物理第五版 机械波答案
机械波习题答案
机械波习题答案(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第十一章 机械波一. 选择题[ C ]1. 一沿x 轴负方向传播的平面简谐波在t = 2 s 时的波形曲线如图所示,则原点O的振动方程为(A) )21(cos 50.0ππ+=t y , (SI).(B) )2121(cos 50.0ππ-=t y , (SI).(C) )2121(cos 50.0ππ+=t y , (SI).(D) )2141(cos 50.0ππ+=t y ,(SI).提示:设O 点的振动方程为O 0()cos()y t A t ωϕ=+。
由图知,当t=2s 时,O 点的振动状态为:O 0(2)cos(2)=0 0y A v ωϕ=+>,且,∴0322πωϕ+=,0322πϕω=-,将0ϕ代入振动方程得:O 3()cos(2)2y t A t πωω=+-。
由题中所给的四种选择,ω取值有三种:,,24πππ,将ω的三种取值分别代入O 3()cos(2)2y t A t πωω=+-中,发现只有答案(C )是正确的。
[ B ]2. 图中画出一向右传播的简谐波在t 时刻的波形图,BC 为波密介质的反射面,波由P 点反射,则反射波在t 时刻的波形图为提示: 由题中所给波形图可知,入射波在P点的振动方向向下;而BC 为波密介质反射面,故在P 点反射波存在“半波损失”,即反射波与入射波反相,所以,反射波在P 点的振动方向向上,又P 点为波节,因而得答案B 。
[ A ]3. 一平面简谐波沿x 轴正方向传播,t = 0 时刻的波形图如图所示,则P 处质点的振动在t = 0时刻的旋转矢量图是时的状态为:[ B ]4. 一平面简谐波在弹性媒质中传播时,某一时刻媒质中某质元在负的最大位移处,则它的能量是 (A) 动能为零,势能最大. (B) 动能为零,势能为零. (C) 动能最大,势能最大. (D) 动能最大,势能为零.提示:动能=势能,在负的最大位移处时,速度=0,所以动能为零,势能也为零。
物理学(第五版)课后习题解答
第十章波动1 . 一横波沿绳子传播时的波动表达式为)π4π10cos(05.0x t y -=,x ,y的单位为米,t 的单位为秒。
(1)求此波的振幅、波速、频率和波长。
(2)求绳子上各质点振动的最大速度和最大加速度。
(3)求2.0=x m 处的质点在1=t s 时的相位,它是原点处质点在哪一时刻的相位?解 (1)将题中绳波表达式0.05cos(10π4π)0.05cos 2π()0.20.5t xy t x =-=- 与一般波动表达式)(π2cos λxT t A y -=比较,得振幅05.0=A m ,s T 2.0=频率5=ν Hz ,波长5.0=λ m 。
波速5.255.0=⨯==λνu m •s-1(2)绳上各质点振动的最大速度57.105.0514.32π2max =⨯⨯⨯===A A v νω m •s-1绳上各质点振动时的最大加速度3.4905.0514.34π422222max =⨯⨯⨯===A A a νωm •s -(3)将2.0=x m ,1=t s 代入)π4π10(x t -得到所求相位π2.92.0π41π10=⨯-⨯, 2.0=x m 处质点的振动比原点处质点的振动在时间上落后08.05.22.0==u x s (5.2==λνu m •s -1),所以它是原点处质点在92.0)08.01(0=-=t s 时的相位。
2.设有一平面简谐波 )3.001.0(π2cos 02.0x t y -= , x ,y 以m 计, t 以s 计。
(1)求振幅、波长、频率和波速。
(2)求1.0=x m 处质点振动的初相位。
解(1)将题设平面简谐波的表式)3.001.0(π2cos 02.0xt y -=与一般表式)(π2cos λxT t A y -=比较,可得振幅02.0=A m ,波长3.0=λ m ,周期01.0=T s 。
因此频率10001.011===T νHz , 波速 301003.0=⨯==λνu m ·s -(2)将1.0=x m 代入波动表式,得到位于该处的质点的振动表式4题图)3π201.0π2cos(02.0)3.01.001.0(π2cos 02.0-=-=t t y 因而该处质点振动的初相位3π20-=ϕ。
大学物理课后习题答案第五章
第五章 机械波5.1 已知一波的波动方程为y = 5×10-2sin(10πt – 0.6x ) (m). (1)求波长、频率、波速及传播方向;(2)说明x = 0时波动方程的意义,并作图表示. [解答](1)与标准波动方程比较得:2π/λ = 0.6, 因此波长为:λ = 10.47(m);圆频率为:ω = 10π,频率为:v =ω/2π = 5(Hz);波速为:u = λ/T = λv =52.36(m·s -1).且传播方向为x 轴正方向.(2)当x = 0时波动方程就成为该处质点的振动方程: y = 5×10-2sin10πt = 5×10-2cos(10πt – π/2), 振动曲线如图.5.2 一平面简谐波在媒质中以速度为u = 0.2m·s -1沿x 轴正向传播,已知波线上A 点(x A = 0.05m )的振动方程为(m).试求:(1)简谐波的波动方程;(2)x = -0.05m 处质点P 处的振动方程.[解答](1)简谐波的波动方程为:; 即 = 0.03cos[4π(t – 5x ) + π/2]. (2)在x = -0.05m 处质点P 点的振动方程为:y = 0.03cos[4πt + π + π/2] =0.03cos(4πt - π/2).5.3 已知平面波波源的振动表达式为(m).求距波源5m 处质点的振动方程和该质点与波源的位相差.设波速为2m·s -1.[解答]振动方程为: , 位相差为 Δφ = 5π/4(rad).5.4 有一沿x 轴正向传播的平面波,其波速为u = 1m·s -1,波长λ = 0.04m ,振幅A = 0.03m .若以坐标原点恰在平衡位置而向负方向运动时作为开始时刻,试求:(1)此平面波的波动方程;(2)与波源相距x = 0.01m 处质点的振动方程,该点初相是多少?[解答](1)设原点的振动方程为:y 0 = A cos(ωt + φ),其中A = 0.03m .由于u = λ/T ,所以质点振动的周期为:T = λ/u = 0.04(s),圆频率为:ω = 2π/T = 50π.当t = 0时,y 0 = 0,因此cos φ = 0;由于质点速度小于零,所以φ = π/2. 原点的振动方程为:y 0 = 0.03cos(50πt + π/2), 平面波的波动方程为:= 0.03cos[50π(t – x ) + π/2).(2)与波源相距x = 0.01m 处质点的振动方程为:y = 0.03cos50πt . 该点初相φ = 0.2cos()xy A t πωλ=-0.03cos(4)2A y t ππ=-cos[()]Ax x y A t uωϕ-=-+0.050.03cos[4()]0.22x y t ππ-=--20 6.010sin 2y t π-=⨯26.010sin()2xy t u π-=⨯-50.06sin()24t ππ=-0.03cos[50()]2x y t u ππ=-+t /s y /cm5 0 0.1 0.2 0.35.5 一列简谐波沿x 轴正向传播,在t 1 = 0s ,t 2 = 0.25s 时刻的波形如图所示.试求:(1)P 点的振动表达式; (2)波动方程;(3)画出O 点的振动曲线.[解答](1)设P 点的振动方程为 y P = A cos(ωt + φ), 其中A = 0.2m .在Δt = 0.25s 内,波向右传播了Δx = 0.45/3 = 0.15(m),所以波速为u = Δx/Δt = 0.6(m·s -1).波长为:λ = 4Δx = 0.6(m), 周期为:T = λ/u = 1(s), 圆频率为:ω = 2π/T = 2π.当t = 0时,y P = 0,因此cos φ = 0;由于波沿x 轴正向传播,所以P 点在此时向上运动,速度大于零,所以φ = -π/2.P 点的振动表达式为:y P = 0.2cos(2πt - π/2). (2)P 点的位置是x P = 0.3m ,所以波动方程为. (3)在x = 0处的振动方程为y 0 = 0.2cos(2πt + π/2),曲线如图所示.5.6 如图所示为一列沿x 负向传播的平面谐波在t = T /4时的波形图,振幅A 、波长λ以及周期T 均已知.(1)写出该波的波动方程;(2)画出x = λ/2处质点的振动曲线;(3)图中波线上a 和b 两点的位相差φa – φb 为多少? [解答](1)设此波的波动方程为: ,当t = T /4时的波形方程为:. 在x = 0处y = 0,因此得sin φ = 0,解得φ = 0或π.而在x = λ/2处y = -A ,所以φ = 0. 因此波动方程为:. (2)在x = λ/2处质点的振动方程为:, 曲线如图所示.(3)x a = λ/4处的质点的振动方程为;0.2cos[2()]2P x x y t u ππ-=--100.2cos(2)32t x πππ=-+cos[2()]t xy A T πϕλ=++cos(2)2xy A ππϕλ=++sin(2)xA πϕλ=-+cos 2()t x y A T πλ=+cos(2)cos 2t t y A A T Tπππ=+=-cos(2)2a t y A T ππ=+x /m y /m0.2O t 1=0 0.45 t 2=0.25P 图5.5 t /sy /m0.2O 0.5 1xy AO bau图5.6y Ax b = λ处的质点的振动方程为. 波线上a 和b 两点的位相差φa – φb = -3π/2.5.7 已知波的波动方程为y = A cosπ(4t – 2x )(SI ).(1)写出t = 4.2s 时各波峰位置的坐标表示式,并计算此时离原点最近的波峰的位置,该波峰何时通过原点?(2)画出t = 4.2s 时的波形曲线.[解答]波的波动方程可化为:y = A cos2π(2t – x ),与标准方程比较,可知:周期为T = 0.5s ,波长λ = 1m .波速为u = λ/T = 2m·s -1. (1)当t = 4.2s 时的波形方程为y = A cos(2πx – 16.8π)= A cos(2πx – 0.8π). 令y = A ,则cos(2πx – 0.8π) = 1,因此 2πx – 0.8π = 2k π,(k = 0, ±1, ±2,…), 各波峰的位置为x = k + 0.4,(k = 0, ±1, ±2,…).当k = 0时的波峰离原点最近,最近为:x = 0.4(m).通过原点时经过的时间为:Δt = Δx/u = (0 – x )/u = -0.2(s), 即:该波峰0.2s 之前通过了原点.(2)t = 0时刻的波形曲线如实线所示.经过t = 4s 时,也就是经过8个周期,波形曲线是重合的;再经Δt = 0.2s ,波形向右移动Δx = u Δt = 0.4m ,因此t = 4.2s 时的波形曲线如虚线所示.[注意]各波峰的位置也可以由cos(2πx – 16.8π) = 1解得,结果为x = k + 8.4,(k = 0, ±1, ±2,…),取同一整数k 值,波峰的位置不同.当k = -8时的波峰离原点最近,最近为x = 0.4m .5.8 一简谐波沿x 轴正向传播,波长λ = 4m ,周期T = 4s ,已知x = 0处的质点的振动曲线如图所示. (1)写出时x = 0处质点的振动方程;(2)写出波的表达式;(3)画出t = 1s 时刻的波形曲线.[解答]波速为u = λ/T = 1(m·s -1).(1)设x = 0处的质点的振动方程为y = A cos(ωt + φ), 其中A = 1m ,ω = 2π/T = π/2.当t = 0时,y = 0.5,因此cos φ = 0.5,φ = ±π/3.在0时刻的曲线上作一切线,可知该时刻的速度小于零,因此φ = π/3.振动方程为:y = cos(πt /2 + π/3). (2)波的表达式为:.(3)t = 1s 时刻的波形方程为cos(22)b ty A Tππ=+cos[2()]t x y A T πϕλ=-+cos[2()]t xy A T πϕλ=-+cos[()]23t x ππ=-+xy A O ut =0 t =4.2s 0.51 t /s y /m1 O -10.5 图5.8x /my /m 1O -10.5u2/3,波形曲线如图所示.5.9 在波的传播路程上有A 和B 两点,都做简谐振动,B 点的位相比A 点落后π/6,已知A 和B 之间的距离为2.0cm ,振动周期为2.0s .求波速u 和波长λ.[解答] 设波动方程为:, 那么A 和B 两点的振动方程分别为:,.两点之间的位相差为:,由于x B – x A = 0.02m ,所以波长为:λ = 0.24(m).波速为:u = λ/T = 0.12(m·s -1).5.10 一平面波在介质中以速度u = 20m·s -1沿x 轴负方向传播.已知在传播路径上的某点A 的振动方程为y = 3cos4πt .(1)如以A 点为坐标原点,写出波动方程;(2)如以距A 点5m 处的B 点为坐标原点,写出波动方程; (3)写出传播方向上B ,C ,D 点的振动方程. [解答](1)以A 点为坐标原点,波动方程为 .(2)以B 点为坐标原点,波动方程为. (3)以A 点为坐标原点,则x B = -5m 、x C = -13m 、x D = 9m ,各点的振动方程为, ,.[注意]以B 点为坐标原点,求出各点坐标,也能求出各点的振动方程.5.11 一弹性波在媒质中传播的速度u = 1×103m·s -1,振幅A = 1.0×10-4m ,频率ν= 103Hz .若该媒质的密度为800kg·m -3,求:(1)该波的平均能流密度;(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量.[解答](1)质点的圆频率为:ω = 2πv = 6.283×103(rad·s -1), 波的平均能量密度为:= 158(J·m -3), 平均能流密度为:= 1.58×105(W·m -2).(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量为:E = ItS = 3.79×103(J).5cos()26y x ππ=-cos[2()]t xy A T πϕλ=-+cos[2()]A A xt y A T πϕλ=-+cos[2()]B B xt y A T πϕλ=-+2(2)6B A x x πππλλ---=-3cos 4()3cos(4)5x x y t t u πππ=+=+3cos 4()Ax x y t u π-=+3cos(4)5x t πππ=+-3cos 4()3cos(4)BB x y t t u πππ=+=-33cos 4()3cos(4)5C C x y t t u πππ=+=-93cos 4()3cos(4)5D D x y t t u πππ=+=+2212w A ρω=I wu =x5m A B C D8m 9m图5.105.12 一平面简谐声波在空气中传播,波速u = 340m·s -1,频率为500Hz .到达人耳时,振幅A = 1×10-4cm ,试求人耳接收到声波的平均能量密度和声强?此时声强相当于多少分贝?已知空气密度ρ = 1.29kg·m -3.[解答]质点的圆频率为:ω = 2πv = 3.142×103(rad·s -1), 声波的平均能量密度为:= 6.37×10-6(J·m -3), 平均能流密度为:= 2.16×10-3(W·m -2),标准声强为:I 0 = 1×10-12(W·m -2), 此声强的分贝数为:= 93.4(dB).5.13 设空气中声速为330m·s -1.一列火车以30m·s -1的速度行驶,机车上汽笛的频率为600Hz .一静止的观察者在机车的正前方和机车驶过其身后所听到的频率分别是多少?如果观察者以速度10m·s -1与这列火车相向运动,在上述两个位置,他听到的声音频率分别是多少?[解答]取声速的方向为正,多谱勒频率公式可统一表示为, 其中v S 表示声源的频率,u 表示声速,u B 表示观察者的速度,u S 表示声源的速度,v B 表示观察者接收的频率.(1)当观察者静止时,u B = 0,火车驶来时其速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为= 660(Hz). 火车驶去时其速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为= 550(Hz). (2)当观察者与火车靠近时,观察者的速度方向与声速相反,u B = -10m·s -1;火车速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为= 680(Hz). 当观察者与火车远离时,观察者的速度方向与声速相同,u B = 10m·s -1;火车速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为= 533(Hz). [注意]这类题目涉及声速、声源的速度和观察者的速度,规定方向之后将公式统一起来,很容易判别速度方向,给计算带来了方便.5.14.一声源的频率为1080Hz ,相对地面以30m·s -1速率向右运动.在其右方有一反射面相对地面以65m·s -1的速率向左运动.设空气中声速为331m·s -1.求:(1)声源在空气中发出的声音的波长; (2)反射回的声音的频率和波长.[解答](1)声音在声源垂直方向的波长为:λ0 = uT 0 = u /ν0 = 331/1080 = 0.306(m); 在声源前方的波长为:λ1 = λ0 - u s T 0 = uT 0 - u s T 0 = (u - u s )/ν0 = (331-30)/1080 = 0.2787(m); 在声源后方的波长为:λ2 = λ0 + u s T 0 = uT 0 + u s T 0 = (u + u s )/ν0= (331+30)/1080 = 0.3343(m).2212w A ρω=I wu =010lgIL I =BB S Su u u u νν-=-33060033030B S S u u u νν==--33060033030B S S u u u νν==-+3301060033030B B S S u u u u νν-+==--3301060033030B B S S u u u u νν--==-+u Bu Su(2)反射面接收到的频率为= 1421(Hz).将反射面作为波源,其频率为ν1,反射声音的频率为= 1768(Hz).反射声音的波长为=0.1872(m).或者 = 0.1872(m). [注意]如果用下式计算波长=0.2330(m), 结果就是错误的.当反射面不动时,作为波源发出的波长为u /ν1 = 0.2330m ,而不是入射的波长λ1.5.15 S 1与S 2为两相干波源,相距1/4个波长,S 1比S 2的位相超前π/2.问S 1、S 2连线上在S 1外侧各点的合成波的振幅如何?在S 2外侧各点的振幅如何?[解答]如图所示,设S 1在其左侧产生的波的波动方程为,那么S 2在S 1左侧产生的波的波动方程为,由于两波源在任意点x 产生振动反相,所以合振幅为零.S 1在S 2右侧产生的波的波动方程为,那么S 2在其右侧产生的波的波动方程为,由于两波源在任意点x 产生振动同相,所以合振幅为单一振动的两倍.5.16 两相干波源S 1与S 2相距5m ,其振幅相等,频率都是100Hz ,位相差为π;波在媒质中的传播速度为400m·s -1,试以S 1S 2连线为坐标轴x ,以S 1S 2连线中点为原点,求S 1S 2间因干涉而静止的各点的坐标.[解答]如图所示,设S 1在其右侧产生的波的波动方程为 ,那么S 2在其左侧产生的波的波动方程为.1033165108033130B S u u u u νν++==⨯--`11331142133165B u u u νν==⨯--`1111331651421BBu u u uλννν--=-==`1`13311768uλν==`111650.27871768Bu λλν=-=-1cos[2()]t xy A T πϕλ=++2/4cos[2()]2t x y A T λππϕλ-=++-cos[2()]t xA T πϕπλ=++-1cos[2()]t xy A T πϕλ=-+2/4cos[2()]2t x y A T λππϕλ-=-+-cos[2()]t xA T πϕλ=-+1/2cos[2()]x l y A t u πνϕ+=-+5cos(2)24A t x πππνϕ=-+-2/2cos[2()]x l y A t u πνϕπ-=+++cos(2)24A t x πππνϕ=++-u BuxS 1 xS 2λ/4 x xS 1x 2l两个振动的相差为Δφ = πx + π,当Δφ = (2k + 1)π时,质点由于两波干涉而静止,静止点为x = 2k , k 为整数,但必须使x 的值在-l /2到l /2之间,即-2.5到2.5之间.当k = -1、0和1时,可得静止点的坐标为:x = -2、0和2(m).5.17 设入射波的表达式为,在x = 0处发生反射,反射点为一自由端,求:(1)反射波的表达式; (2)合成驻波的表达式.[解答](1)由于反射点为自由端,所以没有半波损失,反射波的波动方程为.(2)合成波为y = y 1 + y 2,将三角函数展开得,这是驻波的方程.5.18 两波在一很长的弦线上传播,设其表达式为:,,用厘米、克、秒(cm,g,s )制单位,求:(1)各波的频率,波长、波速;(2)节点的位置;(3)在哪些位置上,振幅最大?[解答](1)两波可表示为:,, 可知它们的周期都为:T = 0.5(s),频率为:v = 1/T = 2(Hz);波长为:λ = 200(cm);波速为:u = λ/T = 400(cm·s -1).(2)位相差Δφ = πx /50,当Δφ = (2k + 1)π时,可得节点的位置x = 50(2k + 1)(cm),(k = 0,1,2,…).(3)当Δφ = 2k π时,可得波腹的位置x = 100k (cm),(k = 0,1,2,…).(注:可编辑下载,若有不当之处,请指正,谢谢!)1cos 2()t xy A T πλ=+2cos 2()t xy A T πλ=-222coscosy A x t Tππλ=1 6.0cos(0.028.0)2y x t π=-2 6.0cos(0.028.0)2y x t π=+1 6.0cos 2()0.5200t x y π=-2 6.0cos 2()0.5200t x y π=+。
大学物理课后习题答案第五章
大学物理课后习题答案第五章-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第五章 机械波5.1 已知一波的波动方程为y = 5×10-2sin(10πt – 0.6x ) (m). (1)求波长、频率、波速及传播方向;(2)说明x = 0时波动方程的意义,并作图表示.[解答](1)与标准波动方程2cos()xy A t πωλ=-比较得:2π/λ = 0.6,因此波长为:λ = 10.47(m);圆频率为:ω = 10π,频率为:v =ω/2π = 5(Hz);波速为:u = λ/T = λv = 52.36(m·s -1). 且传播方向为x 轴正方向.(2)当x = 0时波动方程就成为该处质点的振动方程: y = 5×10-2sin10πt = 5×10-2cos(10πt – π/2), 振动曲线如图.5.2 一平面简谐波在媒质中以速度为u = 0.2m·s -1沿x 轴正向传播,已知波线上A 点(x A = 0.05m )的振动方程为0.03cos(4)2A y t ππ=-(m).试求:(1)简谐波的波动方程;(2)x = -0.05m 处质点P 处的振动方程.[解答](1)简谐波的波动方程为:cos[()]Ax x y A t uωϕ-=-+;即 0.050.03cos[4()]0.22x y t ππ-=--= 0.03cos[4π(t – 5x ) + π/2].(2)在x = -0.05m 处质点P 点的振动方程为:y = 0.03cos[4πt + π + π/2] = 0.03cos(4πt - π/2).5.3 已知平面波波源的振动表达式为20 6.010sin 2y t π-=⨯(m).求距波源5m处质点的振动方程和该质点与波源的位相差.设波速为2m·s -1.[解答]振动方程为:26.010sin ()2xy t u π-=⨯- 50.06sin()24t ππ=-,位相差为 Δφ = 5π/4(rad).5.4 有一沿x 轴正向传播的平面波,其波速为u = 1m·s -1,波长λ = 0.04m ,振幅A = 0.03m .若以坐标原点恰在平衡位置而向负方向运动时作为开始时刻,试求:(1)此平面波的波动方程;(2)与波源相距x = 0.01m 处质点的振动方程,该点初相是多少?[解答](1)设原点的振动方程为:y 0 = A cos(ωt + φ),其中A = 0.03m . 由于u = λ/T ,所以质点振动的周期为:T = λ/u = 0.04(s),圆频率为:ω = 2π/T = 50π.当t = 0时,y 0 = 0,因此cos φ = 0;由于质点速度小于零,所以φ = π/2.原点的振动方程为:y 0 = 0.03cos(50πt + π/2), 平面波的波动方程为:0.03cos[50()]2x y t u ππ=-+= 0.03cos[50π(t – x ) + π/2).(2)与波源相距x = 0.01m 处质点的振动方程为:y = 0.03cos50πt . 该点初相φ = 0.5.5 一列简谐波沿x 轴正向传播,在t 1 = 0s ,t 2 = 0.25s 时刻的波形如图所示.试求:(1)P 点的振动表达式; (2)波动方程; (3)画出O 点的振动曲线. [解答](1)设P 点的振动方程为 y P = A cos(ωt + φ),其中A = 0.2m .在Δt = 0.25s 内,波向右传播了Δx = 0.45/3 = 0.15(m), 所以波速为u = Δx/Δt = 0.6(m·s -1).波长为:λ = 4Δx = 0.6(m), 周期为:T = λ/u = 1(s), 圆频率为:ω = 2π/T = 2π.当t = 0时,y P = 0,因此cos φ = 0;由于波沿x 轴正向传播,所以P 点在此时向上运动,速度大于零,所以φ = -π/2.P 点的振动表达式为:y P = 0.2cos(2πt - π/2). (2)P 点的位置是x P = 0.3m ,所以波动方程为0.2cos[2()]2P x x y t u ππ-=--100.2cos(2)32t x πππ=-+. (3)在x = 0处的振动方程为y 0 = 0.2cos(2πt + π/2),曲线如图所示.5.6 如图所示为一列沿x 负向传播的平面谐波在t = T /4时的波形图,振幅A 、波长λ以及周期T 均已知.(1)写出该波的波动方程; (2)画出x = λ/2处质点的振动曲线; (3)图中波线上a 和b 两点的位相差φa – φb 为多少?[解答](1)设此波的波动方程为:图5.5cos[2()]t xy A T πϕλ=++,当t = T /4时的波形方程为:cos(2)2x y A ππϕλ=++sin(2)xA πϕλ=-+.在x = 0处y = 0,因此得sin φ = 0, 解得φ = 0或π.而在x = λ/2处y = -A ,所以φ = 0.因此波动方程为:cos 2()t xy A T πλ=+.(2)在x = λ/2处质点的振动方程为:cos(2)cos 2t t y A A T Tπππ=+=-, 曲线如图所示.(3)x a = λ/4处的质点的振动方程为 cos(2)2a t y A T ππ=+; x b = λ处的质点的振动方程为 cos(22)b t y A Tππ=+. 波线上a 和b 两点的位相差φa – φb = -3π/2.5.7 已知波的波动方程为y = A cosπ(4t – 2x )(SI ).(1)写出t = 4.2s 时各波峰位置的坐标表示式,并计算此时离原点最近的波峰的位置,该波峰何时通过原点( 2)画出t = 4.2s 时的波形曲线. [解答]波的波动方程可化为:y = A cos2π(2t – x ), 与标准方程cos[2()]t xy A T πϕλ=-+比较, 可知:周期为T = 0.5s ,波长λ = 1m .波速为u = λ/T = 2m·s -1.(1)当t = 4.2s 时的波形方程为y = A cos(2πx – 16.8π)= A cos(2πx – 0.8π). 令y = A ,则cos(2πx – 0.8π) = 1,因此 2πx – 0.8π = 2k π,(k = 0, ±1, ±2,…),各波峰的位置为x = k + 0.4,(k = 0, ±1, ±2,…).当k = 0时的波峰离原点最近,最近为:x = 0.4(m).通过原点时经过的时间为:Δt = Δx/u = (0 – x )/u = -0.2(s), 即:该波峰0.2s 之前通过了原点.(2)t = 0时刻的波形曲线如实线所示.经过t = 4s 时,也就是经过8个周期,波形曲线是重合的;再经Δt = 0.2s ,波形向右移动Δx = u Δt = 0.4m ,因此t = 4.2s 时的波形曲线如虚线所示.[注意]各波峰的位置也可以由cos(2πx – 16.8π) = 1解得,结果为x = k + 8.4,(k = 0, ±1, ±2,…),取同一整数k 值,波峰的位置不同.当k = -8时的波峰离原点最近,最近为x = 0.4m .5.8 一简谐波沿x 轴正向传播,波长λ = 4m ,周期T = 4s ,已知x = 0处的质点的振动曲线如图所示.(1)写出时x = 0处质点的振动方程; (2)写出波的表达式;(3)画出t = 1s 时刻的波形曲线.[解答]波速为u = λ/T = 1(m·s -1). (1)设x = 0处的质点的振动方程为y = A cos(ωt + φ),其中A = 1m ,ω = 2π/T = π/2.当t = 0时,y = 0.5,因此cos φ = 0.5,φ = ±π/3.在0时刻的曲线上作一切线,可知该时刻的速度小于零,因此φ = π/3.振动方程为:y = cos(πt /2 + π/3). (2)波的表达式为:cos[2()]t xy A T πϕλ=-+ cos[()]23t x ππ=-+. (3)t = 1s 时刻的波形方程为 5cos()26y x ππ=-,波形曲线如图所示.5.9 在波的传播路程上有A 和B 两点,都做简谐振动,B 点的位相比A 点落后π/6,已知A 和B 之间的距离为2.0cm ,振动周期为2.0s .求波速u 和波长λ.[解答] 设波动方程为:cos[2()]t xy A T πϕλ=-+,那么A 和B 两点的振动方程分别为:cos[2()]A A xt y A T πϕλ=-+,cos[2()]B B xt y A T πϕλ=-+.两点之间的位相差为:2(2)6B A x x πππλλ---=-,由于x B – x A = 0.02m ,所以波长为:λ = 0.24(m).波速为:u = λ/T = 0.12(m·s -1).5.10 一平面波在介质中以速度u = 20m·s -1沿x 轴负方向传播.已知在传播路径上的某点A 的振动方程为y = 3cos4πt .(1)如以A 点为坐标原点,写出波动方程; (2)如以距A 点5m 处的B 点为坐标原点,写出波动方程;(3)写出传播方向上B ,C ,D 点的振动方程.[解答](1)以A 点为坐标原点,波动方程为3cos 4()3cos(4)5x xy t t u πππ=+=+.(2)以B 点为坐标原点,波动方程为3cos 4()Ax x y t u π-=+3cos(4)5x t πππ=+-.(3)以A 点为坐标原点,则x B = -5m 、x C = -13m 、x D = 9m ,各点的振动方程为3cos 4()3cos(4)B B xy t t u πππ=+=-,33cos 4()3cos(4)5C C x y t t u πππ=+=-,93cos 4()3cos(4)5D D x y t t u πππ=+=+.[注意]以B 点为坐标原点,求出各点坐标,也能求出各点的振动方程.5.11 一弹性波在媒质中传播的速度u = 1×103m·s -1,振幅A = 1.0×10-4m ,频率ν= 103Hz .若该媒质的密度为800kg·m -3,求:(1)该波的平均能流密度;(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量. [解答](1)质点的圆频率为:ω = 2πv = 6.283×103(rad·s -1),波的平均能量密度为:2212w A ρω== 158(J·m -3),平均能流密度为:I wu == 1.58×105(W·m -2).(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量为:E = ItS = 3.79×103(J).5.12 一平面简谐声波在空气中传播,波速u = 340m·s -1,频率为500Hz .到达人耳时,振幅A = 1×10-4cm ,试求人耳接收到声波的平均能量密度和声强此时声强相当于多少分贝已知空气密度ρ = 1.29kg·m -3.[解答]质点的圆频率为:ω = 2πv = 3.142×103(rad·s -1),声波的平均能量密度为:2212w A ρω== 6.37×10-6(J·m -3),平均能流密度为:I wu == 2.16×10-3(W·m -2), 标准声强为:I 0 = 1×10-12(W·m -2),图5.10此声强的分贝数为:010lgIL I == 93.4(dB).5.13 设空气中声速为330m·s -1.一列火车以30m·s -1的速度行驶,机车上汽笛的频率为600Hz .一静止的观察者在机车的正前方和机车驶过其身后所听到的频率分别是多少?如果观察者以速度10m·s -1与这列火车相向运动,在上述两个位置,他听到的声音频率分别是多少?[解答]取声速的方向为正,多谱勒频率公式可统一表示为BB S Su u u u νν-=-,其中v S 表示声源的频率,u 表示声速,u B 表示观察者的速度,u S 表示声源的速度,v B 表示观察者接收的频率.(1)当观察者静止时,u B = 0,火车驶来时其速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为33060033030B S S u u u νν==--= 660(Hz).火车驶去时其速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为33060033030B S S u u u νν==-+= 550(Hz).(2)当观察者与火车靠近时,观察者的速度方向与声速相反,u B = -10m·s -1;火车速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为3301060033030B B S S u u u u νν-+==--= 680(Hz).当观察者与火车远离时,观察者的速度方向与声速相同,u B = 10m·s -1;火车速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为3301060033030B B S S u u u u νν--==-+= 533(Hz).[注意]这类题目涉及声速、声源的速度和观察者的速度,规定方向之后将公式统一起来,很容易判别速度方向,给计算带来了方便.5.14.一声源的频率为1080Hz ,相对地面以30m·s -1速率向右运动.在其右方有一反射面相对地面以65m·s -1的速率向左运动.设空气中声速为331m·s -1.求:(1)声源在空气中发出的声音的波长; (2)反射回的声音的频率和波长.[解答](1)声音在声源垂直方向的波长为:λ0 = uT 0 = u /ν0 = 331/1080 = 0.306(m);在声源前方的波长为:λ1 = λ0 - u s T 0 = uT 0 - u s T 0 = (u - u s )/ν0 = (331-30)/1080 = 0.2787(m);在声源后方的波长为:λ2 = λ0 + u s T 0 = uT 0 + u s T 0 = (u + u s )/ν0= (331+30)/1080 = 0.3343(m).(2)反射面接收到的频率为1033165108033130B S u u u u νν++==⨯--= 1421(Hz). 将反射面作为波源,其频率为ν1,反射声音的频率为`11331142133165B u u u νν==⨯--= 1768(Hz).反射声音的波长为`1111331651421B B uu u u λννν--=-===0.1872(m).或者 `1`13311768u λν=== 0.1872(m).[注意]如果用下式计算波长`111650.27871768B u λλν=-=-=0.2330(m),结果就是错误的.当反射面不动时,作为波源发出的波长为u /ν1 = 0.2330m ,而不是入射的波长λ1.5.15 S 1与S 2为两相干波源,相距1/4个波长,S 1比S 2的位相超前π/2.问S 1、S 2连线上在S 1外侧各点的合成波的振幅如何?在S 2外侧各点的振幅如何?[解答]如图所示,设S 1在其左侧产生的波的波动方程为 1cos[2()]t xy A T πϕλ=++, 那么S 2在S 1左侧产生的波的波动方程为2/4cos[2()]2t x y A T λππϕλ-=++-cos[2()]t xA T πϕπλ=++-,由于两波源在任意点x 产生振动反相,所以合振幅为零.S 1在S 2右侧产生的波的波动方程为1cos[2()]t xy A T πϕλ=-+,那么S 2在其右侧产生的波的波动方程为2/4cos[2()]2t x y A T λππϕλ-=-+-cos[2()]t xA T πϕλ=-+,由于两波源在任意点x 产生振动同相,所以合振幅为单一振动的两倍.5.16 两相干波源S 1与S 2相距5m ,其振幅相等,频率都是100Hz ,位相差为π;波在媒质中的传播速度为400m·s -1,试以S 1S 2连线为坐标轴x ,以S 1S 2连线中点为原点,求S 1S 2间因干涉而静止的各点的坐标.[解答]如图所示,设S 1在其右侧产生的波的波动方程为1 2121/2cos[2()]x l y A t u πνϕ+=-+ 5cos(2)24A t x πππνϕ=-+-,那么S 2在其左侧产生的波的波动方程为2/2cos[2()]x l y A t u πνϕπ-=+++cos(2)24A t x πππνϕ=++-.两个振动的相差为Δφ = πx + π,当Δφ = (2k + 1)π时,质点由于两波干涉而静止,静止点为x = 2k , k 为整数,但必须使x 的值在-l /2到l /2之间,即-2.5到2.5之间.当k = -1、0和1时,可得静止点的坐标为:x = -2、0和2(m).5.17 设入射波的表达式为1cos 2()t xy A T πλ=+,在x = 0处发生反射,反射点为一自由端,求:(1)反射波的表达式; (2)合成驻波的表达式.[解答](1)由于反射点为自由端,所以没有半波损失,反射波的波动方程为2cos 2()t xy A T πλ=-.(2)合成波为y = y 1 + y 2,将三角函数展开得222cos cos y A x t Tππλ=,这是驻波的方程.5.18 两波在一很长的弦线上传播,设其表达式为:1 6.0cos (0.028.0)2y x t π=-,2 6.0cos(0.028.0)2y x t π=+,用厘米、克、秒(cm,g,s )制单位,求:(1)各波的频率,波长、波速;(2)节点的位置;(3)在哪些位置上,振幅最大?[解答](1)两波可表示为:1 6.0cos 2()0.5200t x y π=-,2 6.0cos 2()0.5200t xy π=+,可知它们的周期都为:T = 0.5(s),频率为:v = 1/T = 2(Hz);波长为:λ = 200(cm);波速为:u = λ/T = 400(cm·s -1).(2)位相差Δφ = πx /50,当Δφ = (2k + 1)π时,可得节点的位置x = 50(2k + 1)(cm),(k = 0,1,2,…).(3)当Δφ = 2k π时,可得波腹的位置x = 100k (cm),(k = 0,1,2,…).。
程守洙《普通物理学》(第5版)辅导系列-章节题库-第11章 机械波和电磁波【圣才出品】
7.图 11-3 所示为一沿 Ox 轴正方向传播的横波在 t=T/6 时刻的波形图,式中 T 为 周期,设波源位于坐标原点,那么波源的初相为______。
3 / 32
圣才电子书
十万种考研考证电子书、题库视频学习平 台
图 11-3
【答案】0
8.一警笛发射频率为 1500Hz 的声波,并以 25m/s 的速度向前运动,在警笛后方有 一人,他在静止时听到警笛的频率是______;若他以 6m/s 的速度跟踪警笛,他听到的频 率是______;在警笛后方空气中声波的波长是______。(空气中声速:330m/s)
圣才电子书
十万种考研考证电子书、题库视频学习平 台
第 11 章 机械波和电磁波
一、选择题 1.一横波沿绳子传播时的波动表达式为 y=0.05cos(4πx-10πt),则其( )。 A.波长为 0.5 m B.波速为 5m·s-1 C.波速为 25m·s-1 D.频率为 2Hz 【答案】A 【解析】
1 / 32
圣才电子书
A.A1+A2
十万种考研考证电子书、题库视频学习平 台
B.
C. D.
图 11-1
【答案】A
4.如图 11-2 所示,一平面简谐波沿 x 轴正方向传播,已知 P 点的振动方程为 ,则波动方程为( )。
图 11-2
A. B. C. D. 【答案】A 【解析】在 x 轴取任意点 Q,其平衡位置为 x。由于波沿轴正方向传播,则 Q 点的振
2.在驻波中,两个相邻波节间各质点的振动为( )。 A.振幅相同,相位相同; B.振幅不同,相位相同; C.振幅相同,相位不同; D.振幅不同,相位不同。 【答案】B 【解析】在驻波中,两相邻波节之间的质元振动相位相同,振幅不等。
物理下册习题答案(第五版下册)
mg k x cos( t) k m
k
m
141 057
0
5cm
arctan( 4 / 3)
提示: 两个同方向同频率谐振动的合成
用旋转矢量法求合成, 由图中可定t=0合振动的旋转矢量
Ok!
141 059
141075
/ 2
/3
/ 3
解: 旋转矢量法定初相
98N / m
2 s 7
17-24
17-34 17-44 18-4
17-25
17-35 17-45 18-5
17-26
17-36 17-46 18-6
17-27
17-37 17-47 18-7
17-28
17-38
17-29
17-39
17-30
17-40
18-8
18-9
18-10
19-1
19-11
19-2
19-12
19-3
19-13
2 2
A2
2
1
A1
x
合振动初相位
arctan[(A1 sin 1 A2 sin 2 ( A1 cos1 A2 cos2 )]
arctan( 11) 1.48rad
解: (2)用振动加强减弱条件解
解: (2)用振动加强减弱条件解
要x1 x3 振幅最大,由加强条件
E p kx2 2 kA2 8 E / 4 (4) 当x A / 2时,
Ek E Ep 3E 4
P38,9-28
已知两同方向同频率的简谐运动方程分别为:x1
0.05cos(10t 0.75 ),
x2 0.06cos(10t 0.25 ),
物理-机械波习题库(含答案)
y (m)机械波一、选择题:1.横波以波速u 沿x 轴负方向传播。
t 时刻波形曲线如图。
则该时刻 (A) A 点振动速度大于零 (B) B 点静止不动 (C) C 点向下运动 (D) D 点振动速度小于零 [ D ]2.频率为 100 Hz ,传播速度为300 m/s 的平面简谐波,波线上距离小于波长的两点振动的相位差为π31,则此两点相距(A) 2.86 m (B) 2.19 m (C) 0.5 m (D) 0.25 m [ C ]3.图中画出一平面简谐波在t = 2 s 时刻的波形图,则平衡位置在P 点的质点的振动方程是 (A)]31)2(cos[01.0π+-π=t y P (SI) (B)]31)2(cos[01.0π++π=t y P (SI) (C) ]31)2(2cos[01.0π+-π=t y P(SI) (D)]31)2(2cos[01.0π--π=t y P (SI) C ]4中:(A) 它的势能转换成动能 (B) 它的动能转换成势能(C) 它从相邻的一段媒质质元获得能量,其能量逐渐增加(D) 它把自己的能量传给相邻的一段媒质质元,其能量逐渐减小 [ C ]5.如图所示,两列波长为λ 的相干波在P 点相遇。
波在S 1点振动的初相是φ 1,S 1到P 点的距离是r 1;波在S 2点的初相是φ 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为: (A) λk r r =-12 (B) π=-k 212φφ (C) π=-π+-k r r 2/)(21212λφφ(D) π=-π+-k r r 2/)(22112λφφ [ D ]6.一机车汽笛频率为750 Hz ,机车以时速90公里远离静止的观察者.观察者听到的声音的频率是(设空气中声速为340 m/s ).(A) 810 Hz (B) 699 Hz (C) 805 Hz (D) 695 Hz [ B ]二、填空题:1.一平面简谐波的表达式为 )37.0125cos(025.0x t y -= (SI),其角频率ω =125 rad/s ,波速u = 338m/s ,波长λ = 17.0m 。
大物习题答案第5章机械波
第5章机械波基本要求1.理解描述简谐波的各物理量的意义及相互间的关系.2.理解机械波产生的条件.掌握由已知质点的简谐振动方程得出平面简谐波的波函数的方法.理解波函数的物理意义.理解波的能量传播特征及能流、能流密度概念.3.了解惠更斯原理和波的叠加原理.理解波的相干条件,能应用相位差和波程差分析、确定相干波叠加后振幅加强和减弱的条件.4.理解驻波及其形成。
5.了解机械波的多普勒效应及其产生的原因.基本概念1.机械波机械振动在弹性介质中的传播称为机械波,机械波产生的条件首先要有作机械振动的物体,即波源;其次要有能够传播这种机械振动的弹性介质。
它可以分为横波和纵波。
2.波线与波面沿波的传播方向画一些带有箭头的线,叫波线。
介质中振动相位相同的各点所连成的面,叫波面或波阵面。
在某一时刻,最前方的波面叫波前。
3.波长λ在波传播方向上,相位差为2π的两个邻点之间的距离称为波长,它是波的空间周期性的反映。
4.周期T与频率ν一定的振动相位向前传播一个波长的距离所需的时间称为波的周期,它反映了波的时间周期性,波的周期与传播介质各质点的振动周期相同。
周期的倒数称为频率,波的频率也就是波源的振动频率。
5.波速u单位时间里振动状态(或波形)在介质中传播的距离。
它与波动的特性无关,仅取决于传播介质的性质。
6.平面简谐波的波动方程在无吸收的均匀介质中沿x轴传播的平面简谐波的波函数为()2cos y A tx ωϕπλ=+或s )co (x y A tu ωϕ⎡⎤=+⎢⎥⎣⎦其中,“-”表示波沿x 轴正方向传播;“+”表示波沿x 轴负方向传播。
波函数是x 和t 的函数。
给定x ,表示x 处质点的振动,即给出x 处质点任意时刻离开自己平衡位置的位移;给定t ,表示t 时刻的波形,即给出t 时刻质点离开自己平衡位置的位移。
7.波的能量 波动中的动能与势能之和,其特点是同体积元中的动能和势能相等。
任意体积元的222k 211d =d d d sin ()22P W W W VA t x πλρωωϕ==-+8.平均能量密度、能流密度 一周期内垂直通过某一面积能量的平均值是平均能量密度,用w 表示。
机械波作业及参考参考答案
一. 选择题[C]1.(基础训练1)图14-10为一平面简谐波在t =2s 时刻的波形图,则平衡位置在P 点的质点的振动方程是(A)]31)2(cos[01.0π+-π=t y P (SI).(B)]31)2(cos[01.0π++π=t y P (SI).(C)]31)2(2cos[01.0π+-π=t y P (SI).(D)]31)2(2cos[01.0π--π=t y P (SI).【提示】由t=2s 波形,及波向X 轴负向传播,波动方程})2[(cos{0ϕω+-+-=ux x t A y ,ϕ为P 点初相。
以0x x =代入。
[C]2.(基础训练4)一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是()(A)动能为零,势能最大.(B)动能为零,势能为零.(C)动能最大,势能最大.(D)动能最大,势能为零.【提示】在波动的传播过程中,任意时刻的动能和势能不仅大小相等而且相位相同,在平衡位置,动能最大,势能最大。
[D]3.(基础训练7)在长为L ,一端固定,一端自由的悬空细杆上形成驻波,则此驻波的基频波(波长最长的波)的波长为(A)L .(B)2L . (C)3L .(D)4L . 【提示】形成驻波,固定端为波节,自由端为波腹。
波长最长,4L λ=。
[D]4.(自测提高3)一平面简谐波以速度u 沿x 轴正方向传播,在t =t '时波形曲线如图14-24所示.则坐标原点O的振动方程为(A)]2)(cos[π+'-=t t b u a y . (B)2)(2cos[π-'-π=t t b u a y .图14-10图14-24(C)]2)(cos[π+'+π=t t b u a y . (D)]2)(cos[π-'-π=t t bua y .【提示】由图可知,波长为2b ,周期2=,b T u 频率=u b ωπ,在t =t ',o 点的相位为-2π。
大学物理机械波习题附答案
一、选择题:一、选择题:1.3147:一平面简谐波沿Ox 正方向传播,波动表达式为]2)42(2cos[10.0p+-p =x t y (SI),该波在t = 0.5 s 时刻的波形图是时刻的波形图是[ B ]2.3407:横波以波速u 沿x 轴负方向传播。
t 时刻波形曲线如图。
则该时刻时刻波形曲线如图。
则该时刻 (A) A 点振动速度大于零点振动速度大于零 (B) B 点静止不动点静止不动(C) C 点向下运动点向下运动 (D) D 点振动速度小于零点振动速度小于零 [ ]3.3411:若一平面简谐波的表达式为:若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C 为正值常量,则:为正值常量,则:(A) 波速为C (B) 周期为1/B (C) 波长为波长为 2p /C C (D) 角频率为2p /B [ ]4.3413:下列函数f (x 。
t )可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量。
其中哪个函数表示沿x 轴负向传播的行波?轴负向传播的行波?(A) )cos(),(bt ax A t x f += (B) )cos(),(bt ax A t x f -=(C) bt ax A t x f cos cos ),(×= (D) bt ax A t x f sin sin ),(×= [ ]5.3479:在简谐波传播过程中,沿传播方向相距为l21(l 为波长)的两点的振动速度必定动速度必定(A) 大小相同,而方向相反大小相同,而方向相反 (B) 大小和方向均相同大小和方向均相同 (C) 大小不同,方向相同大小不同,方向相同 (D) 大小不同,而方向相反大小不同,而方向相反xu A y B C D Ox (m) O 2 0.1 0y (m)( A ) x (m)O 2 0.1 0y (m) ( B )x (m) O 2- 0.1 0 y (m) ( C ) x (m)O 2 y (m)( D )- 0.1 0[ ]6.3483:一简谐横波沿Ox 轴传播。
(完整版)机械波习题及答案
⑵若波速为 280m/s, 其传播方向如何?此时
质点 P 从图中位置运动 至波谷位置的最短时间
是多少?
图 7-32-4
【解析】⑴题目没有指明波传播方向,因此有左、右传播
方向两种可能性。
若波向右传播,则在△ t =t2+t1=0.05s 内传播的距离△ s =(n+1/4)λ,n=0,1,2,…。此时波速的通式为 v 右=△s /△t= (n+1/4) ×8/0.05=(160n+40)m/s,n=0,1,2,…。
若波向左传播,则△t=0.05s 内传播的距离△s=(n+3/4)λ, n=0、1、2…。此时波速通式为:v 左=△s /△t= (160n+120)m/s, n=0,1,2…。
⑵若波速 v=280m/s,在△t =0.05s 内传播的距离为△s =v·△ t=280×0.05=14(m)=7λ/4.由波形知,波再向左传△s =7m,则 P 点第一次到达波谷位置△t’=7/280=2.5×10-2s
向,可判断波的传播
方向.如图 7-32-1 中若质点 4 向上运动,则可判定该波向左传播.
⑹若知波速 v 的大小。可求频率 f 或周期 T,即 f=1/T=v/
λ.
⑺若知 f 或 T,可求波速 v,即 v=λf=λ/T
⑻若知波速 v 的大小和方向,可画出后一时刻的波形图,
波在均匀介质中做匀速运动,Δt 时间后各质点的运动形式,沿
期为 T,Q 质点速度 方向在波形图中是
向下的,下列说法中
正确的是( ) A.波源是 M,
图 7-32-3
由波源起振开始计时,P 点已经振动时间 T
B.波源是 N,由波源起振开始计时,P 点已经振动时间 3 T
大学物理 第五章机械波 课后习题 参考答案
方程才能写成这种形式? 解: 由于坐标原点和开始计时时刻的选全完取是一种主观行为, 所以在波动方程中, 坐标原 点不一定要选在波源处,同样, t 0 的时刻也不一定是波源开始振动的时刻;当波动方程
w w
可表示为 2 A cos
的含义已做了拓展,即在写波动方程时,我们可以把介质中某一已知点的振动视为波源,只 要把振动方程为已知的点选为坐标原点,即可得题示的波动方程. 5-5 在驻波的两相邻波节间的同一半波长上,描述各质点振动的什么物理量不同,什么物理 量相同? 解: 取驻波方程为 y 2 A cos
(1)波的振幅、波速、频率、周期与波长;
om
者是通过压缩波面(缩短波长)使频率增高, 后者则是观察者的运动使得单位时间内通过的波 面数增加而升高频率.
(2)写出传播方向上距离波源为 l 处一点的振动方程; (3)任一时刻,在波的传播方向上相距为 d 的两点的位相差. 解: (1)已知平面简谐波的波动方程
2
2 代入上式,即得 C
( x 2 x1 )
Cd .
2
v max A 10 0.05 0.5 m s 1
a max 2 A (10 ) 2 0.05 5 2 m s 2
.c
x)
B 2 ,波速 u , C C 1 2 波动周期 T . B (2)将 x l 代入波动方程即可得到该点的振动方程
不变,由此能从波动方程说明什么?
.k
x
u
x x )+ 0 ]中的 表示什么?如果改写为 y = A cos u u x x x ( t 又是什么意思?如果 t 和 x 均增加,但相应的[ ( t )+ 0 ]的值 0 ), u u u
大学物理_机械波答案
机械波1.提示:1(,)cos[2()]t xy x t A T πϕλ=-+,2012(,)cos[2()]x t y x t A T λπϕλ+=-+,1sin[2()],dy t xv A dtTωπϕλ==--+2112sin[2()]x dy t v A v dtTλωπϕλ+==--+=-2.提示:波速取决于媒质的性质,振动速度是媒质中质元的运动速度3.提示:由图可知O 点处质元的运动方向向下,00,0,,t t y v A ω===-sin[2],dy t v A dtTωπϕ==-+0sin(0),2v A A πωϕωϕ=-+=-=4.提示:由图可知:8,160/,3,m u m s A m λ===则120,240uH Z v T νωππλ=====由图可知O 点处质元的运动方向向上,则当0,0,sin[2()],dy t xt x v A A dtT ωπϕωλ====--+=时可得2πϕ=-5.提示:在最大位移处,胁变最小,它的速度为0,因此动能为0,对于简谐波动能等于势能。
6.提示:对于A 点的上下运动可当作机械振动,在其偏离平衡位置最大位移处其动能为0,因此A 点在向平衡位置方向运动,则可知波沿X 轴负方向传播 7.提示:12,2πϕϕ-=2121122224r r πϕϕπϕπππλλ⎛⎫⎛⎫∆=---=--⨯=- ⎪ ⎪⎝⎭⎝⎭8.提示:由波腹条件22xk k x πλπλ=±⇒=±二、填空题 1.CB ,Bπ2,Cπ2,lC ,lC -提示:将已知波的方程与波的标准方程2(,)cos[]xy x t A t πωϕλ=-+或(,)cos[()]xy x t A t uωωϕ=-+对比可得波长和波速,位相差为:222[()][]t r d t r d cdπππωϕωϕλλλ-++--+==2.Lλπϕ2-;Nk k x x ∈±=,1λ;zk k x x ∈++=,)21(1λ。
大学物理第五版下册-课后答案
9-1一个质点作简谐运动,振幅为A,在起始时刻质点的位移为-A,且向x 轴正方向运2动,代表此简谐运动的旋转矢量为()题9-1图分析与解(b)图中旋转矢量的矢端在x 轴上投影点的位移为-A/2,且投影点的运动方向指向O x轴正向,即其速度的x 分量大于零,故满足题意.因而正确答案为(b).9-2已知某简谐运动的振动曲线如图(a)所示,则此简谐运动的运动方程为()(A)x = 2cos⎡2πt -2 π⎤(cm)(C)x = 2cos⎡2 πt +2 π⎤(cm)⎢⎣3 3 ⎥⎦ ⎢⎣3 3 ⎥⎦(B)x = 2cos⎡4πt -2 π⎤(cm)(D)x = 2cos⎡4 πt +2 π⎤(cm)⎢⎣3 3 ⎥⎦ ⎢⎣3 3 ⎥⎦题9-2图分析与解由振动曲线可知,初始时刻质点的位移为–A/2,且向x 轴负方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为2π / 3 .振动曲线上给出质点从–A/2 处运动到+A 处所需时间为 1 s,由对应旋转矢量图可知相应的相位差∆ϕ=4π3 ,则角频率ω=∆ϕ/ ∆t =(4π/ 3)s-1 ,故选(D).本题也可根据振动曲线所给信息,逐一代入方程9-3 两个同周期简谐运动曲线如图(a ) 所示, x 1 的相位比 x 2 的相位( )(A ) 落后 π2(B )超前 π2(C )落后 π (D )超前π分析与解 由振动曲线图作出相应的旋转矢量图(b ) 即可得到答案为(b ).题9-3 图9-4 当质点以频率 ν 作简谐运动时,它的动能的变化频率为( )(A )v(B ) v (C ) 2v2(D ) 4v分析与解 质点作简谐运动的动能表式为E k=1m ω 2 A 2sin 2 (ωt 2+ ϕ ),可见其周期为简谐运动周期的一半,则频率为简谐运动频率 ν 的两倍.因而正确答案为(C ).9-5 图(a )中所画的是两个简谐运动的曲线,若这两个简谐运动可叠加,则合成的余弦振动的初相位为( ) 3(A )π 21(B ) π2(C ) π (D ) 0分析与解 由振动曲线可以知道,这是两个同振动方向、同频率简谐运动,它们的相位差是π(即反相位).运动方程分别为x 1 = A cos ωt 和 x 2= A cos (ωt + π).它们的振幅不同.对2于这样两个简谐运动,可用旋转矢量法,如图(b )很方便求得合运动方程为x 1 = 而正确答案为(D ).Acos ωt .因2题9-5图9-6 有一个弹簧振子,振幅A = 2.0 ⨯10-2 m ,周期T = 1.0 s ,初相ϕ出它的运动方程,并作出x -t 图、v -t 图和a -t 图.=3π / 4 .试写题9-6 图分析弹簧振子的振动是简谐运动.振幅 A 、初相ϕ、角频率ω是简谐运动方程m / k 外, ω 可通过关系式ω = 2π / T 确定.振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同.解 因ω = 2π / T ,则运动方程x = A cos (ωt + ϕ ) = A ⎛ 2πt + ϕ ⎫cos ⎪ ⎝ T⎭根据题中给出的数据得x = 2.0 ⨯ 10-2 cos (2πt + 0.75π ) (m )振子的速度和加速度分别为v = d x / d y a = d 2x / d 2y = -4π ⨯ 10-2sin (2πt = -8π ⨯ 10-2cos (2πt + 0.75π) ( m ⋅ s-1 )+ 0.75π) ( m ⋅ s -1)x - t 、 v - t 及 a - t 图如图所示.9-7 若简谐运动方程为 x = 0.10 cos (20πt + 0.25π)(m ),求:(1) 振幅、频率、角频率、周期和初相;(2) t = 2s 时的位移、速度和加速度.分析 可采用比较法求解.将已知的简谐运动方程与简谐运动方程的一般形式x = A cos (ωt + ϕ )作比较,即可求得各特征量.运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果.解 (1) 将 x = 0.10 cos (20πt + 0.25π)(m )与 x = A cos (ωt + ϕ )比较后可得:振幅 A = 0.10m ,角频率ω = 20π s -1,初相ϕ =0.25 π ,则周期T = 2π / ω = 0.1 s ,频率 v = 1/ T Hz .(2) t = 2s 时的位移、速度、加速度分别为x = 0.10 cos (40πt + 0.25π) = 7.07 ⨯10-2 m v = d x / d t = -2πsin (40π + 0.25π) = -4.44m ⋅ s -1a = d 2 x / d 2t = -40π2cos (40π + 0.25π) = -2.79 ⨯102 m ⋅ s -29-8 一远洋货轮,质量为 m ,浮在水面时其水平截面积为 S .设在水面附近货轮的水平截面积近似相等,水的密度为 ρ,且不计水的粘滞阻力,证明货轮在水中作振幅较小的竖直自由运动是简谐运动,并求振动周期.分析 要证明货轮作简谐运动,需要分析货轮在平衡位置附近上下运动时,它所受的合外力 F 与位移 x 间的关系,如果满足 F = -kx ,则货轮作简谐运动.通过 F = -kx 即可求得振动 周期T = 2π / ω = 2π .证 货轮处于平衡状态时[图(a )],浮力大小为 F =mg .当船上下作微小振动时,取货轮处于力平衡时的质心位置为坐标原点 O ,竖直向下为 x 轴正向,如图(b )所示.则当货轮向下偏移 x 位移时,受合外力为∑ F = P + F '其中 F ' 为此时货轮所受浮力,其方向向上,大小为F ' = F + ρgSx = mg + ρgSx则货轮所受合外力为 题9-8 图∑ F = P -F ' = -ρgSx = -kx式中 k = ρgS 是一常数.这表明货轮在其平衡位置上下所作的微小振动是简谐运动. 由∑ F = m d2x / d 2t 可得货轮运动的微分方程为d 2 x / d 2t + ρgSx / m = 0令ω 2= ρgS / m ,可得其振动周期为T = 2π / ω = 2π 9-9 设地球是一个半径为 R 的均匀球体,密度 ρ = 5.5 ⨯103kg ⋅ m -3 .现假定沿直径凿通一条隧道,若有一质量为 m 的质点在此隧道内作无摩擦运动.(1) 证明此质点的运动是简谐运动;(2) 计算其周期.题9-9 图分析 证明方法与上题相似.分析质点在隧道内运动时的受力特征即可. 证 (1) 取图所示坐标.当质量为 m 的质点位于 x 处时,它受地球的引力为m / ρgSm / k x x 式中G 为引力常量, m 是以 x 为半径的球体质量,即 m = 4πρx 3/ 3 .令 k = 4πρGm / 3 ,则质点受力F = 4πρGmx / 3 = -kx因此,质点作简谐运动.(2) 质点振动的周期为T = 2π= = 5.07 ⨯103 s9-10 如图(a )所示,两个轻弹簧的劲度系数分别为 k 1 、k 2时.(1) 证明其运动仍是简谐运动;(2) 求系统的振动频率..当物体在光滑斜面上振动题 9-10 图分析 从上两题的求解知道,要证明一个系统作简谐运动,首先要分析受力情况,然后看是否满足简谐运动的受力特征(或简谐运动微分方程).为此,建立如图(b )所示的坐标.设系统平衡时物体所在位置为坐标原点 O ,Ox 轴正向沿斜面向下,由受力分析可知,沿 Ox 轴, 物体受弹性力及重力分力的作用,其中弹性力是变力.利用串联时各弹簧受力相等,分析物体 在任一位置时受力与位移的关系,即可证得物体作简谐运动,并可求出频率υ .证 设物体平衡时两弹簧伸长分别为 x 1 、 x 2 ,则由物体受力平衡,有mg sin θ = k 1x 1 = k 2 x 2按图(b )所取坐标,物体沿 x 轴移动位移 x 时,两弹簧又分别被拉伸 x 1' 和 x 2' ,即物体受力为(1)x = x 1' + x 2' .则 3π / Gρ12π(k + k )/ m 1 21 2将式(1)代入式(2)得F = -k 2 x 2' = -k 1x 1' 由式(3)得 x 1' = -F / k 1 、 x 2' = -F / k 2 ,而 x = x 1' + x 2' ,则得到(3)F = -[k k / (k + k )]x = -kx 1 2式中 k = k 1k 2 / (k 1 + k 2 )为常数,则物体作简谐运动,振动频率v = ω / 2π = 12πk / m= 讨论 (1) 由本题的求证可知,斜面倾角 θ 对弹簧是否作简谐运动以及振动的频率均不产生影响.事实上,无论弹簧水平放置、斜置还是竖直悬挂,物体均作简谐运动.而且可以证明它们的频率相同,均由弹簧振子的固有性质决定,这就是称为固有频率的原因.(2) 如果振动系统如图(c )(弹簧并联)或如图(d )所示,也可通过物体在某一位置的受力分析得出其 作简谐运动,且振动频率均为v = ,读者可以一试.通过这些例子可以知道,证明物体是否作简谐运动的思路是相同的.*9-11 在如图(a )所示装置中,一劲度系数为 k 的轻弹簧,一端固定在墙上,另一端连接一质量为 m 1 的物体 A ,置于光滑水平桌面上.现通过一质量 m 、半径为 R 的定滑轮 B (可视为匀质圆盘)用细绳连接另一质量为 m 2 的物体 C .设细绳不可伸长,且与滑轮间无相对滑动, 求系统的振动角频率.题 9-11 图分析 这是一个由弹簧、物体 A 、C 和滑轮 B 组成的简谐运动系统.求解系统的振动频率可采用两种方法.(1) 从受力分析着手.如图(b )所示,设系统处于平衡状态时,与物体1 2π k k /(k + k )m1 2 1 2k 正向从原点 O 伸长 x 时,分析物体 A 、C 及滑轮 B 的受力情况,并分别列出它们的动力学方程,可解得系统作简谐运动的微分方程.(2)从系统机械能守恒着手.列出系统机械能守恒方 程,然后求得系统作简谐运动的微分方程.解 1 在图(b )的状态下,各物体受力如图(c )所示.其中 F = -k (x + x 0 )i .考虑到绳 子不可伸长,对物体 A 、B 、C 分别列方程,有F T 1 = -k (x + x 0 ) = d 2 x m 1 d t 2 d 2 x(1)m 2 g - F T 2 = m 2 d t 2 (2)( - ) = α = 1d 2 xF T 2 F T 1 R J2 d t 2(3) kx 0 = m 2 g (4)方程(3)中用到了 F = F ' 、F = F ' 、J = mR 2/ 2 及α = a / R .联立式(1) ~式(4)T 2 T 2 可得T 1 T 1d 2 x k则系统振动的角频率为d t+m 1 + m 2 + m / 2x = 0(5)ω = 解 2 取整个振动装置和地球为研究系统,因没有外力和非保守内力作功,系统机械能守恒.设物体平衡时为初始状态,物体向右偏移距离 x (此时速度为 v 、加速度为 a )为末状态, 则由机械能守恒定律,有E = -m gx + 1 m v 2 + 1 m v 2 + 1 J ω2 + 1 k (x + x )20 2 2 1 2 2 2 2在列出上述方程时应注意势能(重力势能和弹性势能)零点的选取.为运算方便,选初始状态下物体 C 所在位置为重力势能零点;弹簧原长时为弹性势能的零点.将上述方程对时间求导得0 = -m gv + m v d v + m v d v + Jω d ω + k (x + x )d x2 1 d t 2 d t d t 0d t 将 J = mR 2 / 2 , ωR = v , d v / d t = d 2 x / d t 2和m g = kx 代入上式,可得d 2x + d t 2 m2 0+ m + m / 2 x = 0(6)12式(6)与式(5)相同,表明两种解法结果一致.9-12 一放置在水平桌面上的弹簧振子,振幅 A =2.0 ×10-2 m ,周期 T =0.50s.当 t =0 时,(1) 物体在正方向端点;(2) 物体在平衡位置、向负方向运动;(3) 物体在 x =-1.0×10- 2m 处, 向负方向运动; (4) 物体在 x =-1.0×10-2 m 处,向正方向运动.求以上各种情况的运动方程.分析 在振幅 A 和周期 T 已知的条件下,确定初相 φ 是求解简谐运动方程的关键.初相k / (m 1 + m 2 + m / 2)π π = 4π 和 v =v 0 来确定 φ 值.(2) 旋转矢量法:如图(a )所示,将质点 P 在 Ox 轴上振动的初始位置 x 0 和速度 v 0 的方向与旋转矢量图相对应来确定 φ.旋转矢量法比较直观、方便,在分析中常采用.题 9-12 图解 由题给条件知 A =2.0 ×10-2 m , ω = 2 / T = 4π s -1,而初相 φ 可采用分析中的两种不 同方法来求.解析法 : 根据简 谐 运动方 程 x = A cos (ωt + ϕ ) ,当 t = 0 时有 x 0 = A cos (ωt + ϕ ) ,v 0 = - Aωsin .当(1) x 0 = A 时, cos ϕ1 = 1,则ϕ1 = 0 ;π π(2) x 0 = 0 时, cos ϕ2 = 0 ,ϕ2 = ± ,因v 0 < 0 ,取ϕ2 = ;2 2(3) x 0 = 1.0 ⨯10-2 m 时, cos ϕ = 0.5,ϕ3 = ± π 3 ,由v 0 < 0 ,取ϕ3 = ; 3(4) x = -1.0 ⨯10-2m 时, cos ϕ = -0.5 ,ϕ = π ± ,由v > 0 ,取ϕ 4π 0 4 4 3 0 4 3旋转矢量法:分别画出四个不同初始状态的旋转矢量图,如图(b )所示,它们所对应的初 相分别为ϕ1 = 0 , ϕ2 =, ϕ3 =2, ϕ4 =.33振幅 A 、角频率 ω、初相 φ 均确定后,则各相应状态下的运动方程为(1) x = 2.0 ⨯10-2cos4πt(m )(2) x = 2.0 ⨯10-2 cos (4πt + π/2) (m ) (3) x = 2.0 ⨯10-2 cos (4πt + π/3) (m ) (4) x = 2.0 ⨯10-2 cos (4πt + 4π/3) (m )9-13 有一弹簧, 当其下端挂一质量为 m 的物体时, 伸长量为 9.8 ×10-2 m .若使物体上、下振动,且规定向下为正方向.(1) 当 t =0 时,物体在平衡位置上方 8.0 ×10-2 m 处,由静止开始向下运动,求运动方程.(2)当 t =0 时,物体在平衡位置并以 0.6m·s -1 的速度向上运动,求运动方程.π π 3 .k / m g / ∆l x + ( 21010 v / ω )2⎝ 12 ⎭由弹簧振子系统的固有性质(振子质量 m 及弹簧劲度系数 k )决定的,即ω =k 可根据物体受力平衡时弹簧的伸长来计算;振幅 A 和初相 φ 需要根据初始条件确定.题 9-13 图解 物体受力平衡时,弹性力 F 与重力 P 的大小相等,即 F =mg .而此时弹簧的伸长量 Δl =9.8 ×10-2m .则弹簧的劲度系数 k =F /Δl =mg /Δl .系统作简谐运动的角频率为ω = = = 10 s -1(1) 设系统平衡时,物体所在处为坐标原点,向下为 x 轴正向.由初始条件 t =0 时, x 10 =8.0 ×10-2 m 、v 10 =0 可得振幅 A = = 8.0 ⨯10- 2m ;应用旋转矢量法可确定初相ϕ1 = π [图(a )].则运动方程为x = 8.0 ⨯10-2cos (10t + π) (m ) (2)t =0 时,x 20 =0、v 20 =0.6 m·s -1 ,同理可得 A 2== 6.0 ⨯10- 2 m ; ϕ2 = π / 2 [图(b )].则运动方程为x = 6.0 ⨯10-2cos (10t + 0.5π) (m ) 9-14 某振动质点的 x -t 曲线如图(a )所示,试求:(1) 运动方程;(2) 点 P 对应的相位;(3) 到达点 P 相应位置所需的时间.分析 由已知运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题.本题就是要通过 x -t 图线确定振动的三个特征量 A 、ω 和ϕ0 ,从而写出运动方程.曲线最大幅值即为振幅 A ;而 ω、ϕ0 通常可通过旋转矢量法或解析法解出,一般采用旋转矢量法比较方便. 解 (1) 质点振动振幅 A =0.10 m.而由振动曲线可画出 t 0 =0 和 t 1 =4 s时旋转矢 量,如图( b ) 所 示.由图可见初相 ϕ0 = -π / 3 (或 ϕ0 = 5π / 3 ), 而由 ω(t 1 - t 0 ) = π / 2 + π / 3 得ω = 5π / 24 s ,则运动方程为 -1x = 0.10 cos⎛ 5πt - π / 3⎫(m )24⎪ x + ( 220 20 v / ω)2p pp p题 9-14 图(2) 图(a )中点 P 的位置是质点从 A /2 处运动到正向的端点处.对应的旋转矢量图如 图(c ) 所示.当初相取ϕ0 = -π / 3 时,点 P 的相位为ϕ p = ϕ0 + ω(t - 0)= 0 (如果初相 取成 0 = 5π / 3 ,则点 P 相应的相位应表示为ϕp = ϕ0 + ω(t - 0) = 2π . (3) 由旋转矢量图可得ω(t - 0)= π / 3 ,则t =1.6 s . 9-15 作简谐运动的物体,由平衡位置向 x 轴正方向运动,试问经过下列路程所需的最短时间各为周期的几分之几? (1) 由平衡位置到最大位移处;(2) 由平衡位置到 x =A /2 处;(3) 由 x =A /2 处到最大位移处.解 采用旋转矢量法求解较为方便.按题意作如图所示的旋转矢量图,平衡位置在点 O .(1) ) 平衡位置 x 1 到最大位移 x 3 处, 图中的旋转矢量从位置 1 转到位置 3 ,故 ∆ϕ1 = π / 2 ,则所需时间∆t 1 = ∆ϕ1 / ω = T / 4(2) 从平衡位置x 1 到x 2 =A /2 处,图中旋转矢量从位置1 转到位置2,故有∆ϕ2 则所需时间= π / 6 , ∆t 2 = ∆ϕ2 / ω = T / 12(3) 从 x 2 =A /2 运动到最大位移 x 3 处,图中旋转矢量从位置 2 转到位置 3,有 ∆ϕ0 = π / 3 ,则所需时间∆t 3 = ∆ϕ3 / ω = T / 6N 9-16 在一块平板下装有弹簧,平板上放一质量为 1.0 kg 的重物.现使平板沿竖直方向作上下简谐运动,周期为 0.50s,振幅为 2.0×10-2 m .求:(1) 平板到最低点时,重物对平板的作用力;(2) 若频率不变,则平板以多大的振幅振动时,重物会跳离平板? (3) 若振幅不变,则平板以多大的频率振动时, 重物会跳离平板?题 9-16 图分析 按题意作示意图如图所示.物体在平衡位置附近随板作简谐运动,其间受重力 P 和板支持力 F N 作用,F N 是一个变力.按牛顿定律,有d 2 y F = mg - F N = m d t2 (1)由于物体是随板一起作简谐运动,因而有a 改写为 = d 2y d t 2 = -A ω 2 cos (ωt + ϕ ) ,则式(1)可 F N = mg + mA ω 2cos (ωt + ϕ ) (2)(1) 根据板运动的位置,确定此刻振动的相位ωt + ϕ ,由式(2)可求板与物体之间的作 用力.(2) 由式(2)可知支持力 F N 的值与振幅 A 、角频率 ω 和相位( ωt + ϕ )有关.在振 动过程中,当ωt + ϕ = π 时 F N 最小.而重物恰好跳离平板的条件为 F N =0,因此由式(2)可 分别求出重物跳离平板所需的频率或振幅.解 (1) 由分析可知,重物在最低点时,相位ωt + ϕ =0,物体受板的支持力为F = mg + mA ω 2 = mg + mA (2π / t)2 = 12.96 N 重物对木块的作用力 F N ' 与 F N 大小相等,方向相反. (2) 当频率不变时,设振幅变为 A ′.根据分析中所述,将 F N =0 及ωt + ϕ 分析中式(2),可得= π 代入max max 2 (3) 当振幅不变时,设频率变为v ' .同样将 F N =0 及ωt + ϕ 可得= π 代入分析中式(2), v ' = ω= 2π = 3.52 Hz 9-17 两 质点作同 频率、同 振幅的简 谐运动. 第一个质 点的运动 方程 为x 1 = A cos (ωt + ϕ ),当第一个质点自振动正方向回到平衡位置时,第二个质点恰在振动正方 向的端点,试用旋转矢量图表示它们,并求第二个质点的运动方程及它们的相位差.题 9-17 图解 图示为两质点在时刻 t 的旋转矢量图,可见第一个质点 M 的相位比第二个质点 N 的相位超前π / 2 ,即它们的相位差 Δφ=π/2.故第二个质点的运动方程应为x 2 = A cos (ωt + ϕ - π / 2)9-18 图(a )为一简谐运动质点的速度与时间的关系曲线,且振幅为 2cm ,求(1) 振动周期;(2) 加速度的最大值;(3) 运动方程.分析 根据 v -t 图可知速度的最大值 v max ,由 v max =Aω 可求出角频率 ω,进而可求出周期 T 和加速度的最大值 a max =Aω2 .在要求的简谐运动方程 x =A cos (ωt +φ)中,因为 A 和 ω 已得出,故只要求初相位 φ 即可.由 v -t 曲线图可以知道,当 t =0 时,质点运动速度v 0 =v max /2 =Aω/2,之后速度越来越大,因此可以判断出质点沿 x 轴正向向着平衡点运动.利用 v 0 =-Aωsinφ 就可求出 φ.解 (1) 由v = A ω 得ω =1.5 s -1 ,则 T = 2π / ω = 4.2 s(2) a = A ω 2 = 4.5 ⨯10-2 m ⋅s -2 (3) 从分析中已知 v 0 = - Aωsin = Aω / 2 ,即sin ϕ = -1 / 2= -π / 6,-5π / 6因为质点沿 x 轴正向向平衡位置运动,则取 = -5π / 6 ,其旋转矢量图如图(b )所示.则运动 方程为 x = 2cos (1.5t - 5π / 6) (cm )1 mg / m A 2πg / l g / l max题 9-18 图9-19 有一单摆,长为 1.0m ,最大摆角为 5°,如图所示.(1) 求摆的角频率和周期;(2)设开始时摆角最大,试写出此单摆的运动方程;(3) 摆角为 3°时的角速度和摆球的线速度各为多少?题 9-19 图分析 单摆在摆角较小时(θ<5°)的摆动,其角量 θ 与时间的关系可表示为简谐运动方程 θ = θmax co s (ωt + ϕ ) ,其中角频率 ω 仍由该系统的性质(重力加速度 g 和绳长 l )决定,即 ω = .初相 φ 与摆角 θ,质点的角速度与旋转矢量的角速度(角频率)均是不同的物理 概念,必须注意区分.解 (1) 单摆角频率及周期分别为ω = = 3.13 s -1; T = 2π / ω = 2.01 s(2) 由t = 0 时θ = θ = 5o可得振动初相ϕ = 0 ,则以角量表示的简谐运动方程为 θ = π cos3.13t 36(3) 摆角为 3°时,有cos (ωt + ϕ ) = θ / θmax = 0.6 ,则这时质点的角速度为J / mgl c maxE c M线速度的大小为= -0.80θ ω = -0.218 s -1 v = l d θ/d t = -0.218 s -1讨论 质点的线速度和角速度也可通过机械能守恒定律求解,但结果会有极微小的差别.这是因为在导出简谐运动方程时曾取sin θ ≈ θ ,所以,单摆的简谐运动方程仅在 θ 较小时成立.9-20 为了测月球表面的重力加速度,宇航员将地球上的“秒摆”(周期为 2.00s),拿到月 球上去,如测得周期为 4.90s,则月球表面的重力加速度约为多少? (取地球表面的重力加速度 g = 9.80 m ⋅s-2 ) 解 由单摆的周期公式T = 2π 可知 g ∝ 1 / T 2 ,故有 g / g = T 2 / T 2 ,则月球的重力加速度为 g = (T/ T M )2g M E E M= 1.63 m ⋅ s - 29-21 一飞轮质量为 12kg ,内缘半径 r =0.6m,如图所示.为了测定其对质心轴的转动惯量,现让其绕内缘刃口摆动,在摆角较小时,测得周期为 2.0s ,试求其绕质心轴的转动惯量.9-21 题图分析 飞轮的运动相当于一个以刃口为转轴的复摆运动,复摆振动周期为 T = 2π ,因此,只要知道复摆振动的周期和转轴到质心的距离l c ,其以刃口为转轴的 转动惯量即可求得.再根据平行轴定理,可求出其绕质心轴的转动惯量.解 由复摆振动周期T = 2π J / mgl ,可得 J = mgrT 2 / 4π2.则由平行轴定理得 J 0 = J - mr 2 = mgrT 2 / 4π 2 - mr 2 = 2.83 kg ⋅ m 29-22 如图(a )所示,质量为 1.0 ×10-2kg 的子弹,以 500m·s -1 的速度射入木块,并嵌在木块中,同时使弹簧压缩从而作简谐运动,设木块的质量为 4.99 kg ,弹簧的劲度系数为 8.0 ×103 N·m -1 ,若以弹簧原长时物体所在处为坐标原点,向左为 x 轴正向,求简谐运动方程.l / g E E题 9-22 图分析 可分为两个过程讨论.首先是子弹射入木块的过程,在此过程中,子弹和木块组成的系统满足动量守恒,因而可以确定它们共同运动的初速度 v 0 ,即振动的初速度.随后的过程是以子弹和木块为弹簧振子作简谐运动.它的角频率由振子质量 m 1 +m 2 和弹簧的劲度系数 k 确定,振幅和初相可根据初始条件(初速度 v 0 和初位移 x 0 )求得.初相位仍可用旋转矢量法求.解 振动系统的角频率为 ω == 40 s -1由动量守恒定律得振动的初始速度即子弹和木块的共同运动初速度 v 0 为v = m v (m + m ) = 1.0 m ⋅ s -10 1 1 2 又因初始位移 x 0 =0,则振动系统的振幅为A = = v 0/ ω = 2.5⨯10-2 m 图(b )给出了弹簧振子的旋转矢量图,从图中可知初相位 0 = π / 2 ,则简谐运动方程为x = 2.5⨯10-2 cos (40t + 0.5π) (m )9-23 如图(a )所示,一劲度系数为 k 的轻弹簧,其下挂有一质量为 m 1 的空盘.现有一质量为 m 2 的物体从盘上方高为 h 处自由落入盘中,并和盘粘在一起振动.问:(1) 此时的振动周期与空盘作振动的周期有何不同? (2) 此时的振幅为多大?k / (m 1 + m 2 ) x + ( 2 0 0 v / ω) 2x + (v / ω) 2 20 0题 9-23 图分析 原有空盘振动系统由于下落物体的加入,振子质量由 m 1 变为 m 1 + m 2,因此新系统的角频率(或周期)要改变.由于 A = ,因此,确定初始速度 v 0 和初始位移 x 0 是求解振幅 A 的关键.物体落到盘中,与盘作完全非弹性碰撞,由动量守恒定律可确定盘与物体的共同初速度 v 0 ,这也是该振动系统的初始速度.在确定初始时刻的位移 x 0 时,应注意新振动系统的平衡位置应是盘和物体悬挂在弹簧上的平衡位置.因此,本题中初始位移 x 0 ,也就是空盘时的平衡位置相对新系统的平衡位置的位移.解 (1) 空盘时和物体落入盘中后的振动周期分别为T = 2π / ω =2π T ' = 2π / ω' = 2π 可见 T ′>T ,即振动周期变大了. (2) 如图(b )所示,取新系统的平衡位置为坐标原点 O .则根据分析中所述,初始位移为空盘时的平衡位置相对粘上物体后新系统平衡位置的位移,即x = l - l =m 1g - m 1 + m 2 g = - m 2 g 01 2 k k k式中 l 1 =m 1/k 为空盘静止时弹簧的伸长量,l 2 =(m 1 +m 2)/k 为物体粘在盘上后,静止时弹 簧的伸长量.由动量守恒定律可得振动系统的初始速度,即盘与物体相碰后的速度v 0 = m 2 v =m 1 + m 2 式中 v = 是物体由 h 高下落至盘时的速度.故系统振动的振幅为m 1 / k(m 1 + m 2 )/ km 2 m 1 + m 2 2gh2ghx + 2 0 0 ( v / ω ) 21 1 本题也可用机械能守恒定律求振幅 A . 9-24 如图所示,劲度系数为 k 的轻弹簧,系一质量为 m 1 的物体,在水平面上作振幅为 A的简谐运动.有一质量为 m 2 的粘土,从高度 h 自由下落,正好在(a )物体通过平衡位置时, (b )物体在最大位移处时,落在物体上.分别求:(1)振动周期有何变化? (2)振幅有何变化?题 9-24 图分析 谐振子系统的周期只与弹簧的劲度系数和振子的质量有关.由于粘土落下前后,振子的质量发生了改变,因此,振动周期也将变化.至于粘土如何落下是不影响振动周期的.但是,粘土落下时将改变振动系统的初始状态,因此,对振幅是有影响的.在粘土落到物体上的两种不同情况中,系统在水平方向的动量都是守恒的.利用动量守恒定律可求出两种情况下系统的初始速度,从而利用机械能守恒定律(或公式 A = )求得两种情况下的振 幅.解 (1) 由分析可知,在(a )、(b )两种情况中,粘土落下前后的周期均为T = 2π / ω = 2π T ' = 2π / ω' = 2π 物体粘上粘土后的周期 T ′比原周期 T 大.(2) (a ) 设粘土落至物体前后,系统振动的振幅和物体经过平衡位置时的速度分别为A 、v 和 A ′、v ′.由动量守恒定律和机械能守恒定律可列出如下各式kA '2 / 2 = m v 2 / 2 (1) kA '2 / 2 = (m + m )v '2 / 2 2 (2)联立解上述三式,可得 m 1v = (m 1 + m 2 )v 'A ' = (3) 即 A ′<A ,表明增加粘土后,物体的振幅变小了.(b ) 物体正好在最大位移处时,粘土落在物体上.则由动量守恒定律知它们水平方向的共同速度 v ′=m 1v /(m 1 +m 2 ) =0,因而振幅不变,即m 1 / k(m 1 + m 2 )/ km 1 / (m 1 + m 2 )AA / a max max 0 max max 9-25 质量为 0.10kg 的物体,以振幅 1.0×10-2 m 作简谐运动,其最大加速度为 4.0 m·s -1求:(1) 振动的周期;(2) 物体通过平衡位置时的总能量与动能;(3) 物体在何处其动能和势能相等? (4) 当物体的位移大小为振幅的一半时,动能、势能各占总能量的多少?分析 在简谐运动过程中,物体的最大加速度 a = A ω 2,由此可确定振动的周期T .另外,在简谐运动过程中机械能是守恒的,其中动能和势能互相交替转化,其总能量 E =kA 2/2.当动能与势能相等时,E k =E P =kA 2/4.因而可求解本题.解 (1) 由分析可得振动周期 T = 2π / ω = 2π = 0.314 s(2) 当物体处于平衡位置时,系统的势能为零,由机械能守恒可得系统的动能等于总能量,即 E = E = 1 mA 2ω 2 = 1 mAak 2 2max = 2.0 ⨯10-3 J(3) 设振子在位移 x 0 处动能与势能相等,则有kx 2 / 2 = kA 2 / 4得 x 0 = ± 2 A / 2 = ±7.07 ⨯10-3 m(4) 物体位移的大小为振幅的一半(即 x = A / 2 )时的势能为 E = 1 kx 2 = 1 k ⎛ A ⎫ = E / 4 P 2 2 2 ⎪ ⎝ ⎭则动能为E K = E - E P = 3E / 4 9-26 一氢原子在分子中的振动可视为简谐运动.已知氢原子质量 m =1.68 ×10-27 Kg ,振动频率υ =1.0 ×1014 Hz ,振幅 A =1.0 ×10-11m.试计算:(1) 此氢原子的最大速度;(2) 与此振动相联系的能量.解 (1) 简谐运动系统中振子运动的速度 v =-A ωsin (ωt +φ),故氢原子振动的最大速度为v = ωA = 2πvA = 6.28⨯102 m ⋅ s -1 (2) 氢原子的振动能量E = mv 2 / 2 = 3.31⨯10-20 J 9-27 质量 m =10g 的小球与轻弹簧组成一振动系统, 按 x = 0.5(8πt + π / 3) (cm )的规 律作自由振动,求(1) 振动的角频率、周期、振幅和初相;(2) 振动的能量 E ;(3) 一个周期内的平均动能和平均势能.解 (1) 将 x = 0.5(8πt + π / 3) (cm )与 x = A cos (ωt + ϕ )比较后可得:角频率ω = 8π s -1 ,振 幅 A =0.5cm ,初相 φ=π/3,则周期 T =2π/ω=0.25 sA + A + 2 A A cos ( 2 21 2 1 2 ϕ - ϕ ) 2 1 (3) 简谐运动的动能和势能分别为 E = 1 mA 2ω 2sin 2 (ωt + ϕ ) K 2E = 1 mA 2ω 2cos 2 (ωt + ϕ ) P 2则在一个周期中,动能与势能对时间的平均值分别为E = 1 ⎰T 1 mA 2ω 2 sin 2 (ωt + ϕ )d t = mA 2ω 2 = 3.95 ⨯10-5 J T 0 2 4E = 1 ⎰T 1 mA 2ω 2 cos 2 (ωt + ϕ )d t = mA 2ω 2 = 3.95 ⨯10-5 J T 0 2 49-28已 知 两 同 方 向 、 同 频 率 的 简 谐 运 动 的 运 动 方 程 分 别 为 x 1= 0.05cos (10t + 0.75π) (m ); x 2 = 0.06cos (10t + 0.25π) (m ) .求:(1) 合振动的振幅及初相;(2) 若有另一同方向、同频率的简谐运动 x 3 = 0.07co s (10t + ϕ3 ) (m ),则ϕ3 为多少时, x 1 +x 3 的振幅最大? 又ϕ3 为多少时,x 2 +x 3 的振幅最小?题 9-28 图分析 可采用解析法或旋转矢量法求解.由旋转矢量合成可知,两个同方向、同频率简谐运动的合成仍为一简谐运动,其角频率不变;合振动的振幅 A = ,其大小与两个分振动的初相差ϕ2 - ϕ1 相关.而合振动的初相位ϕ = arctan [(A s in ϕ + A sin ϕ ) / (A cos ϕ + A cos ϕ )] 1 1 2 2 1 1 2 2解 (1) 作两个简谐运动合成的旋转矢量图(如图).因为∆ϕ 故合振动振幅为= ϕ2 - ϕ1 = -π / 2 , A= 合振动初相位 = 7.8 ⨯10-2 m ϕ = arctan [(A s in ϕ + A sin ϕ ) / (A cos ϕ + A cos ϕ )] 1 1 2 2 1 1 2 2= arctan11 = 1.48 rad (2) 要使 x 1 +x 3 振幅最大,即两振动同相,则由∆ϕ= 2k π 得 A + A + 2 A A cos ( 2 2 1 2 1 2 ϕ - ϕ ) 21 K PA 2 + A 2 + 2A 2cos (π + ϕ - ϕ )2 12 要使 x 1 +x3 的振幅最小,即两振动反相,则由得 ϕ3 = ϕ2 + (2k + 1)π = 2k π + 1.25π, k = 0,±1,±2,...9-29 手电筒和屏幕质量均为 m ,且均被劲度系数为 k 的轻弹簧悬挂于同一水平面上,如 图所示.平衡时,手电筒的光恰好照在屏幕中心.设手电筒和屏幕相对于地面上下振动的表达式分别为 x 1 = A cos (ωt + ϕ1 )和 x 2 = A cos (ωt + ϕ2 ).试求在下述两种情况下,初相位 φ1 、φ2 应满足的条件:(1) 光点在屏幕上相对于屏静止不动;(2) 光点在屏幕上相对于屏作振幅 A ′=2A 的振动.并说明用何种方式起动,才能得到上述结果.题 9-29 图分析 落在屏幕上的光点相对地面的运动和屏幕相对于地面的运动都已知道,且是两个简谐运动.因此由运动的合成不难写出光点相对屏的运动(实际上是两个同方向、同频率简谐运动的合成).根据相对运动公式,有依题意x 光对地 = x 光对屏 + x 屏对地x 光对地 = x 1 = A cos (ωt + ϕ1 ) x 屏对地 = x 2 = A cos (ωt + ϕ2 ) 所以 x 光对屏 = x 1 - x 2 = x 1 + x 2'= A cos (ωt + ϕ1 ) + A cos (ωt + π + ϕ2 ) 可见光点对屏的运动就是两个同方向、同频率简谐运动 x 1 = A cos (ωt + ϕ1 ) 和 x 2' = A cos (ωt + π + ϕ2 )的合成.用与上题相同的方法即可求解本题.其中合运动振幅 A ' = . 解 (1) 根据分析和参考上题求解,当要求任一时刻光点相对于屏不动,即 x 光对屏 = 0 ,就是 当π + ϕ2 - ϕ1 = (2k + 1)π 时,即ϕ = ϕ1 + 2k π 时( k = 0,±1,±2,...),A ′=0.当光点 相对于屏作振幅为 2A 的运动时,要求π + ϕ2 - ϕ1 =2k π ,即ϕ2 = ϕ1 + (2k - 1)π .(2) 由以上求解可知,要使光点相对于屏不动,就要求手电筒和屏的振动始终要同步, 即同相位,为此,把它们往下拉 A 位移后,同时释放即可;同理,要使光点对屏作振幅为 2A 的谐振动,两者必须相位相反,为此,让手电筒位于平衡点 0 上方的-A 处,而屏则位于+A 处同9-30 两个同频率的简谐运动 1 和 2 的振动曲线如图(a )所示,求(1)两简谐运动的运动方程 x 1 和 x 2;(2) 在同一图中画出两简谐运动的旋转矢量,并比较两振动的相位关系;(3)若两简谐运动叠加,求合振动的运动方程.分析 振动图已给出了两个简谐运动的振幅和周期,因此只要利用图中所给初始条件,由旋转矢量法或解析法求出初相位,便可得两个简谐运动的方程.解 (1) 由振动曲线可知,A =0.1 m,T =2s,则 ω=2π/T =πs-1 .曲线 1 表示质点初始时刻在 x =0 处且向 x 轴正向运动,因此 φ1 =-π/2;曲线 2 表示质点初始时刻在x =A /2 处且向 x 轴负向运动,因此 φ2 =π/3.它们的旋转矢量图如图(b )所示.则两振动 的运动方程分别为x 1 = 0.1cos (πt - π / 2) (m ) 和 x 2 = 0.1cos (πt + π / 3) (m )(2) 由图(b )可知振动 2 超前振动 1 的相位为 5π/6.(3) x = x 1 + x 2 = A 'cos (ωt + ϕ )其中 A ' = ϕ = arctanA 1sin ϕ1 + A 2sin ϕ2 A 1cos ϕ1 + A 2cos ϕ2 = 0.052 m = arctan (- 0.268) = - π 12 则合振动的运动方程为 x = 0.052cos (πt - π/12)(m )题 9-30 图9-31 将频率为 348 Hz 的标准音叉振动和一待测频率的音叉振动合成,测得拍频为 3.0Hz .若在待测频率音叉的一端加上一小块物体,则拍频数将减少,求待测音叉的固有频率. 分析 这是利用拍现象来测定振动频率的一种方法.在频率υ1 和拍频数 Δυ=|υ2 -υ1|已知的情况下,待测频率υ2 可取两个值,即υ2 =υ1 ±Δυ.式中Δυ前正、负号的选取应根据待测音叉系统质量改变时,拍频数变化的情况来决定.解 根据分析可知,待测频率的可能值为A + A + 2 A A cos ( 2 2 1 2 1 2 ϕ - ϕ ) 2 1。
大学物理课后习题答案第五章
第五章 机械波5.1 已知一波的波动方程为y = 5×10-2sin(10πt – 0.6x ) (m). (1)求波长、频率、波速及传播方向;(2)说明x = 0时波动方程的意义,并作图表示. [解答](1)与标准波动方程比较得:2π/λ = 0.6, 因此波长为:λ = 10.47(m);圆频率为:ω = 10π,频率为:v =ω/2π = 5(Hz);波速为:u = λ/T = λv = 52.36(m·s -1).且传播方向为x 轴正方向.(2)当x = 0时波动方程就成为该处质点的振动方程: y = 5×10-2sin10πt = 5×10-2cos(10πt – π/2), 振动曲线如图.5.2 一平面简谐波在媒质中以速度为u = 0.2m·s -1沿x 轴正向传播,已知波线上A 点(x A = 0.05m )的振动方程为(m).试求:(1)简谐波的波动方程;(2)x = -0.05m 处质点P 处的振动方程.[解答](1)简谐波的波动方程为:; 即 = 0.03cos[4π(t – 5x ) + π/2]. (2)在x = -0.05m 处质点P 点的振动方程为:y = 0.03cos[4πt + π + π/2] = 0.03cos(4πt -π/2).5.3 已知平面波波源的振动表达式为(m).求距波源5m 处质点的振动方程和该质点与波源的位相差.设波速为2m·s -1.[解答]振动方程为: , 位相差为 Δφ = 5π/4(rad).5.4 有一沿x 轴正向传播的平面波,其波速为u = 1m·s -1,波长λ = 0.04m ,振幅A = 0.03m .若以坐标原点恰在平衡位置而向负方向运动时作为开始时刻,试求:(1)此平面波的波动方程;(2)与波源相距x = 0.01m 处质点的振动方程,该点初相是多少? [解答](1)设原点的振动方程为:y 0 = A cos(ωt + φ),其中A = 0.03m .由于u = λ/T ,所以质点振动的周期为:T = λ/u = 0.04(s),圆频率为:ω = 2π/T = 50π. 当t = 0时,y 0 = 0,因此cos φ = 0;由于质点速度小于零,所以φ = π/2. 原点的振动方程为:y 0 = 0.03cos(50πt + π/2), 平面波的波动方程为:= 0.03cos[50π(t – x ) + π/2).(2)与波源相距x = 0.01m 处质点的振动方程为:y = 0.03cos50πt . 该点初相φ = 0.5.5 一列简谐波沿x 轴正向传播,在t 1 = 0s ,t 2 = 0.25s 时刻的波形如图所示.试求:2cos()xy A t πωλ=-0.03cos(4)2A y t ππ=-cos[()]Ax x y A t uωϕ-=-+0.050.03cos[4()]0.22x y t ππ-=--20 6.010sin 2y t π-=⨯26.010sin()2xy t u π-=⨯-50.06sin()24t ππ=-0.03cos[50()]2x y t u ππ=-+(1)P 点的振动表达式; (2)波动方程;(3)画出O 点的振动曲线.[解答](1)设P 点的振动方程为 y P = A cos(ωt + φ), 其中A = 0.2m .在Δt = 0.25s 内,波向右传播了Δx = 0.45/3 = 0.15(m),所以波速为u = Δx/Δt = 0.6(m·s -1).波长为:λ = 4Δx = 0.6(m), 周期为:T = λ/u = 1(s), 圆频率为:ω = 2π/T = 2π.当t = 0时,y P = 0,因此cos φ = 0;由于波沿x 轴正向传播,所以P 点在此时向上运动,速度大于零,所以φ = -π/2.P 点的振动表达式为:y P = 0.2cos(2πt - π/2). (2)P 点的位置是x P = 0.3m ,所以波动方程为. (3)在x = 0处的振动方程为y 0 = 0.2cos(2πt + π/2),曲线如图所示.5.6 如图所示为一列沿x 负向传播的平面谐波在t = T /4时的波形图,振幅A 、波长λ以及周期T 均已知.(1)写出该波的波动方程;(2)画出x = λ/2处质点的振动曲线;(3)图中波线上a 和b 两点的位相差φa – φb 为多少? [解答](1)设此波的波动方程为: ,当t = T /4时的波形方程为:. 在x = 0处y = 0,因此得sin φ = 0,解得φ = 0或π.而在x = λ/2处y = -A ,所以φ = 0. 因此波动方程为:. (2)在x = λ/2处质点的振动方程为:, 曲线如图所示.(3)x a = λ/4处的质点的振动方程为; x b = λ处的质点的振动方程为.波线上a 和b 两点的位相差0.2cos[2()]2P x x y t u ππ-=--100.2cos(2)32t x πππ=-+cos[2()]t xy A T πϕλ=++cos(2)2xy A ππϕλ=++sin(2)xA πϕλ=-+cos 2()t x y A T πλ=+cos(2)cos 2t t y A A T Tπππ=+=-cos(2)2a t y A T ππ=+cos(22)b ty A Tππ=+图5.5φa – φb = -3π/2.5.7 已知波的波动方程为y = A cosπ(4t – 2x )(SI ).(1)写出t = 4.2s 时各波峰位置的坐标表示式,并计算此时离原点最近的波峰的位置,该波峰何时通过原点?(2)画出t = 4.2s 时的波形曲线.[解答]波的波动方程可化为:y = A cos2π(2t – x ),与标准方程比较,可知:周期为T = 0.5s ,波长λ = 1m .波速为u = λ/T = 2m·s -1. (1)当t = 4.2s 时的波形方程为y = A cos(2πx – 16.8π)= A cos(2πx – 0.8π). 令y = A ,则cos(2πx – 0.8π) = 1,因此 2πx – 0.8π = 2k π,(k = 0, ±1, ±2,…), 各波峰的位置为x = k + 0.4,(k = 0, ±1, ±2,…).当k = 0时的波峰离原点最近,最近为:x = 0.4(m).通过原点时经过的时间为:Δt = Δx/u = (0 – x )/u = -0.2(s), 即:该波峰0.2s 之前通过了原点.(2)t = 0时刻的波形曲线如实线所示.经过t = 4s 时,也就是经过8个周期,波形曲线是重合的;再经Δt = 0.2s ,波形向右移动Δx = u Δt = 0.4m ,因此t = 4.2s 时的波形曲线如虚线所示.[注意]各波峰的位置也可以由cos(2πx – 16.8π) = 1解得,结果为x = k + 8.4,(k = 0, ±1, ±2,…),取同一整数k 值,波峰的位置不同.当k = -8时的波峰离原点最近,最近为x = 0.4m .5.8 一简谐波沿x 轴正向传播,波长λ = 4m ,周期T = 4s ,已知x = 0处的质点的振动曲线如图所示. (1)写出时x = 0处质点的振动方程;(2)写出波的表达式;(3)画出t = 1s 时刻的波形曲线.[解答]波速为u = λ/T = 1(m·s -1).(1)设x = 0处的质点的振动方程为y = A cos(ωt + φ), 其中A = 1m ,ω = 2π/T = π/2.当t = 0时,y = 0.5,因此cos φ = 0.5,φ = ±π/3.在0时刻的曲线上作一切线,可知该时刻的速度小于零,因此φ = π/3.振动方程为:y = cos(πt /2 + π/3).(2)波的表达式为:.(3)t = 1s 时刻的波形方程为,波形曲线如图所示.5.9 在波的传播路程上有A 和B 两点,都做简谐振动,B 点的位相比A 点落后π/6,cos[2()]t x y A T πϕλ=-+cos[2()]t xy A T πϕλ=-+cos[()]23t x ππ=-+5cos()26y x ππ=-图5.8已知A 和B 之间的距离为2.0cm ,振动周期为2.0s .求波速u 和波长λ.[解答] 设波动方程为:, 那么A 和B 两点的振动方程分别为:,.两点之间的位相差为:,由于x B – x A = 0.02m ,所以波长为:λ = 0.24(m).波速为:u = λ/T = 0.12(m·s -1).5.10 一平面波在介质中以速度u = 20m·s -1沿x 轴负方向传播.已知在传播路径上的某点A 的振动方程为y = 3cos4πt .(1)如以A 点为坐标原点,写出波动方程;(2)如以距A 点5m 处的B 点为坐标原点,写出波动方程; (3)写出传播方向上B ,C ,D 点的振动方程. [解答](1)以A 点为坐标原点,波动方程为 .(2)以B 点为坐标原点,波动方程为. (3)以A 点为坐标原点,则x B = -5m 、x C = -13m 、x D = 9m ,各点的振动方程为, ,.[注意]以B 点为坐标原点,求出各点坐标,也能求出各点的振动方程.5.11 一弹性波在媒质中传播的速度u = 1×103m·s -1,振幅A = 1.0×10-4m ,频率ν= 103Hz .若该媒质的密度为800kg·m -3,求:(1)该波的平均能流密度;(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量. [解答](1)质点的圆频率为:ω = 2πv = 6.283×103(rad·s -1), 波的平均能量密度为:= 158(J·m -3), 平均能流密度为:= 1.58×105(W·m -2).(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量为:E = ItS = 3.79×103(J).5.12 一平面简谐声波在空气中传播,波速u = 340m·s -1,频率为500Hz .到达人耳时,振幅A = 1×10-4cm ,试求人耳接收到声波的平均能量密度和声强?此时声强相当于多少分贝?已知空气密度ρ = 1.29kg·m -3.[解答]质点的圆频率为:ω = 2πv = 3.142×103(rad·s -1),cos[2()]t xy A T πϕλ=-+cos[2()]A A xt y A T πϕλ=-+cos[2()]B B xt y A T πϕλ=-+2(2)6B A x x πππλλ---=-3cos 4()3cos(4)5x x y t t u πππ=+=+3cos 4()Ax x y t u π-=+3cos(4)5x t πππ=+-3cos 4()3cos(4)BB x y t t u πππ=+=-33cos 4()3cos(4)5C C x y t t u πππ=+=-93cos 4()3cos(4)5D D x y t t u πππ=+=+2212w A ρω=I wu =图5.10声波的平均能量密度为:= 6.37×10-6(J·m -3), 平均能流密度为:= 2.16×10-3(W·m -2), 标准声强为:I 0 = 1×10-12(W·m -2), 此声强的分贝数为:= 93.4(dB).5.13 设空气中声速为330m·s -1.一列火车以30m·s -1的速度行驶,机车上汽笛的频率为600Hz .一静止的观察者在机车的正前方和机车驶过其身后所听到的频率分别是多少?如果观察者以速度10m·s -1与这列火车相向运动,在上述两个位置,他听到的声音频率分别是多少?[解答]取声速的方向为正,多谱勒频率公式可统一表示为, 其中v S 表示声源的频率,u 表示声速,u B 表示观察者的速度,u S 表示声源的速度,v B 表示观察者接收的频率.(1)当观察者静止时,u B = 0,火车驶来时其速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为= 660(Hz). 火车驶去时其速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为= 550(Hz). (2)当观察者与火车靠近时,观察者的速度方向与声速相反,u B = -10m·s -1;火车速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为= 680(Hz). 当观察者与火车远离时,观察者的速度方向与声速相同,u B = 10m·s -1;火车速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为= 533(Hz). [注意]这类题目涉及声速、声源的速度和观察者的速度,规定方向之后将公式统一起来,很容易判别速度方向,给计算带来了方便.5.14.一声源的频率为1080Hz ,相对地面以30m·s -1速率向右运动.在其右方有一反射面相对地面以65m·s -1的速率向左运动.设空气中声速为331m·s -1.求:(1)声源在空气中发出的声音的波长; (2)反射回的声音的频率和波长.[解答](1)声音在声源垂直方向的波长为:λ0 = uT 0 = u /ν0 = 331/1080 = 0.306(m); 在声源前方的波长为:λ1 = λ0 - u s T 0 = uT 0 - u s T 0 = (u - u s )/ν0 = (331-30)/1080 = 0.2787(m); 在声源后方的波长为:λ2 = λ0 + u s T 0 = uT 0 + u s T 0 = (u + u s )/ν0= (331+30)/1080 = 0.3343(m).(2)反射面接收到的频率为 = 1421(Hz).将反射面作为波源,其频率为ν1,反射声音的频率为2212w A ρω=I wu =010lgIL I =BB S Su u u u νν-=-33060033030B S S u u u νν==--33060033030B S S u u u νν==-+3301060033030B B S S u u u u νν-+==--3301060033030B B S S u u u u νν--==-+1033165108033130B Su u u u νν++==⨯--= 1768(Hz). 反射声音的波长为=0.1872(m).或者 = 0.1872(m). [注意]如果用下式计算波长=0.2330(m), 结果就是错误的.当反射面不动时,作为波源发出的波长为u /ν1 = 0.2330m ,而不是入射的波长λ1.5.15 S 1与S 2为两相干波源,相距1/4个波长,S 1比S 2的位相超前π/2.问S 1、S 2连线上在S 1外侧各点的合成波的振幅如何?在S 2外侧各点的振幅如何?[解答]如图所示,设S 1在其左侧产生的波的波动方程为,那么S 2在S 1左侧产生的波的波动方程为,由于两波源在任意点x 产生振动反相,所以合振幅为零.S 1在S 2右侧产生的波的波动方程为,那么S 2在其右侧产生的波的波动方程为,由于两波源在任意点x 产生振动同相,所以合振幅为单一振动的两倍.5.16 两相干波源S 1与S 2相距5m ,其振幅相等,频率都是质中的传播速度为400m·s -1,试以S 1S 2连线为坐标轴x ,以S 1S 2连线中点为原点,求S 1S 2间因干涉而静止的各点的坐标.[解答]如图所示,设S 1在其右侧产生的波的波动方程为 ,那么S 2在其左侧产生的波的波动方程为. 两个振动的相差为Δφ = πx + π,当Δφ = (2k + 1)π时,质点由于两波干涉而静止,静止点为x = 2k , k 为整数,但必须使x 的值在-l /2到l /2之间,即-2.5到2.5之间.当k = -1、0和1时,可得静止点的坐标为:x = -2、0和2(m).`11331142133165B u u u νν==⨯--`1111331651421BBu u u u λννν--=-==`1`13311768u λν==`111650.27871768Bu λλν=-=-1cos[2()]t xy A T πϕλ=++2/4cos[2()]2t x y A T λππϕλ-=++-cos[2()]t xA T πϕπλ=++-1cos[2()]t xy A T πϕλ=-+2/4cos[2()]2t x y A T λππϕλ-=-+-cos[2()]t xA T πϕλ=-+1/2cos[2()]x l y A t u πνϕ+=-+5cos(2)24A t x πππνϕ=-+-2/2cos[2()]x l y A t u πνϕπ-=+++cos(2)24A t x πππνϕ=++-S 1 S 2S 125.17 设入射波的表达式为,在x = 0处发生反射,反射点为一自由端,求:(1)反射波的表达式; (2)合成驻波的表达式.[解答](1)由于反射点为自由端,所以没有半波损失,反射波的波动方程为.(2)合成波为y = y 1 + y 2,将三角函数展开得,这是驻波的方程.5.18 两波在一很长的弦线上传播,设其表达式为:,,用厘米、克、秒(cm,g,s )制单位,求:(1)各波的频率,波长、波速;(2)节点的位置;(3)在哪些位置上,振幅最大?[解答](1)两波可表示为:,, 可知它们的周期都为:T = 0.5(s),频率为:v = 1/T = 2(Hz);波长为:λ = 200(cm);波速为:u = λ/T = 400(cm·s -1).(2)位相差Δφ = πx /50,当Δφ = (2k + 1)π时,可得节点的位置x = 50(2k + 1)(cm),(k = 0,1,2,…).(3)当Δφ = 2k π时,可得波腹的位置x = 100k (cm),(k = 0,1,2,…).1cos 2()t xy A T πλ=+2cos 2()t xy A T πλ=-222coscosy A x t Tππλ=1 6.0cos(0.028.0)2y x t π=-2 6.0cos(0.028.0)2y x t π=+1 6.0cos 2()0.5200t x y π=-2 6.0cos 2()0.5200t x y π=+。
物理学第五版 第十二章 机械波 试题
第十二章 机械波12-1 一平面简谐纵波沿着线圈弹簧传播.设波沿着x 轴正向传播,弹簧中某圈的最大位移为3.0 cm ,振动频率为25 Hz ,弹簧中相邻两疏部中心的距离为24 cm .当t = 0时,在x = 0处质元的位移为零并向x 轴正向运动.试写出该波的表达式.(答案:]21)6/(50cos[100.32π--π⨯=-x t y (SI))12-2 一平面简谐波沿x 轴正向传播,波的振幅A = 10 cm ,波的角频率ω = 7π rad/s.当t = 1.0 s 时,x = 10 cm 处的a 质点正通过其平衡位置向y 轴负方向运动,而x = 20 cm 处的b 质点正通过y = 5.0 cm 点向y 轴正方向运动.设该波波长λ >10 cm ,求该平面波的表达式.(答案:]3112.07cos[1.0π+π-π=x t y (SI))12-3 一平面简谐波沿x 轴正向传播,其振幅为A ,频率为ν ,波速为u .设t = t '时刻的波形曲线如图所示.求(1) x = 0处质点振动方程;(2) 该波的表达式.(答案:]21)(2cos[π+'-π=t t A y ν;]21)/(2cos[π+-'-π=u x t t A y ν)12-4 一列平面简谐波在媒质中以波速u = 5 m/s 沿x 轴正向传播,原点O 处质元的振动曲线如图所示.(1) 求解并画出x = 25 m 处质元的振动曲线. (2) 求解并画出t = 3 s 时的波形曲线.(答案:)321cos(1022π-π⨯=-t y ,(SI),图略;)10/cos(1022x y π-π⨯=-,(SI),图略)12-5 已知一平面简谐波的表达式为 )37.0125cos(25.0x t y -= (SI) (1) 分别求x 1 = 10 m ,x 2 = 25 m 两点处质点的振动方程; (2) 求x 1,x 2两点间的振动相位差;(3) 求x 1点在t = 4 s 时的振动位移.(答案:)7.3125cos(25.010-==t y x (SI),)25.9125cos(25.025-==t y x (SI);-5.55 rad ;0.249 m )12-6 一横波方程为 )(2cosx ut A y -π=λ, 式中A = 0.01 m ,λ = 0.2 m ,u = 25 m/s ,求t = 0.1 s 时在x = 2 m 处质点振动的位移、速度、加速度.(答案:-0.01 m ,0 m/s ,6.17×103 m/s 2)xu O t =t ′y12-7 如图,一平面波在介质中以波速u = 20 m/s 沿x 轴负方向传播,已知A 点的振动方程为 t y π4c o s 1032-⨯= (SI). (1) 以A 点为坐标原点写出波的表达式;(2) 以距A 点5 m 处的B 点为坐标原点,写出波的表达式.(答案:)]20/([4cos 1032x t y +π⨯=- (SI);])20(4cos[1032π-+π⨯=-xt y (SI))12-8 一平面简谐波沿x 轴正向传播,其振幅和角频率分别为A 和ω ,波速为u ,设t = 0时的波形曲线如图所示.(1) 写出此波的表达式. (2) 求距O 点分别为λ / 8和3λ / 8 两处质点的振动方程.(3) 求距O 点分别为λ / 8和3λ / 8 两处质点在t = 0时的振动速度.(答案:]21)/(cos[π+-=u x t A y ωω;)4/cos(π+=t A y ω,)4/cos(π-=t A y ω;2/2ωA -,2/2ωA )12-9 如图,一平面简谐波沿Ox 轴传播,波动表达式为])/(2cos[φλν+-π=x t A y (SI),求 (1) P 处质点的振动方程;(2) 该质点的速度表达式与加速度表达式.(答案:])/(2cos[φλν++=L t A y P π;])/(2sin[2φλνπν++π-=L t A P v ,])/(2cos[422φλνν++ππ-=L t A a P )12-10 某质点作简谐振动,周期为2 s ,振幅为0.06 m ,t = 0 时刻,质点恰好处在负向最大位移处,求(1) 该质点的振动方程; (2) 此振动以波速u = 2 m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3) 该波的波长.(答案: )cos(06.00ππ+=t y (SI);])21(cos[06.0ππ+-=x t y (SI);4m )12-11 图示一平面简谐波在t = 0 时刻的波形图,求 (1) 该波的波动表达式; (2) P 处质点的振动方程.(答案:]2)4.05(2cos[04.0π--π=x t y (SI); )234.0cos(04.0ππ-=t y P (SI))ABxuxuOyOP(m) -12-12 图示一平面余弦波在t = 0 时刻与t = 2 s 时刻的波形图.已知波速为u ,求(1) 坐标原点处介质质点的振动方程;(2) 该波的波动表达式.(答案:)218/cos(0π-π=t A y (SI);]21)16016(2cos[π-+π=x t A y (SI))12-13 如图所示为一平面简谐波在t = 0 时刻的波形图,设此简谐波的频率为250 Hz ,且此时质点P 的运动方向向下,求(1) 该波的表达式;(2) 在距原点O 为100 m 处质点的振动方程与振动速度表达式. (答案:]41)200250(2cos[π++π=x t A y (SI); )45500cos(1π+π=t A y ,)45500cos(500π+ππ-=t A v (SI))12-14 如图所示,一简谐波向x 轴正向传播,波速u = 500 m/s ,x 0 = 1 m, P 点的振动方程为)21500cos(03.0π-π=t y (SI).(1) 按图所示坐标系,写出相应的波的表达式; (2) 在图上画出t = 0时刻的波形曲线.(答案:)21500cos(03.0x t y π-π+π= (SI);x x y π=sin 03.0)0,()12-15 一平面简谐波,频率为300 Hz ,波速为340 m/s ,在截面面积为3.00×10-2 m 2的管内空气中传播,若在10 s 内通过截面的能量为2.70×10-2 J ,求(1) 通过截面的平均能流; (2) 波的平均能流密度;(3) 波的平均能量密度.(答案:2.70×10-3 J/s ;9.00×10-2 J /(s ·m 2);2.65×10-4 J/m 3)12-16 已知点波源向外发射球面波,波速为v 0,波源振动的角频率为ω ,初相为零.距波源为 1 m 处质点的振幅为A 0.设介质均匀且不吸收能量,试写出球面波的波动表达式.(答案:)]}/([cos{)/(0v r t r A y -=ω (SI))12-17 如图所示,S 1,S 2为两平面简谐波相干波源.S 2的相位比S 1的相位超前π/4 ,波长λ = 8.00 m ,r 1 = 12.0 m ,r 2 = 14.0 m ,S 1在P 点引起的振动振幅为0.30 m ,S 2在P 点引起的振动振幅为0.20 m ,求P 点的合振幅.(答案:0.464m )12-18 如图所示,两相干波源在x 轴上的位置为S 1和S 2,其间距离为d = 30 m ,S 1位于坐标原点O .设波只沿x 轴正负方向传播,单独传播时强度保持不变.x 1 = 9 m 和x 2 = 12 m 处的两点是相邻的两个因干涉而静止的点.求两波的波长和两波源间最小相位差.(答案:6m ;± π )12-19 图中A 、B 是两个相干的点波源,它们的振动相位差为π(反相).A 、B 相距 30 cm ,观察点P 和B 点相距 40 cm ,且AB PB ⊥.若发自A 、B 的两波在P 点处最大限度地互相削弱,求波长最长能是多少.(答案:10 cm )12-20 如图所示,两列相干波在P 点相遇.一列波在B 点引起的振动是 t y π⨯=-2cos 103310 (SI);另一列波在C 点引起的振动是)212cos(103320π+π⨯=-t y (SI); 令=BP 0.45 m ,=CP 0.30 m ,两波的传播速度u = 0.20 m/s ,不考虑传播途中振幅的减小,求P 点的合振动的振动方程.(答案:)212cos(1063ππ-⨯=-t y )12-21 一平面简谐波沿Ox 轴正方向传播,波的表达式为 )/(2cos λνx t A y -π=, 而另一平面简谐波沿Ox 轴负方向传播,波的表达式为 )/(2cos 2λνx t A y +π= 求:(1) x = λ /4 处介质质点的合振动方程;(2) x = λ /4 处介质质点的速度表达式.(答案:)212cos(π+π=t A y ν;)2cos(2πππ+=t A v νν)12-22 一驻波中相邻两波节的距离为d = 5.00 cm ,质元的振动频率为ν =1.00×103 Hz ,求形成该驻波的两个相干行波的传播速度u 和波长λ .(答案:u = 100 m/s ,λ = 0.10 m )12-23 两波在一很长的弦线上传播,其表达式分别为:)244(31cos 1000.421t x y -π⨯=- (SI))244(31cos 1000.422t x y +π⨯=- (SI)PSS求: (1) 两波的频率、波长、波速; (2) 两波叠加后的节点位置; (3) 叠加后振幅最大的那些点的位置.(答案:ν = 4 Hz ,λ = 1.50 m ,u = λν = 6.00 m/s ;)21(3+±=n x m , n = 0,1,2,3, …; 4/3n x ±= m , n = 0,1,2,3, …)12-24 设入射波的表达式为 )(2cos 1TtxA y +π=λ,在x = 0处发生反射,反射点为一固定端.设反射时无能量损失,求(1) 反射波的表达式; (2) 合成的驻波的表达式;(3) 波腹和波节的位置. (答案:])//(2cos[2π+-π=T t x A y λ;)21/2cos()21/2cos(2ππππ-+=T t x A y λ;波腹位置:λ)21(21-=n x , n = 1, 2, 3, 4,…;波节位置:λn x 21=, n = 1, 2, 3, 4,…)12-25 一弦上的驻波表达式为 t x y ππ⨯=-550c o s )6.1(c o s 1000.32 (SI).(1) 若将此驻波看作传播方向相反的两列波叠加而成,求两波的振幅及波速; (2) 求相邻波节之间的距离;(3) 求t = t 0 = 3.00×10-3 s 时,位于x = x 0 = 0.625 m 处质点的振动速度.(答案:A = 1.50×10-2 m ,u = 343.8 m/s ;0.625 m ;-46.2m/s )12-26 在弹性媒质中有一沿x 轴正向传播的平面波,其表达式为)214cos(01.0π-π-=x t y (SI).若在x = 5.00 m 处有一媒质分界面,且在分界面处反射波相位突变π,设反射波的强度不变,试写出反射波的表达式.(答案:)214cos(01.0π+π+=x t y (SI))12-27 火车以u = 30 m/s 的速度行驶,汽笛的频率为ν0 = 650 Hz .在铁路近旁的公路上坐在汽车里的人在下列情况听到火车鸣笛的声音频率分别是多少? (1) 汽车静止; (2) 汽车以v = 45 km/h 的速度与火车同向行驶.(设空气中声速为V = 340 m/s ) (答案:火车迎面而来713Hz ,火车背离而去597Hz ;汽车在前687Hz ;火车在前619Hz )12-28 甲火车以43.2 km/h 速度行驶,其上一乘客听到对面驶来的乙火车鸣笛声的频率为512 Hz ;当这一火车过后,听到其鸣笛声的频率为428 Hz .求乙火车上的乘客听到乙火车鸣笛的频率和乙火车对于地面的速度(设空气中声波的速度为340 m/s ).(答案:468 Hz ,18.4 m/s )12-29 一个观察者站在铁路附近,听到迎面开来的火车汽笛声的频率为640 Hz ,当火车驶过他身旁后,听到汽笛声的频率降低为530 Hz .问火车的时速为多少?(设空气中声速为330 m/s )(答案:31.0 m /s )12-30 甲和乙两个声源的频率均为500 Hz.甲静止不动,乙以40 m/s的速度远离甲.在甲乙之间有一观察者以20 m/s的速度向着乙运动.此观察者听到的声音的拍频是多少?(已知空气中的声速为330 m/s)(答案:3.3 Hz)12-31 一人手执一频率为400 Hz的声源以2.0 m/s的速度正对一高墙运动.声音在空气中的速度为330 m/s.此人听到的声音的拍频是多少?(答案:4.88 Hz)。