四川理工学院材化学院最大泡压法测定液体表面张力实验报告13级优秀报告
四川理工物化实验-最大泡压法测定溶液表面张力
最大泡压法测定溶液表面张力报告人: 同组人: 实验时间2015年05月31日一.实验目的:1.明确表面张力、表面自由能和吉布斯吸附量的物理意义; 2.掌握最大泡压法测定溶液表面张力的原理和技术; 3.掌握计算表面吸附量和吸附质分子截面积的方法。
二.实验原理:1.表面张力和表面吸附液体表面层的分子一方面受到液体内层的邻近分子的吸引,另一方面受到液面外部气体分子的吸引,由于前者的作用要比后者大,因此在液体表面层中,每个分子都受到垂直于液面并指向液体内部的不平衡力,如图1所示,这种吸引力使表面上的分子自发向内挤促成液体的最小面积,因此,液体表面缩小是一个自发过程。
在温度、压力、组成恒定时,每增加单位表面积,体系的吉布斯自由能的增值称为表面吉布斯自由能(J·m -2),用γ表示。
也可以看作是垂直作用在单位长度相界面上的力,即表面张力(N·m -1)。
欲使液体产生新的表面ΔS,就需对其做表面功,其大小应与ΔS 成正比,系数为即为表面张力 γ:-W =γ×ΔS (1)图1 液体表面与分子内部受力情况图在定温下纯液体的表面张力为定值,当加入溶质形成溶液时,分子间的作用力发生变化,表面张力也发生变化,其变化的大小决定于溶质的性质和加入量的多少。
水溶液表面张力与其组成的关系大致有以下三种情况:(1)随溶质浓度增加表面张力略有升高;(2)随溶质浓度增加表面张力降低,并在开始时降得快些;(3)溶质浓度低时表面张力就急剧下降,于某一浓度后表面张力几乎不再改变。
以上三种情况溶质在表面层的浓度与体相中的浓度都不相同,这种现象称为溶液表面吸附。
根据能量最低原理,溶质能降低溶剂的表面张力时,表面层中溶质的浓度比溶液内部大;反之,溶质使溶剂的表面张力升高时,它在表面层中的浓度比在内部的浓度低。
在指定的温度和压力下,溶质的吸附量与溶液的表面张力及溶液的浓度之间的关系遵守吉布斯(Gibbs)吸附方程:Γ =Tdc d RT c ⎪⎭⎫⎝⎛γ (2)式中,Г为溶质在表层的吸附量,单位mol ·m 2,γ为表面张力,c 溶质的浓度。
最大气泡法测表面张力实验报告
最大气泡法测表面张力实验报告一、实验目的1、掌握最大气泡法测定表面张力的原理和方法。
2、学会使用数字微压差测量仪测量微小压力差。
3、测定不同浓度正丁醇水溶液的表面张力,计算表面吸附量和表面活性剂分子的横截面积。
二、实验原理1、表面张力在液体的内部,任何分子周围的吸引力是平衡的。
然而,在液体表面,分子受到指向液体内部的合力,导致液体表面有自动收缩的趋势。
要使液体表面增大就必须要克服这种向内的合力而做功,所做的功转化为表面能储存在液体表面。
在温度、压力和组成恒定时,表面张力与表面积的增量成正比,比例系数即为表面张力。
2、最大气泡法将毛细管垂直插入液体中,液体表面张力会对毛细管中的气泡产生附加压力。
当气泡从毛细管下端缓慢逸出时,所受到的压力差最大。
根据拉普拉斯方程,附加压力与表面张力及气泡曲率半径之间的关系为:\(\Delta p =\frac{2\gamma}{r}\)其中,\(\Delta p\)为附加压力,\(\gamma\)为表面张力,\(r\)为气泡的曲率半径。
当气泡为半球形时,曲率半径\(r\)等于毛细管半径\(r_{毛}\),此时附加压力最大。
通过数字微压差测量仪测量出最大附加压力\(\Delta p_{max}\),即可求得表面张力\(\gamma\)。
3、表面吸附量和横截面积根据吉布斯吸附等温式:\(\Gamma =\frac{c}{RT}\frac{d\gamma}{dc}\)其中,\(\Gamma\)为表面吸附量,\(c\)为溶液浓度,\(R\)为气体常数,\(T\)为热力学温度。
通过测定不同浓度溶液的表面张力,以\(\gamma\)对\(c\)作图,求得曲线某一点的斜率\(\frac{d\gamma}{dc}\),即可计算出表面吸附量\(\Gamma\)。
假设表面活性剂在溶液表面是紧密排列的单分子层,每个分子的横截面积为\(A\),则:\(A =\frac{1}{L\Gamma}\)其中,\(L\)为阿伏伽德罗常数。
最大气泡法测表面张力实验报告
最大气泡法测表面张力实验报告实验名称:最大气泡法测表面张力实验报告实验目的:1.了解表面张力的概念和测量方法;2.掌握最大气泡法测表面张力的实验方法;3.通过实验,确定不同液体的表面张力大小。
实验原理:表面张力是指液体分子在液体表面聚集所形成的张力。
表面张力大小取决于液体种类、温度、压力等因素。
最大气泡法测表面张力是通过在液体表面形成一个最大的气泡,计算其半径和液体密度、重力加速度等参数,利用杨-拉普拉斯方程计算出表面张力大小。
实验器材:1.氢氧化钠溶液;2.去离子水;3.玻璃接力片;4.干净的注射器。
实验步骤:1.将玻璃接力片放置在水平桌面上,滴入氢氧化钠溶液,形成一圆形液体膜;2.利用注射器从中间吸气,将液体表面形成一个气泡,使其尽可能地大;3.将气泡半径测量3次,取平均值,并分别测量液体密度、重力加速度等参数;4.重复上述步骤,以去离子水代替氢氧化钠溶液,再次测量气泡半径和液体参数;5.根据测量数据,利用杨-拉普拉斯方程,计算出两种液体的表面张力大小。
实验结果:1.氢氧化钠溶液的表面张力大小为0.069N/m;2.去离子水的表面张力大小为0.071N/m。
实验结论:1.利用最大气泡法可以较准确地测量液体的表面张力大小;2.不同液体的表面张力大小不同;3.表面张力大小的测量结果受液体参数的影响较大,应注意测量精度。
实验心得:通过本次实验,我深刻理解了表面张力的概念和测量方法,掌握了最大气泡法测表面张力的实验技能,提高了实验操作能力和数据计算能力。
同时,我也意识到实验中精度和准确性的重要性,应该在实验操作中尽可能地提高测量精度,确保实验结果的可靠性。
物理化学实验报告:最大泡压法测定溶液的表面张力
欲使液体产生新的表面 ΔA,就需对其做功,其大小应与 ΔA 成正比:
-W′=σ·ΔA
(1)
它表示液体表面自动缩小趋势的大小,σ 称为比表面自由能,其量纲为 J·m-2。因其量 纲又可以写成 N·m-1,所以 σ 还可称为表面张力。其量值与溶液的成分、溶质的浓度、温
度及表面气氛等因素有关。
2、溶液的表面吸附
至于恒温水浴内恒温 10min。毛细管需垂直并注意液面位置,然后按图接好测量系统。慢慢
打开抽气瓶活塞,注意气泡形成的速率应保持稳定,通常控制在每分钟 8-12 个气泡为宜,
即数字微压微压差测量仪的读数(瞬间最大压差)约在 700-800pa 之间。读数 3 次,取平均
值。
4、测量乙醇溶液的表面张力
按实验步骤三分别测量不同浓度的乙醇溶液。从稀到浓依次进行。每次测量前必须用少量
根据能量最低原理,溶质能降低溶剂的表面张力时,表面层中溶质的浓度比溶液内部
大;反之,溶质使溶剂的表面张力升高时,它在表面层中的浓度比在内部的浓度低,这种
表面浓度与内部浓度不同的现象叫做溶液的表面吸附。在指定的温度和压力下,溶质的吸
附量与溶液的表面张力及溶液的浓度之间的关系遵守吉布斯(Gibbs)吸附方程:
1.3435
25%乙醇
-0.478
1.3465
30%乙醇
-0.452
1.3491
35%乙醇
-0.450
1.3516
40%乙醇
-0.422
1.3539
2.数据处理:
(1)以纯水的测量结果按方程计算 K′值。
解得 K′=σ1∕△p1=71.97*10-3N*m-1/(-0.765kpa)=0.094 (2)根据所测折光率,由实验提供的浓度-折光率工作曲线查出各溶液的浓度。
最大气泡法测定液体的表面张力实验报告
最大气泡法测定液体的表面张力实验报告一、实验目的通过最大气泡法测定液体的表面张力,了解表面张力与液体性质之间的关系,为实际应用提供依据。
二、实验原理最大气泡法是一种通过测量气泡在液体表面形成时的最大压力差来计算液体表面张力的方法。
当气泡从液体内部逸出时,会受到液体表面张力的作用。
当气泡逐渐增大时,其受到的表面张力也会逐渐增大,直到达到一个平衡状态,此时的气泡即为最大气泡。
通过测量最大气泡时的压力差,可以计算出液体的表面张力。
三、实验步骤准备实验器材:最大气泡仪、液体样品、滴管、恒温水浴、支架等。
将最大气泡仪置于支架上,调整至水平状态。
用滴管向最大气泡仪内加入适量液体样品。
开启恒温水浴,保持水温稳定。
观察并记录气泡的形成过程,当气泡达到最大时,记录此时的电压差。
重复实验,至少进行三次,取平均值作为最终结果。
四、实验结果以下为实验结果数据表:五、实验总结通过最大气泡法测定液体的表面张力,我们得到了不同液体的表面张力数据。
从实验结果可以看出,不同液体的表面张力存在差异。
其中,水的表面张力最高,蜂蜜次之,牛奶和醋的表面张力相对较低。
这可能与液体的分子结构、极性等因素有关。
此外,我们还发现实验结果的重复性较好,说明该方法具有较高的精度和可靠性。
通过本实验,我们不仅了解了不同液体的表面张力,还掌握了一种实用的测量方法。
这对于实际应用中涉及液体表面张力的问题具有重要的指导意义。
例如,在工业生产中,可以通过调整液体的表面张力来改善产品的性能;在生物学领域,了解液体的表面张力有助于研究细胞与环境之间的相互作用等。
因此,本实验具有一定的实用价值和应用前景。
实验七最大气泡压力法测定溶液的表面张力
宁波工程学院物理化学实验报告实验名称最大气泡压力法测定溶液的表面张力一、实验目的1.把握最大气泡压力法测定表面张力的原理和技术。
2.通过对不同浓度乙醇溶液表面张力的测定,加深对表面张力、表面自由能、表面张力和吸附量关系的明白得。
二、实验原理一、表面浓度与内部浓度不同的现象叫做溶液的表面吸附。
在指定的温度和压力下,溶质的吸附量与溶液的表面张力及溶液的浓度之间的关系遵循吉布斯吸附等温式:Γ = –(c/RT)*(dγ/dc)①式中,Г为溶液在表层的吸附量;γ为表面张力;c为吸附达到平稳时溶液在介质中的浓度。
依照朗格谬尔(Langmuir)公式:Γ =Γ∞Kc/(1+Kc)②Γ∞为饱和吸附量,即表面被吸附物铺满一层分子时的Γ∞c/Γ =(1+Kc)/(Γ∞K)= c/Γ∞+1/Γ∞K ③以c/Г对c作图,那么图中该直线斜率为1/Г∞。
由所得的Г∞代入A m=1/Г∞L可求被吸附分子的截面积(L为阿伏伽德罗常数)。
二、本实验用气泡最大压力法测定溶液的表面张力,其仪器装置如图1所示:图一、最大气泡压力法测量表面张力的装置示用意1、恒温套管;二、毛细管(r在0.15~0.2mm);3、U型压力计(内装水);4、分液漏斗;五、吸滤瓶;六、连接橡皮管。
将待测表面张力的液体装于表面张力仪中,使毛细管的端面与液面相切,液面即沿毛细管上升,打开抽气瓶的活塞缓缓抽气,毛细管内的液面上受到一个比A瓶中液面上大的压力,当此压力差——附加压力(△P=P大气–P系统),附加压力与表面张力成正比,与气泡的曲率半径成反比,其关系式为:ΔP=2γ/R ④式中,ΔP为附加压力;γ为表面张力;R为气泡的曲率半径。
依照上式,R=r时的最大附加压力为:ΔP最大= 2γ/r ⑤实际测量时,使毛细管端刚与液面接触,那么可忽略气泡鼓起所需克服的静压力,如此就能够够直接用上式进行计算。
当将其它参数归并为常数K时,那么上式变成:γ=KΔP最大⑥式中仪器常数K可用已知表面张力的标准物质测得。
最大气泡法测表面张力实验报告
最大气泡法测表面张力实验报告实验目的,通过使用最大气泡法,测量液体的表面张力,并分析实验结果。
实验仪器与试剂,实验仪器包括玻璃管、毛细管、水槽、滴定管等;试剂为蒸馏水和其他待测液体。
实验原理,最大气泡法是通过在液体表面形成一个最大的气泡,利用气泡的体积和压强来计算液体的表面张力。
当气泡的半径为R,气泡内外的压强差为ΔP时,根据杨-拉普拉斯方程,液体的表面张力可以通过公式计算得到,γ=ΔP4R/2。
实验步骤:1. 将玻璃管插入水槽中,用毛细管吸取待测液体,使毛细管口与玻璃管相连。
2. 将毛细管浸入液体中,使其形成一个气泡,并记录气泡的直径。
3. 用滴定管向气泡中注入气体,直至气泡变得很大,但不会破裂。
4. 测量气泡的直径和注入气体的体积。
5. 根据实验数据计算液体的表面张力。
实验数据记录与处理:实验一,蒸馏水。
气泡直径,2mm。
注入气体体积,5ml。
实验二,甲醇。
气泡直径,3mm。
注入气体体积,7ml。
实验结果分析:根据实验数据计算得到蒸馏水的表面张力为0.072 N/m,甲醇的表面张力为0.064 N/m。
通过对比两种液体的表面张力,可以发现甲醇的表面张力要小于蒸馏水,这是由于甲醇的分子间吸引力较大,导致分子聚集在一起,使得表面张力较小。
实验结论:通过最大气泡法测表面张力实验,我们成功地测量了蒸馏水和甲醇的表面张力,并得出了结论,不同液体的分子间吸引力不同,导致了表面张力的差异。
实验结果符合我们的预期,并且为我们进一步研究液体性质提供了重要的参考。
实验总结:最大气泡法是一种简单而有效的测量液体表面张力的方法,通过实验我们不仅学会了实验操作技巧,更加深了对液体表面张力的认识。
在今后的实验中,我们将进一步探索不同液体的表面张力特性,为科学研究和工程应用提供更多的支持和帮助。
通过本次实验,我们对最大气泡法测表面张力有了更深入的了解,并且得到了具体的实验数据和结果。
这将为我们今后的科研工作提供重要的参考和支持。
最大气泡法测定溶液表面张力实验报告
最大气泡法测定溶液表面张力实验报告
嘿,咱聊聊最大气泡法测定溶液表面张力实验呗!这可老神奇啦。
一走进实验室,那感觉就像进入了一个神秘的魔法世界。
各种仪器摆放得整整齐齐,仿佛在等着我们去揭开它们的秘密。
开始实验啦!先把溶液准备好,那颜色就像宝石一样绚丽多彩。
你能想象没有这些漂亮的溶液会咋样吗?肯定不行啊!这可是实验的关键呢。
接着把仪器安装好,就像搭积木一样,小心翼翼地把每个部件都放到位。
这可不能马虎,要是安装不好,实验可就没法进行了。
你能随便安装吗?肯定不能啊!然后就开始往溶液里通气啦!看着一个个小气泡从管子里冒出来,就像一群小精灵在跳舞。
那场面可真美啊!你想错过这样的美景吗?肯定不想啊!随着气泡越来越大,最后破裂的时候,那一瞬间就像烟花绽放一样。
这时候就得赶紧记录数据,不能有一点马虎。
你能不认真记录吗?肯定不能啊!实验过程中也会遇到一些小问题呢。
比如气泡大小不均匀,或者数据不稳定。
这就像在路上遇到了小石子,得想办法跨过去。
不能因为一点小问题就放弃。
你能轻易放弃吗?肯定不能啊!得仔细分析原因,调整实验步骤。
有时候还得重复好几次实验,才能得到准确的结果。
这就像打磨一块宝石,需要耐心和细心。
你能没有耐心吗?肯定不能啊!总之,最大气泡法测定溶液表面张力实验充满了挑战和乐趣。
通过这个实验,我们可以更深入地了解溶液的性质,也能锻炼我们的实验技能。
让我们在这个魔法世界里继续探索,发现更多的奥秘吧!。
气泡最大压力法测定溶液的表面张力实验报告
气泡最大压力法测定溶液的表面张力实验报告本实验的目的是通过气泡最大压力法测定不同浓度的表面活性剂溶液的表面张力,探究表面张力与溶液浓度之间的关系,并深入理解表面张力的概念及其在生活中的应用。
实验器材:1. 气泡最大压力法仪器2. 不同浓度的表面活性剂溶液3. 实验室天平4. 滴管5. 纸巾实验步骤:1. 将气泡最大压力法仪器调至初始状态,确保其工作正常。
2. 分别取出不同浓度的表面活性剂溶液,通过天平精确称取出10mL的溶液。
3. 将取出的溶液倒入气泡最大压力法仪器的试管中,并通过滴管将溶液表面涂上适量的矿物油,以防止气泡的破裂。
4. 将气泡最大压力法仪器的气泡管顶端浸入溶液中,启动仪器,并等待仪器读数稳定。
5. 调节气泡最大压力法仪器的气泡大小,直至气泡破裂,记录下此时的最大压力值。
6. 重复以上步骤,分别测量不同浓度的表面活性剂溶液的最大压力值,并记录下每组数据。
7. 将测得的数据绘制成表格或图表,分析表面张力与溶液浓度之间的关系。
实验结果:通过气泡最大压力法测量,我们得出了不同浓度的表面活性剂溶液的最大压力值。
根据实验数据可得出:随着表面活性剂的浓度增加,溶液的表面张力逐渐降低,且下降的趋势越加明显。
实验结论:根据以上实验结果,我们可以得出结论:表面张力与溶液浓度之间存在着一定的关系。
在实验中,我们发现随着表面活性剂的浓度增加,表面张力逐渐降低。
这是因为表面活性剂的分子能够在液体表面形成一层分子膜,使得表面张力降低,表面张力大小直接决定着液体的表面活性能力,因此表面活性剂的应用十分广泛,如肥皂、洗涤剂等。
通过本实验,我们深入理解了表面张力的概念及其在生活中的应用,同时也掌握了气泡最大压力法测定溶液表面张力的方法和技巧。
最大气泡压力法测定溶液的表面张力实验报告
宁 波 工 程 学 院物理化学实验报告专业班级 化本092 姓名 周培 实验日期 2011年6月2日 同组姓名 徐浩 郑志浩 指导老师 刘旭峰 王婷婷 实验名称 实验七、最大气泡压力法测定溶液的表面张力一、实验目的1、掌握最大气泡压力法测定表面张力的原理和技术。
2、通过对不同浓度乙醇溶液表面张力的测定,加深对表面张力、表面自由能、表面张力和吸附量关系的理解。
二、实验原理1、对纯溶剂而言,其表面层与内部的组成是相同的,但对溶液来说却不然。
当加入溶质后,溶剂的表面张力要发生变化。
根据能量最低原则,若溶质能降低溶剂的表面张力,则表面层中溶质的浓度应比溶液内部的浓度大,如果所加溶质能使溶剂的表面张力升高,那么溶质在表面层中的浓度应比溶液内部的浓度低。
这种表面浓度与溶液内部浓度不同的现象叫做溶液的表面吸附。
在一定的温度和压力下,溶液表面吸附溶质的量与溶液的表面张力和加入的溶质量(即溶液的浓度)有关,它们之间的关系可用吉布斯(Gibbs)公式表示: Γ=-RT c (c∂∂σ)T (2) 式中:Γ为吸附量(mol.m -1);σ为表面张力(J ·m —’);T 为绝对温度(K);c 为溶液浓度(mol .L -1”);根据朗格谬尔公式得:Γ=-Γ∞K/1+Kc式中Γ∞为饱和吸附量,即表面被吸附分子的截面积布满一层分子时的Γ。
以C/Γ对C 作图,得一直线,该直线的斜率为Γ∞2、图2是最大气泡压力法测定表面张力的装置示意图。
将欲测表面张力的液体装于支管试管5中,使毛细管6的端面与液面相切,液面即沿着毛细管上升,打开滴液漏斗2的活塞进行缓慢抽气,此时由于毛细管内液面上所受的压力(p 大气)大于支管试管中液面上的压力 (p 系统),故毛细管内的液面逐渐下降,并从毛细管管端缓慢地逸出气泡。
在气泡形成过程中,由于表面张力的作用,凹液面产生了一个指向液面外的附加压力Δp ,因此有下述关系:p 大气=p 系统+ΔpΔp =p 大气-p 系统 (3)附加压力Δp 和溶液的表面张力σ成正比,与气泡的曲率半径R 成反比,其关系式为Δp =2σ/R (4)若毛细管管径较小,则形成的气泡可视为是球形的。
最大气泡法测表面张力实验报告
最大气泡法测定溶液的表面张力【实验目的】1、掌握最大泡压法测定表面张力的原理,了解影响表面张力测定的因素。
2、了解弯曲液面下产生附加压力的本质,熟悉拉普拉斯方程,吉布斯吸附等温式,了解兰格缪尔单分子层吸附公式的应用。
3、测定不同浓度正丁醇溶液的表面张力,计算饱和吸附量, 由表面张力的实验数据求正丁醇分子的截面积及吸附层的厚度。
【实验原理】1、表面张力的产生纯液体和其蒸气组成的体系体相分子:自由移动不消耗功。
表面分子:液体有自动收缩表面而呈球形的趋势。
要使液体表面积增大就必须要反抗分子的内向力而作功以增加分子位能。
所以分子在表面层比在液体内部有较大的位能,这位能就是表面自由能。
W=A-∆ 如果ΔA 为1m 2,则-W ′=σ是在恒温恒压下形成1m 2新表面所需的可逆功,所以σ称为比表面吉布斯自由能,其单位为J·m -2。
也可将σ看作为作用在界面上每单位长度边缘上的力,称为表面张力,其单位是N·m -1。
液体单位表面的表面能和它的表面张力在数值上是相等的。
2、弯曲液面下的附加压力(1)在任何两相界面处都存在表面张力。
表面张力的方向是与界面相切,垂直作用于某一边界,方向指向使表面积缩小的一侧。
(2)液体的表面张力与温度有关,温度愈高,表面张力愈小。
到达临界温度时,液体与气体不分,表面张力趋近于零。
(3)液体的表面张力与液体的纯度有关。
在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决定于溶质的本性和加入量的多少。
(4)由于表面张力的存在,产生很多特殊界面现象。
3、毛细现象(1)由于表面张力的作用,弯曲表面下的液体或气体与在平面下情况不同,前者受到附加的压力。
(2)如果液面是水平的,则表面张力也是水平的,平衡时,沿周界的表面张力互相抵消,此时液体表面内外压力相等,且等于表面上的外压力Po 。
(3)若液面是弯曲的,平衡时表面张力将产生一合力Ps ,而使弯曲液面下的液体所受实际压力与Po 不同。
最大泡压法测溶液表面张力实验报告
最大泡压法测定溶液的表面张力一、实验目的1. 测定不同浓度乙醇溶液的表面张力,计算吸附量。
2. 了解气液界面的吸附作用,计算表面层被吸附分子的截面积。
3. 掌握最大泡压法测定溶液表面张力的原理和技术。
二、实验原理在指定的温度下,纯液体的表面张力是一定的,一旦在液体中加入溶质形成溶液时情况就不同了,溶液的表面张力不仅与温度有关,而且也与溶质的种类、溶液浓度有关。
这是由于溶液中部分溶质分子进入到溶液表面,使表面层分子组成发生了改变,分子间引力起了变化,因此表面张力也随着改变,根据实验结果,加入溶质以后在表面张力发生改变的同时还发生溶液表面层的浓度与内部浓度有所差别,有些溶液表面层浓度大于溶液内部浓度,有些恰恰相反,这种现象称为溶液的表面吸附作用。
按吉布斯吸附等温式:c d 1 dRT dc RT dlnc(9-1)式中:Г:代表溶质在单位面积表面层中的吸附量(mol ·m-2)c:代表平衡时溶液浓度(mol ·m-3)R:气体常数(8.314J·mol-1·K-1)T:吸附时的温度(K) 。
从(9-1)式可看出,在一定温度时,溶液表面吸附量与平衡时溶液浓度c 和表面张力随浓度变化率成正比关系。
当d< 0 时,Г>0,表示溶液表面张力随浓度增加而降低,则溶液表面发生正吸dc T 附,此时溶液表面层浓度大于溶液内部浓度。
当d> 0 时,Г<0,表示溶液表面张力随浓度增加而增加,则溶液表面发生负吸dc T附,此时溶液表面层浓度小于溶液内部浓度。
引起溶剂表面张力显著降低的物质叫表面活性物质,被吸附的表面活性物质分子在界面层中的排列,决定于它在液层中的浓度。
如果吸附层是单分子层,随着表面活性物质的分子在界面上愈益紧密排列,则此界面的表面张力也就逐渐减小。
如果在恒温下绘成曲线σ= f ( c) (表面张力等温线),当c 增加时,σ在开始时显著下降,而后下降逐渐缓慢下来,以至σ的变化很小,这时σ的数值恒定为某一常数(见图9-1)。
液体表面张力的测定实验报告
液体表面张力的测定实验报告指导老师:实验时间:姓名:专业:无机学号:实验目的1、掌握最大泡压法测定液体表面张力的方法,了解影响表面张力测定的因素。
2、测定不同浓度正丁醇溶液的表面张力,计算吸附量,由表面张力的实验数据求分子的截面积。
实验原理液体表面缩小是一个自发过程,欲使液体产生新的表面∆A,就需要对其做功,其大小与∆A有关-W,=σ∆Aσ为表面张力,是作用在界面上每单位长度边缘上的力。
表面浓度与内部浓度不同的现象叫做溶液的表面吸附。
在指定的温度和压力下,稀溶液中,溶质在表层中的吸附量与溶液的表面张力及溶液的浓度之间的关系遵守吉布斯吸附等温式Γ=−cRT (dσdc)T能使溶剂表面张力显著降低的物质称为表面活性剂,他们在溶液表面的排列情况,决定于它在液层中的浓度。
随着表面活性物质的分子在界面上排列愈加紧密,此界面的表面张力逐渐减小。
恒温下绘制曲线σ=f(c),利用图解法进行计算,以Z表示切线和平行线在纵坐标上截距间的距离,则有(dσdc )T=-ZcZ=-c(dσdc)T Γ=−cRT(dσdc)T=ZRT2、最大泡压法测定表面张力将待测表面张力的液体装于表面张力仪中,会产生压力差∆P,液面沿毛细管上升。
打开抽气瓶的活塞缓缓抽气,毛细管内液面受到一个使待测液面上升的压力,当次压力差P大气- P系统在毛细管端面上产生的作用力稍大于∆P时,气泡就从毛细管口脱出。
此时⁄∆P=2σR本实验采用压气鼓泡法鼓泡。
当曲率半径R和毛细管半径r相等时,曲率半径达最小值,最大附加压力为:=2σr⁄∆P最大为一常数,用k表示。
则有对于同一毛细管,其r2σ=k ∆P最大k值可由实验测得 k= k(水) ∆P(水)最大仪器与试剂表面张力教学实验仪(DMPY-2C)1台、表面张力管1支、鼓泡毛细管1支、滴液漏斗1个、10ml移液管1支、5ml刻度移液管1支、250ml容量瓶1个、50ml容量瓶9个、50ml碱式滴定管1支、洗耳球1个、恒温水浴1套正丁醇、铬酸洗液、蒸馏水实验步骤1、用铬酸洗液清洗毛细管和玻璃仪器,记录实验室温度。