大学物理机械波习题附答案
大学物理机械波习题附答案
一、选择题:1.3147:一平面简谐波沿Ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y (SI),该波在t = 0.5 s 时刻的波形图是[ B ]2.3407:横波以波速u 沿x 轴负方向传播。
t 时刻波形曲线如图。
则该时刻(A) A 点振动速度大于零 (B) B 点静止不动 (C) C 点向下运动(D) D 点振动速度小于零 [3.3411:若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C 为正值常量,则:(A) 波速为C (B) 周期为1/B (C) 波长为 2π /C (D) 角频率为2π /B []4.3413:下列函数f (x 。
t )可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量。
其中哪个函数表示沿x 轴负向传播的行波?(A) )cos(),(bt ax A t x f += (B) )cos(),(bt ax A t x f -=(C) bt ax A t x f cos cos ),(⋅= (D) btax A t x f sin sin ),(⋅= [ ]5.3479:在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定(A) 大小相同,而方向相反 (B) 大小和方向均相同(C)大小不同,方向相同 (D) 大小不同,而方向相反 [ ]6.3483:一简谐横波沿Ox 轴传播。
若Ox 轴上P 1和P 2两点相距λ /8(其中λ 为该波的波长),则在波的传播过程中,这两点振动速度的(A) 方向总是相同 (B) 方向总是相反y (m) y (m) - y (m) y (m)(C) 方向有时相同,有时相反 (D) 大小总是不相等 [ ]7.3841:把一根十分长的绳子拉成水平,用手握其一端。
维持拉力恒定,使绳端在垂直于绳子的方向上作简谐振动,则 (A) 振动频率越高,波长越长(B) 振动频率越低,波长越长(C) 振动频率越高,波速越大 (D) 振动频率越低,波速越大 [ ] 8.3847:图为沿x 轴负方向传播的平面简谐波在t = 0时刻的波形。
《大学物理》习题册题目及答案第16单元 机械波
第16单元 机械波(一)学号 姓名 专业、班级 课程班序号一 选择题[ C ]1.在下面几种说法中,正确的说法是: (A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的 (B) 波源振动的速度与波速相同 (C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后 (D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前[ A ]2. 一横波沿绳子传播时的波动方程为)104cos(05.0t x y ππ-= (SI),则(A) 其波长为0.5 m (B) 波速为5 m ⋅s -1(C) 波速为25 m ⋅s -1 (D)频率为2 Hz[ C ]3. 一简谐波沿x 轴负方向传播,圆频率为ω,波速为u 。
设t = T /4时刻的波形如图所示,则该波的表达式为: (A) )/(cos u x t A y -=ω (B) ]2/)/([cos πω+-=u x t A y (C) )/(cos u x t A y +=ω (D) ])/([cos πω++=u x t A y[ D ]4. 一平面简谐波沿x 轴正向传播,t = T/4时的波形曲线如图所示。
若振动以余弦函数表示,且此题各点振动的初相取π-到π之间的值,则 (A) 0点的初位相为00=ϕ(B) 1点的初位相为 21πϕ-=(C) 2点的初位相为 πϕ=2(D) 3点的初位相为 23πϕ-=[ D ]5. 一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中: (A) 它的动能转换成势能。
(B) 它的势能转换成动能。
(C) 它从相邻的一段质元获得能量其能量逐渐增大。
(D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小。
二 填空题1.频率为100Hz 的波,其波速为250m/s ,在同一条波线上,相距为0.5m 的两点的相位差为52π. 2. 一简谐波沿x 轴正向传播。
1x 和2x 两点处的振动曲线分别如图(a)和(b)所示。
高考物理《机械振动和机械波》真题练习含答案
高考物理《机械振动和机械波》真题练习含答案1.[2023·新课标卷]船上的人和水下的潜水员都能听见轮船的鸣笛声.声波在空气中和在水中传播时的()A.波速和波长均不同B.频率和波速均不同C.波长和周期均不同D.周期和频率均不同答案:A解析:声波的周期和频率由振源决定,故声波在空气中和在水中传播的周期和频率均相同,但声波在空气和水中传播的波速不同,根据波速与波长关系v=λf可知,波长也不同,故A正确,B、C、D错误.故选A.2.[2024·浙江1月]如图1所示,质量相等的小球和点光源,分别用相同的弹簧竖直悬挂于同一水平杆上,间距为l,竖直悬挂的观测屏与小球水平间距为2l,小球和光源做小振幅运动时,在观测屏上可观测小球影子的运动.以竖直向上为正方向,小球和光源的振动图像如图2所示,则()A.t1时刻小球向上运动B.t2时刻光源的加速度向上C.t2时刻小球与影子相位差为πD.t3时刻影子的位移为5A答案:D解析:以竖直向上为正方向,根据图2可知,t1时刻,小球位于平衡位置,随后位移为负值,且位移增大,可知,t1时刻小球向下运动,A错误;t2时刻,光源的位移为正值,光源振动图像为正弦式,表明其做简谐运动,根据F回=-kx=ma可知,其加速度方向与位移方向相反,位移方向向上,则加速度方向向下,B错误;根据图2可知,小球与光源的振动步调总是相反,由于影子是光源发出的光被小球遮挡后,在屏上留下的阴影,可知,影子与小球的振动步调总是相同,即t2时刻小球与影子相位差为0,C错误;根据图2可知,t3时刻,光源位于最低点,小球位于最高点,根据光沿直线传播,光源能够在屏上留下影子的位置也处于最高点,影子位于正向最大位移处,根据几何关系有ll+2l =A+AA+x影子,解得x影子=5A,即t3时刻影子的位移为5A,D正确.3.[2024·吉林卷]某同学自制双缝干涉实验装置:在纸板上割出一条窄缝,于窄缝中央沿缝方向固定一根拉直的头发丝形成双缝,将该纸板与墙面平行放置,如图所示.用绿色激光照双缝,能够在墙面上观察到干涉条纹.下列做法可以使相邻两条亮条纹中央间距变小的是()A.换用更粗的头发丝B.换用红色激光照射双缝C.增大纸板与墙面的距离D.减小光源与纸板的距离答案:A解析:由于干涉条纹间距Δx=ldλ可知,换用更粗的头发丝,双缝间距d变大,则相邻两条亮条纹中央间距Δx变小,故A正确;换用红色激光照双缝,波长变长,则相邻两条亮条纹中央间距Δx变大,故B错误;增大纸板与墙面的距离l,则相邻两条亮条纹中央间距Δx 变大,故C错误;减小光源与纸板的距离,不会影响相邻两条亮条纹中央间距Δx,故D错误.故选A.4.[2024·浙江1月](多选)在如图所示的直角坐标系中,xOz平面为介质Ⅰ和Ⅱ的分界面(z轴垂直纸面向外).在介质Ⅰ中的P(0,4λ)处有一点波源,产生波长为λ、速度为v的波.波传到介质Ⅱ中,其速度为2v.图示时刻介质Ⅱ中仅有一个波峰,与x轴和y轴分别交于R 和S点,此时波源也恰好位于波峰.M为O、R连线的中点,入射波与反射波在O点相干加强,则()A .介质Ⅱ中波的频率为2v λB. S 点的坐标为(0,-2 λ)C .入射波与反射波在M 点相干减弱D. 折射角α的正弦值sin α=352 答案:BD解析:波从一种介质到另一种介质,频率不变,故介质Ⅱ中波的频率为f =v λ,A 错误;在介质Ⅱ中波长为λ′=2v f=2 λ,由于图示时刻介质Ⅱ中仅有一个波峰,与x 轴和y 轴分别交于R 和S 点,故S 点的坐标为(0,-2 λ),B 正确;由于S 为波峰,且波传到介质Ⅱ中,其速度为2 v .图示时刻介质Ⅱ中仅有一个波峰,与x 轴和y 轴分别交于R 和S 点,则R 也为波峰,故P 到R 比P 到O 多一个波峰,则PR =5λ,则OR =3λ,由于||MO -PM≠2n ·λ2 或(2n +1)λ2 (n =0,1,2,…),故M 点不是减弱点,C 错误;根据n =λ′λ=2 ,则n =sin αOR PR,解得sin α=352 ,D 正确. 5.[2021·天津卷]一列沿x 轴正方向传播的简谐横波,传播速度v =10 m/s ,t =0时位于坐标原点的质点从平衡位置沿y 轴正方向运动,下列图形中哪个是t =0.6 s 时的波形( )答案:B解析:由图中可以看出该波的波长为λ=4 m ,根据v =λT可知该列波的周期为T =0.4 s ,又因为t=0时位于坐标原点的质点从平衡位置沿y轴正方向运动,当t=0.6 s时经历了1.5 T,所以此时位于坐标原点的质点从平衡位置沿y轴负方向运动,结合图像可知B正确.6.[2023·湖南卷]如图(a),在均匀介质中有A、B、C和D四点,其中A、B、C三点位于同一直线上,AC=BC=4 m,DC=3 m,DC垂直AB.t=0时,位于A、B、C处的三个完全相同的横波波源同时开始振动,振动图像均如图(b)所示,振动方向与平面ABD垂直,已知波长为4 m.下列说法正确的是()A.这三列波的波速均为2 m/sB.t=2 s时,D处的质点开始振动C.t=4.5 s时,D处的质点向y轴负方向运动D.t=6 s时,D处的质点与平衡位置的距离是6 cm答案:C解析:由图(b)的振动图像可知,振动的周期为4 s,故三列波的波速为v=λT=4 m4 s=1m/s,A错误;由图(a)可知,D处距离波源C最近的距离为3 m,故开始振动后波源C处的横波传播到D处所需的时间为t C=DC v=3 m1 m/s=3 s故t=2 s时,D处的质点还未开始振动,B错误;由几何关系可知AD=BD=5 m,波源A、B产生的横波传播到D处所需的时间为t AB=ADv=5 m1 m/s=5 s故t=4.5 s时,仅波源C处的横波传播到D处,此时D处的质点振动时间为t1=t-t C =1.5 s由振动图像可知此时D处的质点向y轴负方向运动,C正确;t=6 s时,波源C处的横波传播到D处后振动时间为t2=t-t C=3 s由振动图像可知此时D处为波源C处传播横波的波谷;t=6 s时,波源A、B处的横波传播到D处后振动时间为t3=t-t AB=1 s由振动图像可知此时D处为波源A、B处传播横波的波峰.根据波的叠加原理可知此时D处质点的位移为y=2A-A=2 cm故t=6 s时,D处的质点与平衡位置的距离是2 cm,D错误.故选C.。
《大学物理》习题库试题及答案___05_机械波习题
一、选择题:1.3147:一平面简谐波沿Ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y (SI),该波在t = 0.5 s 时刻的波形图是 [ b ]2.3407:横波以波速u 沿x 轴负方向传播。
t 时刻波形曲线如图。
则该时刻(A) A 点振动速度大于零 (B) B 点静止不动 (C) C 点向下运动 (D) D 点振动速度小于零[ d ]3.3411:若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C 为正值常量,则:(A) 波速为C (B) 周期为1/B (C) 波长为 2π /C (D) 角频率为2π /B[ c ]u=λ/T C=ϖ/u4.3413:下列函数f (x 。
t)可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量。
其中哪个函数表示沿x 轴负向传播-的行波?(A) )A(bt),tf-=cos(xaxax(bt),Atf+xcos(=(B) )(C) bttAaxxf sin(⋅),sin==(D) btt(⋅axxA),cosf cos[a]5.3479:在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定(A) 大小相同,而方向相反(B) 大小和方向均相同(C) 大小不同,方向相同(D) 大小不同,而方向相反[ a ]6.3483:一简谐横波沿Ox轴传播。
若Ox轴上P1和P2两点相距λ /8(其中λ为该波的波长),则在波的传播过程中,这两点振动速度的(A) 方向总是相同(B) 方向总是相反(C) 方向有时相同,有时相反(D) 大小总是不相等[ c ]7.3841:把一根十分长的绳子拉成水平,用手握其一端。
维持拉力恒定,使绳端在垂直于绳子的方向上作简谐振动,则(A) 振动频率越高,波长越长(B) 振动频率越低,波长越长(C) 振动频率越高,波速越大(D) 振动频率越低,波速越大[ B ] 8.3847:图为沿x 轴负方向传播的平面简谐波在t = 0时刻的波形。
《大学物理学》(网工)机械波练习题(解答)
合肥学院《大学物理 B》(网工)自主学习材料
4.一列机械波沿 x 轴正向传播, t =0 时的波形如图所示,
已知波速为10 m/s,波长为2m,求: (1)波动方程;
(2) P 点的振动方程及振动曲线; (3) P 点的坐标; (4) P 点回到平衡位置所需的最短时间
(D)
53
53
(A) y 4sin 2 ( t x) ; (B) y 4sin 2 ( t x) ;
22
22
53
53
(C) x 4sin 2 ( t y) ; (D) x 4sin 2 ( t y) 。
22
22
【提示:找出正好方向相反的那个波】
拓展题:平面简谐波 y 4 cos(5 t 3 x) 与下面哪列波相干可形成驻波?
由波速 5m/s 知: ku 5 ,
由于是 y-t 图,可直接作旋转矢量知
2 波动方程为: y 0.1cos(5 t x ) 22
(2)将 x=0.5 代入波动方程,有:
3 y0.5 0.1cos(5 t 4 ) 则 t =0 时的波形图
2 x
4.一驻波的表达式为 y 2A cos( ) cos 2 t ,两个相邻的波腹之间的距离为
。
【提示:驻波相邻两波腹之间的距离为半个波长,即为 / 2 】
三、计算题
1.沿绳子传播的平面简谐波的波动方程为 y 0.05cos(10 t 4 x) ,求:(1)绳子上各质点振动时
6-7.某时刻驻波波形曲线如图所示,则 a,b 两点位相差是 (A)π; (B)π/2 ; (C)5π/4; (D) 0。
【提示:驻波波节两边的相位相反,两波节之间各点的振动相位相同】
大学物理波动篇机械波复习题及答案课件
种不同的媒质中传播, 在分界面上的 P 点
相遇, 频率n = 200Hz, 振幅A1=A2=2.00 10-
2m, S2 的位相比 S1 落后 /2。在媒质1中
波速 u1= 800 m s-1, 在媒质2中波速 u2=
1000 m s-1 , S1P=r1=4.00m,
静止的点。求两波的波长和两波源间最 小位相差。
o
S1
S2
x
d
29
解: 设S1 和 S2的振动初位相分别为 1 和 2在 x1点两波引起的振动位相差
2 2 d x1/ 1 2 x1 / 2k 1
2 1 2 d 2 x1/ 2k 1 (1)
在x2点两波引起的振动位相差
2 2 d x2/ 1 2 x2 / 2k 3
波分别通过图中的 o1和 o2 点,通过 o1 点 的简谐波在 M1M2 平面反射后,与通过 o2 点的简谐波在 P 点相遇,假定波在M1M2平 面反射时有半波损失,o1 和 o2 两点的振动
方程为,y10=Acos(2t) 和 y20=Acos(2t) , 且 o1m+mp=16,o2P = 6 (为波长) 求:
(A)波速为C/B; (B)周期为 1/B;
(C)波长为C/2 ; (D)圆频率为 B。
[]
5
5.一平面简谐波沿正方相传播, t=0 时刻的
波形如图所示, 则 P 处质点的振动在 t=0 时
刻的旋转矢量图是
y
u
A
x
o
P
( A)
o
x
A
(B)
o
x
A
(C ) A o
x
A
(D)
物理机械波试题及答案
物理机械波试题及答案一、选择题(每题2分,共10分)1. 机械波的传播速度取决于:A. 波源的振动速度B. 介质的密度C. 介质的弹性模量D. 波源的振动频率答案:C2. 以下哪种波不属于机械波?A. 声波B. 光波C. 地震波D. 电磁波答案:D3. 机械波的波长与频率的关系是:A. 波长与频率成正比B. 波长与频率成反比C. 波长与频率无关D. 波长与频率的乘积为常数答案:B4. 波的干涉现象中,两个波源发出的波在空间某点相遇时,若该点的振动加强,则该点的振动幅度:A. 增加B. 减小C. 保持不变D. 无法确定答案:A5. 波的衍射现象发生在:A. 波遇到障碍物时B. 波遇到比波长大得多的障碍物时C. 波遇到比波长小得多的障碍物时D. 波遇到与波长相近的障碍物时答案:D二、填空题(每题2分,共10分)1. 机械波的传播需要______,而电磁波的传播不需要。
答案:介质2. 波的反射现象中,反射波的频率与入射波的频率______。
答案:相同3. 波的折射现象中,折射角与入射角的关系取决于______。
答案:介质的折射率4. 波的多普勒效应是指波源与观察者之间存在相对运动时,观察者接收到的波的频率与波源发出的频率______。
答案:不同5. 波的干涉现象中,当两个波的相位差为______时,会发生相长干涉。
答案:0度或整数倍的360度三、简答题(每题10分,共20分)1. 请简述机械波的传播过程。
答案:机械波的传播过程是指波源振动时,通过介质中的分子或原子的相互作用,使振动能量从一个分子传递到另一个分子,从而形成波动。
波源的振动使得介质中的分子或原子产生周期性的位移,这些位移又通过介质中的弹性力和惯性力传递给相邻的分子或原子,形成连续的波动。
波的传播速度取决于介质的性质,如密度和弹性模量。
2. 什么是波的衍射现象?请举例说明。
答案:波的衍射现象是指波在遇到障碍物或通过狭缝时,波的传播方向发生偏离直线传播的现象。
《大学物理》习题训练与详细解答四(机械波)
2 2 u Tu
x 2 的 振 动 方 程 为 : y A c o s ( t ) A c o s ( t . ) 8 u 2 8 2 y A c o s ( t ) 4 3 x 2 3 x 的 振 动 方 程 为 : y A c o s ( t ) A c o s ( t . ) 8 u 2 8 2 y A c o s ( t ) 4
答案为:(A)
4
4.图2所示,一平面简谐波沿OX轴正向传播,波长为 A c o s ( 2 v t ) ,则P2点 若P1点处质点的振动方程为 y 1 处质点的振动方程为
与P1点处质点振动状态相同的那些点的位置是
L L y c o s [2 ( t 1 2) ] 2 A x L k (k 1 , 2 ......) 1
( 2 )试以 A 点 距 5 cm 处的 B 点 (A 在 的左边)为坐标 出 原 波 点写
A c o s ( t ) 解:(1)对照振动方程的标准形式 y 0 可得 A 0 . 0 3 m ,, 0 = 4 0
c20 m /s ,沿x轴正向传播的波的波 以A为坐标原点、 动方程 y Acos[ (t x) ] 0 u x y 0.03cos4 (t ) (m ) 注意单位转换 20
t x y Acos[2 ( ) 0 ] T x y 0.1cos[4 (t ) 0 ] 20
15
又t 0 , y A c o s A , 0 0 0
x y 0 . 1 cos 4 ( t ) ( m ) ( x 0 ) 20 (2)由波动方程求t0时刻的波形方程,只须令波动方程 的t为常数t0. 则所求t=T/4时刻的波形方程为
大学物理-机械波习题思考题及答案
习题88-1.沿一平面简谐波的波线上,有相距2.0m 的两质点A 与B ,B 点振动相位比A 点落后6π,已知振动周期为2.0s ,求波长和波速。
解:根据题意,对于A 、B 两点,m x 2612=∆=-=∆,πϕϕϕ,而m 242=⇒∆=∆λλπϕx ,m/s 12==Tu λ8-2.已知一平面波沿x 轴正向传播,距坐标原点O 为1x 处P 点的振动式为)cos(ϕω+=t A y ,波速为u ,求:(1)平面波的波动式;(2)若波沿x 轴负向传播,波动式又如何?解:(1)设平面波的波动式为0cos[]xy A t uωϕ=-+(),则P 点的振动式为:10cos[]P x y A t uωϕ=-+(),与题设P 点的振动式cos()P y A t ωϕ=+比较, 有:10x uωϕϕ=+,∴平面波的波动式为:1cos[()]x x y A t u ωϕ-=-+;(2)若波沿x 轴负向传播,同理,设平面波的波动式为:0cos[]xy A t u ωϕ=++(),则P 点的振动式为:10cos[]P xy A t uωϕ=++(),与题设P 点的振动式cos()P y A t ωϕ=+比较,有:10xuωϕϕ=-+,∴平面波的波动式为:1cos[()]x x y A t u ωϕ-=++。
8-3.一平面简谐波在空间传播,如图所示,已知A 点的振动规律为cos(2)y A t πνϕ=+,试写出: (1)该平面简谐波的表达式;(2)B 点的振动表达式(B 点位于A 点右方d 处)。
解:(1)仿照上题的思路,根据题意,设以O 点为原点平面简谐波的表达式为:0cos[2]xy A t uπνϕ=++(),则A 点的振动式:0cos[2]A ly A t uπνϕ-=++() 题设A 点的振动式cos(2)y A t πνϕ=+比较,有:02luπνϕϕ=+, ∴该平面简谐波的表达式为:]2cos[ϕπν+++=)(ux u l t A y (2)B 点的振动表达式可直接将坐标x d l =-,代入波动方程:]2cos[]2cos[ϕπνϕπν++=+-++=)()(ud t A u l d u l t A y8-4.已知一沿x 正方向传播的平面余弦波,s 31=t 时的波形如图所示,且周期T 为s 2。
大学物理机械波习题附答案
一、选择题:1.3147:一平面简谐波沿Ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y (SI),该波在t = 0.5 s 时刻的波形图是[ B ]2.3407:横波以波速u 沿x 轴负方向传播。
t 时刻波形曲线如图。
则该时刻(A) A 点振动速度大于零 (B) B 点静止不动 (C) C 点向下运动(D) D 点振动速度小于零 [3.3411:若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C为正值常量,则:(A) 波速为C (B) 周期为1/B (C) 波长为 2π /C (D) 角频率为2π /B []4.3413:下列函数f (x 。
t )可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量。
其中哪个函数表示沿x 轴负向传播的行波?(A) )cos(),(bt ax A t x f += (B) )cos(),(bt ax A t x f -=(C) bt ax A t x f cos cos ),(⋅= (D) bt axA t x f sin sin ),(⋅= [ ]5.3479:在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定(A) 大小相同,而方向相反 (B) 大小和方向均相同(C) 大小不同,方向相同(D) 大小不同,而方向相反y (m) y (m) - y (m) y (m)[ ]6.3483:一简谐横波沿Ox 轴传播。
若Ox 轴上P 1和P 2两点相距λ /8(其中λ 为该波的波长),则在波的传播过程中,这两点振动速度的(A) 方向总是相同 (B) 方向总是相反(C) 方向有时相同,有时相反 (D) 大小总是不相等 [ ]7.3841:把一根十分长的绳子拉成水平,用手握其一端。
维持拉力恒定,使绳端在垂直于绳子的方向上作简谐振动,则 (A) 振动频率越高,波长越长 (B) 振动频率越低,波长越长(C) 振动频率越高,波速越大 (D) 振动频率越低,波速越大 [ ] 8.3847:图为沿x 轴负方向传播的平面简谐波在t = 0时刻的波形。
大学物理 第五章机械波 课后习题 参考答案
对于 O 点:∵ y O 0, vO 0 ,∴ O
对于 A 点:∵ y A A, v A 0 ,∴ A 0 对于 B 点:∵ y B 0, v B 0 ,∴ B
.k
2 3 对于 C 点:∵ y C 0, vC 0 ,∴ C 2 (取负值:表示 A、B、C 点位相,应落后于 O 点的位相) (2)波沿 x 轴负向传播,则在 t 时刻,有 0, vO 0 ,∴ O 对于 O 点:∵ y O
2
2 代入上式,即得 C
( x 2 x1 )
Cd .
2
v max A 10 0.05 0.5 m s 1
a max 2 A (10 ) 2 0.05 5 2 m s 2
.c
x)
B 2 ,波速 u , C C 1 2 波动周期 T . B (2)将 x l 代入波动方程即可得到该点的振动方程
如题 5-11(c)图所示. 5-12 如题5-12图所示,已知 t =0时和 t =0.5s时的波形曲线分别为图中曲线(a)和(b) ,波沿 x 轴正向传播,试根据图中绘出的条件求: (1)波动方程; (2) P 点的振动方程.
hd aw
题 5-11 图(c)
y 0.1cos(5t
5 0.5 3 ) 0.1cos(5t ) m 0.5 2
此介质中任一质元离开平衡位置的位移既是坐标位置 x , 又是时间 t 的函数, 即 y f ( x, t ) . (2)在谐振动方程 y f (t ) 中只有一个独立的变量时间 t ,它描述的是介质中一个质元偏离
平衡位置的位移随时间变化的规律;平面谐波方程 y f ( x, t ) 中有两个独立变量,即坐标
大学物理-机械波习题思考题及答案
习题88-1.沿一平面简谐波的波线上,有相距2.0m 的两质点A 与B ,B 点振动相位比A 点落后6π,振动周期为2.0s ,求波长和波速。
解:根据题意,对于A 、B 两点,m x 2612=∆=-=∆,πϕϕϕ, 而m 242=⇒∆=∆λλπϕx ,m/s 12==T u λ 8-2.一平面波沿x 轴正向传播,距坐标原点O 为1x 处P 点的振动式为)cos(ϕω+=t A y ,波速为u ,求:〔1〕平面波的波动式;〔2〕假设波沿x 轴负向传播,波动式又如何"解:〔1〕设平面波的波动式为0cos[]xy A t uωϕ=-+(),则P 点的振动式为: 10cos[]P x y A t uωϕ=-+(),与题设P 点的振动式cos()P y A t ωϕ=+比拟, 有:10x uωϕϕ=+,∴平面波的波动式为:1cos[()]x x y A t u ωϕ-=-+; 〔2〕假设波沿x 轴负向传播,同理,设平面波的波动式为:0cos[]x y A t uωϕ=++(),则P 点的振动式为: 10cos[]P x y A t uωϕ=++(),与题设P 点的振动式cos()P y A t ωϕ=+比拟, 有:10x uωϕϕ=-+,∴平面波的波动式为:1cos[()]x x y A t u ωϕ-=++。
8-3.一平面简谐波在空间传播,如下图,A 点的振动规律为cos(2)y A t πνϕ=+,试写出: 〔1〕该平面简谐波的表达式;〔2〕B 点的振动表达式〔B 点位于A 点右方d 处〕。
解:〔1〕仿照上题的思路,根据题意,设以O 点为原点平面简谐波的表达式为:0cos[2]x y A t uπνϕ=++(),则A 点的振动式:0cos[2]A l y A t uπνϕ-=++() 题设A 点的振动式cos(2)y A t πνϕ=+比拟,有:02l u πνϕϕ=+, ∴该平面简谐波的表达式为:]2cos[ϕπν+++=)(ux u l t A y 〔2〕B 点的振动表达式可直接将坐标x d l =-,代入波动方程:8-4.一沿x 正方向传播的平面余弦波,s 31=t 时的波形如下图,且周期T 为s 2。
大学物理机械波习题附答案
一、选择题:1.3147:一平面简谐波沿Ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y (SI),该波在t = 0.5 s 时刻的波形图是[ B ]2.3407:横波以波速u 沿x 轴负方向传播。
t 时刻波形曲线如图。
则该时刻 (A) A 点振动速度大于零 (B) B 点静止不动(C) C 点向下运动(D) D 点振动速度小于零 [ 3.3411:若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C 为正值常量,则:(A) 波速为C (B) 周期为1/B (C) 波长为 2 /C (D) 角频率为2 /B [ ]4.3413:下列函数f (x 。
t )可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量。
其中哪个函数表示沿x 轴负向传播的行波?(A) )cos(),(bt ax A t x f += (B) )cos(),(bt ax A t x f -=(C) btax A t x f cos cos ),(⋅= (D) bt ax A t x f sin sin ),(⋅= [ ]5.3479:在简谐波传播过程中,沿传播方向相距为λ21(为波长)的两点的振动速度必定y (m) y (m) - y (m)y (m)(A) 大小相同,而方向相反 (B) 大小和方向均相同(C) 大小不同,方向相同 (D) 大小不同,而方向相反 [ ]6.3483:一简谐横波沿Ox 轴传播。
若Ox 轴上P 1和P 2两点相距 /8(其中 为该波的波长),则在波的传播过程中,这两点振动速度的(A) 方向总是相同 (B) 方向总是相反(C) 方向有时相同,有时相反 (D) 大小总是不相等 [ ]7.3841:把一根十分长的绳子拉成水平,用手握其一端。
维持拉力恒定,使绳端在垂直于绳子的方向上作简谐振动,则 (A) 振动频率越高,波长越长 (B) 振动频率越低,波长越长(C) 振动频率越高,波速越大 (D) 振动频率越低,波速越大 [ ]8.3847:图为沿x 轴负方向传播的平面简谐波在t = 0时刻的波形。
大学物理_机械波答案
机械波1.提示:1(,)cos[2()]t xy x t A T πϕλ=-+,2012(,)cos[2()]x t y x t A T λπϕλ+=-+,1sin[2()],dy t xv A dtTωπϕλ==--+2112sin[2()]x dy t v A v dtTλωπϕλ+==--+=-2.提示:波速取决于媒质的性质,振动速度是媒质中质元的运动速度3.提示:由图可知O 点处质元的运动方向向下,00,0,,t t y v A ω===-sin[2],dy t v A dtTωπϕ==-+0sin(0),2v A A πωϕωϕ=-+=-=4.提示:由图可知:8,160/,3,m u m s A m λ===则120,240uH Z v T νωππλ=====由图可知O 点处质元的运动方向向上,则当0,0,sin[2()],dy t xt x v A A dtT ωπϕωλ====--+=时可得2πϕ=-5.提示:在最大位移处,胁变最小,它的速度为0,因此动能为0,对于简谐波动能等于势能。
6.提示:对于A 点的上下运动可当作机械振动,在其偏离平衡位置最大位移处其动能为0,因此A 点在向平衡位置方向运动,则可知波沿X 轴负方向传播 7.提示:12,2πϕϕ-=2121122224r r πϕϕπϕπππλλ⎛⎫⎛⎫∆=---=--⨯=- ⎪ ⎪⎝⎭⎝⎭8.提示:由波腹条件22xk k x πλπλ=±⇒=±二、填空题 1.CB ,Bπ2,Cπ2,lC ,lC -提示:将已知波的方程与波的标准方程2(,)cos[]xy x t A t πωϕλ=-+或(,)cos[()]xy x t A t uωωϕ=-+对比可得波长和波速,位相差为:222[()][]t r d t r d cdπππωϕωϕλλλ-++--+==2.Lλπϕ2-;Nk k x x ∈±=,1λ;zk k x x ∈++=,)21(1λ。
大学物理机械波习题附问题详解
一、选择题:1.3147:一平面简谐波沿Ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y (SI),该波在t = 0.5 s 时刻的波形图是[ B ]2.3407:横波以波速u 沿x 轴负方向传播。
t 时刻波形曲线如图。
则该时刻(A) A 点振动速度大于零 (B) B 点静止不动 (C) C 点向下运动(D) D 点振动速度小于零 [3.3411:若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C为正值常量,则:(A) 波速为C (B) 周期为1/B (C) 波长为 2π /C (D) 角频率为2π /B []4.3413:下列函数f (x 。
t )可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量。
其中哪个函数表示沿x 轴负向传播的行波?(A) )cos(),(bt ax A t x f += (B) )cos(),(bt ax A t x f -=(C) bt ax A t x f cos cos ),(⋅= (D) bt axA t x f sin sin ),(⋅= [ ]5.3479:在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定(A) 大小相同,而方向相反 (B) 大小和方向均相同(C) 大小不同,方向相同(D) 大小不同,而方向相反y (m) y (m) - y (m) y (m)[ ]6.3483:一简谐横波沿Ox 轴传播。
若Ox 轴上P 1和P 2两点相距λ /8(其中λ 为该波的波长),则在波的传播过程中,这两点振动速度的(A) 方向总是相同 (B) 方向总是相反(C) 方向有时相同,有时相反 (D) 大小总是不相等 [ ]7.3841:把一根十分长的绳子拉成水平,用手握其一端。
维持拉力恒定,使绳端在垂直于绳子的方向上作简谐振动,则 (A) 振动频率越高,波长越长 (B) 振动频率越低,波长越长(C) 振动频率越高,波速越大 (D) 振动频率越低,波速越大 [ ] 8.3847:图为沿x 轴负方向传播的平面简谐波在t = 0时刻的波形。
机械波练习题及参考答案
机械波练习题【1】一、选择题1.如图1所示,S 点为振源,其频率为100Hz ,所产生的横波向右传播,波速为80m/s ,P 、Q 是波传播途中的两点,已知SP=4.2m ,SQ=5.4m .当S 通过平衡位置向上运动时 [ ]A .P 在波谷,Q 在波峰B .P 在波峰,Q 在波谷C .P 、Q 都在波峰D .P 通过平衡位置向上运动,Q 通过平衡位置向下运动.2.如图2所示,一列机械波沿x 轴传播,波速为16m/s ,某时刻的图象如图,由图象可知A .这列波波长为16mB .这列波传播8m 需2s 时间C .x=4m 处质点的振幅为0D .x=6m 处质点将向y 轴正向运动3.a 、b 是一条水平绳上相距为L 的两点,一列简谐横波沿绳传播,其波长等于2L/3,当a 点经过平衡位置向上运动时,b 点[ ]A .经过平衡位置,向上运动B .处于平衡位置上方位移最大处C .经过平衡位置,向下运动D .处于平衡位置下方位移最大处4.一列沿x 轴正方向传播的波,波速为6m/s ,振幅为2cm ,在某一时刻距波源5cm 的A 点运动到负最大位移时,距波源8cm 的B 点恰在平衡位置且向上运动.可知该波的波长λ,频率f 分别为A .λ=12cm,f=50HzB .λ=4cm,f=150HzC .λ=12cm,f=150HzD .λ=4cm,f=50Hz5.一列沿x 方向传播的横波,其振幅为A ,波长为图1图3图2λ,某一时刻波的图象如图3所示。
在该时刻,某一质点的坐标为(λ,0),经过四分之一周期后,该质点的坐标为A .(5/4)λ,0B .λ ,-AC .λ,AD .(5/4)λ,A6.以下对波的说法中正确的是[ ]A .频率相同的波叠加,一定可以发生稳定的干涉现象B .横波可以在固体、液体和气体中传播C .纵波不能用波的图象描述D .波长和障碍物尺寸相近时,衍射现象明显7.图4所示为一列简谐波在t=7/4s 时的波动图象。
大学物理机械振动与机械波综合练习题(含答案)
解: A1 = 5cm , A2 = 6 cm ,1 = 0.75 , 2 = 0.25
A = A12 + A22 + 2 A1 A2 cos( 2 − 1 ) = 52 + 62 + 2 5 6 cos(0.25 − 0.75 )
= 120 Hz ,另一列火车 B 以 u2 = 25 m/s 的速度行驶。当 A 、B 两车相向而行时,B 的 司机听到汽笛的频率 为137 Hz ;当 A 、 B 两车运行方向相同时,且 B 车在 A 车前方, B 的司机听到汽笛的频率 为118 Hz 。
解:波源与观察者相向运动: = u + vR = 331+ 20 120 = 137 H z
A
=
2.00 cm
。x
= 10cm
处有一点 a
在t
=
3s
时
ya
=
0
,d y dt
|a
0
;当 t
=
5s
时,x
=
0处
的位移 y0 = 0 ,此刻该点速度 v = − 6.28 cm/s 。
解:
y0
=
A cos( 2 T
t
+0),
ya
=
Acos[2 ( t T
−
x
)
+
0
]
x = 10 cm , t = 3s , = vT = 10 cm
= 61cm
u
5.图为 t = 0 时刻,以余弦函数表示的沿 x 轴
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题:1.3147:一平面简谐波沿Ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y (SI),该波在t = 0.5 s 时刻的波形图是[ B ]2.3407:横波以波速u 沿x 轴负方向传播。
t 时刻波形曲线如图。
则该时刻 (A) A 点振动速度大于零 (B) B 点静止不动 (C) C 点向下运动(D) D 点振动速度小于零 [3.3411:若一平面简谐波的表达式为)cos(Cx Bt A y -=,式中A 、B 、C 为正值常量,则:y (m)y (m)- y (m)y (m)(A) 波速为C (B) 周期为1/B (C) 波长为 2π /C (D) 角频率为2π /B [ ]4.3413:下列函数f (x 。
t )可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量。
其中哪个函数表示沿x 轴负向传播的行波?(A) )cos(),(bt ax A t x f += (B) )cos(),(bt ax A t x f -=(C) bt ax A t x f cos cos ),(⋅= (D) bt ax A t x f sin sin ),(⋅= [ ]5.3479:在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定(A) 大小相同,而方向相反 (B) 大小和方向均相同(C) 大小不同,方向相同 (D) 大小不同,而方向相反 [ ]6.3483:一简谐横波沿Ox 轴传播。
若Ox 轴上P 1和P 2两点相距λ /8(其中λ 为该波的波长),则在波的传播过程中,这两点振动速度的(A) 方向总是相同 (B) 方向总是相反(C) 方向有时相同,有时相反 (D) 大小总是不相等 [ ]7.3841:把一根十分长的绳子拉成水平,用手握其一端。
维持拉力恒定,使绳端在垂直于绳子的方向上作简谐振动,则(A) 振动频率越高,波长越长 (B) 振动频率越低,波长越长 (C) 振动频率越高,波速越大 (D) 振动频率越低,波速越大 [ ]8.3847:图为沿x 轴负方向传播的平面简谐波在t = 0时刻的波形。
若波的表达式以余弦函数表示,则O 点处质点振动的初相为:(A) 0 (B) π21 (C) π (D) π23[ ]9.5193:一横波沿x 轴负方向传播,若t 时刻波形曲线如图所示,则在t + T /4时刻x 轴上的1、2、3三点的振动位移分别是:5193图xy O u3847图(A) A ,0,-A (B) -A ,0,A (C) 0,A ,0 (D) 0,-A ,0. [ ]10.5513:频率为 100 Hz ,传播速度为300 m/s 的平面简谐波,波线上距离小于波长的两点振动的相位差为π31,则此两点相距(A) 2.86 m (B) 2.19 m (C) 0.5 m (D) 0.25 m [ ]11.3068:已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则(A) 波的频率为a (B) 波的传播速度为 b/a(C) 波长为 π / b (D) 波的周期为2π / a [ ]12.3071:一平面简谐波以速度u 沿x 轴正方向传播,在t = t '时波形曲线如图所示。
则坐标原点O 的振动方程为(A)]2)(cos[π+'-=t t b u a y (B) ]2)(2cos[π-'-π=t t b u a y (C)]2)(cos[π+'+π=t t b u a y (D) ]2)(cos[π-'-π=t t b u a y13.3072:如图所示,一平面简谐波沿x 轴正向传播,已知P 点的振动方程为 )cos(0φω+=t A y则波的表达式为(A) }]/)([cos{0φω+--=u l x t A y (B) })]/([cos{0φω+-=u x t A y(C) )/(cos u x t A y -=ω (D) }]/)([cos{0φω+-+=u l x t A y [ ] 14.3073:如图,一平面简谐波以波速u 沿x 轴正方向传播,O 为坐标原点。
已知P 点的振动方程为 t A y ωcos =,则:精品y (m)(A) O 点的振动方程为 )/(cos u l t A y -=ω (B) 波的表达式为 )]/()/([cos u l u l t A y --=ω (C) 波的表达式为 )]/()/([cos u x u l t A y -+=ω (D) C 点的振动方程为 )/3(cos u l t A y -=ω [ ]15.3152:图中画出一平面简谐波在t = 2 s 时刻的波形图,则平衡位置在P 点的质点的振动方程是(A)]31)2(cos[01.0π+-π=t y P (SI) (B)]31)2(cos[01.0π++π=t y P (SI) (C)]31)2(2cos[01.0π+-π=t y P (SI) (D)]31)2(2cos[01.0π--π=t y P (SI) [ ]16.3338:图示一简谐波在t = 0时刻的波形图,波速 u = 200 m/s ,则图中O 点的振动加速度的表达式为(A))21cos(4.02π-ππ=t a (SI) (B))23cos(4.02π-ππ=t a (SI) (C) )2cos(4.02π-ππ-=t a (SI)(D))212cos(4.02π+ππ-=t a (SI) 17.3341:图示一简谐波在t= 200 m/s ,则P 处质点的振动速度表达式为: (A) )2cos(2.0π-ππ-=t v (SI) (B) )cos(2.0π-ππ-=t v (SI)(C) )2/2cos(2.0π-ππ=t v (SI)(D) )2/3cos(2.0π-ππ=t v (SI) [ ]18.3409:一简谐波沿x 轴正方向传播,t = T /4时的波形曲线如图所示。
若振动以余弦函数表示,且此题各点振动的初相取-π 到πxO u 2l lyC P(m)(A) O 点的初相为00=φ (B) 1点的初相为π-=211φ(C) 2点的初相为π=2φ (D) 3点的初相为π-=213φ [ ]19.3412:一平面简谐波沿x 轴负方向传播。
已知 x = x 0处质点的振动方程为:)cos(0φω+=t A y ,若波速为u ,则此波的表达式为(A) }]/)([cos{00φω+--=u x x t A y (B) }]/)([cos{00φω+--=u x x t A y (C) }]/)[(cos{00φω+--=u x x t A y(D) }]/)[(cos{00φω+-+=u x x t A y [ ]20.3415:一平面简谐波,沿x 轴负方向传播。
角频率为ω ,波速为u 。
设 t =T /4(A) )(cos xu t A y -=ω(B)]21)/(cos[π+-=u x t A y ω (C) )]/(cos[u x t A y +=ω (D)])/(cos[π++=u x t A y ω[ ]21.3573:一平面简谐波沿x 轴负方向传播。
已知x = b 处质点的振动方程为:)cos(0φω+=t A y ,波速为u ,则波的表达式为:(A) ]cos[0φω+++=u x b t A y (B) }][cos{0φω++-=u xb t A y(C)}][cos{0φω+-+=u b x t A y (D) }][cos{0φω+-+=u xb t A y [ ]22.3575:一平面简谐波,波速u = 5 m/s ,t = 3 s 时波形曲线如图,则x = 0处质点的振动方程为:(A))2121cos(1022π-π⨯=-t y (SI) (B))cos(1022π+π⨯=-t y (SI) (C))2121cos(1022π+π⨯=-t y (SI) (D) )23cos(1022π-π⨯=-t y (SI)x (m)y (m) 5 uO10 15 20 25-2×10-223.3088:一平面简谐波在弹性媒质中传播时,某一时刻媒质中某质元在负的最大位移处,则它的能量是(A) 动能为零,势能最大 (B) 动能为零,势能为零(C) 动能最大,势能最大 (D) 动能最大,势能为零 [ ]24.3089:一平面简谐波在弹性媒质中传播,在媒质质元从最大位移处回到平衡位置的过程中:(A) 它的势能转换成动能 (B) 它的动能转换成势能 (C) 它从相邻的一段媒质质元获得能量,其能量逐渐增加(D) 它把自己的能量传给相邻的一段媒质质元,其能量逐渐减小 [ ]25.3287:当一平面简谐机械波在弹性媒质中传播时,下述各结论哪个是正确的?(A) 媒质质元的振动动能增大时,其弹性势能减小,总机械能守恒 (B) 媒质质元的振动动能和弹性势能都作周期性变化,但二者的相位不相同 (C) 媒质质元的振动动能和弹性势能的相位在任一时刻都相同,但二者的数值不相等(D) 媒质质元在其平衡位置处弹性势能最大 [ ]26.3289:图示一平面简谐机械波在t 时刻的波形曲线。
若此时A 点处媒质质元的振动动能在增大,则:(A) A 点处质元的弹性势能在减小 (B) 波沿x 轴负方向传播 (C) B 点处质元的振动动能在减小(D) 各点的波的能量密度都不随时间变化 [ ]27.3295:如图所示,S 1和S 2为两相干波源,它们的振动方向均垂直于图面,发出波长为λ 的简谐波,P 点是两列波相遇区域中的一点,已知 λ21=P S ,λ2.22=P S ,两列波在P 点发生相消干涉。
若S 1的振动方程为1=A y S 2的振动方S程为(A))212cos(2π-π=t A y (B) )2cos(2π-π=t A y (C))212cos(2π+π=t A y (D) )1.02cos(22π-π=t A y28.3433:如图所示,两列波长为λ 的相干波在P 点相遇。
波在S 1点振动的初相是φ 1,S 1到P 点的距离是r 1;波在S 2点的初相是φ 2,Sr 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为:(A) λk r r =-12 (B) π=-k 212φφ (C) π=-π+-k r r 2/)(21212λφφ(D) π=-π+-k r r 2/)(22112λφφ [ ]29.3434:两相干波源S 1和S 2相距λ /4,(λ 为波长),S 1的相位比S 2的相位超前π21,在S 1,S 2的连线上,S 1外侧各点(例如P 点)两波引起的两谐振动的相位差是:(A) 0 (B) π21 (C) π (D) π2330.3101:在驻波中,两个相邻波节间各质点的振动 (A) 振幅相同,相位相同 (B) 振幅不同,相位相同(C) 振幅相同,相位不同 (D) 振幅不同,相位不同 [ ]31.3308在波长为λ 的驻波中,两个相邻波腹之间的距离为(A) λ /4 (B) λ /2 (C) 3λ /4 (D) λ [ ]32.3309:在波长为λ 的驻波中两个相邻波节之间的距离为:(A) λ (B) 3λ /4 (C) λ /2 (D) λ /4 [ ]33.3591:沿着相反方向传播的两列相干波,其表达式为)/(2cos 1λνx t A y -π= 和)/(2cos 2λνx t A y +π=。