北京市九年级(上)第一次月考数学试卷(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市九年级(上)第一次月考数学试卷(1)
一、选择题(每题2分,共16分)
1.如图四个图形中,是中心对称图形的是()
A.B.C.D.
2.一元二次方程2x2+x﹣5=0的二次项系数、一次项系数、常数项分别是()A.2,1,5B.2,1,﹣5C.2,0,﹣5D.2,0,5
3.把抛物线y=x2向上平移3个单位,得到的抛物线是()
A.y=(x﹣3)2B.y=(x+3)2C.y=x2﹣3D.y=x2+3
4.在平面直角坐标系xOy中,点A(2,3)关于原点对称的点的坐标是()A.(2,﹣3)B.(﹣2,3)C.(3,2)D.(﹣2,﹣3)5.在平面直角坐标系xOy中,下列函数的图象经过点(0,0)的是()A.y=x+1B.y=x2C.y=(x﹣4)2D.
6.用配方法解方程x2+4x=1,变形后结果正确的是()
A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=5D.(x+2)2=5 7.把长为2m的绳子分成两段,使较长一段的长的平方等于较短一段的长与原绳长的积.设较长一段的长为xm,依题意,可列方程为()
A.x2=2(2﹣x)B.x2=2(2+x)C.(2﹣x)2=2x D.x2=2﹣x
8.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有四个推断:
①抛物线开口向下;
②当x=﹣2时,y取最大值;
③当m<4时,关于x的一元二次方程ax2﹣bx+c=m必有两个不相等的实数根;
④直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时k的取值范围是﹣4<x<0.
其中推断正确的是()
A.①②B.①③C.①③④D.②③④
二、填空题(每题3分,共24分)
9.抛物线y=﹣3(x﹣1)2+2的顶点坐标是.
10.请写出一个开口向上,并且与y轴交于点(0,﹣2)的抛物线解析式.
11.若点A(﹣1,y1),B(2,y2)在抛物线.y=2x2上,则y1,y2的大小关系为:y1y2.(选填“>”“<或“=”)
12.若关于x的方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围为.13.如图,在平面直角坐标系xOy中,点A(﹣2,0),点B(0,1).将线段BA绕点B旋转180°得到线段BC,则点C的坐标为.
14.如图,将△ABC绕点A顺时针旋转30°得到△ADE,点B的对应点D恰好落在边BC 上,则∠ADE=.
15.如图,在边长为2的正方形ABCD中,E,F分别是边DC,CB上的动点,且始终满足DE=CF,AE,DF交于点P,则∠APD的度数为;连接CP,线段CP的最小值为.
16.野兔跳跃时的空中运动路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系,通过对某只野兔一次跳跃中水平距离x(单位:m)与竖直高度y(单位:m)进行的测量,得到以下数据:
水平距离x/m00.41 1.42 2.4 2.8
竖直高度y/m00.480.90.980.80.480根据上述数据,回答下列问题:
①野兔本次跳跃的最远水平距离为m,最大竖直高度为m;
②已知野兔在高速奔跑时,某次跳跃最远水平距离为3m,最大竖直高度为1m.若在野
兔起跳点前方2m处有高为0.8m的篱笆,则野兔此次跳跃(填“能”或“不能”)跃过篱笆.
三、解答题(17题8分,18-21题每题5分,22-24题每题6分,25-26题7分)
17.解方程:
(1)x2﹣2x﹣8=0;
(2)2x2﹣4x+1=0.
18.已知a是方程2x2﹣7x﹣1=0的一个根,求代数式a(2a﹣7)+5的值.
19.在平面直角坐标系xOy中,抛物线y=a(x﹣3)2﹣1经过点(2,1).(1)求该抛物线的表达式;
(2)将该抛物线向上平移个单位后,所得抛物线与x轴只有一个公共点.20.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,将线段CA绕点C逆时针旋转60°,得到线段CD,连接AD,BD.
(1)依题意补全图形;
(2)若BC=1,求线段BD的长.
21.如图,在平面直角坐标系xOy中,抛物线y=ax2+2x+c的部分图象经过点A(0,﹣3),B(1,0).
(1)求该抛物线的解析式;
(2)结合函数图象,直接写出y<0时,x的取值范围.
22.已知关于x的一元二次方程x2+(2﹣m)x+1﹣m=0.
(1)求证:方程总有两个实数根;
(2)若m<0,且此方程的两个实数根的差为3,求m的值.
23.为了改善小区环境,某小区决定在一块一边靠墙(墙长为25m)的空地上修建一个矩形小花园ABCD.小花园一边靠墙,另三边用总长40m的栅栏围住,如图所示.设矩形小花园AB边的长为xm,面积为ym2.
(1)求y与x之间的函数关系式;
(2)当x为何值时,小花园的面积最大?最大面积是多少?
24.在平面直角坐标系xOy中,点(4,3)在抛物线y=ax2+bx+3(a>0)上.(1)求该抛物线的对称轴;
(2)已知m>0,当2﹣m≤x≤2+2m时,y的取值范围是﹣1≤y≤3.求a,m的值;
(3)在(2)的条件下,是否存在实数n,使得当n﹣2<x<n时,y的取值范围是3n﹣3<y<3n+5.若存在,直接写出n的值;若不存在,请说明理由.
25.如图,在等边三角形ABC中,点P为△ABC内一点,连接AP,BP,CP,将线段AP 绕点A顺时针旋转60°得到AP',连接PP',BP'.
(1)用等式表示BP'与CP的数量关系,并证明;
(2)当∠BPC=120°时,
①直接写出∠P'BP的度数为;
②若M为BC的中点,连接PM,用等式表示PM与AP的数量关系,并证明.
26.在平面直角坐标系xOy中,对于第一象限的P,Q两点,给出如下定义:若y轴正半轴上存在点P',x轴正半轴上存在点Q',使PP'∥QQ',且∠1=∠2=α(如图1),则称点P 与点Q为α﹣关联点.
(1)在点Q1(3,1),Q2(5,2)中,与(1,3)为45°﹣关联点的是;
(2)如图2,M(6,4),N(8,4),P(m,8)(m>1).若线段MN上存在点Q,使点P与点Q为45°﹣关联点,结合图象,求m的取值范围;
(3)已知点A(1,8),B(n,6)(n>1).若线段AB上至少存在一对30°﹣关联点,直接写出n的取值范围.。

相关文档
最新文档