最新工程热力学课程 高中其它科目课件教案

合集下载

2024工程热力学课堂教学设计教案

2024工程热力学课堂教学设计教案

•教学背景与目标•教学内容与方法•教学资源与工具•教学过程与实施目录•教学评价与反馈•教师角色与素质要求01教学背景与目标课程背景介绍工程热力学在能源与动力工程领域的重要性工程热力学是研究热能与机械能相互转换以及热能传递规律的学科,对于能源的高效利用和动力设备的优化设计具有重要意义。

当前工程热力学教学面临的挑战随着科技的快速发展和新能源技术的不断涌现,工程热力学的教学内容需要不断更新和完善,以适应新的教学需求。

教学目标设定知识与技能目标使学生掌握工程热力学的基本概念和基本定律,了解热能传递和转换的基本过程,能够运用所学知识分析和解决简单的工程热力学问题。

过程与方法目标通过理论讲解、案例分析、实验操作等多种教学手段,培养学生的分析、综合、创新和实践能力。

情感态度与价值观目标激发学生对工程热力学的学习兴趣和热情,培养学生的团队协作精神和创新意识,提高学生的职业素养和社会责任感。

学生需求分析学生的专业背景和先修课程01学生的学习特点和兴趣爱好02学生在未来职业发展中的需求03教学重点与难点教学重点教学难点02教学内容与方法整合知识点间的联系,构建系统的知识体系,如将热力学第一定律和第二定律结合起来讲解热机的工作原理;强调知识点的工程应用背景,引导学生将理论知识与实际问题相结合。

梳理工程热力学基本概念、定律和原理,如热力学系统、热力学第一定律、热力学第二定律等;知识点梳理与整合根据工程热力学的学科特点,选择启发式、案例式、讨论式等教学方法;针对学生的实际情况,采用分层次、分阶段的教学方式,逐步提高教学难度;利用多媒体、网络等现代化教学手段,增强教学的直观性和趣味性。

教学方法选择依据设计课堂提问环节,鼓励学生主动思考和回答问题,激发学生的学习兴趣;安排小组讨论环节,引导学生就某一问题进行深入探讨和交流,培养学生的合作精神和沟通能力;设置课堂练习环节,让学生及时巩固所学知识,提高教学效果。

课堂互动环节设计案例分析与实践应用引入工程实例,分析热力学理论在工程中的应用,如汽轮机、内燃机等热力设备的热力过程分析;安排实验课程,让学生亲自动手操作,加深对热力学理论的理解和掌握;布置课程设计任务,让学生综合运用所学知识解决实际问题,培养学生的工程实践能力和创新能力。

高等工程热力学教案

高等工程热力学教案

高等工程热力学教案一、教学目标1.掌握高等工程热力学的基本概念和基本原理。

2.理解热力学系统和热力学过程的基本特征。

3.掌握热力学第一定律和第二定律的表述和应用方法。

4.能够应用热力学知识解决实际工程问题。

二、教学内容1.高等工程热力学简介(1)高等工程热力学的定义和研究对象。

(2)热力学系统的基本概念和分类。

(3)热力学平衡和非平衡态。

2.热力学基本概念和基本原理(1)热力学过程和过程的分类。

(2)内能和焓的概念及其性质。

(3)热力学第一定律的表述和应用。

(4)克拉珀龙方程和基尔霍夫循环定理。

3.熵和热力学第二定律(1)熵的引入和熵增定理。

(2)热力学第二定律的表述和应用。

(3)熵的计算方法和热力学性能的描述。

4.理想气体和理想气体混合物的热力学性质(1)理想气体状态方程和气体定律。

(2)理想气体的内能、焓和熵的计算方法。

(3)理想气体混合物的理论计算方法。

5.热力学循环和工质使用(1)热力学循环的分类和性能参数。

(2)理想循环和实际循环。

(3)工质选择和工质性能参数。

三、教学方法1.理论讲授:通过课堂讲解,将高等工程热力学的基本概念、基本原理和应用方法传授给学生。

2.实例分析:提供一些实际工程问题,并引导学生应用热力学知识解决问题,加强实际应用能力的培养。

3.讨论引导:组织学生开展小组讨论,让学生在讨论中相互启发,共同思考和解决问题。

四、教学工具1.讲义和教材:准备高等工程热力学的讲义和教学参考教材,便于学生学习和复习。

2.多媒体设备:利用多媒体设备播放示意图、实验视频等,直观地展示热力学原理和实验过程。

3.计算工具:提供计算软件或计算器,方便学生进行数值计算。

五、教学过程1.导入:通过提问和讲解,引入高等工程热力学的概念和研究对象。

2.知识讲解:逐步讲解热力学的基本概念、基本原理和应用方法。

3.实例分析:提供一些实际工程问题,引导学生应用热力学知识解决问题。

4.小组讨论:组织学生进行小组讨论,让学生相互启发、共同思考和解决问题。

2024版最新精品工程热力学教案

2024版最新精品工程热力学教案
制冷循环优化
提高制冷效率的措施包括采用高效压缩机、优化冷凝器和蒸发器设计、 提高制冷剂性能等。
06
工程热力学应用实例分析
蒸汽轮机工作原理及性能评价
蒸汽轮机工作原理
蒸汽轮机利用高温高压蒸汽驱动涡轮旋转,进而带动发电机发电。蒸汽轮机主要由锅炉、汽 轮机、凝汽器、给水泵等辅助设备组成。
性能评价指标
蒸汽轮机的性能评价指标主要包括热效率、功率输出、蒸汽消耗率等。其中,热效率是评价 蒸汽轮机性能的重要指标,它反映了蒸汽轮机将热能转化为机械能的效率。
等容过程
绝热过程
系统体积保持不变的过程。在等容过程中, 理想气体的压强与热力学温度成正比关系。
系统与外界没有热量交换的过程。在绝热过 程中,理想气体的压强、体积和温度之间满 足特定的关系式。
05
热力循环与热效率
热力循环概述
01
02
03
热力循环定义
热力循环是研究工质从某 一状态开始,经过一系列 状态变化又回到原来状态 的过程。
等。
02
热力学第一定律
能量守恒原理
能量不能凭空产生或 消失,只能从一种形 式转化为另一种形式。
能量转化过程中,各 种形式的能量在数量 上保持平衡。
在一个孤立系统中, 总能量始终保持不变。
热力学第一定律表达式
热力学第一定律的表达式为
ΔU = Q - W,其中ΔU表示系统内能的变化,Q表示系统与外界交换的热量,W表示系 统对外界所做的功。
对外界所做的功。
当系统与外界没有热量交换时, 即Q=0,则ΔU = -W,表示系 统内能的变化等于系统对外界所
做的功的负值。
当系统与外界没有功的交换时, 即W=0,则ΔU = Q,表示系统 内能的变化等于系统与外界交换

最新[工学]-第十四章-工程热力学教学讲义PPT课件

最新[工学]-第十四章-工程热力学教学讲义PPT课件
[工学]-第十四章-工程热力学
§14-1 概 述
应用:化学反应的过程 chemical reaction
√ 动力装置煤、油、天然气的燃烧
水处理 化工过程
目的:
热力学基本定律用于化学过程, 研究这些过程能量的转换、平衡、 方向性、化学平衡
有化学反应过程的特点
1、独立变量数
无化学反应:简单可压缩系统,2 有化学反应:独立变量数>2
Q0 p''
Qp
Qp0'
Q
0 p
CO
Q
o p'
Q p 0 '' 3 9 3 5 2 2 k J/k m o lCC O 2 Q p 0 ' 2 8 2 9 9 3 k J/k m o lC O 2Q
o p
''
CO2
燃烧热值(发热量、热值)
Heating value of the fuel
1kmol燃料完全燃烧时的热效应的绝对值 Complete 放热为负 H f
热效应与反应热Heat of reaction
反应热:系统与外界交换的热量,过程量
容积变化功
热效应: T
状态量
1 kmol
盖斯定律
Hess Law
盖斯定律(1840年)
当反应前后物质的
C Qp2 D
种类给定时,化学反
应的热效应,与中间 Qp1
Qp3
过程无关,只与过程 A 初始和终了状态有关。 Qp4
B
Qp5
Qp1 Qp2 Qp3 Qp4 Qp5
E
某些测不出(或不易 测)的热效应可由易
测的热效应代替。
标准态
盖斯2OQQ p0''Q p0 p 0 测 不11 准0同52 Q时9k p0产J/k 生Qm p0o '' lC QO p0'

工程热力学课程教案X-2024鲜版

工程热力学课程教案X-2024鲜版
压缩机的性能参数
阐述压缩机的性能参数,如排气量、排气压力、 功率及效率等,以及这些参数的计算方法和影响 因素。
2024/3/28
压缩机的类型与结构
详细介绍各类压缩机的结构、工作原理及特点, 如往复式压缩机、离心式压缩机、轴流式压缩机 等。
压缩机的选型与使用
介绍压缩机的选型原则和方法,以及安装、调试、 运行和维护等方面的注意事项。
18
制冷剂的种类与性质
制冷剂的种类
根据化学组成,制冷剂可分为无机化合物、 氟利昂、碳氢化合物等。
2024/3/28
制冷剂的性质
制冷剂应具有低沸点、高蒸气压、良好的热 力学性质、化学稳定性以及环保性等特性。
19
04
热力过程与设备
2024/3/28
20
压缩过程与压缩机
压缩过程的基本原理
介绍压缩过程的基本概念、原理及分类,包括等 温压缩、绝热压缩和多变压缩等。
课程目标
培养学生掌握热力学基本理论和分析方法,具备解决工程实际问题 的能力,为后续专业课程学习及工程实践打下坚实基础。
4
教学内容与方法
2024/3/28
教学内容
包括热力学基本概念、热力学第一定 律、热力学第二定律、气体和蒸汽的 性质、热力过程和循环分析等。
教学方法
采用讲授、讨论、案例分析等多种教 学方法,注重理论与实践相结合,提 高学生分析问题和解决问题的能力。
2024/3/28
13
03
工质的热力性质
2024/3/28
14
工质的定义与分类
定义
工质是实现热能与机械能相互转换的媒介物 质。
分类
根据物质状态,工质可分为气体、液体和固 体;根据组成,可分为单质和化合物。

2024版《工程热力学》课程教学大纲

2024版《工程热力学》课程教学大纲

目录•课程简介与目标•热力学基本概念与定律•热力学性质与过程分析•热力学在能源转换中的应用•热力学在环境保护中的应用•实验课程安排与要求课程简介与目标工程热力学的研究对象和任务研究热能与机械能相互转换的规律,以及提高能量转换效率的途径。

工程热力学在能源领域的应用涉及动力、制冷、空调、化工、环保等多个领域,为能源的高效利用提供理论指导。

工程热力学与相关学科的关系与传热学、流体力学、燃烧学等学科密切相关,共同构成能源科学与工程学科体系。

工程热力学概述030201知识目标掌握工程热力学的基本概念、基本原理和基本方法,了解工程热力学在能源领域的应用。

能力目标能够运用工程热力学知识分析实际工程问题,提出解决方案,并具备初步的工程设计和创新能力。

素质目标培养学生的工程素养、创新意识和团队协作精神,提高学生的综合素质。

课程目标与要求教材及参考书目01教材《工程热力学》(第X版),XXX主编,XXX出版社。

02参考书目《热力学基础》、《传热学》、《流体力学》等相关教材,以及工程热力学领域的学术论文和专著。

热力学基本概念与定律温度、热量与内能温度温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。

热量热量是指当系统与外界存在温差时,通过热交换,系统从外界吸收或向外界放出的能量。

内能内能是物体内部所有分子做无规则运动所具有的动能和分子势能的总和。

热力学系统与过程热力学系统热力学系统是指某一由大量粒子组成的宏观物质系统。

粒子间的相互作用力可以忽略,但又大量到足以符合统计规律,从而能确定其宏观性质。

热力学过程热力学过程是指热力学系统从某一始态出发,经过某一特定路径转变为另一终态的整个过程。

热力学第一定律热力学第一定律的表述热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持不变。

热力学第一定律的数学表达式ΔU=W+Q,其中ΔU为内能的变化量,W为外界对系统做的功,Q为系统从外界吸收的热量。

《工程热力学》(第四版)配套教学课件

《工程热力学》(第四版)配套教学课件
传热面积是影响换热器性能的重要因素。通过优化传热面积,可以 提高换热效率,降低能耗。
流体流动模式
流体流动模式会影响传热系数。合理设计流体流动路径,可以增强 传热效率。
材料选择
材料选择需要考虑流体腐蚀性,耐温性,成本等因素。合适的材料 可以确保换热器寿命和可靠性。
课程总结与反馈
1 1. 课程回顾
回顾课程内容,掌握核心概念。
3 3. 混合物热力学性质
混合物热力学性质包括焓、 熵、吉布斯自由能等,可用 于分析混合物的能量变化。
4 4. 应用
气体和液体混合物在许多工 程应用中发挥重要作用,例 如制冷剂、燃料和化学反应 过程。
化学平衡与化学反应
1
2
3
化学平衡
化学反应达到平衡状态时,正逆反应 速率相等,反应物和生成物的浓度不

3
功是能量的另一种形式,它是力作用在物体上所做的功。
内能
4
内能是系统内部所有能量的总和,包括热能、动能和势能。
热力学第二定律
热力学第二定律的表述
热力学第二定律阐述了热量传递的方向性和不可逆性,以及熵增原理。
克劳修斯表述
热量不能自发地从低温物体传递到高温物体,需要外界做功。
开尔文表述
不可能从单一热源吸取热量,全部用来做功,而不引起其他变化。
《工程热力学》第四 版教学课件
本套课件旨在为学习工程热力学课程的学生提供更直观、更易懂的学习体 验。
课件内容涵盖了工程热力学的基础知识,并通过丰富的图文和动画进行讲 解,使学生更容易理解和掌握。
hd by h d
课程简介
课程内容
本课程涵盖了热力学基础、热力学定律、流体性质、传热原理以及常见热力学系统等方面内容。

工程热力学 教案

工程热力学 教案

工程热力学教案教案标题:工程热力学教学目标:1. 理解工程热力学的基本概念和原理。

2. 掌握工程热力学中的常用计算方法。

3. 能够应用工程热力学知识解决实际问题。

教学重点:1. 工程热力学的基本概念和原理。

2. 热力学系统的性质和特点。

3. 热力学过程的描述和分析。

4. 热力学循环的计算和优化。

教学难点:1. 热力学系统的性质和特点的理解。

2. 热力学过程的描述和分析方法的掌握。

3. 热力学循环的计算和优化方法的应用。

教学准备:1. 教学PPT或投影仪。

2. 教学实例和案例分析材料。

3. 实验室设备和实验材料(可选)。

教学过程:一、导入(5分钟)1. 引入工程热力学的基本概念和应用领域。

2. 激发学生的学习兴趣,提出与实际生活和工程实践相关的问题。

二、理论讲解(30分钟)1. 介绍热力学系统的性质和特点,如封闭系统、开放系统等。

2. 解释热力学过程的描述方法,如等温过程、绝热过程等。

3. 讲解热力学循环的基本原理和常见循环类型。

三、计算方法与案例分析(40分钟)1. 介绍工程热力学中常用的计算方法,如热力学方程、热力学图表等。

2. 分析实际案例,应用计算方法解决工程热力学问题。

3. 引导学生进行讨论和思考,加深对工程热力学知识的理解。

四、实验演示(可选,30分钟)1. 进行与工程热力学相关的实验演示,如热力学循环实验等。

2. 引导学生观察实验现象,分析实验数据,并与理论知识进行对比和验证。

五、总结与拓展(10分钟)1. 总结工程热力学的基本概念和计算方法。

2. 引导学生思考工程热力学在实际工程中的应用和发展前景。

3. 提供相关学习资源和拓展阅读推荐。

教学评估:1. 课堂练习:布置与工程热力学相关的计算题目,检验学生对知识的掌握程度。

2. 实验报告:要求学生撰写实验报告,包括实验过程、数据分析和结论。

3. 课堂讨论:鼓励学生积极参与课堂讨论,分享自己的思考和观点。

教学延伸:1. 建议学生参加相关实习或实践活动,加深对工程热力学知识的理解和应用。

《工程热力学》课程教案

《工程热力学》课程教案

《工程热力学》课程教案*** 本课程教材及主要参考书目教材:沈维道、蒋智敏、童钧耕编,工程热力学(第三版),高等教育出版社,2001.6手册:严家騄、余晓福着,水和水蒸气热力性质图表,高等教育出版社,1995.5 实验指导书:华北电力大学动力系编,热力实验指导书,2001参考书:曾丹苓、敖越、张新铭、刘朝编,工程热力学(第三版),高等教育出版社,2002.12 王加璇等编着,工程热力学,华北电力大学,1992年。

朱明善、刘颖、林兆庄、彭晓峰合编,工程热力学,清华大学出版,1995年。

曾丹苓等编着,工程热力学(第一版),高教出版社,2002年全美经典学习指导系列,[美]M.C. 波特尔、C.W. 萨默顿着郭航、孙嗣莹等译,工程热力学,科学出版社,2002年。

何雅玲编,工程热力学精要分析及典型题精解,西安交通大学出版社,2000.4概论(2学时)1. 教学目标及基本要求从人类用能的历史和能量转换装置的实例中认识理解:热能利用的广泛性和特殊性;工程热力学的研究内容和研究方法;本课程在专业学习中的地位;本课程与后续专业课程乃至专业培养目标的关系。

2. 各节教学内容及学时分配0-1 热能及其利用(0.5学时)0-2 热力学及其发展简史(0.5学时)0-3 能量转换装置的工作过程(0.2学时)0-4 工程热力学研究的对象及主要内容(0.8学时)3. 重点难点工程热力学的主要研究内容;研究内容与本课程四大部分(特别是前三大部分)之联系;工程热力学的研究方法4. 教学内容的深化和拓宽热力学基本定律的建立;热力学各分支;本课程与传热学、流体力学等课程各自的任务及联系;有关工程热力学及其应用的网上资源。

5. 教学方式讲授,讨论,视频片段6. 教学过程中应注意的问题特别注意:本课程作为热能与动力工程专业学生进入专业学习的第一门课程(专业基础课),要引导学生的学习兴趣和热情。

另,用例应尽量采用较新的事实和数据。

7. 思考题和习题思考题:工程热力学的宏观研究方法与微观方法的比较作业: (短文,一、二页即可)网络文献综述——能源利用与工程热力学8. 师生互动设计讲授中提问并启发讨论:从本课程教材的四大部分的标题看,对于工程热力学的研究内容有没有一个初步的认识(可以“猜想”)?知道热力学第一、第二定律吗?第三、第零定律呢?请举例并比较:宏观研究方法和微观研究方法。

(2024年)工程热力学教案第一讲

(2024年)工程热力学教案第一讲

2024/3/26
14
04
理想气体性质及过程分析
2024/3/26
15
理想气体状态方程及性质
理想气体状态方程
pV = nRT,其中p为压强,V为体积,n 为物质的量,R为气体常数,T为热力学 温度。
VS
理想气体性质
理想气体是一种假想的气体,其分子间无 相互作用力,分子本身不占体积。
2024/3/26
16
理想气体等温过程分析
等温过程定义
在等温过程中,系统的温度 保持不变。
等温膨胀
气体在等温条件下膨胀,其 内能不变,吸收热量等于对 外做功。
等温压缩
气体在等温条件下压缩,其 内能不变,放出热量等于外 界对气体做功。
2024/3/26
17
理想气体多变过程分析
多变过程定义
多变过程是温度和压力同时变化的过程。
2024/3/26
10
03
热力学第一定律
2024/3/26
11
热力学能、功和热量
热力学能
是系统内部所有微观粒子各种能 量的总和,包括微观粒子的动能 、势能、化学能、电离能等。

是系统与外界之间由于力学相互 作用而传递的能量。功是宏观过 程量,其数值及正负与所选的初 始状态有关。
热量
是系统与外界之间由于温差而传 递的能量。热量是过程量,其数 值及正负与所选的初始状态有关 。
03
为工程热力学中许多重要概念和 理论,如熵、熵增原理、热力学
温标等提供了基础。
04
21
卡诺循环与卡诺定理
卡诺循环 由两个等温过程和两个绝热过程构成
的循环。
是一种理想化的可逆循环,其效率只 取决于高温热源和低温热源的温度。

(完整版)工程热力学教案第一讲

(完整版)工程热力学教案第一讲

工程热力学工程热力学的作用:主要研究热能与机械能相互转换的规律、方法及提高转化率的途径,比较集中地表现为能量方程。

工程热力学部分的主要内容(1)基本概念与基本定律,如工质、热力系、热力状态、状态参数及热力过程、热力学第一定律、热力学第二定律等等,这些基本概念和基本定律是全部工程热力学的基础。

(2)常用工质的热力性质。

其主要内容是理想气体、水蒸气、湿空气等常用工质的基本热力性质。

工质热力性质的研究是具体分析计算能量传递与转换过程的前提。

(3)各种热工设备的热力过程。

其主要内容有理想气体的热力过程、气体和蒸汽在喷管和扩压管中流动过程及蒸汽动力循环等热力过程的分析计算。

这些典型热工设备热力过程的分析计算,是工程热力学应用基本定律结合工质特性和过程特性分析计算具体能量传递与转换过程完善性的方法示例。

第一章工质及气态方程第一节工质热力系统第二节工质的热力状态基本状态参数第三节平衡状态状态方程第四节理想气体状态方程本章的主要内容1、讨论能量转换过程中所涉及的各种基本概念;2、在以气体为重要工质的能量转换过程中,介绍其状态方程。

本章的学习要求•理解工质、热力系的定义,掌握热力系的分类。

•理解热力状态和状态参数的定义;掌握状态参数的特征、分类,基本状态参数的物理意义和单位;掌握绝对压力、表压力和真空度的关系。

•掌握平衡状态的物理意义及实现条件。

•了解状态方程式及参数坐标图的物理意义及作用。

•理解热力过程、准平衡过程和可逆过程的物理意义与联系,能正确判定准平衡过程和可逆过程。

第一节工质及状态方程本节重点掌握热力系统,在学习这一概念之前先认识一个概念:【工质】1. 什么是工质?实现热能与机械能相互转换或热能转移的媒介物质。

2. 工质特性:可压缩、易膨胀、易流动3. 常用工质:热机循环中: 水蒸气、空气、燃气。

制冷循环、热泵循环中: 氨、氟里昂。

举例(1)从能量转换方面:汽轮中的水蒸气首先要知道汽轮机的工作过程,如图示(蒸汽动力循环示意图)该工作过程实现了热能——>机械能的能量转换,水蒸气作为该能量转换过程中的媒介物质,就是工质。

最新工程热力学 教案 第四讲

最新工程热力学 教案 第四讲

{复习提问}1、什么是热力学第一定律?2、什么事准平衡过程和可逆过程?举例描述。

3、系统储存能包括及部分,各是什么,表示符号和表达式是什么?{导入新课}第三节系统与外界传递的能量上一节课我们学习了系统的总储存能,这一节我们来学你系统与外界传递的能量。

在热力过程中,热力系与外界交换的能量包括三部分,分别是功量、热量和工质通过边界时所携带的能量。

下面我们分别来学习这三种能量:一、热量1、定义:系统和外界之间仅仅由于温度不同(温差)而通过边界传递的能量称为热量。

符号:Q , 单位为J或kJ2、单位质量工质与外界交换的热量用q表示,单位为J/kg或kJ/kg 。

微元过程中热力系与外界交换的微小热量用δQ或δq表示。

3、热量为在热传递中物体能量改变的量度,是过程量。

其数值大小与过程有关,所以不是状态参数。

4、热量正负规定: 系统吸热,热量取正值,Q(q)>0 ;系统放热,热量取负值,Q(q)<0 。

5、热量的记算式(推导):引入新概念【熵】熵:指热能除以温度所得的商,标志热量转化为功的程度。

有温差便有热量的传递,可用熵的变化量作为热力系与外界间有无热量传递以及热量传递方向的标志。

1、符号: S , 单位为J/K 或kJ/K 。

2、单位质量工质所具有的熵称为比熵, 用s 表示, 单位为J/(kg⋅K) 或kJ/(kg⋅K)。

用熵计算热量在微元可逆过程中,系统与外界传递的热量可表示为:δq =Tds δQ =TdS在可逆过程1-2中,系统吸收的热量可写为:q =⎰21Tds Q=⎰21TdS根据熵的变化判断一个可逆过程中系统与外界之间热量交换的方向:ds>0,δq>0,系统吸热;ds<0,δq<0,系统放热;ds=0,δq=0,系统与外界没有热量交换,是绝热(定熵)过程。

3. 温熵图(T-s图)在可逆过程中单位质量工质与外界交换的热量q =⎰21Tds ,大小等于T-s图(温熵图)上过程曲线下的面积,因此温熵图也称示热图。

工程热力学课程教案(知识借鉴)

工程热力学课程教案(知识借鉴)

工程热力学课程教案周次第 1 周日期年月日星期教学内容绪论第一章:基本概念及定义§1-1 热能和机械能相互转换的过程一.热能动力装置简介二.工质和热源概念§1-2 热力系统一.热力系统,外界,边界概念,二.热力系统分类三.简单可压缩系统§1-3 工质的热力学状态及其基本状态参数一.热力学状态,状态参数的概念二.状态参数的特征,分类三.基本状态参数的介绍重点与难点重点:热力系统,热力学状态,状态参数的特征难点:热力系统分类的理解状态参数是状态的单值函数的数学上的表示主要英文词汇Heat source,Heat reservoir;Working substance教学方法与手段讲授和多媒体课件相结合思考题作业题思考题:1-1,1-4,1-8 作业题:1-4,1-9备注工程热力学课程教案周次第 1 周日期年月日星期教学内容§1-4 平衡状态,状态方程式,坐标图一.平衡状态二.状态方程式三.状态参数坐标图§1-5 工质的状态变化过程一.准平衡过程(准静态过程)二.可逆过程§1-6 过程功和热量一.功的热力学定义二.过程热量的定义三.过程功和热量的异同§1-7 热力循环一.可逆循环与内可逆循环二.正向循环和逆向循环重点与难点重点:平衡状态,准平衡过程,可逆过程,过程功和热量,正向循环和逆向循环,循环的经济性指标难点:准平衡过程和可逆过程的理解主要英文词汇Quasi-static, Quasi-equilibrium, Reversible process, Work, Heat, Power cycle教学方法与手段讲授和多媒体课件相结合思考题作业题思考题:1-7,1-11, 1-12,1-14 作业题:1-11,1-19,1-21备注工程热力学课程教案周次第 2 周日期年月日星期教学内容第二章:热力学第一定律§2-1 热力学第一定律的实质§2-2 热力学能和总能一.热力学能二.总能§2-3 能量的传递和转化一.作功和传热二.推动功和流动功§2-4 焓重点与难点重点:热力学第一定律的实质;热力学能和总能的概念;热量传递和转化的两种方式:作功和传热;推动功和流动功,焓的定义和意义难点:热力学能和总能概念的理解。

工程热力学PPT教案

工程热力学PPT教案

四、热量与功的异同:
1.均为通过边界传递的能量;
2.均为过程量; 3.功传递由压力差推动,比体积变化是作功标志;
热量传递由温差推动,比熵变化是传热的标志;
4.功是物系间通过宏观运动发生相互作用传递的能量; 热是物系间通过紊乱的微粒运动发生相互作用而传递的
能量。

热是无条件的;

功是有条件、限度的。
附: 1kWhห้องสมุดไป่ตู้ 3600kJ
第38页3/8共55页
6.讨论 有用功(useful work)概念
Wu W Wl Wp
pb
f
其中:
W—膨胀功(compression/expansion work);
Wl—摩擦耗功; Wp_排斥大气功。
例A7001331
第39页3/9共55页
用外部参数计算不可逆过程的功
第5页/5共55页
二、系统及边界示例
• 汽车发动机
第6页/6共55页
• 汽缸-活塞装置(闭口系例)
第7页/7共55页
• 移动和虚构边界
第8页/8共55页
注意: 1)系统与外界的人为性 2)外界与环境介质 3)边界可以是: a)刚性的或可变形的或有弹性的 b)固定的或可移动的 c)实际的或虚拟的
p
p1 1
O
v1
T
T2 2
p
p3 3
vO
s2
sO
T3
T
第30页3/0共55页
附:纯物质的p-v-T图
第31页3/1共55页
水p-v-T图
第32页3/2共55页
1-5 工质的状态变化过程
一、准静态过程(quasi-static process; quasi-equilibrium process)

最新精品工程热力学教案

最新精品工程热力学教案

化学化工系教案课程名称:工程热力学总学时数:72 学时讲授时数:72学时实践(实验、技能、上机等)时数:0学时授课班级:主讲教师:使用教材:大连理工大学《工程热力学》毕明树说明:1、授课类型:指理论课,实验课,实践课,技能课,习题课等;2、教学方法:指讲授、讨论、示教、指导等;3、教学手段:指板书、多媒体、网络、模型、挂图音像等教学工具;4、首次开课的青年教师的教案应由导师审核;5、讲稿内容附后。

绪论(2学时)一、基本知识1.什么是工程热力学从工程技术观点出发,研究物质的热力学性质,热能转换为机械能的规律和方法,以及有效、合理地利用热能的途径。

电能一一机械能锅炉一一烟气一一水一一水蒸气一一(直接利用) 供热锅炉一一烟气一一水一一水蒸气一一汽轮机一一 (间接利用)发电冰箱一一-(耗能) 制冷2.能源的地位与作用及我国能源面临的主要问题3. 热能及其利用(1).热能:能量的一种形式(2).来源:一次能源:以自然形式存在,可利用的能源。

如风能,水力能,太阳能、地热能、化学能和核能等。

二次能源:由一次能源转换而来的能源,如机械能、机械能等。

(3).利用形式:直接利用:将热能利用来直接加热物体。

如烘干、采暖、熔炼(能源消耗比例大)间接利用:各种热能动力装置,将热能转换成机械能或者再转换成电能,4..热能动力转换装置的工作过程5.热能利用的方向性及能量的两种属性过程的方向性:如:由高温传向低温能量属性:数量属性、,质量属性 (即做功能力)注意:数量守衡、质量不守衡提高热能利用率:能源消耗量与国民生产总值成正比。

6.本课程的研究对象及主要内容研究对象:与热现象有关的能量利用与转换规律的科学。

研究内容:(1).研究能量转换的客观规律,即热力学第一与第二定律。

(2).研究工质的基本热力性质。

(3).研究各种热工设备中的工作过程。

(4).研究与热工设备工作过程直接有关的一些化学和物理化学问题。

7..热力学的研究方法与主要特点(1)宏观方法:唯现象、总结规律,称经典热力学。

工程热力学课件2PPT学习教案

工程热力学课件2PPT学习教案
准静态 pdv d( pv) wt
wt pdv d( pv) pdv ( pdv vdp) vdp
wt vdp wt vdp
准静态 q du pdv 热一律解析式之一 q dh vdp 热一律解析式之二
第36页/共74页
技术功在示功图上的表示
vdp pdv p1v1 p2v2
-
离开系统的能量
=
系统储存能量的 变化
1 2
ci2n
gzin
Q
第19页/共74页
Wnet
mout
uout
1 2
c2 out
gzout
推动功的引入
min
1 2
ci2n
uin gzin
这个结果与实验 不符
少了推动功
Q
Wnet
uout mout
gzout
1 2
c2 out
Q + min(u + c2/2 + gz)in
dp 1 dc2 dz 0
g 2g
柏努利方程
第38页/共74页
§ 2-6 稳定流动能量方程应用举例
q h c2 / 2 gz ws
热力学问题经常可忽略动、位能变化
例:c1 = 1 m/s c2 = 30 m/s
(c22 - c12) / 2 = 0.449 kJ/ kg
坚持不懈终将获得公认
(2) 1845年在剑桥召开的英国科学协会学术会议上,焦耳
又一次作了热功当量的研究报告,宣布热是一种能量 形式,各种形式的能量可以互相转化。但是焦耳的观 点遭到与会者的否定,英国伦敦皇家学会拒绝发表他 的论文。1847年4月,焦耳在曼彻斯特作了一次通俗 讲演,充分地阐述了能量守恒原理,但是地方报纸不 理睬,在进行了长时间的交涉之后,才有一家报纸勉 强发表了这次讲演。同年6月,在英国科学协会的牛 津会议上,焦耳再一次提出热功当量的研究报告,宣 传自己的新思想。会议主席只准许他作简要的介绍。 只是由于威廉·汤姆孙在焦耳报告结束后作了即席发 言,他的新思想才引起与会者的重视。直到1850年, 焦耳的科学结论终于获得了科学界的公认。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等职业教育教学课程标准工程热力学
适用专业:化工机械
2006年4月
一、课程性质与任务
工程热力学课程是化工机械专业的一门专业基础课,是研究物质的热力性质、热能与其它能量之间相互转换规律的科学,是培养化机专业技术人员的一门重要技术基础课,它以热力学基本作为基础,通过物质的压力、温度、比容等宏观参数和受热、冷却、膨胀、收缩等整体行为,对宏观现象和热力过程进行研究,同时探讨各种热力过程的特性,达到提高热能利用率和热功转换效率的最终目的。

本课程的任务是使学生掌握能量转换与利用的基本定律及其运用,掌握工质的热力性质分析,了解工程中节能技术的热力学原理及其分析方法,以实现能量转换的高效性和经济性,并为学习其他有关课程及从事有关生产技术工作打下必要的基础。

二、课程教学目标
工程热力学是研究热能与其他形式的能量(尤其是机械能)之间相互转换规律的一门学科。

通过热能利用在整个能源利用中地位的阐述,使学生认识研究热能利用和学习工程热力学的重要性, 并注意渗透思想教育,逐步培养学生的辩证思维能力,加强学生的职业道德观念,向学生渗透爱课程、爱专业教育。

通过对我国能源及其利用现状的介绍,增强学生对我国能源问题的忧患意识和责任意识,激发学生为解决我国能源问题而努力学习的热情。

初步形成解决实际问题的能力,为学习专业知识和职业技能打下基础。

三、理论教学内容和要求
1 教学内容体系结构
课程体系结构为:
(1) 研究能量转化的宏观规律,即热力学第一定律与第二定律。

这是工程热力学的理论基础。

其中热力学第一定律从数量上描述了热能和机械能相互转换时的关系;热力
学第二定律从质量上说明了热能和机械能之间的差别,指出能量转换的方向性。

(2) 研究工质(能量转换所凭借的物质)的基本热力性质。

(3) 研究常用典型热工设备中的工作过程。

即应用热力学基本定律,分析工质在各种热工设备中经历的状态变化过程和循环,并探讨和分析影响能量转换效果的因素,以其提高转换效果的途径。

从工程应用角度,全部教学内容紧紧围绕热能与机械能的相互转换规律和提高转换效率途径的研究主题。

2 课程要求
通过本课程的学习,学生应达到下列基本要求:
(1)掌握热力学基本定律及其运用;
(2)理解工质的热力性质及各种机械装置中热力过程和热力循环的基本原理,正确运用各种公式和图表。

(3)从课程内容的角度,学生在学习了热力学第一定律与第二定律,初步了解和掌握了理想气体热力性质和过程基本规律之后,可以应用这些基本知识分析、解决一些实际问题,达到对所学知识的第一次初步理解和应用。

然后,在进一步学习了实际气体热力性质和过程之后,更深层次的应用前面所学的基本知识,深入分析实际装置中的热力过程和多种循环,从而达到能在更高的认知层面上进一步综合、灵活应用工程热力学的知识去解决实际问题。

(4)从研究方法的角度,像其他学科一样,在工程热力学中,普遍采用抽象、概括、理想化和简化的方法。

这种略去细节、抽出共性、抓住主要矛盾的处理问题的方法,这种科学的抽象,不但不脱离实际,而且更深刻地反映了事物的本质,是科学研究的重要方法。

(5) 本课程的教学内容分为基础模块和选学模块两个部分。

基础模块是本课程的必修内容,为最低要求必学内容。

选学模块是根据学期学时、学生基础好坏以及本届学
生培养特征而确定的选学的内容,可根据授课班级具体情况确定选学模块中选择内容。

(6)对理论知识的教学要求分为了解、理解、掌握三个层次:
了解:对知识有初步和一般的认识,知道“是什么”;
理解:能够领会基本概念、基本原理的含义,能够解释和说明一些简单的问题;
掌握:能够熟练地运用知识,分析和解决一些较复杂的问题。

四、课时分配
五、说明
1 制定课程标准依据、适用范围和使用方法
(1)本课程标准是根据2001年教育部编的《高等职业教育有机化学课程基本要求》和我校高职三年制化机专业人才培养方案而制定的。

适用于我校高中三年制(高职)化机专业。

(2)本课程标准规定理论教学时数为56学时,其中基础模块安排46学时,选学模块安排10学时,选学模块可可根据实际教学情况适当安排,总计56学时。

(3)本课程标准的基本要求不应削弱,但任课教师对课程标准中章节顺序、学时分配可适当调整,可适当增设一些习题课、讨论课。

2教学建议
(1) 本课程是专业性较强的学科,教学方式应以课堂讲授为主,讲授时重点突出,概念清晰,注意启发式教学,培养学生的分析能力与解决问题的能力。

(2) 部分章节的自学——为培养学生的自学能力,教师在课堂上提出主线,一些内容由同学们自学,然后组织习题课讨论,讨论题可以围绕与实际生活密切的题目:如能源与环境、节能的重要性、建筑节能、辩证思维等。

(3) 阶段复习采用多媒体课件,这也是一种有效的学习方式。

3、成绩考核、评定方法
本课程为考察课,其中平时成绩占40%,期末成绩占60%。

评价学生成绩可以通过课上提问、学生作业、读书笔记、平时测验和考试成绩多方面进行综合评价。

4、教学参考书
(1)《工程热力学》徐建良编化学工业出版社
(2)《工程热力学》沈维道主编高等教育出版社
(3)《工程热力学》李斯特主编化学工业出版社
(4)《热学》(第二版)秦允豪编2004.6高等教育出版社
(5)《热学》(第二版)张玉民编2006.1科学出版社。

相关文档
最新文档