第4章_动态规划
最优控制理论课件
8
最优控制问题
1.1 两个例子
例1.1 飞船软着陆问题
软着陆 过程开 始时刻 t 为零
h& v
v& u g m
m& K u
m 飞船的质量 h 高度 v 垂直速度 g 月球重力加速度常数 M 飞船自身质量 F 燃料的质量 K 为常数
初始状态 h(0) h0 v(0) v0 m(0)MF
f(x(t),u(t),t) 为n维向量函数
22.03.2020
现代控制理论
24
最优控制问题
1.2 问题描述
(1) 状态方程 一般形式为
x&(t) f (x(t),u(t),t)
x(t) Rn
x(t)|tt0 x0
为n维状态向量
u(t) Rr
为r 维控制向量
f(x(t),u(t),t) 为n维向量函数
求解最优控制的变分方法
泛函与函数的几何解释
22.03.2020
现代控制理论
50
求解最优控制的变分方法
泛函与函数的几何解释
宗量的变分
x(t)x(t)x(t)
22.03.2020
现代控制理论
51
求解最优控制的变分方法
泛函与函数的几何解释
宗量的变分
x(t)x(t)x(t)
泛函的增量 J ( x ( g ) ) J ( x ( g ) x ) J ( x ( g ) ) L ( x , x ) r ( x , x )
J x ( T ) ,y ( T ) ,x & ( T ) ,y & ( T ) x & ( T )
控制
(t)
22.03.2020
现代控制理论
《算法设计与分析》(全)
1.1、算法与程序
程序:是算法用某种程序设计语言的具体实现。 程序可以不满足算法的性质(4)。 例如操作系统,是一个在无限循环中执行的程序, 因而不是一个算法。 操作系统的各种任务可看成是单独的问题,每一个 问题由操作系统中的一个子程序通过特定的算法来实 现。该子程序得到输出结果后便终止。
渐近分析记号的若干性质
(1)传递性: ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); ➢ f(n)= O(g(n)), g(n)= O (h(n)) f(n)= O (h(n)); ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); ➢ f(n)= o(g(n)), g(n)= o(h(n)) f(n)= o(h(n)); ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); (2)反身性: ➢ f(n)= (f(n));f(n)= O(f(n));f(n)= (f(n)). (3)对称性: ➢ f(n)= (g(n)) g(n)= (f(n)) . (4)互对称性: ➢ f(n)= O(g(n)) g(n)= (f(n)) ; ➢ f(n)= o(g(n)) g(n)= (f(n)) ;
巢湖学院计算机科学与技术系
渐近分析记号的若干性质
规则O(f(n))+O(g(n)) = O(max{f(n),g(n)}) 的证明: ➢ 对于任意f1(n) O(f(n)) ,存在正常数c1和自然数n1,使得对
所有n n1,有f1(n) c1f(n) 。 ➢ 类似地,对于任意g1(n) O(g(n)) ,存在正常数c2和自然数
巢湖学院计算机科学与技术系
第1章 算法引论
运筹学第三版课后习题答案 (2)
运筹学第三版课后习题答案第一章:引论1.1 课后习题习题1a)运筹学是一门应用数学的学科,旨在解决实际问题中的决策和优化问题。
它包括数学模型的建立、问题求解方法的设计等方面。
b)运筹学可以应用于各个领域,如物流管理、生产计划、流程优化等。
它可以帮助组织提高效率、降低成本、优化资源分配等。
c)运筹学主要包括线性规划、整数规划、指派问题等方法。
习题2运筹学的应用可以帮助组织提高效率、降低成本、优化资源分配等。
它可以帮助制定最佳的生产计划,优化供应链管理,提高运输效率等。
运筹学方法的应用还可以帮助解决紧急情况下的应急调度问题,优化医疗资源分配等。
1.2 课后习题习题1运筹学方法可以应用于各个领域,如物流管理、生产计划、供应链管理、流程优化等。
在物流管理中,可以使用运筹学方法优化仓储和运输的布局,提高货物的运输效率。
在生产计划中,可以使用运筹学方法优化产品的生产数量和生产周期,降低生产成本。
在供应链管理中,可以使用运筹学方法优化订单配送和库存管理,提高供应链的效率。
在流程优化中,可以使用运筹学方法优化业务流程,提高整体效率。
习题2在物流管理中,可以使用运筹学方法优化车辆的调度和路线规划,以提高运输效率和降低成本。
在生产计划中,可以使用运筹学方法优化生产线的安排和产品的生产量,以降低生产成本和提高产能利用率。
在供应链管理中,可以使用运筹学方法优化供应链各个环节的协调和调度,以提高整体效率和减少库存成本。
在流程优化中,可以使用运筹学方法优化业务流程的排布和资源的分配,以提高流程效率和客户满意度。
第二章:线性规划基础2.1 课后习题习题1线性规划是一种数学优化方法,用于解决包含线性约束和线性目标函数的优化问题。
其一般形式为:max c^T*xs.t. Ax <= bx >= 0其中,c是目标函数的系数向量,x是决策变量向量,A是约束矩阵,b是约束向量。
习题2使用线性规划方法可以解决许多实际问题,如生产计划、供应链管理、资源分配等。
算法设计与分析习题与实验题(12.18)
《算法设计与分析》习题第一章引论习题1-1 写一个通用方法用于判定给定数组是否已排好序。
解答:Algorithm compare(a,n)BeginJ=1;While (j<n and a[j]<=a[j+1]) do j=j+1;If j=n then return trueElseWhile (j<n and a[j]>=a[j+1]) do j=j+1;If j=n then return true else return false end ifEnd ifend习题1-2 写一个算法交换两个变量的值不使用第三个变量。
解答:x=x+y; y=x-y; x=x-y;习题1-3 已知m,n为自然数,其上限为k(由键盘输入,1<=k<=109),找出满足条件(n2-mn-m2)2=1 且使n2+m2达到最大的m、n。
解答:m:=k; flag:=0;repeatn:=m;repeatl:=n*n-m*n-m*n;if (l*l=1) then flag:=1 else n:=n-1;until (flag=1) or (n=0)if n=0 then m:=m-1until (flag=1) or (m=0);第二章基础知识习题2-1 求下列函数的渐进表达式:3n 2+10n ; n 2/10+2n ; 21+1/n ; log n 3; 10 log3n 。
解答: 3n 2+10n=O (n 2), n 2/10+2n =O (2n ), 21+1/n=O (1), log n 3=O (log n ),10 log3n =O (n )。
习题2-2 说明O (1)和 O (2)的区别。
习题2-3 照渐进阶从低到高的顺序排列以下表达式:!n ,3/22,2,20,3,log ,4n n n n n 。
解答:照渐进阶从低到高的顺序为:!n 、 3n、 24n 、23n 、20n 、log n 、2习题2-4(1) 假设某算法在输入规模为n 时的计算时间为n n T 23)(⨯=。
智慧树知到《运筹学(昆明理工大学)》章节测试答案
5、 在顾客到达的分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分布的方差越大时,顾客的平均等待时间将越长。
A.对
B.错
答案:A
6、 在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理。
A.对
B.错
答案:B
A.对
B.错
答案:A
9、 在用割平面法求解整数规划问题时,要求全部变量必须都为整数。
A.对
B.错
答案:A
第五章
1、 运输问题是一类线性规划问题,标准运输问题的目标函数一般为求总运费的( )。
A.最小值
B.最大值
C.平均值
答案:A
2、 确定初始基可行解的方法很多,常用的方法有( )。
A.西北角法
B.闭回路法
C.3
D.4
答案: 2
3、
用大M法求目标函数为极大值的线性规划问题时,引入的人工变量在目标函数中的系数应为( )。
A.
M
B.
-M
C.
0
D.1Leabharlann 答案:-M4、 当最优解中存在为零的非基变量时,则线性规划具有唯一最优解。
A.对
B.错
答案: 错
5、 若线性规划存在最优解则一定存在基本最优解。
A.明确问题,提出目标
B.建立数学模型
C.求解模型
D.解的分析与检验
E.解的实施
答案: 明确问题,提出目标,建立数学模型,求解模型,解的分析与检验,解的实施
3、 运筹学建立的模型一般是( )。
A.实体模型
B.概念模型
第4章动态决策分析
《决策理论与方法》
4.2.2 多阶段决策问题的决策方法
84
73
60
45
5元
10
12
15
20
25
84
73
60
45
6元
12
13
16
20
24
84
73
60
45
7元
14
14
16
18
18
84
73
60
45
8元
16
15
15
14
14
例4-2-1决策图
第第 1155页页
4.2 多阶段决策
《决策理论与方法》
4.2.2 多阶段决策问题的决策 方法
例4-2-1 某公司考虑为某新产品定 价,该产品的单价拟从每件5元 、6元、7元、8元这四个价格中 选取其中之一,每年年初允许变 动价格,但幅度不能超过1元。 该公司预计该产品畅销只有五年 ,五年后将被淘汰,另据销售情 况的预测,在价格不同的情况下 各年的预计利润额见右表。
单价 第1年 第2年 第3年 第4年 第5年
10000
15000
第第 1199页页
4.3 序贯决策
《决策理论与方法》
4.3.1 序贯决策的基本概念
上面的多阶段决策,阶段数是确定的。除这种决 策外,还有一些决策的阶段数不是事先确定的,它依 赖于执行决策过程中出现的情况。这种决策问题称为 序贯决策(sequential decision problem)。
序列决策在进行决策后又产生一些新的情况,需 要进行新的决策,接着又有一些新的情况,又需要进 行新的决策。这样决策、情况、决策……,这就构成 一个序列。
第第 2200页页
(数学建模教材)4第四章动态规划
第四章动态规划§1 引言1.1 动态规划的发展及研究内容动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。
20 世纪50 年代初R. E. Bellman 等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优性原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法—动态规划。
1957 年出版了他的名著《Dynamic Programming》,这是该领域的第一本著作。
动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。
例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。
虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。
应指出,动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是一种特殊算法(如线性规划是一种算法)。
因而,它不象线性规划那样有一个标准的数学表达式和明确定义的一组规则,而必须对具体问题进行具体分析处理。
因此,在学习时,除了要对基本概念和方法正确理解外,应以丰富的想象力去建立模型,用创造性的技巧去求解。
例1 最短路线问题图1 是一个线路网,连线上的数字表示两点之间的距离(或费用)。
试寻求一条由A 到G距离最短(或费用最省)的路线。
图1 最短路线问题例2 生产计划问题工厂生产某种产品,每单位(千件)的成本为1(千元),每次开工的固定成本为3 (千元),工厂每季度的最大生产能力为6(千件)。
经调查,市场对该产品的需求量第一、二、三、四季度分别为2,3,2,4(千件)。
算法考试要点
计算机算法复习提纲
贪心选择性质 假设 A={X1,X2,X3...............,Xn} 是 E={E1,E2,E3,........En}活动集合的最优解,E 中活动 按照结束时间非递减排序。 如果 X1=E1,A 是以贪心选择开始的。 如果 X1 !=E1,假设 B={E1,X2,X3...............,Xn} ,又因为 F1《=Fx1 并且 A 中个活动相容, 则 B 中活动也是相容的,因此 B 是一个以贪心选择开始的最优解。 最有子结构性质 E’={E2,E3,........En} A’={X2,X3...............,Xn} 假设 A’不是 E‘的最优解,B’比 A’更优, 那么 B’U{E1}=B 优于 A’U{E1}=A,即 B 是一个更优解, 与假设 A 为最优解矛盾。 贪心选择次数由数学归纳法可以证明,因此贪心算法可以求得该问题的最优解。
{ f[1][j]=g[1][j];d[1][j]=j; } for(i=2;i<=n;i++)
for(j=0;j<=m;j++)
计算机算法复习提纲
{ f[i][j]=0; for(k=0;k<=j;k++) { s=f[i-1][j-k]+g[i][k]; if(s>f[i][j]) { f[i][j]=s; }
sum++; for (int i=1; i<=n; i++)
cout << x[i] << ' '; cout << endl; }
else for (int i=1;i<=m;i++) { x[t]=i; if (Ok(t)) Backtrack(t+1); }
《最优控制》第1章绪论
2020/8/9
1
第1章 绪论 第2章 求解最优控制的变分方法 第3章 最大值原理 第4章 线性二次型性能指标的最优控制 第5章 动态规划 第6章 状态估计
2
教学要求:
1. 学习泛函变分法,理解最优控制的一般概念 2. 掌握利用变分法求最优控制方法 3. 掌握极大值原理,状态调节器 4. 掌握动态规划
x(t) f [x(t), u(t), t]
(2)边界条件 ①初始时刻t0,初始状态x(t0)一般给定 ②终端时刻tf,变动,固定 ③终端状态x(tf)
12
第1章——绪论
x(tf)一般需满足一个约束方程[x(tf ), tf ] 0
满足约束方程的x(tf)构成一个目标集 x(tf ) S (3)一个衡量系统性能的性能指标
t0
N 1
或J x(N) F[x(k),u(k), k]
k k0
最优控制问题
(控制域) u t x t
J
17
4 常见的最优控制
tf
1.最少时间控制J dt t f t0
它要求设计一个快速控t0制系统,使系统在最短
时x间t0 内从初态终态 xt f
2.最少燃如料:导弹拦截器的轨道转移 。
最优值,J* J[u *(t)] 称为最优性能指标
14
3 研究最优控制的前提条件
1.给出受控系统的动态描述(状态方程)
连续系统 x(t) f [x(t),u(t),t]
离散系统 x(tk1 ) f [ x(tk ), u(tk ), tk ]
2.明确控制域(容许控制)
控制约束 ut 控制域(取值范围)
Mg
设M 1,x1(t) x(t)为高度,x(2 t) x1(t) x(t)
《管理运筹学教案》课件
《管理运筹学教案》PPT课件第一章:管理运筹学概述1.1 管理运筹学的定义解释管理运筹学的概念和内涵强调管理运筹学在实际管理中的应用价值1.2 管理运筹学的发展历程介绍管理运筹学的起源和发展过程提及著名学者和管理运筹学的重要成果1.3 管理运筹学的方法和工具概述管理运筹学常用的方法和工具简要介绍线性规划、整数规划、动态规划等方法1.4 管理运筹学的应用领域列举管理运筹学在不同领域的应用实例强调管理运筹学在企业经营、物流管理、生产计划等方面的应用第二章:线性规划2.1 线性规划的基本概念解释线性规划的目标函数和约束条件引入可行解、最优解等基本概念2.2 线性规划的图解法演示线性规划问题的图解法步骤提供实际例子进行图解法的应用演示2.3 线性规划的代数法介绍线性规划的代数法解题步骤使用具体例子进行代数法的应用解释2.4 线性规划的应用案例提供实际案例,展示线性规划在企业决策、资源分配等方面的应用强调线性规划在解决实际问题中的重要性第三章:整数规划3.1 整数规划的基本概念解释整数规划与线性规划的区别引入整数规划的目标函数和约束条件3.2 整数规划的解法介绍整数规划常用的解法,如分支定界法、动态规划法等使用具体例子进行整数规划解法的应用解释3.3 整数规划的应用案例提供实际案例,展示整数规划在人员排班、物流配送等方面的应用强调整数规划在解决实际问题中的重要性3.4 整数规划与线性规划的比较对比整数规划与线性规划的解法和技术强调整数规划在处理离散决策问题时的优势第四章:动态规划4.1 动态规划的基本概念解释动态规划的定义和特点引入动态规划的基本原理和基本定理4.2 动态规划的解法步骤演示动态规划的解题步骤,如最优子结构、状态转移方程等使用具体例子进行动态规划解法的应用解释4.3 动态规划的应用案例提供实际案例,展示动态规划在库存管理、项目管理等方面的应用强调动态规划在解决多阶段决策问题中的重要性4.4 动态规划与其他运筹学方法的比较对比动态规划与其他运筹学方法的特点和适用场景强调动态规划在处理具有时间序列特征的问题时的优势第五章:决策分析5.1 决策分析的基本概念解释决策分析的目的和意义引入决策问题的基本要素和决策方法5.2 确定型决策分析介绍确定型决策分析的方法和步骤使用具体例子进行确定型决策分析的应用解释5.3 不确定型决策分析介绍不确定型决策分析的方法和步骤使用具体例子进行不确定型决策分析的应用解释5.4 风险型决策分析介绍风险型决策分析的方法和步骤使用具体例子进行风险型决策分析的应用解释5.5 决策分析的应用案例提供实际案例,展示决策分析在企业战略规划、新产品开发等方面的应用强调决策分析在解决实际问题中的重要性第六章:网络计划技术6.1 网络计划技术的基本概念解释网络计划技术的定义和作用引入节点、箭线、活动等基本元素6.2 常用网络计划技术介绍常用的网络计划技术,如PERT、CPM等演示这些网络计划技术的绘制和应用方法6.3 网络计划技术的应用案例提供实际案例,展示网络计划技术在项目管理和生产调度等方面的应用强调网络计划技术在时间管理和资源分配中的重要性6.4 网络计划技术的优化介绍网络计划技术的优化方法和步骤使用具体例子进行网络计划技术优化的应用解释第七章:排队论7.1 排队论的基本概念解释排队论的定义和研究对象引入队列、服务设施、顾客等基本元素7.2 排队论的模型构建介绍排队论的模型构建方法和步骤使用具体例子进行排队论模型的应用解释7.3 排队论的应用案例提供实际案例,展示排队论在服务业、制造业等方面的应用强调排队论在解决等待问题和提高服务水平中的重要性7.4 排队论的优化策略介绍排队论的优化策略和方法使用具体例子进行排队论优化策略的应用解释第八章:存储论8.1 存储论的基本概念解释存储论的定义和研究对象引入存储成本、缺货成本、需求量等基本元素8.2 存储论的模型构建介绍存储论的模型构建方法和步骤使用具体例子进行存储论模型的应用解释8.3 存储论的应用案例提供实际案例,展示存储论在库存管理、供应链等方面的应用强调存储论在解决存货控制和降低成本中的重要性8.4 存储论的优化策略介绍存储论的优化策略和方法使用具体例子进行存储论优化策略的应用解释第九章:对偶理论9.1 对偶理论的基本概念解释对偶理论的定义和意义引入对偶问题、对偶关系等基本元素9.2 对偶理论的解法介绍对偶理论的解法方法和步骤使用具体例子进行对偶理论的应用解释9.3 对偶理论的应用案例提供实际案例,展示对偶理论在优化问题和经济学中的应用强调对偶理论在解决实际问题中的重要性9.4 对偶理论与灵敏度分析解释对偶理论与灵敏度分析的关系介绍灵敏度分析的方法和步骤第十章:总结与展望10.1 管理运筹学的重要性和局限性总结管理运筹学在实际管理中的应用价值和局限性强调管理运筹学在解决问题和创新方面的潜力10.2 管理运筹学的发展趋势展望管理运筹学未来的发展趋势和研究方向提及新兴领域和技术在管理运筹学中的应用前景10.3 提高管理运筹学能力的建议给出提高管理运筹学能力的建议和指导鼓励学习者持续学习和实践,以提升解决实际问题的能力重点解析本文教案主要介绍了管理运筹学的十个重点内容,具体如下:1. 管理运筹学的定义、发展历程、方法与工具,以及应用领域。
信息学奥赛系列课程(三阶段)-2019_02_21_第3版
信息学奥赛NOIP系列课程(三阶段)第一阶段C++语言及数据结构与算法基础课本:1、信息学奥赛一本通+训练指导教程C++版第五版--2017年出版(两本)第1部分C++语言(50课时)适于:零基础的初中或高中的学生,当然有C语言或scratch、Python语言基础更好授课:相关内容讲授+实例+题目现堂训练(每次课2-3题,题目较大可能是1题)第1章C++语言入门(2-3课时)第2章顺序结构程序设计(6课时)第3章程序控制结构(3课时)NOIP2017复赛普及组第1题成绩https:///problem-12334.htmlNOIP2018复赛普及组第1题标题统计方法一https:///problem-12393.htmlNOIP1996普及组第1题https:///WDAJSNHC/article/details/83513564https:///yuyanggo/article/details/47311665第4章循环结构(5课时)NOIP2018复赛普及组第1题标题统计方法二https:///problem-12393.htmlNOIP2016复赛普及组第1题买铅笔https:///problem-12121.htmlNOIP2015复赛普及组第1题金币/ch0105/45/NOIP2002复赛普及组第1题级数求和/ch0105/27/NOIP2013复赛普及组第1题计数问题https:///problem-11005.html?tdsourcetag=s_pcqq_aiomsgNOIP2012复赛普及组第1题质因数分解/ch0105/43/NOIP2011复赛普及组第1题数字反转/ch0105/29/NOIP2010复赛普及组第1题数字统计https:///problem-10012.htmlNOIP1999普及组第1题Cantor表/ch0201/8760/https:///problemnew/show/P1014NOIP1997普及组第1题棋盘问题https:///problemnew/show/P1548NOIP1995普及组复赛第1题https:///secret_zz/article/details/76862335https:///WDAJSNHC/article/details/83513896NOIP1997普及组第2题数字三角形https:///ber_bai/article/details/76722379第5章数组(9-10课时)NOIP2014复赛普及组第1题珠心算测验https:///problem-12091.htmlNOIP2009复赛普及组第1题多项式输出/ch0113/39/NOIP2006复赛普及组第1题明明的随机数/ch0110/09/NOIP2005复赛普及组第1题陶陶摘苹果/ch0106/02/NOIP2004复赛普及组第1题不高兴的津津/ch0109/03/NOIP2003年普及组第1题乒乓球/ch0113/37/NOIP1998年普及组第1题三连击(枚举)https:///problemnew/show/P1008NOIP1995普及组复赛第2题方阵填数https:///WDAJSNHC/article/details/79381876NOIP1996普及组第2题格子问题https:///WDAJSNHC/article/details/79381843?utm_source=blogxgwz5NOIP2016复赛普及组第2题回文日期https:///problem-12122.htmlhttps:///problemnew/show/P2010NOIP2015普及组第2题P2670扫雷游戏/ch0108/14/https:///problemnew/show/P2670https:///problem-12105.htmlNOIP2012普及组第2题_P1076寻宝/ch0112/06/https:///problemnew/show/P1076第6章函数(5课时)NOIP2008复赛普及组第1题ISBN号码/ch0107/29/NOIP2000提高组第1题P1017进制转换https:///problemnew/show/P1017NOIP2000普及组第1题计算器的改良https:///problemnew/show/P1022https:///yuyanggo/article/details/47856785https:///u012773338/article/details/41749421NOIP2018普及组第2题龙虎斗https:///problemnew/show/P5016https:///problem-12394.html机器翻译【1.12编程基础之函数与过程抽象07】Noip2010提高组第1题/ch0112/07/Vigenère密码【1.12编程基础之函数与过程抽象08】Noip2012提高组第1题/ch0112/08/笨小猴【1.9编程基础之顺序查找06】NOIP2008提高组第1题/ch0109/06/第7章文件和结构体(5课时)NOIP2011复赛提高组第1题铺地毯/ch0109/14/NOIp2008提高组第2题火柴棒等式https:///problemnew/show/P1149https:///Mr_Doublerun/article/details/52589778第8章指针及其应用(8课时)第9章C++实用技巧与模版库(5课时)NOIP2007复赛普及组第1题奖学金/ch0110/04/NOIP2017复赛普及组第2题图书管理员(STL、排序)https:///problem-12335.htmlhttps:///problemnew/show/P3955NOIP1999普及组第2题回文数https:///problemnew/show/P1015***模拟NOIP2017年提高组第2题时间复杂度(模拟)https:///problem-12333.htmlhttps:///problemnew/show/P3952NOIP2011普及组第3题P1309瑞士轮(模拟、快拍、归并排序)/ch0401/4363/https:///problemnew/show/P1309NOIP2018复赛普及组第3题摆渡车(模拟)https:///problem-12395.htmlhttps:///problemnew/show/P5017NOIP2016普及组第3题海港(port)--枚举https:///problemnew/show/P2058NOIP2006年提高组第3题P1065作业调度方案(模拟)https:///problemnew/show/P1065NOIP2013提高组第4题P1969积木大赛(模拟贪心)https:///problem-12071.htmlhttps:///problemnew/show/P1969NOIP2014提高组第4题P2038无线网络发射器选址(模拟)https:///problemnew/show/P2038第2部分NOIP基础算法(39课时)第1章高精度计算(2-3课时)【例1.6】回文数(Noip1999):8088/problem_show.php?pid=1309NOIP2003普及组第4题P1045麦森数(分治、高精度运算)https:///problemnew/show/P1045NOIP2005普及组第4题P1050循环(高精度运算、数论、快速幂) https:///problemnew/show/P1050第2章数据排序(3课时)NOIP2014复赛普及组第1题珠心算测验https:///problem-12091.html第3章递推算法(2-3课时)1314:【例3.6】过河卒(Noip2002):8088/problem_show.php?pid=1314NOIP2011普及组第4题P1310表达式的值(栈、表达式计算、递推) https:///problemnew/show/P1310NOIP2011提高组第6题P1315观光公交(递推分析、贪心)https:///problemnew/show/P1315第4章递归算法(2-3课时)【例4.6】数的计数(Noip2001普及组第1题):8088/problem_show.php?pid=1316第5章搜索与回溯算法(2-3课时)NOIP2015day1T3_斗地主P2668斗地主https:///problemnew/show/P2668NOIP2017年普及组第3题棋盘https:///problemnew/show/P3956https:///problem-12336.htmlNOIP2015年提高组第2题P2661信息传递(Tarjen bfs/dfs(图论))https:///problem-12107.htmlhttps:///problemnew/show/P2661NOIP2016年提高组第2题天天爱跑步(Lca/dfs(图论)树结构最近公共祖先)https:///problem-12208.htmlhttps:///problemnew/show/P1600NOIP2000普及组第4题P1019单词接龙(深搜)https:///problemnew/show/P1019NOIP2000年提高组第3题单词接龙(DFS,字符串,模拟)https:///problemnew/show/P1019NOIP2014普及组第4题P2258子矩阵(搜索或dp)https:///problemnew/show/P2258NOIP2018年提高组第3题P5021赛道修建(搜索深度优先搜索)https:///problem-12392.htmlhttps:///problemnew/show/P5021第6章贪心算法(3课时)删数问题(NOIP1994)P1106删数问题https:///problemnew/show/P1106:8088/problem_show.php?pid=1321NOIP2010复赛普及组第2题接水问题/ch0109/15/NOIP1999年提高组第1题导弹拦截https:///problemnew/show/P1020https:///huashanqingzhu/p/6728652.html https:///qq_33927580/article/details/51853345 https:///Darost/article/details/52086240https:///yuyanggo/article/details/48739029NOIP2002提高组第1题均分纸牌P1031均分纸牌https:///problemnew/show/P1031NOIP2007普及组第2题_P1094纪念品分组https:///problem-12007.htmlhttps:///problemnew/show/P1094NOIP2008普及组第2题_P1056排座椅https:///problem-12008.htmlhttps:///problemnew/show/P1056NOIP2012年提高组第2题国王游戏(贪心、排序后列出)https:///problemnew/show/P1080NOIP2013年提高组第2题P1966火柴排队(逆序对、贪心、排序) https:///problem-12083.htmlhttps:///problemnew/show/P1966NOIP2010普及组第4题P1199三国游戏(贪心)https:///problemnew/show/P1199第7章分治算法(3课时)NOIP2001提高组第1题P1024一元三次方程求解/ch0204/7891/https:///problemnew/show/P1024NOIP2011年提高组第2题P1311选择客栈(二分查找)https:///problemnew/show/P1311NOIP2003普及组第4题P1045麦森数(分治、高精度运算)https:///problemnew/show/P1045第8章广度优先搜索算法(2-3课时)NOIP2002年提高组第2题P1032字串变换(BFS,字符串)https:///problemnew/show/P1032NOIP2013提高组第6题P1979华容道(广搜\最短路:图论)https:///problem-12212.htmlhttps:///problemnew/show/P1979第9章动态规划(15课时)第一节动态规划的基本模型1260:【例9.4】拦截导弹(NOIP1999):8088/problem_show.php?pid=1260NOIP2013普及组第3题P1982小朋友的数字https:///problemnew/show/P1982NOIP2003复赛普及组第2题_P1043数字游戏数字游戏(Game.cpp)https:///problemnew/show/P1043NOIP2006年提高组第2题P1064金明的预算方案(资源分配DP,构造) https:///problemnew/show/P1064NOIP2013普及组第3题P1982小朋友的数字(动态规划、子段和)https:///problemnew/show/P1982NOIP2007普及组第3题P1095守望者的逃离(动态规划或枚举)https:///problemnew/show/P1095NOIP2009普及组第4题P1070道路游戏(动态规划)https:///problemnew/show/P1070NOIP2004年提高组第3题P1091合唱队形(子序列DP)https:///problemnew/show/P1091第二节背包问题NOIP2018提高组第2题货币系统https:///problem-12391.htmlNOIP2006普及组第2题_P1060开心的金明题解https:///problemnew/show/P1060NOIP2005普及组第3题P1048采药(0/1背包)/ch0206/1775/https:///problem-12062.htmlhttps:///problemnew/show/P1048NOIP2001普及组第4题P1049装箱问题(0/1背包或枚举)https:///problemnew/show/P1049NOIP2014年提高组第3题P1941飞扬的小鸟(背包DP)https:///problem-12087.htmlhttps:///problemnew/show/P1941第三节动态规划经典题NOIP2000年提高组第2题P1018乘积最大(资源分配DP)https:///problemnew/show/P1018NOIP2000普及组第3题P1018乘积最大(划分动态规划)https:///problemnew/show/P1018NOIP2001年提高组第2题P1025数的划分(资源分配DP,多维状态DP)/ch0206/8787/https:///problemnew/show/P1025NOIP2001年提高组第3题统计单词个数(资源分配DP,字符串) https:///problemnew/show/P1026NOIP2005年提高组第2题P1052过河(子序列DP,贪心优化)https:///problemnew/show/P1052NOIP2010年提高组第2题P1541乌龟棋(动态规划优化)https:///problemnew/show/P1541NOIP2014年提高组第2题P1351联合权值(动态规划搜索图结构树形DP图的遍历遍历(图论),二次展开式)https:///problem-12086.htmlhttps:///problem-12210.htmlhttps:///problemnew/show/P1351NOIP2008普及组第3题P1057传球游戏(动态规划)https:///problemnew/show/P1057NOIP2012普及组第3题摆花(动态规划)https:///problem-12366.htmlhttps:///problemnew/show/P1077NOIP2002普及组第4题P1002过河卒(棋盘动态规划)https:///problemnew/show/P1002NOIP2008年提高组第3题P1006传纸条(多维状态DP动态规划图结构最短路网络流)https:///problem-12110.htmlhttps:///problemnew/show/P1006NOIP2000提高组第4题方格取数(多维状态DP)/ch0206/8786/https:///problem-12186.htmlhttps:///problemnew/show/P1004NOIP2002提高组第4题P1034矩形覆盖(动态规划/贪心/搜索剪枝) /ch0405/1793/https:///problemnew/show/P1034第3部分NOIP数据结构(19课时)第1章栈(3课时)NOIP2011普及组第4题P1310表达式的值(栈、表达式计算、递推) https:///problemnew/show/P1310第2章队列(3-5课时)NOIP2016普及组第3题海港(port)https:///problemnew/show/P2058第3章树(3课时)第一节树的概念第二节二叉树第三节堆及其应用NOIP2015普及组第4题P2672推销员(枚举、堆)https:///problemnew/show/P2672NOIP2001普及组第3题P1030求先序排列(树的遍历)https:///problemnew/show/P1030NOIP2004普及组第3题P1087FBI树(二叉树的遍历)https:///problemnew/show/P1087第4章图论算法(8课时)第一节基本概念第二节图的遍历第三节最短路径算法NOIP2002普及组第3题P1037产生数(最短路、高精度)https:///problemnew/show/P1037NOIP2012普及组第4题P1078文化之旅(搜索、最短路(图论)、动规) https:///problemnew/show/P1078NOIP2009年提高组第3题P1073最优贸易(最短路:图论)https:///problemnew/show/P1073NOIP2001提高组第4题P1027Car的旅行路线(最短路,实数处理)https:///problemnew/show/P1027NOIP2007提高组第4题P1099树网的核(最短路,树的直径)https:///problemnew/show/P1099第四节图的连通性问题第五节并查集NOIP2010年提高组第3题P1525关押罪犯(二分答案或并查集)https:///problemnew/show/P1525NOIP2017提高组第4题P3958奶酪(数据结构树结构并查集)https:///problem-12205.htmlhttps:///problemnew/show/P3958第六节最小生成树第七节拓朴排序与关键路径NOIP2013普及组第4题P1983车站分级(图论、拓扑排序) https:///problemnew/show/P19831390:食物链【NOI2001】:8088/problem_show.php?pid=1390NOIP2004年提高组第2题P1090合并果子(最优哈夫曼树,排序,贪心)https:///problemnew/show/P1090NOIP2013年提高组第3题P1967货车运输(最大生成树,最近公共祖先)https:///problemnew/show/P1967NOIP2018提高组第4题P5022旅行(搜索图结构)https:///problem-12397.htmlhttps:///problemnew/show/P5022NOIP2018提高组第6题P5024保卫王国(图结构)https:///problem-12399.htmlhttps:///problemnew/show/P50242、啊哈!算法--2014-06(35-50小时)第二阶段算法与数据结构提高1、《信息学奥赛一本通·提高篇》(80-100课时,不一定一次都讲完)第一部分基础算法第1章贪心算法NOIP2002提高组第1题P1031均分纸牌(贪心,模拟)https:///problemnew/show/P1031NOIP2010普及组第3题P1158导弹拦截(排序+枚举,贪心)https:///problemnew/show/P1158NOIP2012提高组第6题P1084疫情控制(二分答案,贪心,倍增)https:///problemnew/show/P1084第2章二分与三分NOIP2010年提高组第3题P1525关押罪犯(二分答案或并查集)https:///problemnew/show/P1525NOIP2008提高组第4题P1155双栈排序(枚举,贪心/二分图)https:///problemnew/show/P1155NOIP2015提高组第4题P2678跳石头(二分查找、二分答案)https:///problem-12198.htmlhttps:///problemnew/show/P2678第3章深搜的剪枝技巧NOIP2018普及组第4题对称二叉树(搜索树结构深度优先搜索)https:///problem-12396.htmlhttps:///problemnew/show/P5018NOIP2011年提高组第3题P1312Mayan游戏(深搜、剪支)https:///problemnew/show/P1312NOIP2015年提高组第3题P2668斗地主(分情况,剪枝)https:///problemnew/show/P2668NOIP2003提高组第4题P1041传染病控制(随机贪心/搜索剪枝)https:///problemnew/show/P1041NOIP2004提高组第4题P1092虫食算(搜索搜索与剪枝)https:///problem-12414.htmlhttps:///problemnew/show/P1092第4章广搜的优化技巧NOIP2017年普及组第3题棋盘(搜索搜索与剪枝广度优先搜索)https:///problemnew/show/P3956https:///problem-12336.htmlNOIP2009提高组第4题P1074靶形数独(搜索优化)https:///problemnew/show/P1074NOIP2010提高组第4题P1514引入水域(广搜+动态规划,判断有解和无解)https:///problemnew/show/P1514第二部分字符串算法第1章哈希表第2章KMP算法第3章Trie字典树第4章AC自动机NOIP2005提高组第4题P1054等价表达式(字符串,抽样检测,表达式) /practice/1686/https:///problemnew/show/P1054NOIP2008普及组第4题P1058立体图(字符输出)https:///problemnew/show/P1058NOIP2006普及组第3题P1061Jam的计数法(数学、字符串)https:///problemnew/show/P1061NOIP2007年提高组第2题字符串的展开(字符串模拟)https:///problem-11016.htmlhttps:///problemnew/show/P1098NOIP2003年提高组第2题P1039侦探推理(枚举,模拟,字符串)https:///problemnew/show/P1039NOIP2011普及组第2题_P1308统计单词数/ch0112/05/https:///problemnew/show/P1308第三部分图论第1章最小生成树第2章最短路径NOIP2016年提高组第3题P1850换教室(最短路/Dp)https:///problemnew/show/P1850NOIP2017年提高组第3题P3953逛公园(搜索图结构记忆化搜索最短路)https:///problem-12337.htmlhttps:///problemnew/show/P3953NOIP2014提高组第5题P1351联合权值(遍历,二次展开式)https:///problem-12086.htmlhttps:///problemnew/show/P1351第3章SPFA算法的优化第4章差分约束系统第5章强连通分量第6章割点和桥第7章欧拉回路第四部分数据结构第1章树状数组第2章RMQ问题第3章线段树NOIP2012提高组第5题P1083借教室(枚举、线段树、树状数组、二分) https:///problem-12069.htmlhttps:///problemnew/show/P1083NOIP2017提高组第6题P3960列队(数据结构平衡树线段树)https:///problem-12339.htmlhttps:///problemnew/show/P3960第4章倍增求LCANOIP2015提高组第6题P2680运输计划(Lca或线段树)https:///problem-12213.htmlhttps:///problemnew/show/P2680第5章树链剖分第6章平衡树Treap第五部分动态规划第1章区间类型动态规划NOIP2007年提高组第3题P1005矩阵取数游戏(区间DP,高精度)https:///problemnew/show/P1005第2章树型动态规划NOIP2003年提高组第3题P1040加分二叉树(树,区间DP)https:///problemnew/show/P1040第3章数位动态规划第4章状态压缩类动态规划NOIP2017提高组第5题P3959宝藏(动态规划搜索贪心状态压缩DP枚举)https:///problem-12340.htmlhttps:///problemnew/show/P3959NOIP2016提高组第6题愤怒的小鸟(状态压缩动态规划)https:///problemnew/show/P2831第5章单调队列优化动态规划NOIP2016提高组第5题蚯蚓(单调队列)https:///Mrsrz/p/7517155.htmlhttps:///m0_38083668/article/details/82557281NOIP2017普及组第4题P3957跳房子(数据结构动态规划单调队列队列)https:///problem-12338.htmlhttps:///problemnew/show/P3957第6章利用斜率优化动态规划NOIP2012年提高组第3题P1081开车旅行(离线深搜,动态规划、倍增)https:///problemnew/show/P1081NOIP2015提高组第5题P2679子串(Dp+滚动数组)https:///problemnew/show/P2679第六部分数学基础第1章快速幂第2章素数第3章约数第4章同余问题第5章矩阵乘法第6章组合数学NOIP2009年提高组第2题P1072Hankson的趣味题(初等数论,质因数,组合数学)https:///problemnew/show/P1072NOIP2006提高组第4题P10662^k进制数(动态规划/组合数学,高精度) https:///problemnew/show/P1066NOIP2011提高组第4题P1313计算系数(组合、二项式系数)/practice/4036/https:///problemnew/show/P1313NOIP2016提高组第4题P2822组合数问题(杨辉三角)https:///problemnew/show/P2822第7章博弈论NOIP2004普及组第4题P1088火星人(数学:排列、stl)https:///problemnew/show/P1088NOIP2009普及组第3题P1069细胞分裂(数论)https:///problemnew/show/P1069NOIP2000提高组第1题P1017进制转换(初等代数,找规律)https:///problemnew/show/P1017NOIP2001提高组第1题P1024一元三次方程求解(数学,枚举,实数处理) /ch0204/7891/https:///problemnew/show/P1024NOIP2003普及组第3题P1044栈(数学:卡特兰数)https:///problemnew/show/P1044NOIP2018年提高组第2题货币系统(数论)https:///problem-12391.htmlhttps:///problemnew/show/P5020NOIP2014年普及组复赛第3题螺旋矩阵(数学分析)https:///problem-12341.htmlhttps:///problemnew/show/P2239NOIP2015年普及组第3题求和(数学:数列)https:///problemnew/show/P2671NOIP2004普及组第4题P1088火星人(数学:排列、stl)https:///problemnew/show/P1088NOIP2005普及组第4题P1050循环(高精度运算、数论、快速幂) https:///problemnew/show/P1050NOIP2006普及组第4题P1062数列(数学:进制转换)https:///problemnew/show/P1062NOIP2007普及组第4题P1096$Hanoi$双塔问题(数学、高精度) https:///problemnew/show/P1096NOIP2016普及组第4题P2119魔法阵(数学分析、枚举)https:///problemnew/show/P2119NOIP2002年提高组第3题P1033自由落体(数学,物理,模拟,实数处理) https:///problemnew/show/P1033NOIP2005年提高组第3题P1053篝火晚会(置换群,贪心)https:///problemnew/show/P1053NOIP2012提高组第4题P1082同余方程(数论、递归,扩展欧几里得)https:///problemnew/show/P1082NOIP2011提高组第5题P1314聪明的质监员(部分和优化)/practice/4037/https:///problemnew/show/P1314NOIP2013提高组第5题P1970花匠(序列)https:///problem-12072.htmlhttps:///problemnew/show/P1970NOIP2018提高组第5题P5023填数游戏(DP)https:///problem-12398.htmlhttps:///problemnew/show/P50232、NOIP历年真题讲解(30-50小时)---包括初赛和复赛3、《骗分导论》(推荐指数:5颗星)--电子书(可以作为学习的参考资料)第三阶段算法与数据结构高级专题(选择性学习)1、信息学奥赛之数学专题2、高级数据结构(C++版)3、动态规划专题注:上面的内容也可能要交叉的进行讲解在线题库:1、OpenJudge在线题库/2、信息学奥赛一本通在线评测系统:8088/3、洛谷https:///4、啊哈编程/tiku/5、《信息学奥赛一本通(提高篇)》在线评测OJhttps://loj.ac/注:本系列课程将根据行业发展状况,及时优化调整课程内容,具体课程设置以实际为准。
系统工程理论与方法1
系统的相关性原则对建设项目管理工作 具有的指导意义:
(1)在建设项目的实际管理工作中,当我们要想改变某 )在建设项目的实际管理工作中,当我们要想改变某 些不合要求的要素时,必须注意考察与之相关要素的影响, 些不合要求的要素时,必须注意考察与之相关要素的影响, 使这些相关要素得以相应的变化。通过各要素发展变化的 同步性,可以使各要素之间相互协调与匹配,从而增强协 同效应以提高管理系统的整体功能。 (2)管理系统内部诸要素之间的相关性不是静态的,而 )管理系统内部诸要素之间的相关性不是静态的,而 是动态的。要素之间的相关作用是随时间变化的,因此必 是动态的。要素之间的相关作用是随时间变化的,因此必 须把管理系统视为动态系统,在动态中认识和把握系统的 整体性,在动态中协调要素与要素,要素与整体的关系。 管理的实质就是把握管理要素在运动变化情况下,有效地 进行组织调节和控制,以实现最佳效益的过程。 (3)管理系统的组成要素,既包括系统层次间的纵向相 关,也包括各组成要素的横向相关。协调好各要素的纵向 关,也包括各组成要素的横向相关。协调好各要素的纵向 层次相关和要素之间的横向相关,才能实现系统的整体功 能最优。
2.相关性 2.相关性
系统内的各要素是相互作用而又相互联系 的。整体性确定系统的组成要素,相关性 的。整体性确定系统的组成要素,相关性 则说明这些组成要素之间的关系。系统中 任一要素与存在于该系统中的其他要素是 互相关联,又互相制约的,它们之间某一 互相关联,又互相制约的,它们之间某一 要素如果发生了变化,则应对其他相关联 的要素也要相应地改变和调整,从而保持 系统整体的最佳状态。
1.1.3 系统的特性
1.整体性
系统是由两个或两个以上的可以相互区别的要素, 按照作为系统整体所应具有的综合整体性而构成 的。系统具有集合性,它是为达到系统基本功能 要求所必须具有的组成要素的集合。构成系统的 各要素虽然具有不同性能,但它们是根据逻辑统 一性的要求而构成的整体。系统不是各个要素简 单的集合,否则它就不会形成整体的特定的功能。 因此,即使每个要素并不都很完善,但它们可以 因此,即使每个要素并不都很完善,但它们可以 进行综合和统一,成为具有良好功能的系统。
运筹学第3版熊伟编著习题答案
求没有限制,由于仓库容量有限,仓库最多库存产品 A1000 件,1 月初仓库库存 200 件。1~
6 月份产品 A 的单件成本与售价如表 1-25 所示。
表 1-25
月份
1
2
3
4
5
6
产品成本(元/件)
300 330 320 360
360
300
销售价格(元/件)
350 340 350 420
410
340
(1)1~6 月份产品 A 各生产与销售多少总利润最大,建立数学模型;
(2)当 1 月初库存量为零并且要求 6 月底需要库存 200 件时,模型如何变化。
【解】设 xj、yj(j=1,2,…,6)分别为 1~6 月份的生产量和销售量,则数学模型为
最新精品文档,知识共享!
max Z 300x1 350 y1 330x2 340 y2 320x3 350 y3 360x4
第1章 线性规划
1.1 工厂每月生产 A、B、C 三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源
限量及单件产品利润如表 1-23 所示.
表1-23
产品 资源
A
B
C
资源限量
材料(kg)
1.5
1.2
4
2500
设备(台时)
3
1.6
1.2
利润(元/件)
10
14
12
1400
根据市场需求,预测三种产品最低月需求量分别是 150、260 和 120,最高月需求是 250、310 和 130.试建立该问题的数学模型,使每月利润最大. 【解】设 x1、x2、x3 分别为产品 A、B、C 的产量,则数学模型为
xj 0, j 1, 2, ,10
第4章 最优化方法(运筹学)
例题分析5:投资问题
例5 某部门现有资金200万元,今后五年内考虑给以下的项目 投资。已知: 项目A:从第一年到第五年每年年初都可投资,当年末能收回 本利110%; 项目B:从第一年到第四年每年年初都可投资,次年末能收回 本利125%,但规定每年最大投资额不能超过30万元; 项目C:需在第三年年初投资,第五年末能收回本利140%,但 规定最大投资额不能超过80万元; 项目D:需在第二年年初投资,第五年末能收回本利155%,但 规定最大投资额不能超过100万元。 问应如何确定这些项目的每年投资额,使得第五年年末拥 有资金的本利金额为最大?
欧洲的古代城堡为什么建成圆形?
案例:生产计划问题
例1.
某工厂在计划期内要安排Ⅰ、Ⅱ两种产品的 生产,已知生产单位产品所需的设备台时及A、B两 种原材料的消耗、资源的限制,如下表:
Ⅰ
设备 原料 A 原料 B 单位产品获利 1 2 0 50 元
Ⅱ
1 1 1 100 元资源限制 300 来自时 400 千克 250 千克
问题:工厂应分别生产多少单位Ⅰ、Ⅱ产品才能
使工厂获利最多?
第一节 线性规划
一、在管理中一些典型的线性规划应用 二、线性规划的一般模型
三、线性规划问题的计算机求解
(Excel,lingo)
第一节 线性规划
一、在管理中一些典型的线性规划应用 1、合理利用线材问题:如何在保证生产的条件下, 下料最少 2、配料问题:在原料供应量的限制下如何获取最大 利润 3、投资问题:从投资项目中选取方案,使投资回报 最大 4、产品生产计划:合理利用人力、物力、财力等, 使获利最大 5、劳动力安排:用最少的劳动力来满足工作的需要 6、运输问题:如何制定调运方案,使总运费最小
运筹学第3版熊伟编著习题答案
1.5炼油厂计划生产三种成品油,不同的成品油由半成品油混合而成,例如高级汽油可以由中石脑油、重整汽油和裂化汽油混合,辛烷值不低于94,每桶利润5元,见表1-26.
表1-26
成品油
高级汽油
一般汽油
航空煤油
一般煤油
半成品油
中石脑油
基本最优解 ,最优解的通解可表示为 即
〔4〕
[解]单纯形表:
C<j>
3
2
1
0
0
R. H. S.
Ratio
Basis
C<i>
X1
X2
X3
X4
X5
X4
0
5
4
6
1
0
25
5
X5
0
[8]
6
3
0
1
24
3
C<j>-Z<j>
3
2
1
0
0
0
X4
0
0
1/4
33/8
1
-5/8
10
X1
3
1
3/4
3/8
0
1/8
3
C<j>-Z<j>
方案四:在三年内投资人应在第三年年初投资,一年结算一次,年收益率是30%,这种投资最多不超过1万元.
投资人应采用怎样的投资决策使三年的总收益最大,建立数学模型.
[解]是设xij为第i年投入第j项目的资金数,变量表如下
项目一
项目二
项目三
项目四
第1年
第2年
运筹学(绪论)
五、运筹学在经济管理中应用的主要课题
• 6、人事管理:对人员的需求和使用的预测、 确定人员编制、人力资源开发、人员的合 理利用、人才评价体系、工资标准等。 • 7、设备维修与更新 • 8、可靠性分析 • 9、质量控制 • 10、项目选择、评估 • 11、城市公用事业和服务 • 12、工程优化设计与管理等
page27
四、运筹学在管理科学中的地位
• 管理科学的学科构架 • 2、技术方法部分: 决策方法、决策支持系统、计划与规划 技术、库存控制、技术经济、预测技术、 管理信息系统、管理系统工程、目标管 理、质量管理与保证、管理数学方法、 项目评估和可行性研究、价值工程、预 算与成本控制、时间-动作研究等。
page13
一、运筹学的发展及展望
• 2、运筹学的展望 • 1)运筹学发展过程中面临的一些问题: 抽象化风气日盛、大范围问题、高维问 题、体系厐杂等。 • 2)运筹学发展展望 • 运筹学应该在三个方面都应有所发展: 运筹学的学科体系、运筹学的应用及运 筹学的数学理论。
page14
二、运筹学的学科体系
page17
三、运筹学的定义与研究特点
• • 运筹学(Operational Research) 直译为 “运作研究”
运筹学是运用科学的方法(如分析、 试验、量化等)来决定如何最佳地运营和 设计各种系统的一门学科。运筹学对经济 管理系统中的人力、物力、财力等资源进 行统筹安排,为决策者提供有依据的最优 方案,以实现最有效的管理。 • 运筹学有广泛应用
page4
德州学院数学科学学院运筹学教案
情况介绍
• • 本课程设置的有关问题 教学要求
page5
目 录
第一章:绪论 第二章:线性规划 第三章:整数线性规划
运筹学教材习题答案详解
显然用料最少的方案最优。
1.4A、B两种产品,都需要经过前后两道工序加工,每一个单位产品A需要前道工序1小时和后道工序2小时,每一个单位产品B需要前道工序2小时和后道工序3小时.可供利用的前道工序有11小时,后道工序有17小时.
3
B1:2.0
3
需要量(套)
200
150
问怎样下料使得(1)用料最少;(2)余料最少.
【解】第一步:求下料方案,见下表。
方案
一
二
三
四
五
六
七
八
九
十
十一
十二
十三
十四
需要量
B1:2.7m
2
1
1
1
0
0
0
0
0
0
0
0
0
0
300
B2:2m
0
1
0
0
3
2
2
1
1
1
0
0
0
0
450
A1:1.7m
0
0
1
0
0
1
0
2
1
0
3
2
1
0
《运筹学》
第1章线性规划
第2章线性规划的对偶理论
第3章整数规划
第4章目标规划
第5章运输与指派问题
第6章网络模型
第7章网络计划
第8章动态规划
第9章排队论
第10章存储论
第11章决策论
第12章对策论
习题一
1.1讨论下列问题:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.3 矩阵链相乘
假定我们要将 3 个矩阵相乘 M 1M 2 M 3 ,3 个矩阵的规模分别为 2 × 10,10 × 2, 2 × 10 。 如果我们依次相乘,那么,所需要的乘法次数为:
2 × 10 × 2 + 2 × 2 × 10 = 80
假如,我们使用这样的相乘次序 M 1 ( M 2 M 3 ) ,那么需要的乘法次数为:
f (n) 的解析解。 ( M 1M 2 M 3 " M k ) × ( M k +1 " M n ) , 那 么 M 1M 2 M 3 " M k 有 f (k ) 种 组 合 方 式 。 ( M k +1 " M n ) 共 有 f (n − k ) 种 组 合 方 式 。 那 么 , f (n) = ∑ f (k ) f (n − k ) 。 又 因 为
至此,容易写出算法。 算法的复杂性:
4.7 多边形计算 (IOI'98)
问题描述: Polygon is a game for one player that starts on a polygon with N vertices, like the one in Figure 1, where N=4. Each vertex is labeled with an integer and each edge is labeled with either the symbol + (addition) or the symbol * (product). The edges are numbered from 1 to N.
式。下面我们使用动态规划的方法来求解: 先来观察一下 M 1M 2 M 3 " M n 。对于其中任意相邻的两个矩阵,前一矩阵的列数必定 等 于 后 一 矩 阵 的 行 数 。 为 此 , 我 们 定 义 r1 , r2 , r3 ," rn , rn +1 , 其 中 ri , ri +1 分 别 表 示 矩 阵
2
M i (1 ≤ i ≤ n) 的行数和列数。令 M i , j = M i M i +1 " M j ,设 C[i, j ] 为计算 M i , j 的最优乘法次
数。那么 M i , j 可以按照如下方式来计算: M i ,k −1 = M i M i +1 " M k −1
M k , j = M k M k +1 " M j 这里 1 < i ≤ j 。
51Leabharlann 显然, V [0, j ] 始终为 0;同样 V [i, 0] 始终为 0。(学生解释理由)。 2. V [i, j ] 是下面两个量的最大值:
V [i − 1, j ] : V [i − 1, j − wi ] + vi
也就是说:
, if i==0 || j==0 0 , if j<w i V [i, j ] = V [i − 1, j ] max{V [i − 1, j ], V [i − 1, j − w ] + v } , if i>0 and j ≥ w i i i
∑ vi zi > v1 y1 + ∑ vi yi = ∑ vi yi
i =2 i =1
也就是说: ( y1 , z2 ,..., zn ) 是原问题的最优解,而 ( y1 , y2 ,..., yn ) 不是。这就与命题矛盾。 下面设法使用递归的方式描述问题的求解。 用 V [i, j ] 表示使用前 i 个物品 {u1 , u2 ," , ui } 放入承重量为 j 的背包中所能得到的最优 值。显然 0 ≤ i ≤ n, 0 ≤ j ≤ C 。那么我们要求解的值就是 V [ n, C ] 。
使用第 2 章中线性同质递归方程的特征方程求解之,得到:
T ( n) ≈
1 1+ 5 n ( ) ≈ 0.447(1.618) n ,亦即,时间复杂度为输入规模的指数形式。大 2 5
家可以试验一下,当 n=100 时间,使用递归程序的求解时间。 下面我们来使用一种简单的方法来显著降低求解该问题的时间复杂度, 使得求解时间为 线性时间。 代码片断如下: int f1=1,f2=1,result; for(int i=3;i<=n;i++){ result=f1+f2; f1=f2; f2=result; } return result; 显然,上述算法的时间为 T ( n) = O (n) 。该程序的特点就是,当前的计算利用了以前的
f (n) = f (n − 1) + f (n − 2) = 2 f (n − 2) + f (n − 3) = ... = 5 f (n − 4) + f (n − 5) 大量重复的调用会耗费大量的时间。假定计算 f (1), f (2) 需要单位时间,那么,上述算
法的时间复杂度为:
, n=1,2 1, T ( n) = T (n − 1) + T (n − 2), n > 2
下面,我们来尝试使用动态规划求解该问题:同样,需要先找到一个递归形式的公式 来描述如何求解最长公共子序列。假设 A = a1a2 " an , B = b1b2 " bm 。我们用 L[i, j ] 表示 字符串 a1a2 " ai 和 b1b2 " b j 的最长公共子序列的长度。注意:这里 i 或 j 为零时,表示空字
仔细分析可以发现:如果 ( y1 , y2 ,..., yn ) 是该问题的一个最优解。那么 ( y2 ,..., yn ) 是下 面问题的最优解:
n
max(∑ vi xi )
i=2
n ∑ wi xi ≤ C − w1 y1 约束条件: i = 2 xi ∈ {0,1}, 2 ≤ i ≤ n
10 × 2 × 10 + 2 × 10 × 10 = 400
也就是说,多个矩阵相乘时,乘的顺序不同,时间复杂性大不相同。那么如何找到最 佳的相乘次序(最少的乘法次数)呢?当然,我们可以使用枚举的方法来求解。 定义 f ( n) 是 n 个矩阵 M 1M 2 M 3 " M n 连乘所有可能的组合,下面我们想办法求出
而 M i ,k −1M k , j 的乘法次数为 ri rk rj +1 。因此, C[i, j ] 可以递归的表示为:
C[i, j ] = min{C[i, k − 1] + C[k , j ] + ri rk rj +1} 。
1< k ≤ n
同样,如果我们直接使用递归的方法来求解,那么其中会存在大量的重复调用,增加 了时间复杂性。下面我们使用动态规划来求解之: 输入: 输出: 算法: 算法的分析:
k =1 n −1
f (1) = 1, f (2) = 1, f (3) = 2 。因此有 f (n) =
Stirling 公式: n ! ≈
1 n −1 C2 n − 2 。 n
2π n ( n ) n 2
(2n − 2)! 4n 4n 所以 f ( n) = ,也就是说 f ( n) = Ω( 1.5 ) ,时间复杂度为指数形 ≈ n n((n − 1)!) 2 4 π n1.5
3
符串。那么我们有下面的式子成立:
0 if i=0 or j=0 if j>0&&j>0&&a i = b j L[i, j ] L[i − 1, j − 1] + 1 max{L[i, j − 1], L[i − 1, j ]} if i>0&&j>0&&a i ≠ b j 输入: 定义在某个字符集 ∑ 上的字符串 A 和 B,长度分别为 n,m。
为什么呢?需要证明一下:(反证法) 【证明】假设 ( z2 ,..., zn ) 是上述问题的最优解,而 ( y2 ,..., yn ) 不是,那么我们有:
∑v z > ∑v y
i =2 i i i =2 i
n
n
i
同时 w1 y1 +
n
∑w z
i =2 n i =2
n
i i
≤C
n
所以有: v1 y1 +
( x1 , x2 ,..., xn ) , xi ∈ {0,1},1 ≤ i ≤ n ,使得:
∑ wi xi ≤ C 的同时 ∑ vi xi 最大。
i =1 i =1
n
n
即:
max(∑ vi xi )
i =1
n
n ∑ wi xi ≤ C 约束条件: i =1 x ∈ {0,1},1 ≤ i ≤ n i
首先,将零行、零列填 0。… 时间复杂度为 T ( n) = O ( nm)