15,4 分(文)
2013 年 17,4 分(理) 21(2),7 分(理) 22(2),7 分(理) 11,4 分(文) 17,4 分(文) 21,约 4 分(文) 22,约 5 分(文) 8,5 分(理) 22(2),4 分(理)
2012 年 22(1),4 分 ( 理) 16,4 分(文) 22,约 7 分 ( 文)
2018版高考数学浙江 文理通用大一轮复习讲义文档:第
1.函数与映射(1)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)函数的三要素:定义域、对应关系和值域.(3)函数的表示法表示函数的常用方法有解析法、图象法和列表法.3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.【知识拓展】1.函数实质上就是数集上的一种映射,即函数是一种特殊的映射,而映射可以看作函数概念的推广.2.函数图象的特征:与x轴垂直的直线与其最多有一个公共点.利用这个特征可以判断一个图形能否作为一个函数的图象.3.分段函数有几段,它的图象就由几条曲线组成,同时要注意每段曲线端点的虚实,而且横坐标相同的地方不能有两个及两个以上的点.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)对于函数f:A→B,其值域是集合B.(×)(2)若两个函数的定义域与值域相同,则这两个函数是相等函数.(×)(3)映射是特殊的函数.(×)(4)若A=R,B={x|x>0},f:x→y=|x|,其对应是从A到B的映射.(×)(5)分段函数是由两个或几个函数组成的.(×)1.(教材改编)若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y=f(x)的图象可能是()答案 B解析A中函数的定义域不是[-2,2],C中图象不表示函数,D中函数值域不是[0,2],故选B.2.(2016·全国甲卷)下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是()A.y=x B.y=lg x C.y=2x D.y=1 x答案 D解析函数y=10lg x的定义域为{x|x>0},值域为{y|y>0},所以与其定义域和值域分别相同的函数为y=1x,故选D.3.已知f (1x )=x 2+5x ,则f (x )=________.答案5x +1x 2(x ≠0) 解析 令1x =t (t ≠0),则f (t )=1t 2+51t =5t +1t 2,∴f (x )=5x +1x2(x ≠0).4.(2016·诸暨期末)已知函数f (x )=⎩⎪⎨⎪⎧-x +10,x >0,x 2+4,x ≤0,则f [f (0)]=________;若f [f (x 0)]=2,则x 0=________. 答案 6 2或-2解析 由题意知f (0)=4,f (4)=6,设f (x 0)=t ,则f (t )=2,当t >0时,-t +10=2,得t =8,当t <0时,t 2+4=2,无解,当x 0>0时,由-x 0+10=8,得x 0=2,当x 0≤0时,由x 20+4=8,得x 0=-2,所以x 0=2或-2.题型一 函数的概念 例1 有以下判断:①f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1 (x ≥0)-1 (x <0)表示同一函数;②函数y =f (x )的图象与直线x =1的交点最多有1个; ③f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;④若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0. 其中正确判断的序号是________. 答案 ②③解析 对于①,由于函数f (x )=|x |x 的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1(x ≥0),-1(x <0)的定义域是R ,所以二者不是同一函数;对于②,若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于③,f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )和g (t )表示同一函数;对于④,由于f ⎝⎛⎭⎫12=⎪⎪⎪⎪12-1-⎪⎪⎪⎪12=0,所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f (0)=1. 综上可知,正确的判断是②③.思维升华 函数的值域可由定义域和对应关系唯一确定,当且仅当定义域和对应关系都相同的函数才是同一函数.值得注意的是,函数的对应关系是就结果而言的(判断两个函数的对应关系是否相同,只要看对于函数定义域中的任意一个相同的自变量的值,按照这两个对应关系算出的函数值是否相同).(1)下列所给图象中函数图象的个数为( )A .1B .2C .3D .4(2)下列各组函数中,表示同一个函数的是( ) A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2D .f (x )=(x )2x 和g (x )=x(x )2答案 (1)B (2)D解析 (1)①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象,②中当x =x 0时,y 的值有两个,因此不是函数图象,③④中每一个x 的值对应唯一的y 值,因此是函数图象,故选B.(2)A 中两个函数的定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同.故选D.题型二 函数的定义域问题 命题点1 求函数的定义域例2 (2016·临安中学一模)(1)函数f (x )=1-2x +1x +3的定义域为( ) A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1](2)若函数y =f (x )的定义域为[0,2],则函数g (x )=f (2x )x -1的定义域是________.答案 (1)A (2)[0,1)解析 (1)由题意得⎩⎪⎨⎪⎧1-2x≥0,x +3>0,解得-3<x ≤0.所以函数f (x )的定义域为(-3,0]. (2)由0≤2x ≤2,得0≤x ≤1, 又x -1≠0,即x ≠1,所以0≤x <1,即g (x )的定义域为[0,1). 引申探究例2(2)中,若将“函数y =f (x )的定义域为[0,2]”改为“函数y =f (x +1)的定义域为[0,2]”,则函数g (x )=f (2x )x -1的定义域为________________.答案 [12,1)∪(1,32]解析 由函数y =f (x +1)的定义域为[0,2], 得函数y =f (x )的定义域为[1,3],令⎩⎪⎨⎪⎧1≤2x ≤3,x -1≠0,得12≤x ≤32且x ≠1,∴g (x )的定义域为[12,1)∪(1,32].命题点2 已知函数的定义域求参数范围例3 (1)若函数f (x )的定义域为R ,则a 的取值范围为________.(2)若函数y =ax +1ax 2+2ax +3的定义域为R ,则实数a 的取值范围是________.答案 (1)[-1,0] (2)[0,3)解析 (1)因为函数f (x )的定义域为R , 所以22210x ax a+--≥对x ∈R 恒成立,即22022x ax a+-≥,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0. (2)因为函数y =ax +1ax 2+2ax +3的定义域为R ,所以ax 2+2ax +3=0无实数解,即函数y =ax 2+2ax +3的图象与x 轴无交点. 当a =0时,函数y =3的图象与x 轴无交点; 当a ≠0时,则Δ=(2a )2-4·3a <0,解得0<a <3. 综上所述,a 的取值范围是[0,3).思维升华 (1)求给定函数的定义域往往转化为解不等式(组)的问题,在解不等式(组)取交集时可借助于数轴,要特别注意端点值的取舍.(2)求抽象函数的定义域:①若y =f (x )的定义域为(a ,b ),则解不等式a <g (x )<b 即可求出y =f (g (x ))的定义域;②若y =f (g (x ))的定义域为(a ,b ),则求出g (x )在(a ,b )上的值域即得f (x )的定义域.(3)已知函数定义域求参数范围,可将问题转化成含参数的不等式,然后求解.(1)已知函数f (x )的定义域为[3,6],则函数y=12log (2)x -的定义域为( )A .[32,+∞)B .[32,2)C .(32,+∞)D .[12,2)(2)若函数y = 的定义域为R ,则实数m 的取值范围是( ) A .(0,34]B .(0,34)C .[0,34]D .[0,34)答案 (1)B (2)D 解析 (1)要使函数y需满足⎩⎪⎨⎪⎧3≤2x ≤6,12log (2)0x ->⇒⎩⎪⎨⎪⎧32≤x ≤3,0<2-x <1⇒32≤x <2.(2)要使函数的定义域为R ,则mx 2+4mx +3≠0恒成立. ①当m =0时,得到不等式3≠0,恒成立; ②当m ≠0时,要使不等式恒成立,需⎩⎪⎨⎪⎧m >0,Δ=(4m )2-4×m ×3<0, 即⎩⎪⎨⎪⎧m >0,m (4m -3)<0或⎩⎪⎨⎪⎧m <0,Δ<0,即⎩⎪⎨⎪⎧m <0,m (4m -3)<0. 解得0<m <34.由①②得0≤m <34,故选D.题型三 求函数解析式例4 (1)已知f (2x+1)=lg x ,则f (x )=________.(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,则f (x )=________.(3)已知函数f (x )的定义域为(0,+∞),且f (x )=2f (1x )·x -1,则f (x )=________.答案 (1)lg2x -1(x >1) (2)2x +7 (3)23x +13解析 (1)(换元法)令t =2x +1(t >1),则x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (2)(待定系数法) 设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b , 即ax +5a +b =2x +17,不论x 为何值都成立,∴⎩⎪⎨⎪⎧ a =2,5a +b =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7. (3)(消去法)在f (x )=2f (1x )·x -1中,用1x 代替x ,得f (1x )=2f (x )·1x-1,将f (1x )=2f (x )x -1代入f (x )=2f (1x )·x -1中,可求得f (x )=23x +13.思维升华 函数解析式的求法(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法. (2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围. (3)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)消去法:已知f (x )与f ⎝⎛⎭⎫1x 或f (-x )之间的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).(1)已知f (x +1)=x +2x ,求f (x )的解析式;(2)已知一次函数f (x )满足f (f (x ))=4x -1,求f (x ); (3)已知f (x )+3f (-x )=2x +1,求f (x ). 解 (1)设x +1=t (t ≥1),∴f (t )=(t -1)2+2(t -1)=t 2-1, ∴f (x )=x 2-1(x ≥1).(2)设f (x )=kx +b (k ≠0),则f (f (x ))=k 2x +kb +b , 即k 2x +kb +b =4x -1,∴⎩⎪⎨⎪⎧k 2=4,kb +b =-1,∴⎩⎪⎨⎪⎧k =2,b =-13或⎩⎪⎨⎪⎧k =-2,b =1. 故f (x )=2x -13或f (x )=-2x +1.(3)以-x 代替x ,得f (-x )+3f (x )=-2x +1, ∴f (-x )=-3f (x )-2x +1, 代入f (x )+3f (-x )=2x +1, 可得f (x )=-x +14.2.分类讨论思想在函数中的应用典例 (1)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为________________.(2)(2015·山东)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎡⎦⎤23,1 B .[0,1] C.⎣⎡⎭⎫23,+∞D .[1, +∞)思想方法指导 (1)求分段函数的函数值,首先要确定自变量的范围,通过分类讨论求解. (2)当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.解析 (1)当a >0时,1-a <1,1+a >1, 由f (1-a )=f (1+a ),可得2(1-a )+a =-(1+a )-2a , 解得a =-32,不合题意.当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a ),可得-(1-a )-2a =2(1+a )+a ,解得a =-34,符合题意.(2)由f (f (a ))=2f (a ),得f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1. 综上,a ≥23,故选C.答案 (1)-34(2)C1.下列各组函数中,表示同一函数的是( ) A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1C .y =x 0(x ≠0)与y =1(x ≠0)D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z 答案 C解析 A 项中两函数的定义域不同;B 项、D 项中两函数的对应关系不同,故选C. 2.函数f (x )=10+9x -x 2lg (x -1)的定义域为( )A .[1,10]B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10]答案 D解析 要使函数f (x )有意义, 则x 需满足⎩⎪⎨⎪⎧10+9x -x 2≥0,x -1>0,lg (x -1)≠0,即⎩⎪⎨⎪⎧(x +1)(x -10)≤0,x >1,x ≠2,解得1<x <2或2<x ≤10,所以函数f (x )的定义域为(1,2)∪(2,10].3.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2x D .g (x )=-3x 2-2x答案 B解析 (待定系数法) 设g (x )=ax 2+bx +c (a ≠0),∵g (1)=1,g (-1)=5,且图象过原点, ∴⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧a =3,b =-2,c =0,∴g (x )=3x 2-2x ,故选B.4.(2015·陕西)设f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f (f (-2))等于( )A .-1 B.14 C.12 D.32答案 C解析 ∵f (-2)=2-2=14>0,则f (f (-2))=f ⎝⎛⎭⎫14=1-14=1-12=12,故选C. 5.(2016·余杭六校联考)已知函数f (x )=x |x |,若f (x 0)=4,则x 0的值为( ) A .-2 B .2 C .-2或2 D. 2答案 B解析 当x ≥0时,f (x )=x 2,f (x 0)=4, 即x 20=4,解得x 0=2.当x <0时,f (x )=-x 2,f (x 0)=4, 即-x 20=4,无解,所以x 0=2, 故选B.*6.(2016·嘉兴期末)已知f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是( )A .(-∞,-1]B .(-1,12)C .[-1,12)D .(0,12)答案 C解析 要使函数f (x )的值域为R ,需使⎩⎪⎨⎪⎧1-2a >0,ln 1≤1-2a +3a , ∴⎩⎪⎨⎪⎧a <12,a ≥-1,∴-1≤a <12. 即a 的取值范围是[-1,12). 7.(2016·济南模拟)已知函数f (1-x 1+x)=x ,则f (2)=________. 答案 -13解析 令t =1-x 1+x ,则x =1-t 1+t, ∴f (t )=1-t 1+t ,即f (x )=1-x 1+x , ∴f (2)=1-21+2=-13. 8.(2017·金华十校调研)已知函数f (x )=⎩⎪⎨⎪⎧3x -1,x ≤1,f (x -1),x >1,则f (f (2))=________,值域为______. 答案 2 (-1,2]解析 ∵f (2)=f (1)=2,∴f [f (2)]=f (2)=2.又x >1时,f (x )=f (x -1),∴f (x )的值域即为x ≤1时函数值的范围.又x ≤1时,-1<3x -1≤2,故f (x )的值域为(-1,2].9.(2015·浙江)已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x <1,则f (f (-3))=________,f (x )的最小值是________.答案 0 22-3解析 ∵f (-3)=lg [(-3)2+1]=lg 10=1,∴f (f (-3))=f (1)=0,当x ≥1时,f (x )=x +2x-3≥22-3,当且仅当x =2时,取等号,此时f (x )min =22-3<0; 当x <1时,f (x )=lg(x 2+1)≥lg 1=0,当且仅当x =0时,取等号,此时f (x )min =0.∴f (x )的最小值为22-3.*10.具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧ x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是________.答案 ①③ 解析 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足; 对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足. 综上可知,满足“倒负”变换的函数是①③.11.已知f (x )=⎩⎪⎨⎪⎧ f (x +1),-2<x <0,2x +1,0≤x <2,x 2-1,x ≥2.(1)求f (-32)的值; (2)若f (a )=4且a >0,求实数a 的值.解 (1)由题意,得f (-32)=f (-32+1)=f (-12) =f (-12+1)=f (12)=2×12+1=2. (2)当0<a <2时,由f (a )=2a +1=4,得a =32, 当a ≥2时,由f (a )=a 2-1=4,得a =5或a =-5(舍去).综上所述,a =32或a = 5.12.若函数f (x )=x 2-1x 2+1. (1)求f (2)f (12)的值; (2)求f (3)+f (4)+…+f (2 017)+f (13)+f (14)+…+f (12 017)的值. 解 (1)∵f (2)=35,f (12)=-35, ∴f (2)f (12)=-1. (2)∵f (1x )=1x 2-11x 2+1=1-x 2x 2+1=-f (x ), ∴f (3)+f (13)=0,f (4)+f (14)=0,…,f (2 017)+f (12 017)=0, 故f (3)+f (4)+…+f (2 017)+f (13)+f (14)+…+f (12 017)=0. 13.(2016·嘉兴期末)已知函数f (x )=x 2+mx +n (m ,n ∈R ),f (0)=f (1),且方程x =f (x )有两个相等的实数根.(1)求函数f (x )的解析式;(2)当x ∈[0,3]时,求函数f (x )的值域.解 (1)∵f (x )=x 2+mx +n 且f (0)=f (1),∴n =1+m +n ,∴m =-1,∴f (x )=x 2-x +n .∵方程x =f (x )有两个相等的实数根,∴方程x =x 2-x +n 有两个相等的实数根,即方程x 2-2x +n =0有两个相等的实数根,∴(-2)2-4n =0,∴n =1.∴f (x )=x 2-x +1.(2)由(1),知f (x )=x 2-x +1.此函数的图象是开口向上,对称轴为直线x =12的抛物线,∴当x =12时,f (x )有最小值f (12). ∴f (12)=(12)2-12+1=34, ∵f (0)=1,f (3)=32-3+1=7,∴当x ∈[0,3]时,函数f (x )的值域是[34,7].。
创新设计浙江专用2018版高考数学一轮复习第二章函数概念与基本初等函数I第2讲函数的单调性与最值课件
a 令 f′(x)<0,则 1-x2<0,解得- a<x< a.∵x>0,∴0<x< a. ∴f(x)在(0, a]上为减函数,在[ a,+∞)上为增函数.
考点二 确定函数的最值
1 log x,x>1, 【例 2】 (1)(2017· 丽水一模)已知函数 f(x)= 3 则 2 -x +2x,x≤1, f(f(3))=________,函数 f(x)的最大值是________. x2+2x+a (2)已知函数 f(x)= ,x∈[1,+∞)且 a≤1. x 1 ①当 a=2时,求函数 f(x)的最小值; ②若对任意 x∈[1,+∞),f(x)>0 恒成立,试求实数 a 的取值 范围.
当 a≤x1<x2 时,x1x2>a,又 x1-x2<0, 所以 f(x1)-f(x2)<0,即 f(x1)<f(x2), 所以函数 f(x)在[ a,+∞)上是增函数. a 综上可知,函数 f(x)=x+x (a>0)在(0, a]上是减函数, 在[ a,+∞)上为增函数.
法二 a a f′(x)=1-x2, 令 f′(x)>0, 则 1-x2>0, 解得 x> a或 x<- a(舍).
值为f(b).
【训练 2】 如果函数 f(x)对任意的实数 x,都有 f(1+x)=f(-x), 1 且当 x≥2时,f(x)=log2(3x-1),那么函数 f(x)在[-2,0]上的 最大值与最小值之和为( A.2 C.4 B.3 D.-1 )
解析
1 根据 f(1+x)=f(-x),可知函数 f(x)的图象关于直线 x= 对 2
答案 D
(2)解
法一
x-1+1 1 1 + 设-1<x1<x2<1,f(x)=a = a , x - 1 x - 1
浙江专用2018版高考数学大一轮复习第二章函数概念与基本初等函数I2.4二次函数与幂函数课件
2a ∴-a=-(- b ),即 b=-2,∴f(x)=-2x2+2a2,
又f(x)的值域为(-∞,4], ∴2a2=4,故f(x)=-2x2+4.
题型二 二次函数的图象和性质
命题点1 二次函数的单调性 例2 函数f(x)=ax2+(a-3)x+1在区间[-1,+∞)上是递减的,则实数
答案 解析
解析
1 3 1 1 2 当 x≠0 时,a< x-3 - , 2 6 1 因为 x∈(-∞,-1]∪[1,+∞), 1 1 当 x=1 时,右边取最小值2,所以 a<2. 1 综上,实数 a 的取值范围是 -∞,2 .
思维升华
(1) 二次函数最值问题的解法:抓住 “ 三点一轴 ” 数形结合,三点是指 区间两个端点和中点,一轴指的是对称轴,结合配方法,根据函数的单 调性及分类讨论的思想即可完成. (2)由不等式恒成立求参数取值范围的思路及关键 ①一般有两个解题思路:一是分离参数;二是不分离参数. ②两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是 看参数是否已分离.这两个思路的依据是:a≥f(x)恒成立⇔a≥f(x)max, a≤f(x)恒成立⇔a≤f(x)min.
a的取值范围是
A.[-3,0)
B.(-∞,-3]
C.[-2,0]
D.[-3,0]
引申探究
若函数f(x)=ax2+(a-3)x+1的单调减区间是[-1,+∞),则a=_____. -3
答案 解析
由题意知a<0,
3-a 又 2a =-1,∴a=-3.
命题点2 二次函数的最值 例3 (2016· 嘉兴教学测试)已知m∈R,函数f(x)=-x2+(3-2m)x+2+m.
∴-2a≥6,解得a≤-3,故选D.
高考数学一轮复习第二章函数概念与基本初等函数第4课时二次函数与幂函数教案(1)
二次函数与幂函数1.二次函数(1)二次函数解析式的三种形式①一般式:f(x )=ax2+bx+c(a≠0).②顶点式:f(x)=a(x-m)2+n(a≠0)。
③零点式:f(x)=a(x-x1)(x-x2)(a≠0)。
(2)二次函数的图像和性质解析式f(x)=ax2+bx+c(a>0)f(x)=ax2+bx+c(a<0)图像定义域(-∞,+∞)(-∞,+∞)值域错误!错误!单调性在x∈错误!上单调递减;在x∈错误!上单调递增在x∈错误!上单调递增;在x∈错误!上单调递减对称性函数的图像关于x=-错误!对称2.幂函数(1)定义:形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α是常数.(2)幂函数的图像比较(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②幂函数的图像过定点(1,1);③当α>0时,幂函数的图像都过点(1,1)和(0,0),且在(0,+∞)上单调递增;④当α〈0时,幂函数的图像都过点(1,1),且在(0,+∞)上单调递减。
【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是错误!。
(×)(2)二次函数y=ax2+bx+c,x∈R,不可能是偶函数.( ×)(3)在y=ax2+bx+c(a≠0)中,a决定了图像的开口方向和在同一直角坐标系中的开口大小.(√)(4)函数y=2x 12是幂函数。
( ×)(5)如果幂函数的图像与坐标轴相交,则交点一定是原点。
( √)(6)当n〈0时,幂函数y=x n是定义域上的减函数。
(×)1.已知a,b,c∈R,函数f(x)=ax2+bx+c。
若f(0)=f(4)〉f(1),则()A.a>0,4a+b=0B.a〈0,4a+b=0C.a>0,2a+b=0 D。
a〈0,2a+b=0答案A解析因为f(0)=f(4)〉f(1),所以函数图像应开口向上,即a>0,且其对称轴为x=2,即-错误!=2,所以4a+b=0,故选A.2.已知函数f(x)=ax2+x+5的图像在x轴上方,则a的取值范围是()A.错误!B.错误!C。
创新设计浙江专用2018版高考数学一轮复习第二章函数概念与基本初等函数I第1讲函数及其表示课件
1 或 x
f(-x)的表达式,可根据已知
条件再构造出另外一个等式,通过解方程组求出 f(x). (4)配凑法:由已知条件 f(g(x))=F(x),可将 F(x)改写成关于 g(x) 的表达式,然后以 x 替代 g(x),便得 f(x)的表达式.
的定义域为g(x)在x∈[a,b]时的值域.
x2-5x+6 【训练 1】 (1)(2015· 湖北卷)函数 f(x)= 4-|x|+lg 的 x-3 定义域为( A.(2,3) C.(2,3)∪(3,4] (2)若函数 f(x)= 2 为________.
x2+2ax-a
) B.(2,4] D.(-1,3)∪(3,6] -1的定义域为 R,则 a 的取值范围
2 1 解得 f(x)=3 x+3. 2 1 2 3 2 1 答案 (1)lg (x>1) (2) x - x+2 (3) x+ 2 2 3 3 x-1
规律方法 求函数解析式的常用方法
(1)待定系数法:若已知函数的类型,可用待定系数法.
(2)换元法:已知复合函数 f(g(x))的解析式,可用换元法,此时 要注意新元的取值范围.
4.分段函数
对应关系 不同而分别 (1) 若函数在其定义域的不同子集上,因_________ 用几个不同的式子来表示,这种函数称为分段函数. 并集 ,其值域 (2) 分段函数的定义域等于各段函数的定义域的 _____ 并集 ,分段函数虽由几个部分组成, 等于各段函数的值域的 _____
但它表示的是一个函数.
规律方法 求函数定义域的类型及求法
(1) 已知函数的解析式,则构造使解析式有意义的不等式
(组)求解. (2) 对实际问题:由实际意义及使解析式有意义构成的不 等式(组)求解. (3) 若已知 f(x) 的定义域为 [a , b] ,则 f(g(x)) 的定义域可由
数学(浙江专用)总复习教师用书:第二章 函数概念与基本初等函数 第讲 指数与指数函数
第5讲指数与指数函数最新考纲1。
了解指数函数模型的实际背景;2.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算;3。
了解指数函数的概念,掌握指数函数的图象、性质及应用.知识梳理1。
根式(1)概念:式子错误!叫做根式,其中n叫做根指数,a叫做被开方数. (2)性质:(n,a)n=a(a使错误!有意义);当n为奇数时,错误!=a,当n为偶数时,错误!=|a|=错误!2。
分数指数幂(1)规定:正数的正分数指数幂的意义是a错误!=错误!(a>0,m,n∈N *,且n〉1);正数的负分数指数幂的意义是a-错误!=错误!(a〉0,m,n∈N*,且n>1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理指数幂的运算性质:a r a s=a r+s;(a r)s=a rs;(ab)r=a r b r,其中a〉0,b>0,r,s∈Q。
3。
指数函数及其性质(1)概念;函数y=a x(a〉0且a≠1)叫做指数函数,其中指数x是变量,函数的定义域是R,a是底数。
(2)指数函数的图象与性质a>10〈a<1图象定义域R值域(0,+∞)性质过定点(0,1),即x=0时,y=1当x〉0时,y〉1;当x〈0时,0<y<1当x〈0时,y〉1;当x〉0时,0<y〈1在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数1。
判断正误(在括号内打“√"或“×”)(1)错误!=-4。
( )(2)(-1)错误!=(-1)错误!=错误!。
()(3)函数y=2x-1是指数函数.()(4)函数y=a x2+1(a〉1)的值域是(0,+∞).()解析(1)由于错误!=错误!=4,故(1)错.(2)(-1)错误!=错误!=1,故(2)错.(3)由于指数函数解析式为y=a x(a>0,且a≠1),故y=2x-1不是指数函数,故(3)错.(4)由于x2+1≥1,又a>1,∴a x2+1≥a。
创新设计(全国通用)2018版高考数学一轮温习 第二章节 函数概念与基本初等函数I 2.3 函数的奇偶性与周期性
解析 ∵f(x)是定义在 R 上的奇函数, ∴f(0)=0, 又 f(x)在 R 上的周期为 2, ∴f(2)=f(0)=0. 又 f-52=f-12=-f12=-412=-2, ∴f-52+f(2)=-2. 答案 -2
解析 ∵f(x)的周期为 2,∴f32=f-12, 又∵当-1≤x<0 时,f(x)=-4x2+2, ∴f32=f-12=-4×-122+2=1.
答案 1
5.(2014·全国Ⅱ卷)偶函数 y=f(x)的图像关于直线 x=2 对称, f(3)=3,则 f(-1)=________.
解析 (1)易知 f(-x)=22- -xx+ -1a=12-x+a21x, 由 f(-x)=-f(x),得12-x+a21x=-22xx+ -1a, 即 1-a2x=-2x+a,化简得 a(1+2x)=1+2x,所以 a=1, f(x)=22xx+ -11,由 f(x)>3,得 0<x<1.
(2)∵f(x)是定义在 R 上的奇函数,∴f(0)=0. 又当 x<0 时,-x>0,∴f(-x)=x2+4x.
规律方法 (1)根据函数的周期性和奇偶性求给定区间上的函 数值或解析式时,应根据周期性或奇偶性,由待求区间转化 到已知区间. (2)若f(x+a)=-f(x)(a是常数,且a≠0),则2a为函数f(x)的一 个周期.
【训练 3】 已知 f(x)是定义在 R 上的偶函数,且 f(x+2)=-f1x, 当 2≤x≤3 时,f(x)=x,则 f(105.5)=______.
解析 f(x+4)=f[(x+2)+2]=-fx+1 2=f(x). 故函数的周期为 4. ∴f(105.5)=f(4×27-2.5)=f(-2.5)=f(2.5). ∵2≤2.5≤3,由题意,得 f(2.5)=2.5.∴f(105.5)=2.5. 答案 2.5
2018版高考数学浙江 文理通用大一轮复习讲义文档:第
1.函数的单调性(1)单调函数的定义自左向右看图象是上升的自左向右看图象是下降的如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值【知识拓展】函数单调性的常用结论(1)对任意x 1,x 2∈D (x 1≠x 2),f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在D 上是增函数,f (x 1)-f (x 2)x 1-x 2<0⇔f (x )在D上是减函数.(2)对勾函数y =x +ax (a >0)的增区间为(-∞,-a ]和[a ,+∞),减区间为[-a ,0)和(0,a ].(3)在区间D 上,两个增函数的和仍是增函数,两个减函数的和仍是减函数. (4)函数f (g (x ))的单调性与函数y =f (u )和u =g (x )的单调性的关系是“同增异减”. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若定义在R 上的函数f (x ),有f (-1)<f (3),则函数f (x )在R 上为增函数.( × ) (2)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( × ) (3)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( × )(4)所有的单调函数都有最值.( × )(5)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.( × )(6)闭区间上的单调函数,其最值一定在区间端点取到.( √ )1.(2016·北京)下列函数中,在区间(-1,1)上为减函数的是( ) A .y =11-xB .y =cos xC .y =ln(x +1)D .y =2-x答案 D解析 y =11-x与y =ln(x +1)在区间(-1,1)上为增函数;y =cos x 在区间(-1,1)上不是单调函数;y =2-x =⎝⎛⎭⎫12x 在(-1,1)上单调递减. 2.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a 的值为( ) A .-2 B .2 C .-6 D .6 答案 C解析 由图象易知函数f (x )=|2x +a |的单调增区间是[-a 2,+∞),令-a2=3,得a =-6.3.(2016·舟山模拟)函数y =x 2+2x -3(x >0)的单调增区间为________. 答案 (0,+∞)解析 函数的对称轴为x =-1,又x >0,所以函数f (x )的单调增区间为(0,+∞). 4.(教材改编)已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为________. 答案 2 25解析 可判断函数f (x )=2x -1在[2,6]上为减函数,所以f (x )max =f (2)=2,f (x )min =f (6)=25.题型一 确定函数的单调性(区间)命题点1 给出具体解析式的函数的单调性例1 (1)函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)(2)y =-x 2+2|x |+3的单调增区间为________. 答案 (1)D (2)(-∞,-1],[0,1]解析 (1)因为y =log 12t ,t >0在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).(2)由题意知,当x ≥0时,y =-x 2+2x +3=-(x -1)2+4;当x <0时,y =-x 2-2x +3=-(x +1)2+4,二次函数的图象如图.由图象可知,函数y =-x 2+2|x |+3在(-∞,-1],[0,1]上是增函数. 命题点2 解析式含参数的函数的单调性例2 已知函数f (x )=axx 2-1(a >0),用定义法判断函数f (x )在(-1,1)上的单调性.解 设-1<x 1<x 2<1, 则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=ax 1x 22-ax 1-ax 2x 21+ax 2(x 21-1)(x 22-1)=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1)∵-1<x 1<x 2<1,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0.又∵a >0,∴f (x 1)-f (x 2)>0, ∴函数f (x )在(-1,1)上为减函数. 引申探究如何用导数法求解例2?解 f ′(x )=a ·(x 2-1)-ax ·2x (x 2-1)2=-a (x 2+1)(x 2-1)2,∵a >0,∴f ′(x )<0在(-1,1)上恒成立, 故函数f (x )在(-1,1)上为减函数. 思维升华 确定函数单调性的方法(1)定义法和导数法,证明函数单调性只能用定义法和导数法. (2)复合函数法,复合函数单调性的规律是“同增异减”. (3)图象法,图象不连续的单调区间不能用“∪”连接.(1)已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为( )A .(-∞,1]B .[3,+∞)C .(-∞,-1]D .[1,+∞)(2)函数f (x )=(3-x 2)e x 的单调递增区间是( ) A .(-∞,0) B .(0,+∞)C .(-3,1)D .(-∞,-3)和(1,+∞)答案 (1)B (2)C解析 (1)设t =x 2-2x -3,则t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3.所以函数的定义域为(-∞,-1]∪[3,+∞). 因为函数t =x 2-2x -3的图象的对称轴为x =1, 所以函数t 在(-∞,-1]上单调递减, 在[3,+∞)上单调递增.所以函数f (x )的单调递增区间为[3,+∞).(2)f ′(x )=-2x ·e x +e x (3-x 2)=e x (-x 2-2x +3)=e x [-(x +3)(x -1)].当-3<x <1时,f ′(x )>0,所以函数y =(3-x 2)e x 的单调递增区间是(-3,1),故选C. 题型二 函数的最值例3 (1)(2016·诸暨质检)已知f (x )=⎩⎪⎨⎪⎧1+x ,x ≤0,log 2(x 2+2x +a ),x >0,其中a >0. 若函数f (x )的值域为R ,则实数a 的取值范围是________. 答案 (0,2]解析 设t =x 2+2x +a (x >0),则t >a ,∴log 2t >log 2a ,又x ≤0时,f (x )≤1,又f (x )的值域为R , ∴log 2a ≤1,∴0<a ≤2.(2)已知f (x )=x 2+2x +ax ,x ∈[1,+∞),且a ≤1.①当a =12时,求函数f (x )的最小值;②若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围. 解 ①当a =12时,f (x )=x +12x+2,又x ∈[1,+∞),所以f ′(x )=1-12x 2>0,即f (x )在[1,+∞)上是增函数,所以f (x )min =f (1)=1+12×1+2=72.②f (x )=x +ax+2,x ∈[1,+∞).(ⅰ)当a ≤0时,f (x )在[1,+∞)内为增函数. 最小值为f (1)=a +3.要使f (x )>0在x ∈[1,+∞)上恒成立,只需a +3>0, 所以-3<a ≤0.(ⅱ)当0<a ≤1时,f ′(x )=1-ax2,因为x ∈[1,+∞),所以f ′(x )≥0,即f (x )在[1,+∞)上为增函数, 所以f (x )min =f (1)=a +3, 即a +3>0,a >-3,所以0<a ≤1.综上所述,f (x )在[1,+∞)上恒大于零时, a 的取值范围是(-3,1].思维升华 求函数最值的五种常用方法及其思路(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值. (5)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(1)函数y =x +x -1的最小值为________.(2)函数f (x )=x 2+8x -1(x >1)的最小值为________.答案 (1)1 (2)8解析 (1)易知函数y =x +x -1在[1,+∞)上为增函数,∴x =1时,y min =1.(本题也可用换元法求解)(2)方法一 (基本不等式法)f (x )=x 2+8x -1=(x -1)2+2(x -1)+9x -1=(x -1)+9x -1+2≥2(x -1)·9x -1+2=8,当且仅当x -1=9x -1,即x =4时,f (x )min =8.方法二 (导数法)f ′(x )=(x -4)(x +2)(x -1)2,令f ′(x )=0,得x =4或x =-2(舍去). 当1<x <4时,f ′(x )<0, f (x )在(1,4)上是递减的; 当x >4时,f ′(x )>0, f (x )在(4,+∞)上是递增的,所以f (x )在x =4处取到极小值也是最小值, 即f (x )min =f (4)=8.题型三 函数单调性的应用 命题点1 比较大小例4 已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f (-12),b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c 答案 D解析 根据已知可得函数f (x )的图象关于直线x =1对称,且在(1,+∞)上是减函数,因为a =f (-12)=f (52),且2<52<3,所以b >a >c .命题点2 解函数不等式例5 (2016·温州模拟)定义在R 上的奇函数y =f (x )在(0,+∞)上递增,且f (12)=0,则满足f (log 19x )>0的x 的集合为________________.答案 {x |0<x <13或1<x <3}解析 由题意知f (12)=0,f (-12)=0,由f (19log x )>0,得19log x >12,或-12<19log x <0,解得0<x <13或1<x <3.命题点3 求参数范围例6 (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( ) A .a >-14B .a ≥-14C .-14≤a <0D .-14≤a ≤0(2)已知f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________. 答案 (1)D (2)[32,2)解析 (1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增; 当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增, 所以a <0,且-1a ≥4,解得-14≤a <0.综合上述得-14≤a ≤0.(2)由已知条件得f (x )为增函数, 所以⎩⎪⎨⎪⎧2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2,所以a 的取值范围是[32,2).思维升华 函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域. (3)利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的; ③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.(1)(2016·杭州滨江区模拟)已知函数f (x )=x (e x -1ex ),若f (x 1)<f (x 2),则( )A .x 1>x 2B .x 1+x 2=0C .x 1<x 2D .x 21<x 22(2)(2016·金华模拟)要使函数y =2x +kx -2与y =log 3(x -2)在(3,+∞)上具有相同的单调性,则实数k 的取值范围是________. 答案 (1)D (2)(-∞,-4) 解析 (1)f (-x )=-x (1e x -e x )=f (x ),∴f (x )在R 上为偶函数, f ′(x )=e x -1e x +x (e x +1ex ),∴当x >0时,f ′(x )>0,∴f (x )在[0,+∞)上为增函数, 由f (x 1)<f (x 2),得f (|x 1|)<f (|x 2|),∴|x 1|<|x 2|,∴x 21<x 22.(2)由于y =log 3(x -2)的定义域为(2,+∞),且为增函数, 故函数y =log 3(x -2)在(3,+∞)上是增函数. 又函数y =2x +k x -2=2(x -2)+4+k x -2=2+4+k x -2,因其在(3,+∞)上是增函数,故4+k <0,得k <-4.1.解抽象函数不等式典例 (15分)函数f (x )对任意的m 、n ∈R ,都有f (m +n )=f (m )+f (n )-1,并且x >0时,恒有f (x )>1.(1)求证:f (x )在R 上是增函数; (2)若f (3)=4,解不等式f (a 2+a -5)<2.思维点拨 (1)对于抽象函数的单调性的证明,只能用定义.应该构造出f (x 2)-f (x 1)并与0比较大小.(2)将函数不等式中的抽象函数符号“f ”运用单调性“去掉”是本题的切入点.要构造出f (M )<f (N )的形式.规范解答(1)证明设x1,x2∈R且x1<x2,则x2-x1>0,∵当x>0时,f(x)>1,∴f(x2-x1)>1. [2分]f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1)-1,[4分]∴f(x2)-f(x1)=f(x2-x1)-1>0⇒f(x1)<f(x2),∴f(x)在R上为增函数.[7分](2)解∵m,n∈R,不妨设m=n=1,∴f(1+1)=f(1)+f(1)-1⇒f(2)=2f(1)-1,[8分]f(3)=4⇒f(2+1)=4⇒f(2)+f(1)-1=4⇒3f(1)-2=4,∴f(1)=2,∴f(a2+a-5)<2=f(1),[12分]∵f(x)在R上为增函数,∴a2+a-5<1⇒-3<a<2,即a∈(-3,2).[15分]解函数不等式问题的一般步骤第一步:(定性)确定函数f(x)在给定区间上的单调性;第二步:(转化)将函数不等式转化为f(M)<f(N)的形式;第三步:(去f)运用函数的单调性“去掉”函数的抽象符号“f”,转化成一般的不等式或不等式组;第四步:(求解)解不等式或不等式组确定解集;第五步:(反思)反思回顾.查看关键点,易错点及解题规范.1.(2016·北京东城区模拟)下列函数中,在区间(1,+∞)上是增函数的是()A.y=-x+1B.y=11-xC.y=-(x-1)2D.y=31-x答案 B解析A中,函数在(1,+∞)上为减函数,C中,函数在(1,+∞)上为减函数,D中,函数在(1,+∞)上为减函数.2.函数f(x)=|x-2|x的单调减区间是()A .[1,2]B .[-1,0]C .(0,2]D .[2,+∞)答案 A解析 f (x )=⎩⎪⎨⎪⎧x 2-2x ,x >2,-x 2+2x ,x ≤2,当x >2时,f (x )为增函数,当x ≤2时,(-∞,1]是函数f (x )的增区间; [1,2]是函数f (x )的减区间.3.已知函数y =log 2(ax -1)在(1,2)上单调递增,则实数a 的取值范围是( ) A .(0,1] B .[1,2] C .[1,+∞) D .[2,+∞)答案 C解析 要使y =log 2(ax -1)在(1,2)上单调递增,则a >0且a -1≥0,即a ≥1.4.已知f (x )=⎩⎪⎨⎪⎧a x,x >1,(4-a2)x +2,x ≤1是R 上的单调递增函数,则实数a 的取值范围是( ) A .(1,+∞) B .[4,8) C .(4,8) D .(1,8)答案 B解析 由已知可得⎩⎪⎨⎪⎧a >1,4-a 2>0,a ≥(4-a 2)+2,解得4≤a <8.5.(2016·宁波模拟)已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f (13)的x 的取值范围是( )A .(13,23)B .[13,23)C .(12,23)D .[12,23)答案 D解析 由已知,得⎩⎪⎨⎪⎧2x -1≥0,2x -1<13,即12≤x <23. 6.定义新运算:当a ≥b 时,a b =a ;当a <b 时,ab =b 2,则函数f (x )=(1x )x -(2x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12答案 C解析 由已知得,当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数,∴f (x )的最大值为f (2)=23-2=6.7.(2017·杭州检测)设函数f (x )与g (x )的定义域为R ,且f (x )单调递增,F (x )=f (x )+g (x ),G (x )=f (x )-g (x ).若对任意x 1,x 2∈R (x 1≠x 2),不等式[f (x 1)-f (x 2)]2>[g (x 1)-g (x 2)]2恒成立,则( )A .F (x ),G (x )都是增函数B .F (x ),G (x )都是减函数C .F (x )是增函数,G (x )是减函数D .F (x )是减函数,G (x )是增函数答案 A解析 由[f (x 1)-f (x 2)]2-[g (x 1)-g (x 2)]2>0,得[F (x 1)-F (x 2)][G (x 1)-G (x 2)]>0,所以F (x ),G (x )的单调性相同,又因为F (x )+G (x )=2f (x )为增函数,所以F (x ),G (x )都是增函数,故选A.8.函数f (x )=⎝⎛⎭⎫13x -log 2(x +2)在区间[-1,1]上的最大值为________.答案 3解析 由于y =⎝⎛⎭⎫13x 在R 上递减,y =log 2(x +2)在[-1,1]上递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.9.(2016·杭州模拟)设函数f (x )=⎩⎪⎨⎪⎧ 1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是___. 答案 [0,1)解析 由题意知g (x )=⎩⎪⎨⎪⎧ x 2,x >1,0,x =1,-x 2,x <1,函数的图象如图所示,其递减区间为[0,1).*10.(2016·北京东城区模拟)已知f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是________.答案 (-∞,-2)解析 二次函数y 1=x 2-4x +3的对称轴是x =2,∴该函数在(-∞,0]上单调递减,∴x 2-4x +3≥3,同样可知函数y 2=-x 2-2x +3在(0,+∞)上单调递减,∴-x 2-2x +3<3,∴f (x )在R 上单调递减,∴由f (x +a )>f (2a -x )得到x +a <2a -x ,即2x <a ,∴2x <a 在[a ,a +1]上恒成立,∴2(a +1)<a ,∴a <-2,∴实数a 的取值范围是(-∞,-2).11.已知函数f (x )=1a -1x(a >0,x >0). (1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在[12,2]上的值域是[12,2],求a 的值. (1)证明 任取x 1>x 2>0,则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,∵x 1>x 2>0, ∴x 1-x 2>0,x 1x 2>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数.(2)解 由(1)可知,f (x )在[12,2]上为增函数, ∴f (12)=1a -2=12,f (2)=1a -12=2, 解得a =25. 12.(2017·金华十校高三上学期调研)已知函数f (x )=|ax 2-8x |(0<a ≤8),求函数f (x )在区间[-1,1]上的最大值.解 f (-1)=|a +8|>f (1)=|a -8|,f (4a )=16a≥2, ①当0<a ≤4,即1≤4a时,f (x )max =f (-1)=a +8; ②当4<a ≤8时,f (-1)=a +8,f (4a )=16a, 当a +8=16a时,a =42-4, 所以当a >42-4时,f (x )max =f (-1)=a +8.综上,f (x )max =a +8.13.已知函数f (x )=lg(x +a x-2),其中a 是大于0的常数. (1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值;(3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.解 (1)由x +a x -2>0,得x 2-2x +a x>0, 当a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞);当a =1时,定义域为{x |x >0且x ≠1};当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }.(2)设g (x )=x +a x-2, 当a ∈(1,4),x ∈[2,+∞)时,g ′(x )=1-a x 2=x 2-a x2>0恒成立, 所以g (x )=x +a x-2在[2,+∞)上是增函数. 所以f (x )=lg ⎝⎛⎭⎫x +a x -2在[2,+∞)上是增函数. 所以f (x )=lg ⎝⎛⎭⎫x +a x -2在[2,+∞)上的最小值为f (2)=lg a 2. (3)对任意x ∈[2,+∞)恒有f (x )>0,即x +a x-2>1对x ∈[2,+∞)恒成立. 所以a >3x -x 2,令h (x )=3x -x 2,而h (x )=3x -x 2=-⎝⎛⎭⎫x -322+94在[2,+∞)上是减函数, 所以h (x )max =h (2)=2,所以a的取值范围为(2,+∞).。
精选浙江专用2018版高考数学大一轮复习第二章函数概念与基本初等函数I2.3函数的奇偶性与周期性教师用书
(浙江专用)2018版高考数学大一轮复习第二章函数概念与基本初等函数I 2.3 函数的奇偶性与周期性教师用书1.函数的奇偶性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.【知识拓展】1.函数奇偶性常用结论(1)如果函数f(x)是偶函数,那么f(x)=f(|x|).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.函数周期性常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a(a>0).(2)若f(x+a)=1f x,则T=2a(a>0).(3)若f(x+a)=-1f x,则T=2a(a>0).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)偶函数图象不一定过原点,奇函数的图象一定过原点.( ×)(2)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.( √)(3)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a>0)的周期函数.( √)(4)定义域关于原点对称是函数具有奇偶性的一个必要条件.( √)(5)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.( √)1.(教材改编)下列函数为偶函数的是( )A.f(x)=x-1B.f(x)=x2+xC.f(x)=2x-2-xD.f(x)=2x+2-x答案 D解析D中,f(-x)=2-x+2x=f(x),∴f(x)为偶函数.2.已知定义在R上的奇函数f(x)满足f(x+4)=f(x),则f(8)的值为( )A.-1 B.0 C.1 D.2答案 B解析∵f(x)为定义在R上的奇函数,∴f(0)=0,又f(x+4)=f(x),∴f(8)=f(0)=0.3.(2016·嘉兴教学测试一)已知奇函数f(x),当x>0时,f(x)=log2(x+3),则f(-1)=________.答案-2解析∵f(1)=log2(1+3)=2,又f(x)为奇函数,∴f(-1)=-f(1)=-2.4.(教材改编)已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x(1+x),则当x<0时,f(x)=________.答案x(1-x)解析当x<0时,则-x>0,∴f(-x)=(-x)(1-x).又f(x)为奇函数,∴f(-x)=-f(x)=(-x)(1-x),∴f(x)=x(1-x).题型一 判断函数的奇偶性例1 (1)下列函数中,既不是奇函数,也不是偶函数的是( ) A .y =1+x 2B .y =x +1xC .y =2x +12xD .y =x +e x答案 D解析 选项A 中的函数是偶函数;选项B 中的函数是奇函数;选项C 中的函数是偶函数;选项D 中的函数既不是奇函数也不是偶函数.(2)判断函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2+x ,x >0的奇偶性.解 当x >0时,-x <0,f (x )=-x 2+x , ∴f (-x )=(-x )2-x =x 2-x =-(-x 2+x )=-f (x ); 当x <0时,-x >0,f (x )=x 2+x , ∴f (-x )=-(-x )2-x =-x 2-x =-(x 2+x )=-f (x ).∴对于x ∈(-∞,0)∪(0,+∞),均有f (-x )=-f (x ). ∴函数f (x )为奇函数.思维升华 (1)利用定义判断函数奇偶性的步骤(2)分段函数奇偶性的判断,要注意定义域内x 取值的任意性,应分段讨论,讨论时可依据x 的范围取相应的解析式化简,判断f (x )与f (-x )的关系,得出结论,也可以利用图象作判断.(1)(2016·北京海淀区模拟)下列函数中为偶函数的是( )A .y =1xB .y =lg|x |C .y =(x -1)2D .y =2x(2)(2016·余姚模拟)函数g (x )=2x-12x +1为________函数(填“奇”或“偶”),函数f (x )=22x+1+1的对称中心为________. 答案 (1)B (2)奇 (0,2)解析 (1)选项B 中,函数y =lg|x |的定义域为{x |x ≠0}且lg|-x |=lg|x |,所以函数y =lg|x |是偶函数.(2)易知函数g (x )=2x-12x +1为奇函数,图象关于原点对称,又f (x )=22x +1+1=-g (x )+2,所以函数f (x )的对称中心为(0,2). 题型二 函数的周期性例2 (1)(2016·绍兴模拟)已知f (x )是定义在R 上的偶函数,g (x )是定义在R 上的奇函数,且g (x )=f (x -1),则f (2 017)+f (2 019)的值为( ) A .-1 B .1 C .0 D .无法计算(2)已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f x,当2≤x ≤3时,f (x )=x ,则f (105.5)=______. 答案 (1)C (2)2.5解析 (1)由题意,得g (-x )=f (-x -1),又∵f (x )是定义在R 上的偶函数,g (x )是定义在R 上的奇函数, ∴g (-x )=-g (x ),f (-x )=f (x ), ∴f (x -1)=-f (x +1),∴f (x )=-f (x +2),∴f (x )=f (x +4), ∴f (x )的周期为4,∴f (2 017)=f (1),f (2 019)=f (3)=f (-1), 又∵f (1)=f (-1)=g (0)=0, ∴f (2 017)+f (2 019)=0.(2)由已知,可得f (x +4)=f [(x +2)+2] =-1fx +=-1-1f x=f (x ).故函数的周期为4.∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5). ∵2≤2.5≤3,由题意,得f (2.5)=2.5. ∴f (105.5)=2.5. 引申探究例2(2)中,若将f (x +2)=-1f x改为f (x +2)=-f (x ),其他条件不变,则f (105.5)=_____.答案 2.5解 f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ), ∴函数的周期为4(下同例题).思维升华 函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值.定义在R 上的函数f (x )满足f (x +6)=f (x ),当-3≤x <-1时,f (x )=-(x+2)2;当-1≤x <3时,f (x )=x .则f (1)+f (2)+f (3)+…+f (2 018)=________. 答案 339解析 ∵f (x +6)=f (x ),∴T =6. ∵当-3≤x <-1时,f (x )=-(x +2)2; 当-1≤x <3时,f (x )=x ,∴f (1)=1,f (2)=2,f (3)=f (-3)=-1,f (4)=f (-2)=0,f (5)=f (-1)=-1, f (6)=f (0)=0,∴f (1)+f (2)+…+f (6)=1,∴f (1)+f (2)+f (3)+…+f (2 015)+f (2 016) =1×2 0166=336.又f (2 017)=f (1)=1,f (2 018)=f (2)=2, ∴f (1)+f (2)+f (3)+…+f (2 018)=339. 题型三 函数性质的综合应用 命题点1 解不等式问题例3 (1)(2017·温州模拟)已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f (13)的x 的取值范围是( )A .(13,23)B .[13,23)C .(12,23)D .[12,23)(2)已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为( ) A .(-1,4) B .(-2,0)C .(-1,0)D .(-1,2) 答案 (1)A (2)A解析 (1)因为f (x )是偶函数,所以其图象关于y 轴对称, 又f (x )在[0,+∞)上单调递增,f (2x -1)<f (13),所以|2x -1|<13,所以13<x <23.(2)∵f (x )是定义在R 上的周期为3的偶函数, ∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1,∴2a -3a +1<1,即a -4a +1<0,解得-1<a <4,故选A. 命题点2 求参数问题例4 (1)(2016·北京西城区模拟)函数f (x )=lg(a +21+x )为奇函数,则实数a =________.(2)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝ ⎛⎭⎪⎫12 =f ⎝ ⎛⎭⎪⎫32,则a +3b 的值为________.答案 (1)-1 (2)-10解析 (1)根据题意得,使得函数有意义的条件为a +21+x>0且1+x ≠0,由奇函数的性质可得f (0)=0.所以lg(a +2)=0,即a =-1,经检验a =-1满足函数的定义域. (2)因为f (x )是定义在R 上且周期为2的函数,所以f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12且f (-1)=f (1), 故f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫-12, 从而12b +212+1=-12a +1,即3a +2b =-2.①由f (-1)=f (1),得-a +1=b +22,即b =-2a .②由①②,得a =2,b =-4,从而a +3b =-10.思维升华 (1)关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题. (2)掌握以下两个结论,会给解题带来方便. ①f (x )为偶函数⇔f (x )=f (|x |); ②若奇函数在x =0处有意义,则f (0)=0.(1)若f (x )=ln(e 3x+1)+ax 是偶函数,则a =________.(2)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11) 答案 (1)-32(2)D解析 (1)函数f (x )=ln(e 3x+1)+ax 是偶函数,故f (-x )=f (x ),即ln(e-3x+1)-ax =ln(e 3x+1)+ax ,化简得ln 1+e 3xe 3x +e 6x =2ax =ln e 2ax ,即1+e 3xe 3x +e 6x =e 2ax ,整理得e 3x +1=e 2ax +3x (e 3x+1),所以2ax +3x =0,解得a =-32.(2)因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数且满足f (x -4)=-f (x ), 得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数, 所以f (x )在区间[-2,2]上是增函数, 所以f (-1)<f (0)<f (1). 所以f (-25)<f (80)<f (11).1.抽象函数问题考点分析 抽象函数问题在高考中也时常遇到,常常涉及求函数的定义域,由函数的周期性求函数值或判断函数的奇偶性等.一般以选择题或填空题来呈现,有时在解答题中也有所体现.此类题目较为抽象,易失分,应引起足够重视. 一、抽象函数的定义域典例1 已知函数y =f (x )的定义域是[0,8],则函数g (x )=f x 2-2-log 2x +的定义域为________.解析 要使函数有意义, 需使⎩⎪⎨⎪⎧0≤x 2-1≤8,x +1>0,2-log 2x +,即⎩⎪⎨⎪⎧1≤x 2≤9,x >-1,x ≠3,解得1≤x <3,所以函数g (x )的定义域为[1,3). 答案 [1,3)二、抽象函数的函数值典例2 若定义在实数集R 上的偶函数f (x )满足f (x )>0,f (x +2)=1f x,对任意x ∈R恒成立,则f (2 019)等于( ) A .4 B .3 C .2 D .1 解析 因为f (x )>0,f (x +2)=1f x , 所以f (x +4)=f [(x +2)+2]=1fx +=11f x=f (x ),即函数f (x )的周期是4,所以f (2 019)=f (505×4-1)=f (-1). 因为函数f (x )为偶函数, 所以f (2 019)=f (-1)=f (1). 当x =-1时,f (-1+2)=1f-,得f (1)=1f.即f (1)=1,所以f (2 019)=f (1)=1. 答案 D三、抽象函数的单调性与不等式典例3 设函数f (x )是定义在(0,+∞)上的增函数,且满足f (xy )=f (x )+f (y ).若f (3)=1,且f (a )>f (a -1)+2,求实数a 的取值范围. 规范解答解 因为f (xy )=f (x )+f (y ),且f (3)=1, 所以2=2f (3)=f (3)+f (3)=f (9).又f (a )>f (a -1)+2,所以f (a )>f (a -1)+f (9). 再由f (xy )=f (x )+f (y ),可知f (a )>f [9(a -1)], 因为f (x )是定义在(0,+∞)上的增函数,从而有⎩⎪⎨⎪⎧a >0,a -,aa -,解得1<a <98.故所求实数a 的取值范围是(1,98).1.(2016·嘉兴高三上学期期末)下列函数中,既是奇函数又在区间(0,+∞)上为增函数的是( )A .y =ln xB .y =x 3C .y =x 2D .y =sin x 答案 B2.已知f (x )=ax 3+b 3x +4(a ,b ∈R ),f [lg(log 32)]=1,则f [lg(log 23)]的值为( ) A .-1 B .3 C .7 D .8 答案 C解析 设g (x )=ax 3+b 3x ,则g (x )为奇函数, 因为lg(log 32)=lg(1log 23)=-lg(log 23),所以f [lg(log 32)]=g [lg(log 32)]+4=1,g [lg(log 32)]=-3,所以f [lg(log 23)]=g [lg(log 23)]+4=g [-lg(log 32)]+4=-g [lg(log 32)]+4=3+4=7,故选C.3.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(-2,0)时,f (x )=2x 2,则f (2 019)等于( )A .-2B .2C .-98D .98 答案 B解析 由f (x +4)=f (x )知,f (x )是周期为4的周期函数,f (2 019)=f (504×4+3)=f (3), 又f (x +4)=f (x ),∴f (3)=f (-1),由-1∈(-2,0)得f (-1)=2, ∴f (2 019)=2.4.已知f (x )=lg(21-x +a )为奇函数,则使f (x )<0的x 的取值范围是( )A .(-∞,0)B .(-1,0)C .(0,1)D .(-∞,0)∪(1,+∞) 答案 B解析 由f (x )+f (-x )=0,即lg(21-x +a )+lg(21+x +a )=lg+a 2-a 2x21-x2=lg 1=0,可得a =-1,所以f (x )=lg 1+x 1-x ,解0<1+x1-x<1,可得-1<x <0.5.已知f (x )是定义在R 上的奇函数,且当x >0时,f (x )=⎩⎪⎨⎪⎧cos π6x<x ,log 2x x,则f (f (-16))等于( )A .-12B .-32 C.12 D.32答案 C解析 由题意f (-16)=-f (16)=-log 216=-4, 故f (f (-16))=f (-4)=-f (4)=-cos 4π6=12.*6.(2016·天津)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-∞,12B.⎝ ⎛⎭⎪⎫-∞,12∪⎝ ⎛⎭⎪⎫32,+∞ C.⎝ ⎛⎭⎪⎫12,32D.⎝ ⎛⎭⎪⎫32,+∞答案 C解析 因为f (x )是定义在R 上的偶函数且在区间(-∞,0)上单调递增,所以f (-x )=f (x )且f (x )在(0,+∞)上单调递减.由f (2|a -1|)>f (-2),f (-2)=f (2)可得2|a -1|<2,即|a -1|<12,所以12<a <32.7.(2016·宁波高三上学期期末)若函数f (x )=⎩⎪⎨⎪⎧x 2+2x +1,x >0,a ,x =0,g x ,x <0为奇函数,则a =________,f (g (-2))=________.答案 0 -25解析 ∵f (x )为奇函数,∴f (0)=0,∴a =0,又g (-2)=f (-1)=-f (1)=-4,∴f (g (-2))=f (-4)=-f (4)=-25.8.(2016·金华模拟)设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1+x ),则f (-52)=________. 答案 -32解析 因为f (x )是周期为2的奇函数,所以f (-52)=-f (52)=-f (12)=-[2×12(1+12)]=-32. 9.函数f (x )在R 上为奇函数,且当x >0时,f (x )=x +1,则当x <0时,f (x )=________. 答案 --x -1解析 ∵f (x )为奇函数,当x >0时,f (x )=x +1,∴当x <0时,-x >0,f (-x )=-x +1=-f (x ),即x <0时,f (x )=-(-x +1)=--x -1.10.(2016·余姚模拟)若函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上是单调递增函数.如果实数t 满足f (ln t )+f (ln 1t)≤2f (1),那么t 的取值范围是________. 答案 [1e,e] 解析 由于函数f (x )是定义在R 上的偶函数,所以f (ln t )=f (ln 1t), 由f (ln t )+f (ln 1t)≤2f (1), 得f (ln t )≤f (1).又函数f (x )在区间[0,+∞)上是单调递增函数,所以|ln t |≤1,即-1≤ln t ≤1,故1e≤t ≤e. 11.已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ).于是x <0时,f (x )=x 2+mx =x 2+2x ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象知⎩⎪⎨⎪⎧ a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].12.设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1)求f (π)的值;(2)当-4≤x ≤4时,求f (x )的图象与x 轴所围成图形的面积.解 (1)由f (x +2)=-f (x ),得f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ),∴f (x )是以4为周期的周期函数.∴f (π)=f (-1×4+π)=f (π-4)=-f (4-π)=-(4-π)=π-4.(2)由f (x )是奇函数与f (x +2)=-f (x ),得f [(x -1)+2]=-f (x -1)=f [-(x -1)],即f (1+x )=f (1-x ).从而可知函数y =f (x )的图象关于直线x =1对称.又当0≤x ≤1时,f (x )=x ,且f (x )的图象关于原点成中心对称,则f (x )的图象如图所示.设当-4≤x ≤4时,f (x )的图象与x 轴围成的图形面积为S ,则S =4S △OAB =4×(12×2×1)=4. *13.函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2,且f (x )在(0,+∞)上是增函数,求x 的取值范围. 解 (1)∵对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.(2)f (x )为偶函数.证明:令x 1=x 2=-1,则f (1)=f (-1)+f (-1),∴f (-1)=12f (1)=0. 令x 1=-1,x 2=x ,则f (-x )=f (-1)+f (x ),∴f (-x )=f (x ),∴f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2,由(2)知,f (x )是偶函数,∴f (x -1)<2⇔f (|x -1|)<f (16).又f (x )在(0,+∞)上是增函数,∴0<|x -1|<16,解得-15<x <17且x ≠1,∴x 的取值范围是{x |-15<x <17且x ≠1}.。
高考数学大一轮复习 第二章 函数概念与基本初等函数 4 第4讲 二次函数与幂函数课件 理
12/11/2021
第四页,共四十九页。
2.二次函数
(1)二次函数解析式的三种形式 ①一般式:f(x)=_____ax_2_+__bx_+__c_(a_≠__0_)_____. ②顶点式:f(x)=_____a_(x_-__m_)_2+__n_(a_≠__0_)____. ③零点式:f(x)=____a_(x_-__x_1)_(x_-__x_2)_(a_≠__0_)___.
12/11/2021
第二十三页,共四十九页。
法二:(利用顶点式) 设 f(x)=a(x-m)2+n(a≠0). 因为 f(2)=f(-1), 所以抛物线的对称轴为 x=2+(2-1)=12. 所以 m=12.又根据题意函数有最大值 8,所以 n=8, 所以 f(x)=ax-122+8. 因为 f(2)=-1,所以 a2-122+8=-1, 解得 a=-4,所以 f(x)=-4x-122+8=-4x2+4x+7.
调递减,则 a 的取值范围是( )
A.a≥3
B.a≤3
C.a<-3
D.a≤-3
解析:选 D.函数 f(x)=x2+4ax 的图象是开口向上的抛物线,其 对称轴是 x=-2a,由函数在区间(-∞,6)内单调递减可知, 区间(-∞,6)应在直线 x=-2a 的左侧, 所以-2a≥6,解得 a≤-3,故选 D.
4a .( )
12/11/2021
第十页,共四十九页。
(5)二次函数 y=ax2+bx+c,x∈R 不可能是偶函数.( ) (6)在 y=ax2+bx+c(a≠0)中,a 决定了图象的开口方向和在同 一直角坐标系中的开口大小.( ) 答案:(1)× (2)√ (3)× (4)× (5)× (6)√
调 在____-__2_ba_,__+__∞_____上单 性
【配套课件】《创新设计·高考一轮总复习》数学 浙江专用(理)第二篇 函数与导数 第4讲
【2014年高考浙江会这样考】 1 .常以集合为载体,考查二次方程的解集、有关二次函数 的定义域、值域等. 2 .以函数性质为背景,考查二次函数与幂函数的图象的应
用.
考点梳理
1.幂函数
(1)幂函数的定义 一般地,形如 y=xα 的函数称为幂函数,其中 x 是自 变量,α为常数. (2)常见的5种幂函数的图象
(1)求 f(x),g(x)的解析式; (2)当 x 为何值时,①f(x)>g(x);②f(x)=g(x);③f(x)<g(x).
[审题视点] 先求幂函数的解析式,然后利用g(x),f(x)的图 象,求x的取值范围.
解 (1)设 f(x)=xα,∵其图象过点( 2,2),故 2=( 2)α, 解得 α=2,∴f(x)=x2. 设 g(x)=x
考点自测 1 .已知函数 f(x) = 4x2 - mx + 5 在区间 [ - 2 ,+ ∞ ) 上是增函
数,则f(1)的范围是(
A.f(1)≥25 C.f(1)≤25
).
B.f(1)=25 D.f(1)>25
m 解析 对称轴 x= 8 ≤-2, ∴m≤-16, ∴f(1)=9-m≥25.
答案 A
答案 D
4. (2012·福建)已知关于x 的不等式 x2 -ax+ 2a>0在R上恒成 立,则实数a的取值范围是________.
解析
不等式x2-ax+2a>0在R上恒成立,即Δ=(-a)2-
8a<0,∴0<a<8,即a的取值范围是(0,8). 答案 (0,8)
5.二次函数y=f(x)满足f(3+x)=f(3-x)(x∈R)且f(x)=0有两 个实根x1,x2,则x1+x2=________.
2018版高考数学文理通用浙江专用一轮复习练习 第二章
基础巩固题组 (建议用时:30分钟)一、选择题1.(2017·绍兴质检)函数f (x )=log 2(x 2+2x -3)的定义域是( ) A.[-3,1]B.(-3,1)C.(-∞,-3]∪[1,+∞)D.(-∞,-3)∪(1,+∞)解析 使函数f (x )有意义需满足x 2+2x -3>0,解得x >1或x <-3,所以f (x )的定义域为(-∞,-3)∪(1,+∞). 答案 D2.(2017·衡水中学月考)设f ,g 都是由A 到A 的映射,其对应法则如下:映射f 的对应法则则f [g (1)]的值为( ) A.1B.2C.3D.4解析 由映射g 的对应法则,可知g (1)=4, 由映射f 的对应法则,知f (4)=1,故f [g (1)]=1. 答案 A3.已知f (x )是一次函数,且f [f (x )]=x +2,则f (x )=( )A.x +1B.2x -1C.-x +1D.x +1或-x -1解析 设f (x )=kx +b (k ≠0),又f [f (x )]=x +2, 得k (kx +b )+b =x +2,即k 2x +kb +b =x +2. ∴k 2=1,且kb +b =2,解得k =b =1. 答案 A4.(2017·湖州一模)f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫13x (x ≤0),log 3x (x >0),则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=()A.-2B.-3C.9D.-9解析 ∵f ⎝ ⎛⎭⎪⎫19=log 319=-2, ∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=f (-2)=⎝ ⎛⎭⎪⎫13-2=9. 答案 C5.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( ) A.y =⎣⎢⎡⎦⎥⎤x 10B.y =⎣⎢⎡⎦⎥⎤x +310 C.y =⎣⎢⎡⎦⎥⎤x +410D.y =⎣⎢⎡⎦⎥⎤x +510 解析 取特殊值法,若x =56,则y =5,排除C ,D ;若x =57,则y =6,排除A ,选B. 答案 B6.(2016·全国Ⅱ卷)下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( ) A.y =x B.y =lg x C.y =2xD.y =1x解析 函数y =10lg x 的定义域、值域均为(0,+∞),而y =x ,y =2x 的定义域均为R ,排除A ,C ;y =lg x 的值域为R ,排除B ,故选D. 答案 D7.(2016·江苏卷)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,⎪⎪⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R .若f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,则f (5a )的值是( )A.12 B.14 C.-25D.18解析 由题意f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12=-12+a ,f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪25-12=110, ∴-12+a =110,则a =35,故f (5a )=f (3)=f (-1)=-1+35=-25. 答案 C8.(2017·铜陵一模)设P (x 0,y 0)是函数f (x )图象上任意一点,且y 20≥x 20,则f (x )的解析式可以是( ) A.f (x )=x -1x B.f (x )=e x -1 C.f (x )=x +4xD.f (x )=tan x解析 对于A 项,当x =1,f (1)=0,此时02≥12不成立.对于B 项,取x =-1,f (-1)=1e -1,此时⎝ ⎛⎭⎪⎫1e -12≥(-1)2不成立.在D 项中,f ⎝ ⎛⎭⎪⎫54π=tan 54π=1,此时12≥⎝ ⎛⎭⎪⎫54π2不成立.∴A ,B ,D 均不正确.选C.事实上,在C 项中,对∀x 0∈R , y 20=⎝ ⎛⎭⎪⎫x 0+4x 02有y 20-x 20=16x20+8>0,有y 20≥x 20成立. 答案 C 二、填空题9.(2016·江苏卷)函数y =3-2x -x 2的定义域是________. 解析 要使函数有意义,则3-2x -x 2≥0, ∴x 2+2x -3≤0,解之得-3≤x ≤1. 答案 [-3,1]10.(2017·湖州调研)已知f (x )=⎩⎨⎧x -3,x ≥9,f (f (x +4)),x <9,则f (10)=________;f (7)=________.解析 f (10)=10-3=7;f (7)=f (f (7+4))=f (f (11))=f (11-3)=f (8)=f (f (8+4))=f (f (12))=f (12-3)=f (9)=9-3=6. 答案 7 611.已知函数f (x )满足f ⎝ ⎛⎭⎪⎫2x +|x |=log 2x |x |,则f (x )的解析式是________.解析 根据题意知x >0,所以f ⎝ ⎛⎭⎪⎫1x =log 2x ,则f (x )=log 21x =-log 2x .答案 f (x )=-log 2x12.(2017·温州调研)已知函数f (x )=⎩⎨⎧log 2x (x >0),x 2+x (x ≤0),则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=________,方程f (x )=2的解为________.解析 ∵f (x )=⎩⎨⎧log 2x (x >0),x 2+x (x ≤0),f ⎝ ⎛⎭⎪⎫12=log 212=-1,f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f (-1)=(-1)2+(-1)=0.当x >0时,由log 2x =2得x =4,当x ≤0时,由x 2+x =2得x =-2(x =+1舍去).答案 0 -2或413.已知函数f (x )=⎩⎨⎧x 2+2x ,x <0,x 2-2x ,x ≥0.若f (-a )+f (a )≤0,则实数a 的取值范围是________.解析 依题意可知⎩⎨⎧a ≥0,(-a )2+2(-a )+a 2-2a ≤0或 ⎩⎨⎧a <0,(-a )2-2(-a )+a 2+2a ≤0,解得a ∈[-2,2]. 答案 [-2,2]能力提升题组 (建议用时:15分钟)14.(2015·湖北卷)设x ∈R ,定义符号函数sgn x =⎩⎨⎧1,x >0,0,x =0,-1,x <0.则()A.|x |=x |sgn x |B.|x |=x sgn|x |C.|x |=|x |sgn xD.|x |=x sgn x解析 当x >0时,|x |=x ,sgn x =1,则|x |=x sgn x ; 当x <0时,|x |=-x ,sgn x =-1,则|x |=x sgn x ;当x =0时,|x |=x =0,sgn x =0,则|x |=x sgn x . 答案 D15.设函数f (x )=⎩⎨⎧3x -1,x <1,2x ,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤23,1B.[0,1]C.⎣⎢⎡⎭⎪⎫23,+∞D.[1,+∞)解析 由f (f (a ))=2f (a )得,f (a )≥1. 当a <1时,有3a -1≥1, ∴a ≥23,∴23≤a <1.当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1. 综上,a ≥23. 答案 C16.函数f (x )=ln ⎝ ⎛⎭⎪⎫1+1x +1-x 2的定义域为________.解析要使函数f (x )有意义,则⎩⎪⎨⎪⎧1+1x >0,x ≠0,1-x 2≥0⇒⎩⎨⎧x <-1或x >0,x ≠0,-1≤x ≤1⇒0<x ≤1.∴f (x )的定义域为(0,1]. 答案 (0,1]17.(2015·浙江卷)已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x <1,则f (f (-3))=________,f (x )的最小值是________.解析 ∵f (-3)=lg[(-3)2+1]=lg 10=1, ∴f (f (-3))=f (1)=0,当x ≥1时,f (x )=x +2x -3≥22-3,当且仅当x =2时,取等号,此时f (x )min =22-3<0;当x <1时,f (x )=lg(x 2+1)≥lg 1=0,当且仅当x =0时,取等号,此时f (x )min =0.∴f (x )的最小值为22-3. 答案 0 22-318.(2017·台州模拟)已知函数f (x )=⎩⎨⎧x 2-1,x ≤0,x -1,x >0,g (x )=2x -1,则f (g (2))=________,f [g (x )]的值域为________.解析 g (2)=22-1=3,∴f (g (2))=f (3)=2,g (x )的值域为(-1,+∞),∴若-1<g (x )≤0;f [g (x )]=[g (x )]2-1∈[-1,0);若g (x )>0;f [g (x )]=g (x )-1∈(-1,+∞),∴f [g (x )]的值域是[-1,+∞). 答案 2 [-1,+∞)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)二次函数解析式的三种形式:
ax2+bx+c(a≠0) 一般式:f(x)=________________. (m,n) 顶点式:f(x)=a(x-m)2+n(a≠0),顶点坐标为_______. 零点式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2为f(x)的零点.
(2)二次函数的图象和性质 解析式 f(x)=ax2+bx+c(a>0) f(x)=ax2+bx+c(a<0)
考点二 二次函数的图象与性质 【例2】 (2017· 湖州调研)已知函数f(x)=x2+2ax+3,x∈[-4,6]. (1)当a=-2时,求f(x)的最值;
(2) 求实数 a 的取值范围,使 y = f(x) 在区间 [ - 4 , 6] 上是单调函
数; (3)当a=-1时,求f(|x|)的单调区间. 解 (1)当a=-2时,f(x)=x2-4x+3=(x-2)2-1, 由于x∈[-4,6],∴f(x)在[-4,2]上单调递减, 在[2,6]上单调递增,∴f(x)的最小值是f(2)=-1,
又f(-4)=35,f(6)=15,故f(x)的最大值是35.
(2)由于函数 f(x)的图象开口向上,对称轴是 x=-a, 所以要使 f(x)在[-4,6]上是单调函数,应有-a≤-4 或-a≥6, 即 a≤-6 或 a≥4,故 a 的取值范围是(-∞,-6]∪[4,+∞). (3)当 a=-1 时,
1
答案 (1)C (2)D
规律方法
(1)可以借助幂函数的图象理解函数的对称性、
单调性;
(2)α的正负:当α>0时,图象过原点和(1,1),在第一象限 的图象上升;当α<0时,图象不过原点,过(1,1),在第一 象限的图象下降. (3)在比较幂值的大小时,必须结合幂值的特点,选择适当
的函数,借助其单调性进行比较,准确掌握各个幂函数的
命题角度二 二次函数的零点问题
【例 3-2】(2016· 全国Ⅱ卷)已知函数 f(x)(x∈R)满足 f(x)=f(2-x), 若函数 y=|x2-2x-3|与 y=f(x)图象的交点为(x1, y1), ( x2 , y2 ) , „, (xm,ym),则 xi=(
【训练3 】 (2016· 九江模拟 ) 已知f(x)= x2+ 2(a- 2)x+ 4 ,如 果对x∈[-3,1],f(x)>0恒成立,则实数a的取值范围为 ________.
解析 因为f(x)=x2+2(a-2)x+4,
对称轴x=-(a-2), 对x∈[-3,1],f(x)>0恒成立,
所以讨论对称轴与区间[-3,1]的位置关系得:
规律方法
(1) 对于函数 y = ax2 +bx + c ,若是二次函数,就
隐含着 a≠0 ,当题目未说明是二次函数时,就要分 a = 0 和 a≠0两种情况讨论.
(2) 由不等式恒成立求参数的取值范围,常用分离参数法,
转 化 为 求 函 数 最 值 问 题 , 其 依 据 是 a≥f(x)⇔a ≥ f(x)max , a≤f(x)⇔a≤f(x)min.
解析
2 m -3m+3=1, 由 2 解得 m -m-2≤0,
m=1 或 2.
经检验 m=1 或 2 都适合.
答案 1或2
6.若函数f(x)=x2+2(a-1)x+2在区间(-∞,3]上是减函数, 则实数a的取值范围是________.
解析 二次函数f(x)图象的对称轴是x=1-a,由题意知1-
见的题型中这三者有两定一不定,要注意分类讨论;
(2)要注意数形结合思想的应用,尤其是给定区间上的二次函 数最值问题,先“定性”(作草图),再“定量”(看图求解), 事半功倍.
【训练2】 (1)设abc>0,二次函数f(x)=ax2+bx+c的图象可能
是( )
(2)(2017· 武汉模拟 ) 若函数 f(x) = (x + a)(bx + 2a)( 常数 a , b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解 析式f(x)=________.
- A.-∞,
5-1 2
B. D.
5-1 ,+∞ 2 5-1 ,2 2
C.(-1,2)
解析
(1)由幂函数的定义知 k=1.又 f
1 = 2
1α 2 2 2 ,所以2 = 2 ,
1 3 解得 α=2,从而 k+α=2. (2)因为函数 y=x2的定义域为[0,+∞),且在定义域内为增函数,所 1 m ≥ - , 2 2m+1≥0, 2 - 5-1 5-1 以不等式等价于m +m-1≥0, 解得 或m≥ , 2m+1>m2+m-1. m≤ 2 2 -1<m<2, 5-1 即 2 ≤m<2.
2 2 x + 2 x + 3 =( x + 1 ) +2,x≤0, 2 f(|x|)=x -2|x|+3= 2 2 x -2x+3=(x-1) +2,x>0,
其图象如图所示,
又∵x∈[- 4 ,6],∴ f(|x|) 在区间 [- 4,-1) 和 [0 , 1) 上为减 函数,在区间[-1,0)和[1,6]上为增函数. 规律方法 解决二次函数图象与性质问题时要注意: (1) 抛物线的开口、对称轴位置、定义区间三者相互制约,常
1 1 ∴α=2,因此 f(x)=x2,根据图象的特征,C 正确.
(2)∵幂函数 f(x)=(n +2n-2)x
2 n +2n-2=1, ∴ 2 ∴n=1, n -3n<0,
2
n
2
-3n
在(0,+∞)上是减函数,
又 n=1 时,f(x)=x-2 的图象关于 y 轴对称,故 n=1. 答案 (1)C (2)B
答案 A
3.已知f(x)=x2+px+q满足f(1)=f(2)=0,则f(-1)的值是( A.5 C.6 B.-5 D.-6
)
解析
由f(1)=f(2)=0知方程x2+px+q=0的两根分别为1,
2,则p=-3,q=2,∴f(x)=x2-3x+2,∴f(-1)=6. 答案 C
4.(2017· 杭州测试)若函数 f(x)是幂函数,则 f(1)=________,若满 足 f(4)=8f(2),则
(2)由题意知,x2+2x+1>x+k 在区间[-3,-1]上恒成立,即 k<x2 +x+1 在区间[-3,-1]上恒成立,令 g(x)=x2+x+1,x∈[-3, -1],由
12 3 g(x)=x+2 + 知 4
g(x)在区间[-3,-1]上是减函数,
则 g(x)min=g(-1)=1,所以 k<1,故 k 的取值范围是(-∞,1).
减; 单调性
b - ,+∞ 2a 上单调递 在____________
递增;
b 在-2a,+∞上单调递
增a对称
诊断自测
1.判断正误(在括号内打“√”或“×”)
(1)函数 y=2x3是幂函数.(
1
) ) )
(2)当 n>0 时,幂函数 y=xn 在(0,+∞)上是增函数.( (3)二次函数 y=ax2+bx+c(x∈R)不可能是偶函数.(
(4) 二 次 函 数 y = ax2 + bx + c(x∈[a , b]) 的 最 值 一 定 是 4ac-b2 4a .( )
解析 (1)由于幂函数的解析式为 f(x)=x , 故 y=2x3不是幂函数, (1)错. (3)由于当 b=0 时,y=ax2+bx+c=ax2+c 为偶函数,故(3)错. 4ac-b b b (4)对称轴 x=-2a, 当-2a小于 a 或大于 b 时, 最值不是 4a , 故(4)错.
答案 (1)D (2)-2x2+4
考点三 二次函数的应用(多维探究)
命题角度一 二次函数的恒成立问题
【例3-1】 已知二次函数f(x)=ax2+bx+1(a,b∈R),x∈R. (1)若函数f(x)的最小值为f(-1)=0,求f(x)的解析式,并写出单 调区间; (2)在(1)的条件下,f(x)>x+k在区间[-3,-1]上恒成立,试求
解析
(1)由 A,C,D 知,f(0)=c<0,从而由 abc>0,所以 ab<0,
b 所以对称轴 x=-2a>0,知 A,C 错误,D 满足要求;由 B 知 f(0) b =c>0,所以 ab>0,所以 x=-2a<0,B 错误. (2)由 f(x)是偶函数知 f(x)图象关于 y 轴对称, ∴b=-2,∴f(x)=-2x2+2a2,又 f(x)的值域为(-∞,4], ∴2a2=4,故 f(x)=-2x2+4.
图象
定义域
(-∞,+∞)
(-∞,+∞)
值域
4ac-b2 ,+∞ 4 a ______________
b 在-∞,-2a上单调递
4ac-b2 -∞, 4 a _______________
b -∞,- 2a 上单调 在_____________
第4讲
幂函数与二次函数
最新考纲
1
1.了解幂函数的概念;掌握幂函数 y=x,y=x2,y= 1 x 的图象和性质;2.理解二次函数的图象和性质,
x
3
,y=x2,y=
能用二次函数、方程、不等式之间的关系解决简单问题.
知识梳理
1.幂函数 (1)幂函数的定义 y=xα 的函数称为幂函数,其中x是自变量, 一般地,形如_______ α为常数. (2)常见的5种幂函数的图象
图象和性质是解题的关键.
【训练1】 (1)幂函数y=f(x)的图象过点(4,2),则幂函数y=f(x)
的图象是(
)
(2)已知幂函数f(x)=(n2+2n-2)xn2-3n(n∈Z)的图象关于y轴 对称,且在(0,+∞)上是减函数,则n的值为( A.-3 B.1 )