2017年中考数学综合复习与测试第4节一次方程(组)第09课时一次方程组专题课件北师大版

合集下载

中考数学方程与不等式(组)复习专题训练精选试题及答案

中考数学方程与不等式(组)复习专题训练精选试题及答案

一次方程及方程组专题训练一、填空题:(每题 3 分,共 36 分) 1、方程 2x -3=1 的解是____。

2、已知 2x -y =1,用含 x 的代数式表示 y =____。

3、“某数与 6 的和的一半等于 12”,设某数为 x ,则可列方程______。

4、方程 2x +y =5 的所有正整数解为______。

5、若x =1y =2是方程 3ax -2y =2 的解,则 a =____。

6、当 x =____时,代数式 3x +2 与 6-5x 的值相等。

7、试写出一个解为 x =-18、方程组 x +y =32x -3y =-4的解是______。

9、3 名同学参加乒乓球赛,每两名同学之间赛一场,一共需要____场比赛,则 5 名同学一共需要____比赛。

10、如图,是一个正方形算法图,□里缺的数是____,并总结出规律:________________。

11长为 12cm ,那么小矩形的周长为____cm 。

12、一轮船从重庆到上海要 5 昼夜,而从上海到重庆要 7 昼夜,那么一个竹排从重庆顺流漂到上海要___昼夜。

二、选择题:(每题 4 分,共 24 分)1、下列方程中,属于一元一次方程的是( )A 、x =y +1B 、1x=1 C 、x 2=x -1 D 、x =12、已知 3-x +2y =0,则 2x -4y -3 的值为( )A 、-3B 、3C 、1D 、03、用“加减法”将方程组2x -3y =92x +4y =-1中的 x 消去后得到的方程是( )A 、y =8B 、7y =10C 、-7y =8D 、-7y =104、某商品因换季准备打折出售,若按定价的七五折出售将赔 25 元,若按定价的九折出售将赚20 元,则这种商品的定价为( )A 、280 元B 、300 元C 、320 元D 、200 元5、小辉只带了 2 元和 5 元两种面额的人民币,他买了一件物品只需付 27 元,如果不麻烦售货员找零钱,他有几种不同的付款方法( )A 、一种B 、两种C 、三种D 、四种 6、为了防沙治沙,政府决定投入资金,鼓励农民植树种草,经测算,植树 1 亩需资金 200 元,种草 1 亩需资金 100 元,某组农民计划在一年内完成 2400 亩绿化任务,在实施中由于实际情况所限,植树完成 了计划的 90%,但种草超额完成了计划的 20%,恰好完成了计划的绿化任务,那么计划植树、种草各多少亩?若设该组农民计划植树 x 亩,种草 y 亩,则可列方程组为()A、x+y=2400x-90%+y (1-20%)=2400B、x+y=2400(1-90%) x+(1+20%) y=2400C、x+y=2400(1+90%) x+(1+20%) y=2400D、x+y=240090%x+(1+20%) y=2400三、解下列方程(组):(每题 6 分,共 36 分)1、12x-1=13(x-2) 2、x-30.2-x+40.1=5 3、72[53(65x-3)-1]=10x 4、3x+y=25x-y=65、x-3y=52x+5y=-126、x+23+y-12=3x+23+1-y2=1四、解答题:(每题 8 分,共 32 分)1、当 x 为何值时,代数式x+12的值比5-x3的值大 1。

2017年中考数学一次方程专题复习学案

2017年中考数学一次方程专题复习学案

2017年中考数学一次方程专题复习学案2017年中考数学专题练习《一次方程》【知识归纳】1.等式及其性质⑴等式:用等号“=”表示关系的式子叫等式⑵性质:①如果,那么;②如果,那么;如果,那么2 方程、一元一次方程的概念⑴方程:含有未知数的叫做方程;使方程左右两边值相等的,叫做方程的解;求方程解的叫做解方程方程的解与解方程不同⑵一元一次方程:在整式方程中,只含有个未知数,并且未知数的次数是,系数不等于0的方程叫做一元一次方程;它的一般形式为3 解一元一次方程的步骤:①去;②去;③移;④合并;⑤系数化为14.二元一次方程:含有未知数(元)并且未知数的次数是的整式方程二元一次方程组:把具有相同未知数的两个合在一起,就组成了一个二元一次方程组6.二元一次方程的解:适合一个二元一次方程的未知数的值叫做这个二元一次方程的一个解,一个二元一次方程有个解7.二元一次方程组的解:二元一次方程组的两个方程的,叫做二元一次方程组的解8 解二元一次方程的方法:消元是解二元一次方程组的基本思路,方法有消元和消元法两种【基础检测】1.(2016广西南宁)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.08x﹣10=90 B.008x﹣10=90 .90﹣08x=10 D.x﹣08x﹣10=90 2.(2016海南3分)若代数式x+2的值为1,则x等于()A.1 B.﹣1 .3 D.﹣33(2016•湖北荆州)互联网”微商”经营已成为大众创业新途径,某微信平台上一商品标价为200元,按标价的五折销售,仍可获利20元,则这商品的进价为()A.120元B.100元.80元D.60元4(2016•内蒙古包头)若2(a+3)的值与4互为相反数,则a 的值为()A.﹣1 B.﹣.﹣D..(2016贵州毕节)已知关于x,的方程x2﹣n﹣2+4+n+1=6是二元一次方程,则,n的值为()A.=1,n=﹣1 B.=﹣1,n=1 .D.6 (2016•辽宁丹东•3分)二元一次方程组的解为()A.B..D.7 (2016•四川宜宾)宜宾市某化工厂,现有A种原料2千克,B种原料64千克,现用这些原料生产甲、乙两种产品共20.已知生产1甲种产品需要A种原料3千克,B种原料2千克;生产1乙种产品需要A种原料2千克,B种原料4千克,则生产方案的种数为()A.4 B..6 D.78 (2016•浙江省绍兴市)书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打七折.小丽在这次活动中,两次购书总共付款2294元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是元.9.(2016•黑龙江龙东)一服装的标价为300元,打八折销售后可获利60元,则该服装的成本价是元.10 (2016•江西)(1)解方程组:.11 (2016•四川宜宾)今年“五一”节,A、B两人到商场购物,A购3甲商品和2乙商品共支付16元,B购甲商品和3乙商品共支付2元,求一甲商品和一乙商品各售多少元.设甲商品售价x元/,乙商品售价元/,则可列出方程组.11 (2016•湖北武汉•8分)解方程:x+2=3(x+2) .12(2016•广西桂林)五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000送往灾区,已知每甲种物品的价格比每乙种物品的价格贵10元,用30元购买甲种物品的数恰好与用300元购买乙种物品的数相同(1)求甲、乙两种救灾物品每的价格各是多少元?(2)经调查,灾区对乙种物品数的需求量是甲种物品数的3倍,若该爱心组织按照此需求的比例购买这2000物品,需筹集资金多少元?【达标检测】一、选择题1.方程3x+2(1-x)=4的解是()Ax= Bx= x=2 Dx=12.若单项式与是同类项,则a,b的值分别为()A.a=3,b=1 B.a=﹣3,b=1 .a=3,b=﹣1 D.a=﹣3,b=﹣1 3.方程的解是()A.-1 B..1 D.24.为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地抽查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2%,在不吸烟者中患肺癌的比例是0%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为,根据题意,下面列出的方程组正确的是()A.B..D..(2016•贵州)已知关于x,的方程x2﹣n﹣2+4+n+1=6是二元一次方程,则,n的值为()A.=1,n=﹣1 B.=﹣1,n=1 .D.6.20位同学在植树节这天共种了2棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有人,根据题意,列方程组正确的是()A BD7.(2016•株洲)在解方程时,方程两边同时乘以6,去分母后,正确的是()A.2x﹣1+6x=3(3x+1)B.2(x﹣1)+6x=3(3x+1).2(x﹣1)+x=3(3x+1)D.(x﹣1)+x=3(x+1)8.(2016•南宁)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.08x﹣10=90 B.008x﹣10=90 .90﹣08x=10 D.x﹣08x﹣10=90 9.有加减法解方程时,最简捷的方法是()A.①×4﹣②×3,消去x B.①×4+②×3,消去x.②×2+①,消去D.②×2﹣①,消去10.(2016•聊城)在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.1 .69 D.72二、填空题11.某种商品每的标价为240元,按标价的八折销售时,每仍能获利20%,则这种商品每的进价为元.12.已知关于x的方程2x+a﹣=0的解是x=2,则a的值为.13.(2016•湖北荆门•3分)为了改善办学条,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑的台数比台式电脑的台数的还少台,则购置的笔记本电脑有台.14.服装店销售某款服装,一服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每的标价比进价多元.1.已知:则:x= 。

江苏省镇江句容市2017届中考数学一轮复习一次方程组及其应用学 精品

江苏省镇江句容市2017届中考数学一轮复习一次方程组及其应用学 精品

一次方程(组)及其应用【学习目标】1.进一步复习理解一次方程(组)的相关概念,并会解一次方程(组)。

2.能用一次方程(组)解决实际问题。

【重点难点】重点:解一次方程(组).难点:用一次方程(组)解决实际问题.【预习导航】 1.一元一次方程:只含有 个未知数,并且未知数的最高次数是 的整式方程。

2. 解一元一次方程的步骤:①去 ;②去 ;③移 ;④合并 ;⑤系数化为1。

3.二元一次方程:含有 未知数,并且未知数的最高次数是 的整式方程。

4. 二元一次方程组:由2个或2个以上的 组成的方程组叫二元一次方程组。

5. 解二元一次方程组的方法: 二元一次方程组 方程。

消元是解二元一次方程组的基本思想方法,方法有 消元法和 消元法两种。

练习1.方程358x +=的解是 . 方程组221x y x y +=⎧⎨-=⎩的解是 . 2.如果1x =-是方程234x m -=的根,则m 的值是 .3. 在方程y x 2153-=中,(1)用含x 的代数式表示为y = ;(2)写出方程所有正整数解 .4.已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -= ;5.三元一次方程组456x y y z z x +=⎧⎪+=⎨⎪+=⎩的解是 .6. 一件衣服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元.若设这件衣服的成本是x 元,根据题意,可得到的方程是 .7.某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,试求购买了甲种票和乙种票各多少张.【典例分析】消元例1.解方程(组)(1)21101136x x ++-=. (2){4519323a b a b +=--= (3) ⎪⎩⎪⎨⎧=-+-=+-=++1132322z y x z y x z y x例2.已知方程组15mx ny nx my -=⎧⎨+=⎩(1)(2),由于甲看错了方程①中的 m 得到方程组的解为⎩⎨⎧==32y x , 乙看错了方程②中的n 得到方程组的解为54x y =⎧⎨=⎩。

中考数学《一次方程(组)》总复习训练含答案解析

中考数学《一次方程(组)》总复习训练含答案解析

一次方程(组)一、选择题1.电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则与2个球体相等质量的正方体的个数为()A.5 B.4 C.3 D.22.若a=b﹣3,则b﹣a的值是()A.3 B.﹣3 C.0 D.63.为紧急安置100名地震灾民,需要同时搭建可容纳6人和4人的两种帐篷,则恰好能安置的搭建方案共有()A.8种 B.9种 C.16种D.17种4.方程2x+1=0的解是()A.B.C.2 D.﹣2二、填空题5.如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是g.6.某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,设这种服装的成本价为每件x元,则x满足的方程是.7.某商店一套秋装的进价为200元,按标价的80%销售可获利72元,则该服装的标价为元.8.如图,某商场正在热销北京奥运会的纪念品,小华买了一盒福娃和一枚奥运徽章,已知一盒福娃的价格比一枚奥运徽章的价格贵120元,则一盒福娃价格是元.9.某种服装按进价提高50%后标价,又以8折优惠卖出,结果仍获利15元,这种服装的进价为元.三、解答题10.解方程组:.11.解方程:.12.某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率.13.预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?14.某足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分.一个队踢14场球负5场共得19分,问这个队胜了几场?15.根据北京奥运票务网站公布的女子双人3米跳板跳水决赛的门票价格(如表),小明预定了B等级、C等级门票共7张,他发现这7张门票的费用恰好可以预订3张A等级门票.问小明预定了B等级、C等级门票各多少张?等级票价(元/张)A500B300C15016.四川汶川的特大地震灾害,牵动着全中国人民的心.某校发出为灾区捐款的倡议后,全校师生奉献爱心,踊跃捐款,已知全校师生共捐款4万5千元,其中学生捐款数比老师捐款数的2倍少9千元,该校老师和学生各捐款多少元?一次方程(组)参考答案与试题解析一、选择题1.电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则与2个球体相等质量的正方体的个数为()A.5 B.4 C.3 D.2【考点】三元一次方程组的应用.【专题】压轴题.【分析】根据图中物体的质量和天平的平衡情况,设出未知数,列出方程组解答.【解答】解:设球体、圆柱体与正方体的质量分别为x、y、z,根据已知条件,得:,(1)×2﹣(2)×5,得:2x=5z,即2个球体相等质量的正方体的个数为5.故选:A.【点评】本题通过建立二元一次方程组,求得球体与正方体的关系,等量关系是天平两边的质量相等.2.若a=b﹣3,则b﹣a的值是()A.3 B.﹣3 C.0 D.6【考点】代数式求值.【分析】此题可用将a=b﹣3代入b﹣a,去括号合并同类项即可求得.【解答】解:∵a=b﹣3∴b﹣a=b﹣(b﹣3)=b﹣b+3=3.故选A.【点评】主要考查了整体思想.解题的关键是将a用b﹣3代替代入代数式求解.3.为紧急安置100名地震灾民,需要同时搭建可容纳6人和4人的两种帐篷,则恰好能安置的搭建方案共有()A.8种 B.9种 C.16种D.17种【考点】推理与论证.【专题】方案型.【分析】可设6人的帐篷有x顶,4人的帐篷有y顶.根据两种帐篷容纳的总人数为100人,可列出关于x、y的二元一次方程,根据x、y均为非负整数,求出x、y的取值.根据未知数的取值即可判断出有几种搭建方案.【解答】解:设6人的帐篷有x顶,4人的帐篷有y顶,依题意,有:6x+4y=100,整理得y=25﹣1.5x,因为x、y均为非负整数,所以25﹣1.5x≥0,解得0≤x≤16,从0到16的偶数共有9个,所以x的取值共有9种可能,由于需同时搭建两种帐篷,x不能为0(舍去)即共有8种搭建方案.故选A.【点评】解决本题的关键是找到人数的等量关系,及帐篷数的不等关系.4.方程2x+1=0的解是()A.B.C.2 D.﹣2【考点】解一元一次方程.【专题】计算题;压轴题.【分析】先移项,再系数化1,可求出x的值.【解答】解:移项得:2x=﹣1,系数化1得:x=﹣.故选B.【点评】解一元一次方程的一般步骤是去分母,去括号,移项,合并同类项,移项时要变号,最后系数化1.二、填空题5.如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是20g.【考点】二元一次方程组的应用.【分析】通过理解题意可知本题存在两个等量关系,即三块巧克力的质量=两个果冻的质量,一块巧克力的质量+一个果冻的质量=50克.根据这两个等量关系式可列一个方程组.【解答】解:设每块巧克力的重量为x克,每块果冻的重量为y克.由题意列方程组得:,解方程组得:.答:每块巧克力的质量是20克.故答案为:20.【点评】本题考查二元一次方程组的应用,根据图表信息列出方程组解决问题.6.某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,设这种服装的成本价为每件x元,则x满足的方程是150×80%﹣x=20.【考点】由实际问题抽象出一元一次方程.【专题】应用题.【分析】首先理解题意找出题中存在的等量关系:售价﹣成本=利润,根据等量关系列方程即可.【解答】解:设这种服装的成本价为每件x元,则实际售价为150×80%元,根据实际售价﹣成本=利润,那么可得到方程:150×80%﹣x=20.故答案为:150×80%﹣x=20.【点评】本题以经济中的打折问题为背景,主要考查根据已知条件构建方程的能力,其中把握等量关系“售价﹣成本=利润”是关键.7.某商店一套秋装的进价为200元,按标价的80%销售可获利72元,则该服装的标价为340元.【考点】有理数的混合运算.【专题】应用题.【分析】认真审题找出等量关系:服装的标价的80%正好等于服装的进价加上获利,然后根据等量关系列方程解答.【解答】解:设先设服装的标价为x元.80%•x=200+72,解得x=340.【点评】此题为实际应用题,与生活比较接近,此类题目更能激发学生的学习兴趣.也是中考中的热点题型.8.如图,某商场正在热销北京奥运会的纪念品,小华买了一盒福娃和一枚奥运徽章,已知一盒福娃的价格比一枚奥运徽章的价格贵120元,则一盒福娃价格是145元.【考点】一元一次方程的应用.【专题】经济问题;压轴题.【分析】此题等量关系为:一盒福娃的价格+奥运徽章的价格=170元,设一盒福娃价格是x元,可用代数式表示一枚奥运徽章的价格,即可根据等量关系列方程求解.【解答】解:设一盒福娃价格是x元,则x+(x﹣120)=170,解得:x=145.则一盒福娃价格是145元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.9.某种服装按进价提高50%后标价,又以8折优惠卖出,结果仍获利15元,这种服装的进价为75元.【考点】一元一次方程的应用.【专题】销售问题;压轴题.【分析】要求进价,可用未知数设出进价,然后根据按进价提高50%后标价,又以8折优惠卖出,结果仍获利15元这个等量关系列出方程求解.【解答】解:设进价是x元.根据题意得:80%(1+50%)x﹣x=15,解得:1.2x﹣x=15,x=75故填75.【点评】注意:利润=售价﹣进价.8折即标价的80%.三、解答题10.解方程组:.【考点】解二元一次方程组.【分析】由于两个方程中y的系数相同,可以选择用加减消元法来解.【解答】解:,(2)﹣(1),得x=5,把x=5代入(1),得y=2.∴原方程组的解为:.【点评】解二元一次方程组体现了数学的转化思想,即二元方程一元化,本题也可以利用代入消元法求解,但是不如加减消元法简单,同学们不妨一试.11.解方程:.【考点】高次方程.【分析】先把方程组中的方程化简后再解.【解答】解:(2)可化为(x﹣y)(x+y)=5,原方程组可化为:把(1)代入(2)得:2x=﹣6x=﹣3把x=﹣3代入(1)得y=﹣2∴原方程组的解为【点评】解二元一次方程组时,方程组中的方程若能进行因式分解应先因式分解后再求值.12.某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率.【考点】一元一次方程的应用.【专题】增长率问题.【分析】设这个月的石油价格相对上个月的增长率为x.根据这个月进口石油的费用反而比上个月增加了14%列方程求解.【解答】解:设这个月的石油价格相对上个月的增长率为x.根据题意得:(1+x)(1﹣5%)=1+14%.解得:x==20%.答:这个月的石油价格相对上个月的增长率为20%.【点评】这里要分别把上个月的石油进口量和上个月的石油价格看作单位1.13.预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?【考点】一元一次方程的应用.【专题】行程问题.【分析】由题意可得:试验列车由北京到天津的行驶时间为36分钟,由天津返回北京的行驶时间为30分钟;但这36分钟与返回时30分钟所行驶路程是相等的.根据行驶路程相等这一等量关系列出方程求解即可.【解答】解:设这次试车时,由北京到天津的平均速度是每小时x千米,则由天津返回北京的平均速度是每小时(x+40)千米依题意得:(x+40)解得:x=200.答:这次试车时,由北京到天津的平均速度是每小时200千米.【点评】本题也是一道与时事紧密相关的数学题,在考核学生数学知识的同时让学生了解时事,本题着重考核了学生应用适当的数学模型解决实际问题的能力.易忽视点:预计时间为30分钟,学生易忽视.14.某足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分.一个队踢14场球负5场共得19分,问这个队胜了几场?【考点】一元一次方程的应用.【专题】应用题;比赛问题.【分析】设这个队胜了x场,根据共得分是19分,即:胜场得分+平场得分=19分,列方程求解.【解答】解:设这个队胜了x场,依题意得:3x+(14﹣5﹣x)=19,解得:x=5.答:这个队胜了5场.【点评】理解此题中的等量关系:胜的场数得分+平的场数得分=19分,是解决本题的关键.15.根据北京奥运票务网站公布的女子双人3米跳板跳水决赛的门票价格(如表),小明预定了B等级、C等级门票共7张,他发现这7张门票的费用恰好可以预订3张A等级门票.问小明预定了B等级、C等级门票各多少张?等级票价(元/张)A500B300C150【考点】二元一次方程组的应用.【专题】图表型.【分析】本题的等量关系可表示为:B门票+C门票=7张,购买的B门票的价格+C门票的价格=3张A门票的价格.据此可列出方程组求解.【解答】解:设小明预订了B等级,C等级门票分别为x张和y张.依题意,得解方程组,得答:小明预订了B等级门票3张,C等级门票4张.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.16.四川汶川的特大地震灾害,牵动着全中国人民的心.某校发出为灾区捐款的倡议后,全校师生奉献爱心,踊跃捐款,已知全校师生共捐款4万5千元,其中学生捐款数比老师捐款数的2倍少9千元,该校老师和学生各捐款多少元?【考点】二元一次方程组的应用.【分析】本题中有两个等量关系:老师捐款数+学生捐款数=4万5千,学生捐款数=2×老师捐款数﹣9千.设两个未知数,根据以上等量关系列出二元一次方程组.【解答】解:设老师捐款x元,学生捐款y元.则有(1分)(4分)解得:(7分)答:该校老师捐款18 000元,学生捐款27 000元.(8分)【点评】关键是弄清题意,找出等量关系.11 / 11。

2017全国中考数学真题分类-一次方程(组)及其应用(选择题+填空题+解答题)解析版

2017全国中考数学真题分类-一次方程(组)及其应用(选择题+填空题+解答题)解析版

2017全国中考数学真题分类知识点07一次方程(组)及其应用(选择题+填空题+解答题)解析版一、选择题1. (2017山东滨州,9,3分)某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个.若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是 A .22x =16(27-x ) B .16x =22(27-x ) C .2×16x =22(27-x ) D .2×22x =16(27-x ) 答案:D ,解析:x 名工人可生产螺栓22x 个,(27-x )名工人可生产螺母16(27-x )个,由于螺栓数目的2倍与螺母数目相等,因此2×22x =16(27-x ).2. (2017浙江衢州,6,3分)二元一次方程组632x y x y +=⎧⎨-=-⎩的解是()A .51x y =⎧⎨=⎩B .42x y =⎧⎨=⎩C .51x y =-⎧⎨=-⎩D .42x y =-⎧⎨=-⎩答案:B ,解析:①-②得,4y =8,∴y =2,把y =2代入①,得x =4,故选B .3. .(2017山东德州,8,3分)不等式组⎪⎩⎪⎨⎧->+≥+1321,392x x x 的解集是( )A .x ≥-3B .-3≤x <4C .-3≤x <2D .x >4答案:B ,解析:解不等式2x +9≥3,得2x ≥-6,x ≥-3;解不等式321x+>x -1,得1+2x >3x -3,4>x ,即x <4;所以原不等式组的解是-3≤x <4.4. (2017浙江舟山,6,3分)若二元一次方程组⎩⎨⎧=-=+453,3y x y x 的解为⎩⎨⎧==.,b y a x 则a -b =( )A .1B . 3C . -41D .47 答案:D ,解析:将二元一次方程组的解为⎩⎨⎧==.,b y a x 代入方程组⎩⎨⎧=-=+453,3y x y x 得⎩⎨⎧=-=+.453,3b a b a再把方程组中两方程相加得4a -4b =7,解得a -b =47. 5. (2017年四川内江,9,3分)端午节前夕,某超市用1680元购进A 、B 两种商品共60件,其中A 型商品每件24元,B 型商品每件36元.设购买A 型商品x 件、B 型商品y 件,依题意列方程组正确的是A .⎩⎨⎧=+=+1680243660y x y x B .⎩⎨⎧=+=+1680362460y x y xC .⎩⎨⎧=+=+1680602436y x y x D .⎩⎨⎧=+=+1680603624y x y x答案:B ,解析:根据等量关系:①A 、B 两种商品共60件;②A 、B 两种商品共用1680元,可列二元一次方程组. 设购买A 型商品x 件、B 型商品y 件,依题意列方程组:⎩⎨⎧=+=+.1680362460y x y x ,6. 7.(2017四川眉山,7,3分)已知关于x 、y 的二元一次方程组⎩⎨⎧2ax +by =3ax -by =1的解为⎩⎨⎧x =1y =-1,则a -2b 的值是A .-2B .2C . 3D .-3答案:B ,解析:由题意,得⎩⎨⎧2a -b =3①,a +b =1②,①-②得,a -2b =2.7. 6.(2017湖北荆门,6,3分)不等式组12,24x x -⎧⎨⎩<≥的解集为( )A .x <3B .x ≥2C .2≤x <3D .2<x <3答案:C ,解析:由x -1<2,得x <3. 由2x ≥4,得x ≥2.所以原不等式组的解集为2≤x <3.故选C .8. (2017山西,4,3分)将不等式组⎩⎨⎧+≤-04062>x x 的解集表示在数轴上,下面表示正确的是( )A .B .C .D .答案:A ,解析:解不等式2x -6≤0和x +4>0的解集为x ≤3和x >-4,∴不等式组的解集为-4<x ≤3,在数轴上表示出来就是A 选项.9. 8.(2017天津,3分)方程组2315y xx y =⎧⎨+=⎩的解是A .23x y =⎧⎨=⎩B.43x y =⎧⎨=⎩C.48x y =⎧⎨=⎩D .36x y =⎧⎨=⎩答案:D ,解析:运用“代入消元法”,将方程①代入方程②可得:3x +2x =15,解得x =3,将x =3代入方程①2017全国中考数学真题(精品文档)中可得y=6,故选D.10. 5.(2017湖北鄂州,3分)对于不等式组1561333(1)51x xx x⎧--⎪⎨⎪-<-⎩,下列说法正确的是()A.此不等式组的正整数解为1,2,3 B.此不等式组的解集为-1<x≤76C.此不等式组有5个整数解D.此不等式组无解答案:A,解析:解不等式组得解集为12<x≤72,它的正整数解为1,2,3,故选项A正确.11.(2017湖北随州,7,3分)小明到商店购买“五四青年节”活动奖品,购买20支铅笔和10本笔记本共需110元,但购买30支铅笔和5本笔记本只需85元.设每支铅笔x元,每本笔记本y元,则可列方程组()A.203011010585x yx y+=⎧⎨+=⎩B.201011030585x yx y+=⎧⎨+=⎩C.205110301085x yx y+=⎧⎨+=⎩D.520110103085x yx y+=⎧⎨+=⎩答案:B,解析:题中有两个相等关系:①购买20支铅笔的费用+购买10本笔记本的费用=110元;②购买30支铅笔的费用+购买5本笔记本的费用=85元.12. 5.(2017安徽中考·4分)不等式42x->0的解集在数轴上表示为()答案:D.解析:先解不等式42x->0的解集是x<2,在数轴上表示为,故选D.13.(2017新疆生产建设兵团,17,6分)解不等式组思路分析:先分别求出不等式①②的解集,再确定解集的公共部分.解:解不等式①,得x≤1,解不等式②,得x<4,根据口诀“同小取小”,所以不等式组的解集为x≤1.14. 4. (2017浙江湖州,3分)一元一次不等式组21112x xx>-≤⎧⎪⎨⎪⎩的解是A .1x >-B .x ≤2 C.1x -<≤2 D .1x >-或x ≤2答案:C ,解析:一元一次不等式组的解法, 21112x x x >-≤⎧⎪⎨⎪⎩①②由①得,1x >-;由②得x ≤2.根据“大小小大中间找”所以这个不等式组的解集为1x -<≤2.15. 5.(2017浙江杭州,5,3分)设x ,y ,c 是实数,( )A .若x =y ,则x +c =y -cB .若x =y ,则xc =ycC .若x =y ,则c y c x = D .若cy c x 32=,则2x =3y 答案:B ,解析:根据等式的基本性质1,若x =y ,则x +c =y +c ,故A 说法错误;根据等式的基本性质2若x =y ,则xc =yc ,B 成立;若x =y ,当c =0时,则 c y c x 、 均不成立,故C 说法错误,若c yc x 32=,则3cx =2cy.17. (2017广西百色,12,3分).关于x 的不等式组0230x a x a -≤⎧⎨+>⎩的解集中至少有5个整数解,则正数a 的最小值是( )A .3B .2C .1D .23答案:B.解析:不等式组的解集为32a -<x≤a ,因为该解集中至少5个整数解,所以a 比32a -至少大5,即 a≥32a-+5,解得a≥2.18. 2. (2017湖南永州,4分)x =1是关于x 的方程2x -a =0的解,则a 的值是( ) A .-2B .2C .-1D .1答案:B ,解析:把x =1代入方程2x -a =0得2-a =0,解得a =2.19. (2017年湖南长沙,11,3分)中国古代数学著作《算法统宗》中有这样一记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为 A. 24 里 B. 12里 C. 6里 D.3里答案:C ,解析:设第六天走的路程为x 里,则第5天为2x 里,依次往前推,可得方程x+2x+4x+8x+16x+32x=378,解得x=6,所以选C 。

中考数学专题复习 专题09 二元一次方程组及其应用(教师版含解析)

中考数学专题复习 专题09 二元一次方程组及其应用(教师版含解析)

中考专题09 二元一次方程组及其应用1.二元一次方程:含有两个未知数,并且未知数的指数都是1的方程整式方程叫做二元一次方程.一般形式是ax+by=c(a≠0,b≠0)。

2.二元一次方程组:把两个二元一次方程合在一起,就组成一个二元一次方程组。

3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。

4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组的解。

5.解二元一次方程组的方法将未知数的个数由多化少,逐一解决的想法,叫做消元思想。

(1)代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。

(2)加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。

6.列方程(组)解应用题的一般步骤(1)审:有什么,求什么,干什么;(2)设:设未知数,并注意单位;(3)找:等量关系;(4)列:用数学语言表达出来;(5)解:解方程(组).(6)验:检验方程(组)的解是否符合实际题意.(7)答:完整写出标准答案(包括单位).注意:找出相等关系“未知”转化为“已知”.有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等【经典例题1】(2020年•嘉兴)用加减消元法解二元一次方程组{x +3y =4,①2x −y =1ㅤ②时,下列方法中无法消元的是( )A .①×2﹣②B .②×(﹣3)﹣①C .①×(﹣2)+②D .①﹣②×3【标准答案】D【分析】方程组利用加减消元法变形即可.【答案剖析】 A.①×2﹣②可以消元x ,不符合题意;B.②×(﹣3)﹣①可以消元y ,不符合题意;C.①×(﹣2)+②可以消元x ,不符合题意;D.①﹣②×3无法消元,符合题意.【知识点练习】(2020年年广州模拟)解方程组:.【标准答案】见答案剖析。

山东省济南市中考数学一轮复习 第二章 方程与不等式 第四节 一元一次不等式(组)练习-人教版初中九年

山东省济南市中考数学一轮复习 第二章 方程与不等式 第四节 一元一次不等式(组)练习-人教版初中九年

第四节 一元一次不等式(组)1.(2017·某某)若x +5>0,则( )A .x +1<0B .x -1<0C.x 5<-1 D .-2x <12 2.(2017·六盘水)不等式3x +6≥9的解集在数轴上表示正确的是( )A.B.C. D. 3.(2017·某某)不等式6-4x≥3x-8的非负整数解有( )A .2个B .3个C .4个D .5个4.(2017·某某)不等式组⎩⎪⎨⎪⎧3-2x <5,x -2<1的解集为( ) A .x>-1 B .x<3C .x<-1或x>3D .-1<x<35.(2017·某某)一元一次不等式组⎩⎪⎨⎪⎧x -2≤0,1+13x>0的解集在数轴上表示出来,正确的是( )6.已知x =2是不等式(x -5)(ax -3a +2)≤0的解,且x =1不是这个不等式的解,则实数a 的取值X 围是( )A .a >1B .a≤2C .1<a≤2 D.1≤a≤27.不等式组⎩⎪⎨⎪⎧2x >-1,-3x +9≥0的所有整数解的和是( ) A .2 B .3 C .5 D .68.(2017·某某)关于x 的不等式的解集在数轴上表示如图所示,则该不等式的解集为__________.9.(2017·株洲)已知“x 的3倍大于5,且x 的一半与1的差不大于2”,则x 的取值X 围是________.10.(2017·某某)商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为________元/千克.11.(2017·某某)解不等式:4x +5≤2(x+1).12.(2017·某某)解不等式组⎩⎪⎨⎪⎧x +1≤2, ①1+2x 3>x -1.②13.(2017·某某)小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品?14.(2017·某某)若实数3是不等式2x -a -2<0的一个解,则a 可取的最小正整数为( )A .2B .3C .4D .515.(2017·某某州)关于x 的不等式组⎩⎪⎨⎪⎧x -m <0,3x -1>2(x -1)无解,那么m 的取值X 围为( ) A .m≤-1 B .m<-1C .-1<m≤0 D.-1≤m<016.(2017·某某)若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x -y =2m +1,x +3y =3的解满足x +y>0,则m 的取值X 围是____________.17.(2017·某某)不等式组⎩⎪⎨⎪⎧2x +1>-1,2x -13≥x-1的整数解是______________. 18.(2017·呼和浩特)已知关于x 的不等式2m -mx 2>12x -1. (1)当m =1时,求该不等式的解集;(2)m 取何值时,该不等式有解?并求出解集.19.(2016·某某)某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男生、女生每天能加工的零件数分别为50个和45个,为了保证他们每天加工的零件总数不少于1 460个,那么至少要招录多少名男生?要题加练3 解不等式组1.(2017·某某)解不等式组:⎩⎪⎨⎪⎧2x -1>0,x +1<3.2.(2017·某某)解不等式组:⎩⎪⎨⎪⎧3x -1≥x+1,x +4<4x -2.3.(2017·某某)解不等式组:⎩⎪⎨⎪⎧x +1≥4,2(x -1)>3x -6.4.(2017·)解不等式组:⎩⎪⎨⎪⎧2(x +1)>5x -7,x +103>2x.5.(2017·某某)解不等式组:⎩⎪⎨⎪⎧-2x <6,3(x -2)≤x-4,并把解集在数轴上表示出来.6.(2017·某某)解不等式组:⎩⎪⎨⎪⎧2x≥-9-x ,5x -1>3(x +1),并把它的解集在数轴上表示出来.参考答案【夯基过关】8.x≤2 9.5311.解:去括号,得4x +5≤2x+2,移项、合并同类项,得2x≤-3,解得x≤-32.12.解:解不等式①得x≤1,解不等式②得x <4,则不等式组的解集为x≤1.13.解:设小明答对了x 题,根据题意可得 (25-x)×(-2)+6x>90,解得x≥1712.∵x 为非负整数,∴x 至少为18.答:小明至少答对18道题才能获得奖品.【高分夺冠】14.D 15.A 16.m>-2 17.0,1,218.解:(1)当m =1时,不等式为2-x 2>x 2-1,去分母,得2-x>x -2,解得x<2.(2)不等式去分母,得2m -mx>x -2,移项合并,得(m +1)x<2(m +1),当m≠-1时,不等式有解,当m>-1时,不等式的解集为x<2;当m<-1时,不等式的解集为x>2.19.解:(1)设该班男生有x 人,女生有y 人,根据题意得⎩⎪⎨⎪⎧x +y =42,x =2y -3, 解得⎩⎪⎨⎪⎧x =27,y =15. 答:该班男生有27人,女生有15人.(2)设招录的男生有m 名,则招录的女生有(30-m)名, 根据题意得50m +45(30-m)≥1 460,解得m≥22.答:工厂在该班至少要招录22名男生.要题加练3 解不等式组1.解:⎩⎪⎨⎪⎧2x -1>0, ①x +1<3, ② 解不等式①得x >12, 解不等式②得x <2,∴不等式组的解集为12<x <2. 2.解:⎩⎪⎨⎪⎧3x -1≥x+1, ①x +4<4x -2, ② 解不等式①得x≥1,解不等式②得x >2,∴不等式组的解集为x >2.3.解:⎩⎪⎨⎪⎧x +1≥4, ①2(x -1)>3x -6, ② 解不等式①得x≥3,解不等式②得x <4,∴不等式组的解集是3≤x<4.4.解:⎩⎪⎨⎪⎧2(x +1)>5x -7, ①x +103>2x , ② 解不等式①得x <3,解不等式②得x<2,∴不等式组的解集为x<2.5.解:解不等式-2x<6,得x>-3,解不等式3(x-2)≤x-4,得x≤1,则不等式组的解集为-3<x≤1.将不等式的解集表示在数轴如下:6.解:解不等式2x≥-9-x,得x≥-3,解不等式5x-1>3(x+1),得x>2,则不等式组的解集为x>2,将解集表示在数轴上如下:。

精品 中考数学一轮综合复习 第04 课 方程与不等式(一元一次不等式、不等式组)

精品 中考数学一轮综合复习 第04 课 方程与不等式(一元一次不等式、不等式组)

中考数学一轮复习第04课方程与不等式(一元一次不等式、不等式组)知识点:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧<>>>>⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧不等式组的解集。

的公共部分,作为整个利用数轴求出这些解集个不等式的解集;分别求出不等式组中每解不等式组步骤:。

;;;)(法:不等式组解集的确定方式组的解集。

叫做这个一元一次不等几个不等式解集的组中解集:一元一次不等式。

叫做一元一次不等式组不等式组的几个不等式所组成的定义:含有相同未知数一元一次不等式组解法步骤:定义:一元一次不等式那么,公式表示:若,,不等号的方向不等式两边性质那么,公式表示:若,,不等号的方向不等式两边性质,那么公式表示:若,,不等号的方向不等式两边性质不等式的性质。

,小向大向圆圈;再确定方向:则是原点;不好喊边界点,若解集包含边界点,是界点。

体表示方法是先确定边上直观的表示出来,具以在注意:不等式的解集可解集。

的全体,叫做不等式的有未知数的不等式的解不等式的解集:一个含,叫做不等式的解。

成立的不等式的解:使不等式等式,常见的不等号有连接起来的式子叫做不不等式定义:用不等式)2()1()4()3()2(1,,,,0.3,0.2.1c b a c b a b a 同步练习:1.根据下图甲、乙所示,对a,b,c 三种物体的重量判断不正确的是()A.a<cB.a<bC.a>cD.b<c2.如果关于x 的不等式1)1(+>+a x a 的解集为1<x ,那么a 的取值范围是()A.a>0B.a<0C.a>-1D.a<-13.已知方程组21321x y mx y m +=+⎧⎨+=-⎩的解满足0x y +<,则()A.m >-1B.m >1C.m <-lD.m <14.已知关于x 的不等式52->+m x 的解集如图所示,则m 的值为()A.1B.0C.-1D.-25.不等式组⎩⎨⎧-<++≤14242x x xx 的正整数解有()A.1个B.2个C.3个D.4个6.已知a,b,c 均为实数,若a>b,c≠0,下列结论不一定正确的是()A.a+c>b+cB.c-a<c-bC.a c 2>bc2D.a 2>ab>b27.已知关于x,y 的方程组⎩⎨⎧=--=+a y x a y x 343,其中﹣3≤a≤1,给出下列结论:①⎩⎨⎧-==15y x 是方程组的解;②当a=-2时,x,y 的值互为相反数;③当a=1时,方程组的解也是方程x+y=4-a 的解;④若x≤1,则1≤y≤4.其中正确的是()A.①②B.②③C.②③④D.①③④8.函数31x y x +=+的自变量x 的取值范围是_____________9.若y x y y x y x >-->+,,那么(1)x+y>0;(2)y-x<0;(3)xy≤0;(4)yx<0中,正确结论的序号为________。

一次方程(组)复习教案

一次方程(组)复习教案

一次方程(组)复习教案第一章:一次方程的定义与解法1.1 方程的定义:解释方程的概念,方程是一个含有未知数的等式。

强调方程中的等号表示两边的值相等。

1.2 一次方程的定义:介绍一次方程的概念,一次方程是最高次数为1的方程。

举例说明一次方程的一般形式:ax + b = 0。

1.3 解一次方程的步骤:讲解解一次方程的步骤,包括:1. 将方程写成标准形式ax + b = 0。

2. 移项,将未知数移到方程的一边,常数移到另一边。

3. 化简方程,消去系数。

4. 求解未知数的值。

1.4 解一次方程的练习:提供一些练习题,让学生根据解一次方程的步骤求解。

引导学生运用加减法、乘除法等运算来化简方程。

第二章:二元一次方程的定义与解法2.1 二元一次方程的定义:介绍二元一次方程的概念,二元一次方程是含有两个未知数的一次方程。

举例说明二元一次方程的一般形式:ax + = c。

2.2 解二元一次方程的步骤:讲解解二元一次方程的步骤,包括:1. 将方程组写成标准形式,即两个方程分别写成ax + = c 的形式。

2. 利用代入法或消元法求解未知数的值。

3. 检验解的可行性,确保解满足原方程组的所有方程。

2.3 解二元一次方程组的练习:提供一些练习题,让学生根据解二元一次方程的步骤求解。

引导学生运用代入法、消元法等方法来求解方程组。

第三章:一次方程与一次不等式的关系3.1 一次方程与一次不等式的定义:介绍一次方程与一次不等式的概念,一次方程是等式,而一次不等式是不等号连接的两个表达式。

举例说明一次不等式的一般形式:ax + b > c 或ax + b ≤c。

3.2 一次方程与一次不等式的关系:解释一次方程的解集是一次不等式的解集的特殊情况。

讲解如何从一次方程的解集中找出满足一次不等式的解。

3.3 解一次不等式的步骤:讲解解一次不等式的步骤,包括:1. 将不等式写成标准形式,即ax + b ≤c 或ax + b > c。

中考数学复习----一次方程(组)应用典型例题与考点归纳

中考数学复习----一次方程(组)应用典型例题与考点归纳

中考数学复习----一次方程(组)应用典型例题与考点归纳典型例题讲解1.(2022·山东泰安)泰安某茶叶店经销泰山女儿茶,第一次购进了A 种茶30盒,B 种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A 种茶20盒,B 种茶15盒,共花费5100元.求第一次购进的A 、B 两种茶每盒的价格.【答案】A 种茶每盒100元,B 种茶每盒150元【分析】设第一次购进A 种茶每盒x 元,B 种茶每盒y 元,根据第一次购进了A 种茶30盒,B 种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A 种茶20盒,B 种茶15盒,共花费5100元列出方程组求解即可.【详解】解:设第一次购进A 种茶每盒x 元,B 种茶每盒y 元,根据题意,得30206000,1.220 1.2155100.x y x y +=⎧⎨⨯+⨯=⎩解,得100,150.x y =⎧⎨=⎩∴A 种茶每盒100元,B 种茶每盒150元.【点睛】本题主要考查了二元一次方程组的实际应用,正确设出未知数列出方程组求解是解题的关键.2.(2022·湖南常德)小强的爸爸平常开车从家中到小强奶奶家,匀速行驶需要4小时,某天,他们以平常的速度行驶了12的路程时遇到了暴雨,立即将车速减少了20千米/小时,到达奶奶家时共用了5小时,问小强家到他奶奶家的距离是多少千米?【答案】240千米【分析】平常速度行驶了12的路程用时为2小时,后续减速后用了3小时,用遇到暴雨前行驶路程加上遇到暴雨后行驶路程等于总路程这个等量关系列出方程求解即可.【详解】解:设小强家到他奶奶家的距离是x 千米,则平时每小时行驶4x 千米,减速后每小时行驶204x ⎛⎫− ⎪⎝⎭千米,由题可知:遇到暴雨前用时2小时,遇到暴雨后用时5-2=3小时, 则可得:232044x x x ⎛⎫⨯+−= ⎪⎝⎭,解得:240x =, 答:小强家到他奶奶家的距离是240千米.【点睛】本题考查了一元一次方程应用中的行程问题,直接设未知数法,找到准确的等量关系,列出方程正确求解是解题的关键.3.(2021·重庆中考真题)重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元.(1)求每份“堂食”小面和“生食”小面的价格分别是多少元?(2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份,为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低3a%4.统计5月的销量和销售额发现:“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加5%2a ,这两种小面的总销售额在4月的基础上增加5%11a .求a 的值. 【答案】(1)每份“堂食”小面价格是7元,“生食”小面的价格是5元.(2)a 的值为8.【分析】(1)设每份“堂食”小面和“生食”小面的价格分别是x 、y 元,根据题意列出二元一次方程组,解方程组即可;(2)根据题意列出一元二次方程,解方程即可.【详解】解:(1)设每份“堂食”小面和“生食”小面的价格分别是x 、y 元,根据题意列方程组得,3231433x y x y +=⎧⎨+=⎩, 解得,75x y =⎧⎨=⎩, 答:每份“堂食”小面价格是7元,“生食”小面的价格是5元.(2)根据题意得,535450072500(1%)5(1%)(4500725005)(1%)2411a a a ⨯++⨯−=⨯+⨯+, 解得,10a =(舍去),28a =,答:a 的值为8.【点睛】本题考查了二元一次方程组的应用和一元二次方程的应用,解题关键是找准题目中的等量关系,列出方程,熟练运用相关知识解方程.4.(2020•安徽)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a 元,线上销售额为x 元,请用含a ,x 的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);(2)求2020年4月份线上销售额与当月销售总额的比值.【分析】(1)由线下销售额的增长率,即可用含a ,x 的代数式表示出2020年4月份的线下销售额;(2)根据2020年4月份的销售总额=线上销售额+线下销售额,即可得出关于x 的一元一次方程,解之即可得出x 的值(用含a 的代数式表示),再将其代入1.43x 1.1a 中即可求出结论. 【解析】(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a ﹣x )元.故答案为:1.04(a ﹣x ).(2)依题意,得:1.1a =1.43x+1.04(a ﹣x ),解得:x =213,∴1.43x1.1a =1.43⋅213a1.1a =0.22a1.1a =0.2.答:2020年4月份线上销售额与当月销售总额的比值为0.2.5.(2020•江西)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.【分析】(1)设笔记本的单价为x 元,单独购买一支笔芯的价格为y 元,根据“小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)先求两人带的总钱数,再求出两人合在一起买文具所需费用,由二者的差大于2个小工艺品所需钱数,可找出:他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.【解析】(1)设笔记本的单价为x 元,单独购买一支笔芯的价格为y 元,依题意,得:{2x +3y =19x +7y =26, 解得:{x =5y =3. 答:笔记本的单价为5元,单独购买一支笔芯的价格为3元.(2)小贤和小艺带的总钱数为19+2+26=47(元).两人合在一起购买所需费用为5×(2+1)+(3﹣0.5)×10=40(元).∵47﹣40=7(元),3×2=6(元),7>6,∴他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.6.(2020•重庆)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A ,B 两个小麦品种进行种植对比实验研究.去年A ,B 两个品种各种植了10亩.收获后A ,B 两个品种的售价均为2.4元/kg ,且B 的平均亩产量比A 的平均亩产量高100kg ,A ,B 两个品种全部售出后总收入为21600元.(1)请求出A ,B 两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A ,B 种植亩数不变的情况下,预计A ,B 两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B 品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨a%,而A 品种的售价不变.A ,B 两个品种全部售出后总收入将在去年的基础上增加209a%.求a 的值.【分析】(1)设A 、B 两个品种去年平均亩产量分别是x 千克和y 千克;根据题意列方程组即可得到结论;(2)根据题意列方程即可得到结论.【解析】(1)设A 、B 两个品种去年平均亩产量分别是x 千克和y 千克;根据题意得,{y −x =10010×2.4(x +y)=21600, 解得:{x =400y =500, 答:A 、B 两个品种去年平均亩产量分别是400千克和500千克;(2)2.4×400×10(1+a%)+2.4(1+a%)×500×10(1+2a%)=21600(1+209a%), 解得:a =10,答:a 的值为10. 一次方(组)程应用考点归纳1.列方程(组)解应用题的一般步骤(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称).2.一次方程(组)常见的应用题型(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间.(4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题(同时不同地出发):前者走的路程+两地间距离=追者走的路程.(8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度.。

最新届中考数学方程(组)与不等式(组)复习知识点总结及经典考题选编

最新届中考数学方程(组)与不等式(组)复习知识点总结及经典考题选编

中考数学方程(组)与不等式(组)复习知识点总结一、方程【知识梳理】1、知识结构方程分式方程的应用分式方程的解法分式方程的概念分式方程的关系根的判别式,根与系数一元二次方程的解法念一元二次方程的有关概一元二次方程二元一次方程组的应用二元一次方程组的解法二元一次方程组一元一次方程的应用一元一次方程的解法一元一次方程整式方程2、知识扫描(1)只含有一个未知数,并且未知数的次数是1的整式方程,叫做一元一次方程。

(2)含有2个未知数,并且所含未知数的项的次数都是1次,这样的方程叫二元一次方程.(3)含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.(4)二元一次方程组的解法有法和法.(5)只含有1 个未知数,并且未知数的最高次数是2且系数不为0的整式方程,叫做一元二次方程,其一般形式为)0(02a cbx ax。

(6)解一元二次方程的方法有:①直接开平方法;②配方法;③公式法;④因式分解法例:(1)042x(2)0342x x(3)4722x x (4)0232x x(7)一元二次方程的根的判别式:ac b42叫做一元二次方程的根的判别式。

对于一元二次方程)0(02a cbx ax当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根;反之也成立。

(8)一元二次方程的根与系数的关系:如果)0(02acbx ax的两个根是21,x x 那么ab x x 21,ac x x 21(9)一元二次方程)0(02a cbx ax的求根公式:)04(2422ac baacb bx(10)分母中含有未知数的方程叫分式方程.(11)解分式方程的基本思想是将分式方程通过去分母转化为整式方程.◆解分式方程的步骤◆1、去分母,化分式方程为整式方程;◆2、解这个整式方程;◆3、验根。

注意:(1)解分式方程的基本思想是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.(2)因为解分式方程时可能产生增根,所以解分式方程必须检验,检验是解分式方程必要的步骤.二、不等式【知识梳理】1、知识结构解法性质概念不等式2、知识扫描(1) 只含有一个未知数,并且未知数的次数是1,系数不为 0 的不等式,叫做一元一次不等式。

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用

4.(2021·荆门第 15 题 3 分)关于 x 的不等式组1+32x≥x-1 恰有 2 个
整数解,则 a 的取值范围是 5≤5a≤<a<6. 6
2x≥x-1, ① 5.(2021·武汉第 17 题 8 分)解不等式组4x+10>x+1 ②请按下列步骤 完成解答. (1)解不等式①,得 x≥x≥--11; (2)解不等式②,得 x>x>--33;
3x-2≥1, (2021·通辽)若关于 x 的不等式组2x-a<5 有且只有 2 个整数 解,则 a 的取值范围是-1-<a1<a≤≤11..
【思路点拨】先求出不等式组的解集(用含字母 a 的代数式表示),再根 据不等式组有且只有 2 个整数解,可推出 a 的取值范围.
解含参不等式(组)的 8 个“母题”: (1)若不等式 ax>a 的解集是 x>1,则 a>0; (2)若不等式 x>a 的解集是 x>2,则 a=2;
第四节 一元一次不等式(组) 及其应用
命题点 1:一元一次不等式组的解法及解集表示(近 3 年考查 18 次)
x-1<-3, 1.(2020·黄石第 6 题 3 分)不等式组2x+9≥3 的解集是
(
C)
A.-3≤x<3
B.x≥-2
C.-3≤x<-2
D.x≤-3
x-4≤2(x-1),
某中学以体育为突破口,准备从体育用品商场一次性购买若干个足球和 篮球,用于学校球类比赛活动,每个足球的价格都相同,每个篮球的价 格也相同,已知篮球的单价比足球单价的 2 倍少 30 元,用 1 200 元购买 足球的数量是用 900 元购买篮球数量的 2 倍.
(1)足球和篮球的单价各是多少元? (2)根据学校实际情况,需一次性购买足球和篮球共 200 个,但要求足球 和篮球的总费用不超过 15 500 元,学校最多可以购买多少个篮球?

中考数学复习专题综合过关检测—一次方程组(含解析)

中考数学复习专题综合过关检测—一次方程组(含解析)

中考数学复习专题综合过关检测—一次方程组(含解析)(考试时间:90分钟,试卷满分:100分)一、选择题(本题共10小题,每小题3分,共30分)。

1.(2023•衢江区三模)已知a=b,下列等式不一定成立的是()A.5a=5b B.a+4=b+4C.b﹣2=a﹣2D.【答案】D【解答】解:∵a=b,∴5a=5b,故A不符合题意,∵a=b,∴a+4=b+4,故B不符合题意;∵a=b,∴b﹣2=a﹣2,故C不符合题意;∵a=b,∴当c=0时不成立,故D符合题意,故选:D.2.(2023•安吉县一模)已知3是关于x的方程2x﹣a=1的解,则a的值为()A.﹣5B.5C.7D.﹣7【答案】B【解答】解:将x=3代入方程2x﹣a=1得:6﹣a=1,解得:a=5.故选:B.3.(2023•漳浦县模拟)如果2x﹣7y=8,那么用含y的代数式表示x正确的是()A.y=B.y=C.x=D.x=【答案】C【解答】解:移项,得2x=8+7y,系数化为1,得x=.故选:C.4.(2023•东丽区二模)方程组的解是()A.B.C.D.【答案】B【解答】解:把①代入②,可得:4y+2y=﹣12,解得y=﹣2,把y=﹣2代入①,可得x=4×(﹣2)=﹣8,∴原方程组的解是.故选:B.5.(2023•鹤峰县一模)右图是“大润发”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为()A.22元B.23元C.24元D.26元【答案】C【解答】解:设洗发水的原价为x元,由题意得:0.8x=19.2,解得:x=24.故选:C.6.(2023•南漳县模拟)我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?设大和尚有x人,依题意列方程得()A.3x+(100﹣x)=100B.3x+3(100﹣x)=100C.D.【答案】A【解答】解:设大和尚有x人,依题意列方程得,3x+(100﹣x)=100,故选:A.7.(2023•乐东县一模)代数式5x﹣7与13﹣2x互为相反数,则x的值是()A.B.2C.﹣2D.无法计算【答案】C【解答】解:∵代数式5x﹣7与13﹣2x互为相反数,∴5x﹣7+13﹣2x=0,∴3x+6=0,∴x=﹣2,故选:C.8.(2023•永嘉县校级二模)用代入法解二元一次方程组时,将方程①代入方程②,得到结果正确的是()A.x﹣2﹣2x=4B.x+2﹣2x=4C.x+2+x=4D.x+2﹣x=4【答案】B【解答】解:用代入法解二元一次方程组时,将方程①代入方程②得:x+2﹣2x=4,故选:B.9.(2023•兴宁市校级一模)若关于x、y的方程的解满足x+y=0,则a的值为()A.﹣1B.﹣2C.0D.不能确定【答案】A【解答】解:,①+②,得4x+4y=2+2a,x+y=,∵x+y=0,∴=0,解得:a=﹣1,故选:A.10.(2023•遵义模拟)《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是,在图2所示的算筹图中有一个图形被墨水覆盖了,如果图2所表示的方程组中x的值为3,则被墨水所覆盖的图形为()A.B.C.D.【答案】C【解答】解:设被墨水所覆盖的图形表示的数据为a,根据题意得,,把x=3代入得,,由③得,y=5,把y=5代入④得,12+5a=27,∴a=3,故选:C.二、填空题(本题共6题,每小题2分,共12分)11.(2023•渠县校级模拟)一元一次方程2(x+3)=4的解是x=﹣1.【答案】x=﹣1.【解答】解:去括号,可得:2x+6=4,移项,可得:2x=4﹣6,合并同类项,可得:2x=﹣2,系数化为1,可得:x=﹣1.故答案为:x=﹣1.12.(2023•市中区校级四模)若关于x的方程的解是x=3,则a的值为3.【答案】3.【解答】解:把x=3代入方程,得1+a=4,解得a=3,故答案为:3.13.(2023•汇川区模拟)已知x﹣3y=2,则代数式﹣x+3y+5=3.【答案】3.【解答】解:∵﹣x+3y+5=﹣(x﹣3y)+5,∴当x﹣3y=2时,原式=﹣2+5=3,故答案为:3.14.(2023•大安市模拟)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为.【答案】见试题解答内容【解答】解:设马每匹x两,牛每头y两,根据题意可列方程组为:.故答案为:.15.(2023•平远县一模)如果|x+y﹣1|和2(2x+y﹣3)2互为相反数,那么x+2y=0.【答案】0.【解答】解:∵|x+y﹣1|和2(2x+y﹣3)2互为相反数,∴|x+y﹣1|+2(2x+y﹣3)2=0,∴,解得,∴x+2y=2﹣2=0.故答案为:0.16.(2023•郧阳区模拟)若是二元一次方程ax+by=﹣2的一个解,则4b﹣6a+1的值为5.【答案】5.【解答】解:将代入方程可得,3a﹣2b=﹣2,∴4b﹣6a+1=﹣2(3a﹣2b)+1=5.故答案为:5.三、解答题(本题共7题,共58分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档