大学物理——机械波

合集下载

大学物理机械波

大学物理机械波

y
A
cos t
x u
——平面简谐波的波函数
2024/10/13
机械波
y

T
y Acos[2π(t x ) ]
波函数的 其它形式
y Acos[2π( t x ) ]
T
y Acos[ 2π (ut x) ]
如果波沿x 轴的负方向传播,则P点的相位要比
Acos[4π
(t
x1 u
1)] 8
波函数为:
y(x,t) Acos[4π (t x x1 1)] u8
(3) 以 A 为原点:
y(x,t) Acos[4π (t x 1)] u8
以 B 为原点:
y(x,t) Acos[4π (t x x1 1)] u8
2024/10/13
机械波
ul
E
E— 固体棒的杨氏模量
— 固体棒的密度
2024/10/13
c. 固体媒质中传播的横波速率由下式给出:
ut
G
G — 固体的切变弹性模量
— 固体密度
机械波
d. 液体和气体只能传播纵波,其波速由下式给出:
ul
B
B — 流体的容变弹性模量
— 流体的密度
e. 稀薄大气中的纵波波速为:
RT p
机械波
6.1.3 波的几何描述 波线: 沿波的传播方向作的有方向的线. 波面: 在波传播过程中,任一时刻媒质中振动相位
相同的点构成的曲面. 波前: 波传播过程中, 某一时刻最前面的波面.
注意 在各向同性均匀媒质中,波线⊥波面.
2024/10/13
机械波
6.1.4 波速 波长 周期(频率)
波长(): 同一波线上相邻两个相位差为 2 的质点之间的

大学物理(机械波篇)ppt课件

大学物理(机械波篇)ppt课件

液晶显示
利用偏振光的特性,实现液晶 屏幕对图像的显示和控制。
科学研究
在物理学、化学、生物学等领 域中,利用偏振光研究物质的 光学性质和结构特征。
06
总结回顾与拓展延伸
机械波篇重点知识点总结
机械波的基本概念
机械波是介质中质点间相互作用力引起的振动在介质中的传播。机械波的产生条件、传播方 式、波动方程等基本概念是学习的重点。
驻波形成条件 两列波的频率相同、振幅相等、相位差恒定。
3
驻波特点
波形固定不动,节点和腹点位置固定;相邻节点 间距离等于半波长;能量在节点和腹点之间来回 传递。
03
非线性振动和孤立子简介
非线性振动概念及特点
非线性振动定义
指振动系统恢复力与位移之间不满足线 性关系的振动现象。
振幅依赖性
振动频率和波形随振幅变化而变化。
当障碍物尺寸远大于波长时,衍射现象不 明显。
衍射规律
衍射角与波长成正比,与障碍物尺寸成反 比。
双缝干涉实验原理及结果分析
实验原理:通过双缝让 单色光发生干涉,形成 明暗相间的干涉条纹。
01
干涉条纹间距与光源波 长、双缝间距及屏幕到
双缝的距离有关。
03
05 通过测量干涉条纹间距,
可以计算出光源的波长。
天文学领域
通过测量恒星光谱中谱线的多普勒频移,可以推断出恒星相对于观察 者的径向速度,进而研究恒星的运动和宇宙的结构。
05
光的衍射、干涉和偏振现 象
光的衍射现象及规律总结
衍射现象:光在传播过程中遇到障碍物或 小孔时,会偏离直线传播路径,绕到障碍 物后面继续传播的现象。
当障碍物尺寸与波长相当或更小时,衍射 现象显著。
多个孤立子相互作用后,各自保持 原有形状和速度继续传播。

大学物理 第7章 机械波

大学物理  第7章  机械波
上某点A的简谐运动方程为y =3cos4πt (SI).
(1)以点A为坐标原点,写出波动方程. (2)以距点A为5m处的点B为坐 标原点,写出波动方程; (3)写出传播方向上点C、点D的简谐运动方 程; (4)分别求出BC和CD两点间的相位差.
u • C 8m • B 5m • A 9m

u
解:已知 u=20m/s
频率与周期的关系为:
波速(u) : 振动状态在媒质中的传播速度.
波速与波长、周期和频率的关系为:
1 T
u

T

7.1.4、球面波和平面波
波场--波传播到的空间。
波线(波射线)--代表波的传播方向的射线。
波面--波场中同一时刻振动位相相同的点的轨迹。
波前(波阵面)--某时刻波源最初的振动状态 传到的波面。 各向同性均匀介质中,波线恒与波面垂直.
x ut y( x x , t t ) A cos[ ( t t ) 0 ] u x A cos[ ( t ) 0 ] u
t时刻的波形方程
u
y( x x , t t ) y( x , t )
例题1: 一平面简谐波以速率u = 20m/s沿直线传播. 已知在传播路径
机械振动在介质中的传播称为机械波。 声波、水波 波动是一切微观粒子的属性,
与微观粒子对应的波称为物质波。
各种类型的波有其特殊性,但也有普遍的共性, 有类似的波动方程。
7.1.1 机械波的产生
(1)有作机械振动的物体,即波源
(2)有连续的媒质 y
v x 如果波动中使介质各部分振动的回复力是弹性力, 则称为弹性波。
p I wu S
1 2 2 I A u 2

大学物理第15章机械波

大学物理第15章机械波
2222???????????????????22cosyxatxuu???????222cosyxa?ttu?????????????????????222221yyxut?????这就是一维谐波满足的微分关系
第四篇
波动与光学
§15.1
波动
机械波的产生与传播
振动状态(相位)的传播称为波动,简称波。
y ( m)
0.01
y ( m)
0.01
u
x ( m)
0 .2
t (s)
0 .1
a
b
第四篇
波动与光学
直接读出振动特征量:

y ( m)
0.01
t (s)
0 .1
A 0.01m T 0.1 s 20 (rad / s)


2 ya (t ) 0.01 cos( 20t
第四篇
波动与光学
二、波动微分方程
1.一维波动方程的导出 对于一维波动方程:
可分别对自变量x、t求偏导得:
x y x, t A cos t u
2 y 2 x A 2 cos t 2 x u u 2 y x 2 A cos t 2 t u
频率 波速

u
uT
u

讨论
①波的周期、频率与介质无关,由波源确定。 ②不同频率的波在同一介质中波速相同。
③波在不同介质中频率不变(由波源决定)。
第四篇
波动与光学
六、弹性介质与波的传播
在一种弹性介质中能够传播的是横波还是纵波,波速能够有多大, 都与介质的弹性有关。 1.长变变形 应力 单位截面上的受力称为应力。

大学物理第6章机械波

大学物理第6章机械波

则合成振动 的振幅最大

2
r2
l
r1

( 0,1,2,
则合成振动 的振幅最小
)时
波程差为零或为波长的整数倍 时,各质点的振幅最大,干涉相长。
波程差为半波长的奇数倍时, 各质点的振幅最小,干涉相消。
两相干波源 同初相, 2 m 振动方向垂直纸面
到定点 P 的距离 50 m
P
当 满足什么条件时 在 P 点发生相消干涉; 在 P 点发生相长干涉。
A1
P点给定,则 A1
sin( j 1
2r1 )
l
A2 sin( j 2
c恒os定(。j故1 空间2l每r1一)点的A合2 c成os振( j幅2A
2r2 )
l
保2持r恒2 定) 。
l
相长与相消干涉
A
A12 A22
2 A1 A2 cos (j 2
j1
2
r2
l
r1
)

j2
j1
2
r2
l
r1

j2
j1
2
r2


ma x
波 节
min 0
正向行波
反向行波
驻波的形成
在同一坐标系 XOY 中
正向波 反向波 驻波
点击鼠标,观察 在一个周期T 中 不同时刻各波的 波形图。
每点击一次, 时间步进
正向波 反向波
驻波形成图解
ttt====t7353=TTTT0T///82488
4
合成驻波
驻波方程
正向波 由
反向波
为简明起见, 设
并用
改写原式得
驻波方程
注意到三角函数关系

大学物理@第五章 机械波

大学物理@第五章  机械波

(5)、沿 X方向传播的平面简谐波 的波动方程
Y
u
P
X
o
x
y0 A cost
x y A cos t u x A cos2 t t x A cos2 T
振动状态的传播速度
由媒质的性质和状态决定
u
v
质点的运动速度
由波源振动规律和媒质性质决定
u 恒量
与波线方向相同
v v( x, t )
横波:与波线垂直 纵波:与波线平行
(7)、注意区分波 源 点,原点,参考点(已知振动方式的点) y p0 x
x0

u
2. 已知波线上一点x0的振动方程,求波动方程 参考点 x0 : y0 A cos(t )
2.0 sin(π x)
y/m
2.0
o
-2.0
2.0
x/m
t 1.0 s 时刻波形图
x 0.5m 处质点的振动规律并做图 . t x π y 2.0 cos[ 2 π( ) ] 2.0 2.0 2 x 0.5m 处质点的振动方程
3)
y 2.0 cos(π t π)
注意:
x y A cos t u 2 A cost x t x A cos2 T 2 (2)、x点的初相位为 x
另一方面由于时间 t连续变化,波形就沿 x方向推移。 时刻 时刻 t t t y y u
O
x
x x
t x t t x x 2 π( ) 2 π( ) T T x t x u 波速 u 是相位传播速度 t T

大学物理(机械波篇).

大学物理(机械波篇).

第12章 机械波
13
结论
(1) 波动中各质点并不随波前进; (2) 各个质点的相位依次落后,波动是相位的传播; (3) 波动曲线与振动曲线不同。 y t
振动曲线 波动曲线
y x
波形图: 某时刻 各点振动的位移 y (广义:任一物理量)与相应的平衡位置坐标 x 的关系曲线
思考:上述波形图表示的波一定是横波吗?
16
a点的振动曲线
y
O
t
b点的振动曲线
y
O
t
第12章 机械波
17
c点的振动曲线
y
O
t
d点的振动曲线
y
O
t
第12章 机械波
18
例2 已知x=0处质元的振动曲线如图,画出t = 0时刻的波 形曲线(设波沿 +x方向传播)。 x=0 解: 由振动曲线看出: x=0处质元 在零时刻的振动状态为 T
y
y 0, v 0
F

G
切变模量 弹性模量

u
Y

B
体积模量
在液、气体中只能传播纵波: u 如声音的传播速度

空气,常温 左右,混凝土
23
343 m s 4000 m s
第12章 机械波
§12-2 平面简谐波
简谐波 介质传播的是谐振动,且波所到之处,介质中 各质点作同频率的谐振动。 平面简谐波 说明 简谐波是一种最简单、最基本的波,研究简谐波的波 动规律是研究更复杂波的基础。 波面为平面的简谐波
因此,波速必定与介质的惯性及弹性有关 在弦中传播的横波波速
量纲分析:速率:L/T (m/s)
惯性:由弦的质量线密度表示( m / l)(kg/m) 弹性:由弦的张力表示 F , 量纲(F=ma) (kg.m/s2) 显然: u C

大学物理 机械波ppt课件

大学物理 机械波ppt课件

3. 波速u : 单位时间波所传过的间隔
波速u又称相速度(相位传播速度)
三者关系
u
T
固体内横波和纵波的传播速度u分别为
u G (横波)
u E (纵波)
G:切变模量,E弹性模量, ρ 固体的密度
液体和气体内,纵波的传播速度为
u K (纵波)
K为体积模量
弹性绳上的横波 u T
T-绳的初始张力, -绳的线密度
u
y
u
P
O
x
x
动摇方程的另外两种常见方式
由 ω = 2π /T ,u = ν λ = λ /T
有 y(x,t)Aco2s(tx) 或
取角波数k k 2 有 u
y(x,t)Aco2s(T tx)
y (x ,t) A c ot s k)(x
假设知距O点为x0 的点Q的振动规律为 yQA co ts ()
y u
Q O
x0
x
P x
那么相应的波函数为 yAco stx ux0
沿Ox轴负方向传播的波
y
u
P
O
x
x
P点的振动比O点早t0= x/u. 当O点的相位是ωt 时, P点 的相位已是ω (t + x / u) .
所以
y(x,t)Acos(tx)
u
或 y(x,t)Aco2sT tx y (x ,t) A cot s k)(x
同理对D点 4. BC间的相位差
yD3co4st5 9 (S)I
C B 2 (x B x C ) 1 .6
CD间的相位差 2x4.4 C相位超前D4.4π
§3 波的能量
一. 弹性波的能量
动摇过程就是能量传播的过程

《大学物理》机械波

《大学物理》机械波
解: 1) 按所给条件, 取波函数为
t x y A cos[ 2 ( ) ] T
式中为坐标原点振动的初相


2
15
代入所给数据, 得波动方程
t x y 1.0 cos2 m 2.0 2.0 2
2) 将t=1.0s代入式(1), 得此时刻各质点的位移分别为
ห้องสมุดไป่ตู้ x ut yt t A cos t t 0 u x A cos t 0 yt u
波函数的物理意义描述了波形的传播。
12
三、波动中质点振动的速度和加速度
B-容变模量, -流体密度 理想气体:
RT u
p 容变
8
= Cp/Cv , -摩尔质量
§2.平面简谐波
?简谐波:若波源作简谐振动,介质中各质点也将相继作 同频率的简谐振动, 这种波称之为简谐波。 ?平面简谐波:若波面为平面,则该波称为平面简谐波。
一、平面简谐波的波函数
设有一平面简谐波, 在无吸收、均匀、无限大的介质中传播。
1. 沿x轴正方向传播(右行波)
设原点O处振动位移的表达式为:
y

O
u
y0 A cos (t 0)
P
x
设波的位相速度,即波速为u,则对P点:
x
9
x y A cos 〔 (t ) 0〕 u
2 f , u f
x y A cos 2 ft 0
y x v A sin [ (t ) 0] t u
2 y x 2 a 2 A cos [ (t ) 0] t u

大学物理第六章 机械波

大学物理第六章 机械波
x
x 0
t
x /4
t
x /2
t
x 3 / 4
t
3.当 t c(常数)时,
y t 0
o
x
y f (x为) 某一时刻各质
点的振动位移.
y t T /4
o
x
不同时刻波线上各质点的位
y t T /2
移分布,称为波形图。
o
x
y t 3T / 4
o
x
4. 当 u 与 x 轴反向时取 u
y
A
cos
t
x u
③ 在平衡位置时质元具有最大动能和势能,在振幅处 动能和势能为零。在回到平衡位置时从相邻质元吸 收能量,离开时放出能量。
二、能量密度
1、能量密度 单位体积内的能量 w dE
dV
dE (dV )A 22 sin 2 (t x / u )
w A 22 sin 2 (t x / u )
2.平均能量密度 能量密度在一个周期内的平均值。
称为波面。
波前: 某时刻处在最前面的波面。
球面波
波线
平面波
波线
波面
波面
在各向同性均匀介质中,波线与波阵面垂直.
第二节
平面简谐波的 波函数
用数学表达式表示波动----函数y(x,t),称为波函数。
一、平面简谐波的波函数
·································
➢ 简谐波:在均匀的、无吸收的介质中,波源作 简谐运动时,在介质中所形成的波.
波面上的两点,A、B点达到界 面发射子波,
经t后, B点发射的子波到达界
面处D点, A点的到达C点,
i
B
A

大学物理机械波及波的形式波长波线及波面波速

大学物理机械波及波的形式波长波线及波面波速
1 波长
*
横波:相邻 波峰——波峰 波谷—— 波谷
添加标题
纵波:相邻 波疏——波疏 波密——波密
添加标题
02
01
*
2 周期 T
波传过一波长所需的时间,或一完整波通过波线上某点所需的时间.
3 频率
单位时间内波向前传播的完整波的数目. (1 内向前传播了几个波长)
在水中的波长

由 ,频率为200 Hz和2000 Hz 的声波在
空气中的波长
*
1 波线
波线 波面 波前 波的传播方向
2 波阵面
振动相位相同的点组成的面称为波阵面 任一时刻波源最初振动状态在各方向上传到的点的轨迹. 波前是最前面的波阵面
*
性质
添加标题
添加标题
添加标题
同一波阵面上各点振动状态相同.
纵波(又称疏密波)
例如:弹簧波、 声波
*
特点:质点的振动方向与波传播方向一致
纵波
*
3 复杂波
(本章研究对象)
特点:波源及介质中各点均作简谐振动
特点:复杂波可分解为横波和纵波的合成
例如:地震波
简谐波
*
三 波长 波的周期和频率 波速
O
y
A
A
-
波传播方向上相邻两振动状态完全相同的质点间的距离(一完整波的长度).
*
波动——振动的传播
波动的种类:
振动和波动的关系:
202X年12月20日
一 机械波的形成
能传播机械振动的媒质(空气、水、钢铁等)
2 介质
作机械振动的物体(声带、乐器等)
1 波源
波是运动状态的传播,介质的质点并不随波传播.

大学物理机械波的总结

大学物理机械波的总结

大学物理机械波的总结引言机械波是通过介质的振动传递的一种能量,它在物质中传播并传递能量和动量。

大学物理中,我们学习了机械波的基本概念、性质以及传播规律。

本文将对大学物理机械波的相关知识进行总结。

一、机械波的分类机械波根据传播方向的不同,可以分为横波和纵波两类。

1.横波:介质振动方向与波的传播方向垂直的波称为横波。

例如光波、水波等都属于横波。

横波的特点是振动方向垂直于波的传播方向。

2.纵波:介质振动方向与波的传播方向平行的波称为纵波。

例如声波就是一种纵波。

纵波的特点是振动方向与波的传播方向平行。

二、机械波的传播特性机械波在传播过程中具有以下几个重要的特性:1.波长:波长表示一个波的一个完整周期所需要的距离。

用符号λ表示,单位为米(m)。

2.频率:频率表示单位时间内波的周期个数。

用符号f表示,单位为赫兹(Hz)。

3.波速:波速表示波的传播速度。

用符号v表示,单位为米每秒(m/s)。

4.振幅:振幅表示波的最大偏离程度。

振幅越大,波的能量越大。

5.周期:周期表示一个完整波形所需要的时间。

用符号T表示,单位为秒(s)。

这些传播特性之间满足以下关系:v = λ * f即波速等于波长乘以频率。

三、机械波的传播方式根据介质的不同,机械波的传播方式可以分为弹性波和表面波两种。

1.弹性波:弹性波是在固体或者类似固体的介质中传播的波动。

弹性波可以进一步分为纵波和横波。

–纵波:纵波是弹性波的一种,它的振动方向与波的传播方向平行。

–横波:横波是弹性波的一种,它的振动方向与波的传播方向垂直。

2.表面波:表面波是沿介质表面传播的波动。

表面波可以进一步分为Rayleigh波和Love波。

–Rayleigh波:Rayleigh波是地震波中的一种,其振动既包含横向也包含纵向成分。

–Love波:Love波是纵波无法在液体介质中传播而只能在固体介质中传播的一种波动。

四、机械波的干涉和衍射机械波在传播过程中会发生干涉和衍射现象。

1.干涉:当两个或多个波同时作用于同一位置时,它们会相互叠加,形成新的波形。

大学物理 机械波及波的形式波长 波线及波面 波速

大学物理 机械波及波的形式波长 波线及波面 波速

Y
O
P
x
X
平面简谐波函数的一般形式应为:
y A cos t ( x )
第七章 机械波
关键问题:确定位于x 处的质点的振动初相(x)。
22
波动是振动 相位的传播
u
a
沿波的传播方向 , 各质元 的振动相位依次落后。
传播方向
b
L
x
沿着波动传播的方向上相距L的两个质元间的 振动相位差如何? 图中b点比a点的相位落后
1 x一定,t 变化 令

x
y
则 y A cost
O
t
表示 x点处质点的振动方程( y — t 的关系)
y ( x, t ) y ( x, t T ) (波具有时间的周期性)
第七章 机械波
28
波线上各点的简谐运动图
第七章 机械波
29
2πx 2 t 一定 x 变化 y A cos t 令 t C(定值) 2πx 则 y A cos 该方程表示 t 时刻波传播方向上各质点 的位移, 即 t 时刻的波形(y — x的关系)
(本章研究对象)
第七章 机械波
10
结 论 (1) “ 上游”的质元依次带动“下游”的质元振 动。 (2) 质元并未“随波逐流”,波的传播不是媒 质质元的传播,是振动的传播。 (3) 某时刻某质元的振动状态将在较晚时刻于 “下游”某处出现,波动是振动状态 —— 振 动相位的传播。 同相点----质元的振动状态相同。
分类(1)平面波 (2)球面波
第七章 机械波
13
四 波长 周期和频率 波速
1 波速
u
波在介质中传播的速度 例如,声波在空气中 340 m s 1 水 中 1 500 m s 1

大学物理 ——波(一)

大学物理 ——波(一)

大学物理 ——波(一)引言概述:波是一种常见的物理现象,在自然界和人类日常生活中都能观察到。

本文旨在介绍大学物理学习中的第一部分——波的基本概念和性质。

通过本文的学习,读者将了解波的定义、波的分类以及波动方程等重要概念,并深入探讨机械波和电磁波的性质以及波的传播规律。

正文:1. 波的概念- 定义:波是一种能量传播的方式,以振动或震动形式传递能量而不传递物质的现象。

- 特点:波具有传播、反射、折射和干涉等特点,能够对物体进行作用。

- 分类:根据振动方向和能量传播方式的不同,波可分为机械波和电磁波两大类。

2. 机械波- 定义:机械波是通过介质(如水、空气等)传播的波动现象。

- 特点:机械波必须依赖介质进行传播,传播速度取决于介质的性质。

- 分类:根据粒子振动方向的不同,机械波可分为横波和纵波两种。

- 性质:机械波具有反射、折射、干涉和衍射等特性。

3. 电磁波- 定义:电磁波是通过电场和磁场相互作用而传播的波动现象。

- 特点:电磁波可以在真空中传播,其传播速度为光速。

- 分类:根据波长和频率的不同,电磁波可分为射线、微波、红外线、可见光、紫外线、X射线和γ射线等。

- 性质:电磁波可以反射、折射、干涉和衍射,并具有波粒二象性。

4. 波动方程- 定义:波动方程是描述波动现象的数学表达式。

- 机械波方程:对于一维机械波,波动方程一般表示为∂²u/∂x ² = (1/v²) * ∂²u/∂t²,其中v为波速。

- 电磁波方程:对于电磁波,波动方程一般表示为∇²E - (1/c²) * ∂²E/∂t² = 0,其中c为光速。

5. 波的传播规律- 原理:波的传播遵循赫兹和惠更斯原理。

- 赫兹原理:根据赫兹原理,波会沿着直线传播,且传播方向垂直于波前。

- 惠更斯原理:根据惠更斯原理,波会在达到障碍物或波前边缘时发生衍射,形成新的波前。

大学物理机械波

大学物理机械波
超声多普勒血流计
通过测量血液中散射超声波的多 普勒频移来测量血流速度。
微波多普勒雷达
利用微波段电磁波的多普勒效应 进行目标检测和速度测量。
光学多普勒成像
结合光学干涉和多普勒效应,对 生物组织或流体进行无损成像和
流速测量。
PART 06
机械波干涉、衍射和偏振 现象
REPORTING
干涉现象及其条件
大学物理机械波
REPORTING
• 机械波基本概念与性质 • 线性简谐振动在介质中传播 • 非线性振动在介质中传播 • 机械波在界面处反射和折射 • 多普勒效应及其应用 • 机械波干涉、衍射和偏振现象
目录
PART 01
机械波基本概念与性质
REPORTING
机械波定义及分类
机械波定义
机械波是指通过介质传播的波动现 象,其产生依赖于介质中质点的振 动。
波动方程建立与求解
要点一
波动方程建立
描述波在介质中传播的数学模型,对于一维波动,波动方程 可表示为 $frac{partial^2 y}{partial x^2} = frac{1}{v^2} frac{partial^2 y}{partial t^2}$,其中 $y$ 为质点位移, $x$ 为位置坐标,$t$ 为时间,$v$ 为波速。
求解方法
采用解析方法(如摄动法、变分法)或数值方法(如有限差分法、有限元法)求解非线性振动方程,得到 振动的时域或频域特性。
孤立波、冲击波等非线性波动现象
孤立波
一种在传播过程中形状和速度保持不变的局部化波动现象,具有粒子性和波动性双重特 性。
冲击波
一种在介质中传播时波形陡峭、振幅大、能量集中的非线性波动现象,常见于爆炸、冲 击等过程。

大学物理 机械波

大学物理 机械波

2
22 2
B点的初周相: B
xB u
3.5 2.5
22 2
AB B A 0.75
可见,A点比B点超前 0.75
【例7-5】 图(a)表示t=0时刻的波形图;图(b)表示原点x=0处质元的 振动曲线,试求此波的波函数,并画出x=2m处质元的振动曲线。
解 由(a)可以看出 =4m,由图(b)可以看出,每个质元振动的周期
式中,x,y以m计;t以s计。求:(1)该波的振幅、频率、波速与
波长;(2)距原点8.00m处的质点在t 105s时间间隔内的相位差;
(3)在波传播方向上相位差为 的两点间的距离。
3
解 (1)把波动方程改写成
y=1.2×10
3
cos(
2
2
105
t
2
x
)
110
得波源的振幅A=1.2×10m3,波的周期 T 2 10 5 (s)
Acos[2 ( t x ) ] T
讨论:
(1)若t是变量,而x取一定值(x x1),则
y Acos[t ( x1 )]
u
可见,y仅随t变化,表示 x1 处p点随不同时刻的振动 位相移落,后此o点时波xu动1 方程y 转x换为xp1点的振动方程。且初周
t
(y2)若Axc是o变s[量(,t1而t取一) 定值ux(] t t1 ),则
x 故,波线上任一点的振动方程,即波动方程为:
u y 4 cos[ (t x ) ]
u2
4 cos[ (t x) ]
22
(4)B点的振动方程,以 x 3.5cm 代入上式得:
yB
4 cos[ (t
3.5) 2
] 2
4 cos( t 2.5 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简谐振动
动力学方程
偏离开平衡位 置的位移
d2 dt
x
2
2
x
0
角频

x Acos(t )
振幅
ቤተ መጻሕፍቲ ባይዱ
相位
初相 位
描述简谐振动的特征量是 A、、.
第15章 机械波
引言:波
振动的传播过程称为波动,简称为波。 机械振动的传播过程称为机械波。 电磁振动的传播过程称为电磁波(光波)。 另外任何物体都具有波动性,当研究范围进入微观领 域(原子限度)时,粒子的波动性明显显现出来,这种波 动性称为物质波。 虽然各种波产生的本质有所不同,但它们都具有一些共 同的特征和规律,例如具有一定的传播速度,能产生反射、 折射、干涉、衍射等。
式中: G —— 切变弹性模量
f
切向力或
剪切力
Y —— 杨氏弹性模量 左端固定
S
ρ── 质量密度
θ
△r
(1)切变弹性模量G
l
切应力: f
切应变: r tg
s
l
实验表明:切应力与切应变成正比 即
f Δr
写成等式:
f G
s
G f
s
sl
(2)杨氏模量Y
应力 f
应变 l
s
l
实验表明:应力与应变成正比 f l sl
写成等式: f Y l sl
Y f / s l / l
l
s
△l
f
由于固体的杨氏模量Y总是大于切变弹性模量G,所以纵波波速 总是大于横波波速。
2、液体、气体中的波速(仅有纵波)
u B
B——液体或气体的容变弹性模量 B f / s
ρ——媒质的密度
v /V
3、张紧的弦上传播的横波的波速
u
T
T──弦中张力 μ──单位长度上的质量
在各向同性均匀介质中,波线与波阵面垂直。 波面
§15.2 平面简谐波的波函数
波函数: 描述波在传播过程中,不同位置x处的质点偏移平衡 位置的位移y与时 间 t 的函数关系。
简谐波(余弦波):是简谐振动所形成的波,是简谐振动的传 播过程。
15.2.1 平面简谐波的波函数
1、平面简谐波:简谐波的波阵面为平面的波。
2、波长λ:完成一个全振动所传播的距离。或者说波传播过 程中,沿波传播方向上两个相邻的同相位(相位差为2π)的 两介质元间的距离。反映了波在空间上的周期性。
3、波的周期T:波传播一个波长所需要的时间。反映了波在 时间上的周期性,当波源与观察着相对静止时,波的周期与 波源的振动周期相同。
4、频率ν:周期的倒数;单位时间传播完整波的数目。
y Acos(t )
y Acos(t x )
u
描述波源或者x=0处质点 的位移随时间t的变化规律
描述波线上所有质点在 t 时刻离开平衡位置的位移
描述 x 处质点的位移随 时间t的变化规律;
即x处质点的振动方程。
15.2.2 波函数的物理意义
所以说波动是振动状态的传播,是相位的传播,是 能量的传播,而不是质点的传播。
波的传播速度与介质有关,不同的介质内波的传播 速度不同。 例: 室温下,频率ν=200Hz的声波
在空气中u=340m/s, λ=1.7m;
在水中u=1450m/s, λ=7.25m。
就是在相同的介质内由于介质的特性,横波和纵波的传 播速度也不相同。
1
T
波速u与波长λ、周期T(频率ν)的关系
uT u T
T
u
2 2
T
u 2
机械波的波速u 1、固体中的波速
横波: u G
因为波的传播速度u与介质的性质有关, 不同的介质内,波的传播速度不同,所以 u 的大小决定于介质的性质。
横波:只能在固体中传播。
纵波: u Y
纵波:在固体、液体、气体中都能传播。
分析:根据波面的定义任一时刻波面上 各质点的振动状态相同,相位相同,离 开各自平衡位置的位移也相同,所以只 要研究波线上各点的波动规律即可知整 个平面波的波动规律。
波线 波面
设:一平面余弦波沿x轴正方向传播,波速为u。
o点处质点的振动方程为
y
u
y Acos(t )
y为t时刻,o点(x=0点处)振 动质点离开平衡位置的位

p
x
O
x
在波线上任意取一点p,坐标为x。
o点的振动传播到p点所用时间为 x 。 u
那么p点在t时刻的振动状态与o点在 (t -τ) 时刻的振动
状态相同。
平面简谐波的波函数
y Acos(t x )
u

平面简谐波的波函数
y Acos(t x )
u
∴上式又可表示成
y
A cos 2 ( t
本章以机械波为例讨论波动过程的特征和规律。
§15.1 机械波的产生及特性
15.1.1 机械波产生的条件: (1) 要有振动(波源); (2) 要有能传播振动的弹性介质。
弹性介质:介质元连续分布,介质元之间有弹性相互作用。 15.1.2 波的分类
1、按振动的物理量,可分为机械波、电磁波等。
2、按传播方向和振动方向的关系,可分为横波和纵波等
(1)横波:振动方向与传播方向垂直。
例:绳上波;电磁波(光 (2)纵波波:振)动。方向与传播方向平行。
例:空气中声波。 另外地震波既有横波又有纵波,是横波和纵波的叠加。
15.1.3 波的特征量 1、波的传播速度u:单位时间内波(振动状态或相位)传播 的距离,称为波的传播速度,简称波速或相速 ,用u表示。
结论:波速取决于介质的性质。
例 球面波
15.1.4 波的几何描述——波面、波线、波前
波前
为了形象地描述波的传播过程中,各
振动质点之间在相位上的关系,引入波阵
波线
面和波射线等概念。
波面
1、波阵面(波面):某时刻相位相同的点 组成的空间曲面;
平面波 波前
2、波前:某时刻在最前面的波阵面;
波线
3、波射线(波线):沿波的传播方向作的射线;
T
x
)
y
A cos
2
(t
x
)
y
A cos
2
(ut
x)
2 2
T
u

若平面余弦波沿x轴负方向传播时,p点的振动将与o点 在(t +τ) 时刻的振动状态相同。
∴ 沿x轴负向传播的平面简谐波的波函数为
y Acos(t x )

u
比较振动方程和平面简谐波的波函数各代表的物理含义:
t = 0 ·0 ··4····8····1·2···1·6···20 ··· t = T/4 ···························· t = T/2 ························ t = 3T/4 ·························· t = T ·························
相关文档
最新文档