PID的MATLAB程序
matlab中pid控制器的应用实例
matlab中pid控制器的应用实例Matlab中PID控制器的应用实例引言PID控制器是一种常用的控制器,可以广泛应用于自动控制系统中。
其中,P代表比例,I代表积分,D代表微分。
PID控制器通过对误差、误差的积分和误差的微分进行加权求和,以便更好地控制系统的输出。
在本文中,我们将使用Matlab来演示PID控制器的应用实例。
我们将从控制物理实验中的水位控制系统开始,然后详细介绍PID控制器的原理和参数调整,最后使用Matlab进行仿真实验和结果分析。
一、实验背景我们考虑一个简单的水位控制系统。
系统由一个水箱和一个控制阀组成。
当水箱的水位低于设定水位时,控制阀将打开,往水箱中注水,当水位达到设定水位时,控制阀将关闭。
我们的目标是设计一个PID控制器,以便精确控制水箱中的水位。
二、PID控制器介绍在介绍PID控制器之前,我们需要了解一些基本的概念。
1. 比例控制(P)比例控制是根据误差的大小来调整控制量的大小。
比例增益参数Kp用于调整误差和控制量之间的比例关系。
控制量可通过以下公式计算:Control = Kp * Error其中,Error是设定值与测量值之间的差异。
2. 积分控制(I)积分控制用于减小系统的稳态误差。
积分增益参数Ki用于计算控制量的积分部分。
控制量可通过以下公式计算:Control = Kp * Error + Ki * \int Error dt其中,\int Error dt表示误差的积分。
3. 微分控制(D)微分控制用于减小系统的瞬态误差。
微分增益参数Kd用于计算控制量的微分部分。
控制量可通过以下公式计算:Control = Kp * Error + Ki * \int Error dt + Kd * \frac{{dError}}{{dt}}其中,\frac{{dError}}{{dt}}表示误差的微分。
三、PID控制器参数调整PID控制器中的三个参数(Kp,Ki,Kd)对控制器的性能有着重要的影响。
学生--PID控制MATLAB仿真实验
计算机控制技术实验指导书(MATLAB版)机电学院杨蜀秦编2012-11-19实验一 连续系统的模拟PID 仿真一、基本的PID 控制 在模拟控制系统中,控制器最常用的控制规律是PID 控制。
模拟PID 控制系统原理框图如图1-1所示。
图1-1 模拟PID 控制系统原理框图PID 控制规律为:⎪⎪⎭⎫⎝⎛++=⎰dt t de T dt t e T t e k t u DtI p )()(1)()(0或写成传递函数的形式⎪⎪⎭⎫ ⎝⎛++==s T s T k s E s U s G D I p 11)()()( Ex1 以二阶线性传递函数ss 251332+为被控对象,进行模拟PID 控制。
输入信号)2.0*2sin()(t t r π=,仿真时取3,1,60===d i p k k k ,采用ODE45迭代方法,仿真时间10s 。
仿真方法一:在Simulink 下进行仿真,PID 控制由Simulink Extras 节点中的PID Controller 提供。
仿真程序:ex1_1.mdl ,如图1-2所示。
图1-2 连续系统PID 的Simulink 仿真程序连续系统的模拟PID 控制正弦响应结果如图1-3所示。
图1-3 连续系统的模拟PID 控制正弦响应仿真方法二:在仿真一的基础上,将仿真结果输出到工作空间中,并利用m 文件作图。
仿真程序:ex1_2.mdl ,程序中同时采用了传递函数的另一种表达方式,即状态方程的形式,其中[]0,01,1330,25010==⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=D C B A ,如图1-4所示。
m 文件作图程序:ex1_2plot.mclose all ;plot(t,rin,'k',t,yout,'k'); xlabel('time(s)'); ylabel('r,y');二、线性时变系统的PID 控制 Ex2 设被控对象为Jss Ks G +=2)(,其中)2sin(300400),6sin(1020t K t J ππ+=+=,输入信号为)2sin(5.0t π。
专家PID控制的MATLAB程序代码
专家PID控制1.专家PID控制原理专家PID控制的实质是:基于受控对象和控制规律的各种知识,无须知道被控对象的精确模型,利用专家经验来设计PID参数。
专家PID控制是一种直接型专家控制器。
图1 典型二阶系统单位阶跃响应误差曲线令e(k)表示离散化的当前采样时刻的误差值,e(k -1),e(k -2)分别表示前一个和前两个采样时刻的误差值,则有∆e(k)=e(k)-e(k -1)∆e(k -1)=e(k -1)-e(k -2)根据误差及其变化,对图1所示的二阶系统单位阶跃响应误差曲线进行如下定性分析:(1)当|e(k)|>M1时,说明误差的绝对值已经很大。
不论误差变化趋势如何,都应考虑控制器的输出按定值输出,以达到迅速调整误差,使误差绝对值以最大速度减小,同时避免超调。
此时,它相当于实施开环控制。
(2)当e(k)∆e(k)>0或∆e(k)=0时,说明误差在朝误差绝对值增大方向变化,或误差为某一常值,未发生变化。
1)如果|e(k)|>M2,说明误差较大,可考虑由控制器实施较强的控制作用,使误差绝对值朝减小方向变化,迅速减小误差的绝对值,控制器输出为u(k)=u(k -1)+k1{k p[e(k)-e(k -1)]+k i e(k)+k d[e(k)-2e(k -1)+e(k -2)]}2)如果|e(k)|<M2,说明尽管误差朝绝对值增大方向变化,但误差绝对值本身并不是很大,可考虑实施一般的控制作用,扭转误差的变化趋势,使其朝误差绝对值减小方向变化,控制器输出为u (k )=u (k -1)+k p [e (k )-e (k -1)]+k i e (k )+k d [e (k )-2e (k -1)+e (k -2)](3)当e (k )∆e (k )<0,∆e (k )∆e (k -1)>0或e (k )=0时,说明误差的绝对值朝减小的方向变化,或者已经达到平衡状态。
PID控制和其MATLAB仿真
序号,k=1,2,……,e (k-1)和e (k)分别为第(k-
1)和第k时刻所得旳偏差信号。
1.3.1 位置式PID控制算法
• 位置式PID控制系统
1.3.1 位置式PID控制算法
根据位置式PID控制算法得 到其程序框图。
在仿真过程中,可根据实 际情况,对控制器旳输出 进行限幅:[-10,10]。
• 变速积分旳基本思想是,设法变化积分项旳累加 速度,使其与偏差大小相相应:偏差越大,积分 越慢;反之则越快,有利于提升系统品质。
• 设置系数f(e(k)),它是e(k)旳函数。当 ∣e(k)∣增大时,f减小,反之增大。变速积分 旳PID积分项体现式为:
ui (k )
ki
k
1
e(i)
f
e(k )e(k )T
i0
1.3.8 变速积分算法及仿真
• 系数f与偏差目前值∣e(k)∣旳关系能够是线性 旳或是非线性旳,例如,可设为
1
f
e(k
)
A
e(k A
)
B
0
e(k) B B e(k) A B e(k) A B
1.3.8 变速积分算法及仿真
• 变速积分PID算法为:
u(k)
k
p e(k )
ki
1.3.4 增量式PID控制算法及仿真
• 增量式PID阶跃跟踪成果
1.3.5 积分分离PID控制算法及仿真
• 在一般PID控制中,引入积分环节旳目旳主要是为了 消除静差,提升控制精度。但在过程旳开启、结束或 大幅度增减设定时,短时间内系统输出有很大旳偏差 ,会造成PID运算旳积分积累,致使控制量超出执行机 构可能允许旳最大动作范围相应旳极限控制量,引起 系统较大旳振荡,这在生产中是绝对不允许旳。
控制系统pid参数整定方法的matlab仿真
控制系统PID参数整定方法的MATLAB仿真1. 引言PID控制器是一种常见的控制算法,广泛应用于自动控制系统中。
其通过调节三个参数:比例增益(Proportional gain)、积分时间常数(Integral time constant)和微分时间常数(Derivative time constant),实现对被控对象的稳态误差、响应速度和稳定性等性能指标的调节。
PID参数的合理选择对控制系统的性能至关重要。
本文将介绍PID控制器的经典整定方法,并通过MATLAB软件进行仿真,验证整定方法的有效性。
2. PID控制器的整定方法2.1 手动整定法手动整定法是根据经验和试错法来选择PID参数的方法。
具体步骤如下:1.将积分时间常数和微分时间常数设为零,仅保留比例增益,将比例增益逐渐增大直至系统产生较大的超调现象。
2.根据超调响应的情况,调整比例增益,以使系统的超调量接近所需的范围。
3.逐步增加微分时间常数,观察系统的响应速度和稳定性。
4.增加积分时间常数,以减小系统的稳态误差。
手动整定法的优点是简单易行,但需要经验和反复试验,对控制系统要求较高。
2.2 Ziegler-Nichols整定法Ziegler-Nichols整定法是一种基于试探和试错法的自整定方法,该方法通过调整系统的输入信号,观察系统的输出响应,从而确定PID参数。
具体步骤如下:1.将I和D参数设为零,仅保留P参数。
2.逐步增大P参数,直到系统的输出出现大幅度的振荡。
3.记录下此时的P参数值,记为Ku。
4.根据振荡的周期Tp,计算出系统的临界增益Kc = 0.6 * Ku。
5.根据系统的类型选择相应的整定法则:–P型系统:Kp = 0.5 * Kc,Ti = ∞,Td = 0–PI型系统:Kp = 0.45 * Kc,Ti = Tp / 1.2,Td = 0–PID型系统:Kp = 0.6 * Kc,Ti = Tp / 2,Td = Tp / 82.3 Cohen-Coon整定法Cohen-Coon整定法是基于频域曲线拟合的方法,主要应用于一阶和二阶系统的整定。
PID算法设计MATLAB课程设计
PID算法设计MATLAB课程设计一、课程目标知识目标:1. 掌握PID算法的基本原理,理解其参数调整对系统性能的影响;2. 学会使用MATLAB软件进行PID控制器的设计与仿真;3. 了解PID控制在实际工程中的应用及优化方法。
技能目标:1. 能够运用所学知识,独立设计简单的PID控制系统;2. 能够运用MATLAB软件进行PID控制器参数调整及系统性能分析;3. 能够通过课程学习,提高解决实际工程问题的能力。
情感态度价值观目标:1. 培养学生对自动控制技术的兴趣,激发其学习热情;2. 培养学生严谨的科学态度和团队协作精神;3. 增强学生对我国科技创新能力的信心,激发其为国家发展贡献力量的决心。
课程性质:本课程为实践性较强的课程,结合理论知识与实际操作,培养学生的动手能力和解决实际问题的能力。
学生特点:学生具备一定的自动控制理论基础,对MATLAB软件有一定了解,但对PID算法及其实际应用尚不熟悉。
教学要求:结合学生特点和课程性质,注重理论与实践相结合,以案例教学为主,充分调动学生的主观能动性,提高学生的实际操作能力。
在教学过程中,关注学生的个体差异,给予个性化指导,确保学生能够达到预设的课程目标。
通过课程学习,使学生能够具备独立设计PID控制系统并进行性能分析的能力。
二、教学内容1. PID算法基本原理:介绍PID控制器的定义、工作原理及其在自动控制中的应用;分析比例、积分、微分三个环节对系统性能的影响。
教材章节:第五章第二节2. MATLAB软件操作:回顾MATLAB软件的基本操作,重点掌握Simulink 环境下搭建仿真模型的方法。
教材章节:第四章3. PID控制器设计:讲解如何使用MATLAB/Simulink进行PID控制器的设计与参数调整;分析不同参数设置对系统性能的影响。
教材章节:第五章第三节4. PID控制系统仿真:通过实际案例,演示如何运用MATLAB进行PID控制系统的仿真,分析系统性能指标。
模糊自适应整定PID控制matlab仿真程序(刘金锟-先进PID控制及其MATLAB仿真)
模糊自适应整定PID控制matlab仿真程序(刘金锟-先进PID控制及其MATLAB仿真)2这个例子的程序百度文库里有很多版本,但我下了很多都有错误,运行不了。
以下程序我一字一字的敲出来的,已经成功运行,绝对无误。
仿真实例,被控对象为p G (s)=ss s 1047035.8752350023++ 采样时间为1ms ,采用模糊PID 控制进行阶跃响应,在第300个采样时间时控制器输出加1.0的干扰,相应的运行结果如图1~13所示。
仿真程序如下:将以下程序保存为fuzzypid.m 文件,即可得到仿真结果。
%fuzzy tunning PID controlclear all ;clear all ;a=newfis('fuzzpid');a=addvar(a,'input','e',[-3,3]); %parameter ea=addmf(a,'input',1,'NB','zmf',[-3,-1]);a=addmf(a,'input',1,'NM','trimf',[-3,-2,0]);a=addmf(a,'input',1,'NS','trimf',[-3,-1,1]);a=addmf(a,'input',1,'Z','trimf',[-2,0,2]);a=addmf(a,'input',1,'PS','trimf',[-1,1,3]);a=addmf(a,'input',1,'PM','trimf',[0,2,3]);a=addmf(a,'input',1,'PB','smf',[1,3]);a=addvar(a,'input','ec',[-3,3]); %parameter eca=addmf(a,'input',2,'NB','zmf',[-3,-1]);a=addmf(a,'input',2,'NM','trimf',[-3,-2,0]);a=addmf(a,'input',2,'NS','trimf',[-3,-1,1]);a=addmf(a,'input',2,'Z','trimf',[-2,0,2]);a=addmf(a,'input',2,'PS','trimf',[-1,1,3]);a=addmf(a,'input',2,'PM','trimf',[0,2,3]);a=addmf(a,'input',2,'PB','smf',[1,3]);a=addvar(a,'output','kp',[-0.3,0.3]); %parameter kpa=addmf(a,'output',1,'NB','zmf',[-0.3,-0.1]);a=addmf(a,'output',1,'NM','trimf',[-0.3,-0.2,0]);a=addmf(a,'output',1,'NS','trimf',[-0.3,-0.1,0.1]);a=addmf(a,'output',1,'Z','trimf',[-0.2,0,0.2]);a=addmf(a,'output',1,'PS','trimf',[-0.1,0.1,0.3]);a=addmf(a,'output',1,'PM','trimf',[0,0.2,0.3]);a=addmf(a,'output',1,'PB','smf',[0.1,0.3]);a=addvar(a,'output','ki',[-0.06,0.06]); %parameter ki a=addmf(a,'output',2,'NB','zmf',[-0.06,-0.02]);a=addmf(a,'output',2,'NM','trimf',[-0.06,-0.04,0]);a=addmf(a,'output',2,'NS','trimf',[-0.06,-0.02,0.02]); a=addmf(a,'output',2,'Z','trimf',[-0.04,0,0.04]);a=addmf(a,'output',2,'PS','trimf',[-0.02,0.02,0.06]);a=addmf(a,'output',2,'PM','trimf',[0,0.04,0.06]);a=addmf(a,'output',2,'PB','smf',[0.02,0.06]);a=addvar(a,'output','kd',[-3,3]); %parameter kda=addmf(a,'output',3,'NB','zmf',[-3,-1]);a=addmf(a,'output',3,'NM','trimf',[-3,-2,0]);a=addmf(a,'output',3,'NS','trimf',[-3,-1,1]);a=addmf(a,'output',3,'Z','trimf',[-2,0,2]);a=addmf(a,'output',3,'PS','trimf',[-1,1,3]);a=addmf(a,'output',3,'PM','trimf',[0,2,3]);a=addmf(a,'output',3,'PB','smf',[1,3]);rulelist=[1 1 7 1 5 1 1;1 2 7 1 3 1 1;1 3 62 1 1 1;1 4 62 1 1 1;1 5 5 3 1 1 1;1 6 4 42 1 1;1 7 4 4 5 1 1;2 1 7 1 5 1 1;2 2 7 13 1 1;2 3 6 2 1 1 1;2 4 53 2 1 1;2 5 53 2 1 1;2 6 4 43 1 1;2 734 4 1 1;3 1 6 14 1 1;3 2 6 2 3 1 1;3 3 6 3 2 1 1;3 4 5 3 2 1 1;3 54 4 3 1 1;3 6 3 5 3 1 1;3 7 3 54 1 1;4 1 6 2 4 1 1;4 2 6 2 3 1 1;4 35 3 3 1 1;4 4 4 4 3 1 1;4 5 3 5 3 1 1;4 6 2 6 3 1 1;4 7 2 6 4 1 1;35 1 5 2 4 1 1;5 2 5 3 4 1 1;5 3 4 4 4 1 1;5 4 3 5 4 1 1;5 5 3 5 4 1 1;5 6 2 6 4 1 1;5 7 2 7 4 1 1;6 1 5 47 1 1;6 2 4 4 5 1 1;6 3 3 5 5 1 1;6 4 2 5 5 1 1;6 5 2 6 5 1 1;6 6 27 5 1 1;6 7 1 7 7 1 1;7 1 4 4 7 1 1;7 2 4 4 6 1 1;7 3 2 5 6 1 1;7 4 2 6 6 1 1;7 5 2 6 5 1 1;7 6 1 7 5 1 1;7 7 1 7 7 1 1];a=addrule(a,rulelist);a=setfis(a,'DefuzzMethod','mom');writefis(a,'fuzzpid');a=readfis('fuzzpid');%PID controllerts=0.001;sys=tf(5.235e005,[1,87.35,1.047e004,0]); dsys=c2d(sys,ts,'tustin');[num,den]=tfdata(dsys,'v');u_1=0.0;u_2=0.0;u_3=0.0;y_1=0;y_2=0;y_3=0;x=[0,0,0]';4error_1=0;e_1=0.0;ec_1=0.0;kp0=0.40;kd0=1.0;ki0=0.0;for k=1:1:500time(k)=k*ts;rin(k)=1;%using fuzzy inference to tunning PIDk_pid=evalfis([e_1,ec_1],a);kp(k)=kp0+k_pid(1);ki(k)=ki0+k_pid(2);kd(k)=kd0+k_pid(3);u(k)=kp(k)*x(1)+kd(k)*x(2)+ki(k)*x(3);if k==300 %adding disturbance(1.0v at time 0.3s)u(k)=u(k)+1.0;endif u(k)>=10u(k)=10;endif u(k)<=-10u(k)=-10;endyout(k)=-den(2)*y_1-den(3)*y_2-den(4)*y_3+num(1)*u(k)+num(2)*u_1+num(3)*u_2+num(4)*u_3;error(k)=rin(k)-yout(k);%%%%%%%%%%%%%%%%%%%%%%%%%return of pid parameters%%%%%%%%%%%%%%%%%%%%%%%% u_3=u_2;u_2=u_1;u_1=u(k);y_3=y_2;y_2=y_1;y_1=yout(k);5x(1)=error(k); %calculating Px(2)=error(k)-error_1; %calculating Dx(3)=x(3)+error(k); %calculating De_1=x(1);ec_1=x(2);error_2=error_1;error_1=error(k);endshowrule(a)figure(1);plot(time,rin,'b',time,yout,'r'); xlabel('time(s)');ylabel( 'rin,yout');figure(2);plot(time,error,'r');xlabel('time(s)');ylabel( 'error ');figure(3);plot(time,u,'r');xlabel('time(s)');ylabel( 'u ');figure(4);plot(time,kp,'r');xlabel('time(s)');ylabel( 'kp ');figure(5);plot(time,ki,'r');xlabel('time(s)');ylabel( 'ki ');figure(6);plot(time,kd,'r');xlabel('time(s)');ylabel( 'kd ');figure(7);plotmf(a,'input',1);figure(8);plotmf(a,'input',2);figure(9);plotmf(a,'output',1);figure(10);plotmf(a,'output',2);figure(11);plotmf(a,'output',3);plotfis(a);fuzzy fuzzpid.fis6仿真运行结果:789。
用MATLAB对PID控制做简单的仿真
⽤MATLAB 对PID 控制做简单的仿真PID 控制是⽬前⼯程上应⽤最⼴的⼀种控制⽅法,其结构简单,且不依赖被控对象模型,控制所需的信息量也很少,因⽽易于⼯程实现,同时也可获得较好的控制效果。
PID 控制是将误差信号e(t)的⽐例(P),积分(I)和微分(D)通过线性组合构成控制量进⾏控制,其输出信号为:下⾯⽤MATLAB 软件对PID 控制做简单的仿真描述。
1. 建⽴⼆阶负反馈控制系统,其开环传递函数为:clc; clear all; close all;Go = tf(1,conv([2,1],[5,1]));2. ⽐例控制,输出与输⼊偏差成⽐例,即直接将误差信号放⼤或缩⼩。
⽐例控制的传递函数为:取不同的⽐例系数,绘制系统的单位阶跃响应曲线:Kp = [0.5,2,5,10];for m = 1:4 sys = feedback(Kp(m)*Go,1); step(sys); hold on;end随着K P 值的增⼤,系统响应速度加快,但系统的超调也随着增加,调节时间也随着增长。
当K P 增⼤到⼀定值后,闭环系统将趋于不稳定。
⽐例控制具有抗⼲扰能⼒强、控制及时、过渡时间短的优点,但存在稳态误差,增⼤⽐例系数可提⾼系统的开环增益,减⼩系统的稳态误差,从⽽提⾼系统的控制精度,但这会降低系统的相对稳定性,甚⾄可能造成闭环系统的不稳定,因此,在系统校正和设计中,⽐例控制⼀般不单独使⽤。
3. 微分控制,输出与输⼊偏差的微分成⽐例,即与偏差的变化速度成⽐例。
微分控制(与⽐例控制同时使⽤)的传递函数为:取不同的微分系数,绘制系统的单位阶跃响应曲线:Kp = 10;u(t)=[e(t)+e(t)dt +]K P 1T I ∫t 0T D de(t)dt(s)=G O 1(2s +1)(5s +1)(s)=G C K P(s)=(1+s)G C K P T DTd = [0,0.4,1,4];for m = 1:4 G1 = tf([Kp*Td(m),Kp],[0,1]); sys = feedback(G1*Go,1); step(sys); hold on;end随着T D 值的增⼤,系统超调量逐渐减⼩,动态特征有改善。
实例:MATLABSimulink实现模糊PID控制
实例:MATLABSimulink实现模糊PID控制被控对象:Ts = 0.1;Plant = c2d(zpk([],[-1 -3 -5],1),Ts); %零极点模型,并离散化根据对象Plant,确定PID参数:C0 = pid(1,1,1,'Ts',Ts,'IF','B','DF','B'); % 定义PID结构C = pidtune(Plant,C0) %对PID参数进行优化[Kp, Ki, Kd] = piddata(C); % 输出参数得出PID结构及其参数值:接下来根据求出的PID参数确定GCE、GE 、GCU 和GU的取值:由模糊PID控制结构可得如下等式:Kp = GCU * GCE + GU * GEKi = GCU * GEKd = GU * GCE形式转换如下:GE = 10; %根据模糊控制的论语直接确定GCE = GE*(Kp-sqrt(Kp^2-4*Ki*Kd))/2/Ki=3.4285;GCU = Ki/GE=2.8631;GU = Kd/GCE=2.0138;模糊PID控制系统结构(连续模糊控制器):图中的离散时间积分和微分块直接调用。
模糊控制器输入输出结构:模糊控制器输入输出隶属度函数:模糊控制器规则表:模糊控制器规则曲面图:连续模糊PID控制器,仿真结果:模糊PID控制系统结构(离散模糊控制器):离散模糊控制器查询表:离散模糊PID控制器,仿真结果:主要代码如下:(1)、对象模型:Ts = 0.1;Plant = c2d(zpk([],[-1 -3 -5],1),Ts);(2)、PID参数优化:C0 = pid(1,1,1,'Ts',Ts,'IF','B','DF','B');C = pidtune(Plant,C0)[Kp, Ki, Kd] = piddata(C);(3)、比例因子确定:GE = 10;GCE = GE*(Kp-sqrt(Kp^2-4*Ki*Kd))/2/Ki;GCU = Ki/GE;GU = Kd/GCE;(4)、连续模糊PID控制建立:FIS = newfis('FIS','sugeno');%%% 定义输入E:FIS = addvar(FIS,'input','E',[-10 10]);FIS = addmf(FIS,'input',1,'Negative','gaussmf',[7 -10]); FIS = addmf(FIS,'input',1,'Positive','gaussmf',[7 10]); %%% 定义输入CE:FIS = addvar(FIS,'input','CE',[-10 10]);FIS = addmf(FIS,'input',2,'Negative','gaussmf',[7 -10]); FIS = addmf(FIS,'input',2,'Positive','gaussmf',[7 10]); %%% 定义输出u:FIS = addvar(FIS,'output','u',[-20 20]);FIS = addmf(FIS,'output',1,'Min','constant',-20);FIS = addmf(FIS,'output',1,'Zero','constant',0);FIS = addmf(FIS,'output',1,'Max','constant',20);% 定义规则:%% # If |E| is Negative and |CE| is Negative then |u| is -20 % # If |E| is Negative and |CE| is Positive then |u| is 0% # If |E| is Positive and |CE| is Negative then |u| is 0% # If |E| is Positive and |CE| is Positive then |u| is 20 ruleList = [1 1 1 1 1;... % Rule 11 2 2 1 1;... % Rule 22 1 2 1 1;... % Rule 32 23 1 1]; % Rule 4FIS = addrule(FIS,ruleList);gensurf(FIS) %生成模糊控制器(5)、离散模糊控制器查询表:Step = 2;E = -10:Step:10;CE = -10:Step:10;N = length(E);LookUpTableData = zeros(N);for i=1:Nfor j=1:N% compute output u for each combination of break points LookUpTableData(i,j) = evalfis([E(i) CE(j)],FIS);endend。
模糊pidmatlab(simulink)仿真详细步骤
下面用一个简单的例子作介绍:(本例不是特别针对实现什么功能,只是为了介绍方便)第一部分创建一个模糊逻辑(.fis文件)第一步:打开模糊推理系统编辑器步骤:在Commond Window 键入fuzzy回车打开如下窗口,既模糊推理系统编辑器第二步:使用模糊推理系统编辑器本例用到两个输入,两个输出,但默认是一个输人,一个输出步骤:1、添加一个输入添加一个输出得如下图2、选择Input、output(选中为红框),在Name框里修改各输入的名称并将And method 改为prod,将Or method 改为probor提示:在命名时’_’在显示时为下标,可从上图看出。
第三步:使用隶属函数编辑器该编辑器提供一个友好的人机图形交互环境,用来设计和修改模糊推理系中各语言变量对应的隶属度函数的相关参数,如隶属度函数的形状、范围、论域大小等,系统提供的隶属度函数有三角、梯形、高斯形、钟形等,也可用户自行定义。
步骤:1、双击任何一个输入量(In_x、In_y)或输出量打开隶属度函数编辑器。
2、在左下处Range和Display Range处添加取值范围,本例中In_x和In_y的取值范围均为[0 10], Out_x和Out_y的取值范围均为[0 1]3、默认每个输入输出参数中都只有3个隶属度函数,本例中每个输入输出参数都需要用到五个,其余几个需要自己添加:选中其中一个输入输出参数点击Edit菜单,选Add MFS…打开下列对话框将MF type设置为trimf(三角形隶属度函数曲线,当然你也需要选择其他类型) 将Number of MFs设置为2点击OK按钮同样给其他三个加入隶属度函数4、选中任何一个隶属度函数(选中为红色),在Name中键入名称,在Type 中选择形状,在Params中键入范围,然后回车如下图:5、关闭隶属函数编辑器第四步:使用规则编辑器通过隶规则编辑器来设计和修改“IF...THEN”形式的模糊控制规则。
PID各环节的意义和功能,自带PID的matlab编程实例
PID各环节的意义和功能,⾃带PID的matlab编程实例这是PID的标准形式包括⽐例/积分/微分三部分,e为偏差下⾯我们分析三个环节的作⽤,设:当前系统状态A,⽬标状态B, e=B-A,初始状态e>0(以下是个⼈的理解,欢迎读者评论)1 ⽐例环节Pe越⼤u越⼤,当A近似B时,e⾮常⼩,u也⾮常⼩,现实系统的u除了要满⾜⾃⾝系统的需求,还要分担给克服磨擦,空⽓阻⼒等等,因此最终A总是和B差⼀点,这个很⼩的u⽤在克服阻碍上了(它会存在⼀个⼩误差)2 微分环节d此环节就是e的斜率,A在趋近B的过程中e的值始终为正,但e的斜率为负,它不希望e变化,当A稳定在恒定值时,e的斜率为零,它也就失去作⽤(但它⽆法消除误差)3 积分环节i我们⼀直都知道,积分的数学意义就是求函数与坐标轴围成的⾯积(这⾥是指A与⽬标B围成的⾯积),它希望⾯积为零,当⽐例环节造成的误差存在时(此时A<B),它就会发挥作⽤,直到围成的⾯积和为零(它可以消除误差)这是编程中u的计算⽅法u(i) = Kp * (x_last - x(i)) + Ki * (x_last - 2 * x(i - 1) + x(i - 2)) + Kd * x_lastu为控制量,x_last为⽬标值。
x(i)为当前值下⾯是matlab编程实例:已知:A= [-2 -1;1 0] , B = [1 ; 0],现⽤P控制器来控制这个系统(搞清楚P控制,积分微分内容也是如法炮制)matlab脚本如下:A = [-2 -1;1 0];B = [1;0];C = [0 0];D = 0;sys = ss(A,B,C,D);%组成空间量sys1 = c2d(sys,0.1);%转为离散,采样时间0.1sx = [1;0];%系统初始状态x_last = [0;0];%我们期望的最终⽬标Kp = [0.001 0.001];%系数不能太⼤,这⾥Kp是1*2的%Ki.......%Kd........%下⾯开始进⾏P控制for i = 1:100 u = Kp * (x_last - x(:,i));%u控制器算出的控制量 x(:,i+1) = sys1(1,1).A * x(:,i) + sys1(1,1).B * u;%为了保证矩阵维度⼀致,u必须是1*1的,所以Kp需要是1*2的end到此程序结束,在这要注意⼏点:1 ⼀定要注意矩阵维度问题,维度很容易出错;2 循环时要保证每个状态都能被循环到;3 注意系数不能太⼤,有时候调试半天也不知道是怎么回事,其实就是系数太⼤导致u⼤的离谱;。
pid控制及其matlab仿真-详细
在MATLAB中搭建仿真模型,验证PID控制器对复杂系统的控制 效果。
PID控制器的参数优化
参数优化方法
采用智能优化算法(如遗传算法、粒子群算法等)对PID 控制器参数进行优化,以进一步提高控制性能。
01
MATLAB实现
在MATLAB中编写优化算法程序,通过 Simulink仿真模型进行测试和验证。
积分控制
02
03
微分控制
通过累积输入信号的变化量来控 制输出信号,以减小输出信号的 误差。
通过预测输入信号的变化趋势来 控制输出信号,以减小输出信号 的超调和响应时间。
PID控制器的参数整定
比例系数
影响控制器的增益,比例系数越 大,控制器的增益越大,输出信 号变化越快。
积分系数
影响积分控制的强度,积分系数 越大,积分控制作用越强,误差 减小越快。
温度控制系统中的应用
温度控制系统是PID控制器的另一个重要应用领域。在工 业和科学实验中,温度控制对于保持恒定的实验条件和产 品质量至关重要。
PID控制器用于温度控制系统的目的是通过自动调节加热 元件的功率或冷却介质的流量,将温度维持在设定的范围 内。
PID控制器通过比较温度传感器的实际测量值与期望值之 间的误差,来调整加热元件或冷却介质的控制信号,以减 小误差并实现稳定的温度控制。
pid控制及其 matlab仿真-详细
目 录
• PID控制理论简介 • MATLAB仿真环境介绍 • PID控制器在MATLAB中的实现 • PID控制器的性能分析 • PID控制器的应用实例 • 结论与展望
01
CATALOGUE
PID控制理论简介
如何使用matlab中signalconstraint模块优化PID参数详细版解读
如何使用matlab中signal constraint模块优化PID参数1、打开matlab中simulink模块2、画出基本仿真模块如下,PID模块由自己搭建3、将三个放大器增益改为kp,1/ti,td,即PID参数4、进入simulink design optimization中找到signal constraint5、将signal constraint模块添加到仿真模型中6、右击signal constraint,点击explore7、进入后点击model workspace然后再点add,选择第一个matlab variable,创建三个matlab变量var,双击var改为kp、ti、td,分别对应PID的三个参数,初始值可都取1,然后apply8、回仿真界面双击signal constraint,出现如下对话框9、点击optimization,再点击tuned parameters10、点击add,将kp、ti、td逐一添加,完成后点击ok退出该界面11、用鼠标拖动黑线可改变动态指标要求,也可以进入goals/desired response中进行修改12、设好性能指标后点击上图中三角尖仿真按钮,发现系统运行时间较长而且没有得出满意结果,这是因为系统不稳定或者动态性能指标太高难以达到;13、此处为了方便删除两个环节之后再进行仿真,就得到了满意结果。
最后的结果并不是唯一的,因为有很多种kp、ti、td参数组合都可以达到这个动态性能指标。
有较多人直接使用而没有定义变量,所以最后添加变量的时候会出现找不到变量的情况。
以上仅为个人拙见,如有错误,请予以批评指正。
如何使用matlab中signalconstraint模块优化PID参数详细版解读读书的好处1、行万里路,读万卷书。
2、书山有路勤为径,学海无涯苦作舟。
3、读书破万卷,下笔如有神。
4、我所学到的任何有价值的知识都是由自学中得来的。
基于matlabsimulink的pid控制器设计
基于matlabsimulink的pid控制器设计1.引言1.1 概述概述部分:PID控制器是一种常用的控制算法,它通过不断地调整系统的输出来使其尽量接近所期望的目标值。
在工业控制领域,PID控制器被广泛应用于各种工艺过程和自动化系统中。
本文将以MATLAB/Simulink为工具,探讨基于PID控制器的设计方法。
PID控制器以其简单易实现、稳定性好的特点,成为许多控制系统的首选。
在文章的正文部分,我们将对PID控制器的基本原理进行详细介绍,并结合MATLAB/Simulink的应用,展示如何使用这一工具来设计和实现PID控制器。
在控制系统设计中,PID控制器通过测量系统的误差,即期望输出值与实际输出值之间的差异,并根据三个控制参数:比例项(Proportional)、积分项(Integral)和微分项(Derivative)来调整系统的输出。
比例项控制系统的响应速度,积分项消除系统的稳态误差,微分项抑制系统的震荡。
MATLAB/Simulink作为一款功能强大的仿真软件,提供了丰富的控制系统设计工具。
它不仅可以帮助我们直观地理解PID控制器的工作原理,还可以实时地模拟和分析系统的响应。
通过使用MATLAB/Simulink,我们可以轻松地进行PID控制器参数调整、系统性能评估和控制算法的优化。
总之,本文旨在介绍基于MATLAB/Simulink的PID控制器设计方法,通过理论介绍和实例演示,帮助读者深入理解PID控制器的原理和应用,并为读者在实际工程项目中设计和实施PID控制器提供参考。
在结论部分,我们将总结所得结论,并对未来进一步研究的方向进行展望。
文章结构部分的内容可以描述文章的整体架构和各个部分的内容大纲。
以下是对文章1.2部分的内容补充:1.2 文章结构本文主要由以下几个部分构成:第一部分是引言部分,包括概述、文章结构和目的等内容。
在概述中,将简要介绍PID控制器在自动控制领域的重要性和应用背景。
PID算法Matlab仿真程序和C程序
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载PID算法Matlab仿真程序和C 程序地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容增量式PID控制算法Matlab仿真程序设一被控对象G(s)=50/(0.125s^2+7s),用增量式PID控制算法编写仿真程序(输入分别为单位阶跃、正弦信号,采样时间为1ms,控制器输出限幅:[-5,5],仿真曲线包括系统输出及误差曲线,并加上注释、图例)。
程序如下clear all;close all;ts=0.001;sys=tf(50,[0.125,7, 0]);dsys=c2d(sys,ts,'z');[num,den]=tfdata(dsys,'v');u_1=0.0;u_2=0.0;y_1=0.0;y_2=0.0;x=[0,0,0]';error_1=0;error_2=0;for k=1:1:1000time(k)=k*ts;S=2;if S==1kp=10;ki=0.1;kd=15;rin(k)=1; %Step Signalelseif S==2kp=10;ki=0.1;kd=15; %Sine Signalrin(k)=0.5*sin(2*pi*k*ts);enddu(k)=kp*x(1)+kd*x(2)+ki*x(3); %PID Controlleru(k)=u_1+du(k);%Restricting the output of controllerif u(k)>=5u(k)=5;endif u(k)<=-5u(k)=-5;end%Linear modelyout(k)=-den(2)*y_1-den(3)*y_2+num(2)*u_1+num(3)*u_2; error(k)=rin(k)-yout(k);%Return of parametersu_2=u_1;u_1=u(k);y_2=y_1;y_1=yout(k);x(1)=error(k)-error_1; %Calculating Px(2)=error(k)-2*error_1+error_2; %Calculating Dx(3)=error(k); %Calculating Ierror_2=error_1;error_1=error(k);endfigure(1);plot(time,rin,'b',time,yout,'r');xlabel('time(s)'),ylabel('rin,yout');figure(2);plot(time,error,'r')xlabel('time(s)');ylabel('error');微分先行PID算法Matlab仿真程序%PID Controler with differential in advance clear all;close all;ts=20;sys=tf([1],[60,1],'inputdelay',80);dsys=c2d(sys,ts,'zoh');[num,den]=tfdata(dsys,'v');u_1=0;u_2=0;u_3=0;u_4=0;u_5=0;ud_1=0;y_1=0;y_2=0;y_3=0;error_1=0;error_2=0;ei=0;for k=1:1:400time(k)=k*ts;%Linear modelyout(k)=-den(2)*y_1+num(2)*u_5;kp=0.36;kd=14;ki=0.0021;rin(k)=1.0*sign(sin(0.00025*2*pi*k*ts)); error(k)=rin(k)-yout(k);ei=ei+error(k)*ts;gama=0.50;Td=kd/kp;Ti=0.5;c1=gama*Td/(gama*Td+ts);c2=(Td+ts)/(gama*Td+ts);c3=Td/(gama*Td+ts);M=1;if M==1 %PID Control with differential in advance ud(k)=c1*ud_1+c2*yout(k)-c3*y_1;u(k)=kp*error(k)+ud(k)+ki*ei;elseif M==2 %Simple PID Controlu(k)=kp*error(k)+kd*(error(k)-error_1)/ts+ki*ei;endif u(k)>=110u(k)=110;endif u(k)<=-110u(k)=-110;end%Update parametersu_5=u_4;u_4=u_3;u_3=u_2;u_2=u_1;u_1=u(k);y_3=y_2;y_2=y_1;y_1=yout(k);error_2=error_1;error_1=error(k);endfigure(1);plot(time,rin,'r',time,yout,'b');xlabel('time(s)');ylabel('rin,yout'); figure(2);plot(time,u,'r');xlabel('time(s)');ylabel('u');不完全微分PID算法Matlab仿真程序%PID Controler with Partial differential clear all;close all;ts=20;sys=tf([1],[60,1],'inputdelay',80);dsys=c2d(sys,ts,'zoh');[num,den]=tfdata(dsys,'v');u_1=0;u_2=0;u_3=0;u_4=0;u_5=0;ud_1=0;y_1=0;y_2=0;y_3=0;error_1=0;ei=0;for k=1:1:100time(k)=k*ts;rin(k)=1.0;%Linear modelyout(k)=-den(2)*y_1+num(2)*u_5;error(k)=rin(k)-yout(k);%PID Controller with partly differential ei=ei+error(k)*ts;kc=0.30;ki=0.0055;TD=140;kd=kc*TD/ts;Tf=180;Q=tf([1],[Tf,1]); %Low Freq Signal FilterM=2;if M==1 %Using PID with Partial differential加在简单PID后的不完全微分alfa=Tf/(ts+Tf);u(k)=alfa*u_1+(1-alfa)*(kc*error(k)+kd*(error(k)-error_1)+ki*ei);u_1=u(k);elseif M==2 %Using PID with Partial differential只加在微分环节上的不完全微分alfa=Tf/(ts+Tf);ud(k)=kd*(1-alfa)*(error(k)-error_1)+alfa*ud_1;u(k)=kc*error(k)+ud(k)+ki*ei;ud_1=ud(k);elseif M==3 %Using Simple PID 简单的PID微分u(k)=kc*error(k)+kd*(error(k)-error_1)+ki*ei;end%Restricting the output of controllerif u(k)>=10u(k)=10;endif u(k)<=-10u(k)=-10;endu_5=u_4;u_4=u_3;u_3=u_2;u_2=u_1;u_1=u(k); y_3=y_2;y_2=y_1;y_1=yout(k);error_1=error(k);endfigure(1);plot(time,rin,'b',time,yout,'r');xlabel('time(s)');ylabel('rin,yout'); figure(2);plot(time,u,'r');xlabel('time(s)');ylabel('u');figure(3);plot(time,rin-yout,'r');xlabel('time(s)');ylabel('error');figure(4);bode(Q,'r');dcgain(Q);C语言PID演示程序#include <string.h>#include<stdio.h>typedef struct PID{double Command; //输入指令double Proportion; //比例系数double Integral; //积分系数double Derivative; //微分系数double preErr; //前一拍误差double sumErr; //误差累积}PID;double PIDCale(PID *p,double feedback) {double dErr,Err;Err=p->Command-feedback; //当前误差p->sumErr+=Err; //误差累加dErr=Err-p->preErr; //误差微分p->preErr=Err;return(p->Proportion*Err //比例项+p->Derivative*dErr //微分项+p->Integral*p->sumErr); //积分项}void PIDInit(PID *p){memset(p,0,sizeof(PID)); //初始化}typedef struct motor{double lastY;double preY;double lastU;double preU;}motor;void motorInit(motor *m){memset(m,0,sizeof(motor));}double motorCal(motor *m,double u){double y=1.9753*m->lastY-0.9753*m->preY+0.00003284*u+0.00006568*m->lastU+0.00003284*m->preU;//二阶系统m->preY=m->lastY;m->lastY=y;m->preU=m->lastU;m->lastU=u;return y;}void main(){FILE *fp=fopen("data.txt","w+");PID sPID;motor m_motor;int k=0;double u;double y=0;PIDInit(&sPID);sPID.Proportion=2;sPID.Derivative=1;sPID.Integral=0.00001;mand=10;motorInit(&m_motor);while(k<=1000){fprintf(fp,"%d 设定值=%f 被控量=%f 偏差=%f 控制量=%f\n",k,mand,y,mand-y,u);u=PIDCale(&sPID,y);y=motorCal(&m_motor,u);k++;}printf("%f\n",y);fclose(fp);}HYPERLINK"/tengjingshu/228279/Message.aspx" \l "#" 增量式PID控制C语言代码增量式PID控制C语言代码//////////////////////////////////////////////////////////////// // 定义PID参数结构体/////////////////////////////////////////////////////////////// typedef struct PID { //结构体定义int SetPoint //设定值int Proportion; // Proportion 比例系数int Integral; // Integral 积分系数int Derivative; // Derivative 微分系数int LastError; // Error[-1] 前一拍误差int PreError; // Error[-2] 前两拍误差} PID;main(){PID vPID; //定义结构变量名PIDInit ( &vPID ); //Initialize StructurevPID.Proportion = 10; //Set PID CoefficientsvPID.Integral = 10; // Set PID IntegralvPID.Derivative = 10; // Set PID DerivativevPID. SetPoint = //根据实际情况设定while(1){Verror=Measure(); //得到AD的输出值Error =vPID. SetPoint- Verror; //与设定值比较,得到误差值tempi=PIDCal(&vPID, Error;laser.Value+=tempi; // Value与Num[2]为共同体,共同体名laserLASERH=laser.Num[0];LASERL=laser.Num[1];}}///////////////////////////////////////////////////////////////// ////////Title:PID参数初始化//Description: Proportion="0"// Integral=0// LastError=0//Input: PID的P、I控制常数和之前的误差量(PID *pp)//Return:///////////////////////////////////////////////////////////////// /////void PIDInit (PID *pp) //PID参数初始化,都置0{memset ( pp,0,sizeof(PID));//memset()的函数,它可以一字节一字节地把整个数组设置为一个指定的值。
模糊pid控制matlab程序
模糊pid控制matlab程序
模糊PID控制是一种结合模糊控制和PID控制的方法,它可以
在控制系统中应对非线性和不确定性。
在MATLAB中,实现模糊PID
控制可以分为以下几个步骤:
1. 定义模糊系统,首先,需要使用MATLAB中的Fuzzy Logic Toolbox来定义模糊系统。
可以使用fuzzy函数来创建一个模糊系
统对象,并定义输入、输出和隶属函数等参数。
2. 设计模糊控制器,接下来,需要设计模糊控制器。
可以使用fisedit函数来打开模糊逻辑编辑器,通过编辑器来定义模糊控制
器的输入、输出和规则等。
3. 整合PID控制器,在MATLAB中,可以使用pid函数来创建
一个PID控制器对象。
然后,将模糊控制器和PID控制器整合在一起,可以通过串联、并联或级联的方式来实现模糊PID控制。
4. 闭环控制,最后,将设计好的模糊PID控制器应用于闭环控
制系统中。
可以使用sim函数来进行仿真,观察系统的响应和性能。
需要注意的是,模糊PID控制的设计涉及到模糊集合的定义、隶属函数的选择、规则的设置等,需要根据具体的控制对象和要求来进行调整和优化。
同时,对于PID控制器的参数调节也需要谨慎处理,可以使用MATLAB中的工具箱来进行参数整定和性能分析。
总的来说,实现模糊PID控制的MATLAB程序需要综合运用模糊逻辑工具箱和控制系统工具箱,通过适当的建模和调节来实现模糊PID控制器的设计和应用。
基于遗传算法的PID参数整定的MATLAB程序代码
基于遗传算法的PID参数整定1引言传统的比例、积分、微分控制,即PID控制具有算法简单、鲁棒性好和可靠性高等优点,已经被广泛用于工业生产过程。
但工程实际中,PID控制器的比例、积分和微分调节参数往往采用实验加试凑的方法由人工整定。
这不仅需要熟练的技巧,往往还相当费时。
更为重要的是,当被控对象特性发生变化,需要控制器参数作相应调整时,PID控制器没有自适应能力,只能依靠人工重新整定参数,由于经验缺乏,整定结果往往达不到最优值,难以满足实际控制的要求。
考虑生产过程的连续性以及参数整定费事费力,这种整定实际很难进行。
所以,人们从工业生产实际需要出发,基于常规PID控制器的基本原理,对其进行了各种各样的改进。
近年来许多学者提出了基于各种智能算法的PID整定策略,比如模糊PID、神经元网络PID等等。
然而,这些先进算法都要求对被控对象有很多的先验知识,在实际应用中往往难于做到。
随着计算技术的发展,遗传算法有了很大的发展。
将遗传算法用于控制器参数整定,已成为遗传算法的重要应用之一。
本文介绍基于遗传算法的PID参数整定设计方法。
这是一种寻求全局最优的控制器优化方法,且无需对目标函数微分,可提高参数优化效果,简化计算过程。
仿真实例表明该方法与其他传统寻优方法相比,在优化效果上具有一定的优势。
2遗传算法简介2.1 遗传算法的基本原理遗传算法是John H.Holland根据生物进化的模型提出的一种优化算法。
自然选择学说是进化论的中心内容。
根据进化论,生物的发展进化主要有三个原因:即遗传、变异和选择。
遗传算法基于自然选择和基因遗传学原理的搜索方法,将“优胜劣汰,适者生存”的生物进化原理引入待优化参数形成的编码串群体中,按照一定的适应度函数及一系列遗传操作对各个体进行筛选,从而使适应度高的个体被保留下来,组成新的群体;新群体包含上一代的大量信息,并且引入了新的优于上一代的个体。
这样周而复始,群体中各个体适应度不断提高,直至满足一定的极限条件。
神经pid,模糊pid,常规pid的matlab比较
图4.BP神经网络PID系统输出响应曲线图6. PID 参数自适应模糊控制器系统框图图7.e,ec,Kp,Ki,Kd的隶属度函数通过不断进行仿真实验和借鉴专家经验可以得到如下的49条规则:图8.模糊PID控制系统输出曲线图9.模糊PID控制系统误差曲线图中1为常规整定PID 阶跃响应曲线,2为BP 神经网络PID 阶跃响应曲线,3为模糊自适应整定PID 阶跃响应曲线。
从曲线中以看出,三种PID控制方式中模糊PID几乎没有超调,调节时间短,控制效果最好;BP 网络PID效果次之;都比常规PID 效果好。
比较图5神经PID与图9模糊PID的误差曲线可以看出,模糊PID具有更短的学习时间。
仿真和实验结果均证明了神经网络PID 控制算法能有效地控制大时滞大惯性的温控系统,将神经网络与PID控制相结合,可以在线调整PID控制器的各个参数,减少了凭经验整定参数带来的误差,提高了温控系统的鲁棒性和自适应性。
此外,神经网络PID控制器还能有效的抑制干扰,而且对对象模型要求不高,具有较好的抗干扰性。
同时也可以进一步优化BP神经网络的结构和算法,使温度控制最终趋于最优,更好地满足实际生产对温度控制的要求。
但是由于该控制器的初始权值是随机值,控制输出在开始时波动很大,随着网络的自学习,不断调整权值控制输出来跟踪输入。
由于神经网络收敛速度慢,回到稳定状态所需时间较长,这个问题有待进一步研究解决。
,模糊PID控制响应几乎没有超调,但是响应速度较慢;在模型失配的情况下,模糊PID虽然产生了震荡,超调量也有所增加,但总体来说还能够保持稳定;在添加干扰后,系统持续产生小幅震荡,但超调量很小,系统整体还是稳定的,抗干扰能力强。
参考文献:1、陶永华.新型PID控制及其应用(第二版) [ M].北京:机械工业出版社,2002.2、杨智,朱海锋,黄以华.PID控制器设计与参数整定方法综述[ J ].化工自动化及仪表,2 005,32 ( 5 ):1-7 .3、杨智.工业自整定P ID调节器关键设计技术综述[J].化工自动化及仪表,2000,27 ( 2 ):5-10.4、王伟,张晶涛,柴天佑.PID参数先进整定方法综述[ J ].自动化学报,2000,26 (5):347-355.5、何宏源,徐进学,金妮.PID继电自整定技术的发展综述[ J ].沈阳工业大学学报,2005,27 (4):4 09-413.6、叶岚.基于继电反馈的PI D控制器的参数整定[ D].上海:上海交通大学自动化系,2007.7、李少远.基于继电反馈的PID控制器的参数整定[D].上海:上海交通大学自动化系,2007.8、吴泽宁等.BP神经网络的改进及应用[J ].河南科学,2003-4:202 -2069、李遵基编著.热工自动控制系统[M].中国电力出版社,1997.1010、俞海斌,褚健.CFB锅炉汽包水位的专家PID控制[J].机电工程,2000(3):103~10611、潘祥高等.模糊PID控制在工业锅炉控制系统中的应用[J].工业出版社,200412、刘金琨.先进PID 控制MA TLAB仿真M7.2 版.北京电子工业出版社,200413、薛定宇.控制系统计算机辅助设计MA TLAB 语言与应用M7.2 版.北京清华大学出版社,2006常规PID实现程序:clear all;close all;ts=10;sys=tf([1],[150,1],'inputdelay',50);dsys=c2d(sys,ts,'z oh');[num,den]=tfdata(dsys,'v');u_1=0;u_2=0;u_3=0;u_4=0;u_5=0;u_6=0;y_1=0;y_2=0;y_3=0;error_1=0;error_2=0;ei=0;for k=1:1:1000time(k)=k*ts;yout(k)=-den(2)*y_1+num(2)*u_6;rin(k)=1;error(k)=rin(k)-yout(k);ei=ei+error(k)*ts;kp=0.03;kd=1;ki=0.004;u(k)=kp*error(k)+kd*(error(k)-error_1)/ts+ki*ei; if u(k)>=10u(k)=10;endif u(k)<=-10u(k)=-10;endif k==200u(k)=u(k)+1;endu_6=u_5;u_5=u_4;u_4=u_3;u_3=u_2;u_2=u_1;u_1=u(k); y_3=y_2;y_2=y_1;y_1=yout(k);error_2=error_1;error_1=error(k);endfigure(1);plot(time,rin,'b',time,yout,'r');xlabel('time(s)');ylabel('rin,yout');figure(2);plot(time,u,'r');xlabel('time(s)');ylabel('u');BP神经网络PID程序:%BP based PID Controlclear all;close all;xite=0.9;IN=4;H=5;Out=3; %NN Structurewi=[-0.6394 -0.2696 -0.3756 -0.7023;-0.8603 -0.2013 -0.5024 -0.2596;-1.0749 0.5543 -1.6820 -0.5437;-0.3625 -0.0724 -0.6463 -0.2859;0.1425 0.0279 -0.5406 -0.7660];%wi=0.50*rands(H,IN);wi_1=wi;wi_2=wi;wi_3=wi;wo=[0.7576 0.2616 0.5820 -0.1416 -0.1325;-0.1146 0.2949 0.8352 0.2205 0.4508;0.7201 0.4566 0.7672 0.4962 0.3632];%wo=0.50*rands(Out,H);wo_1=wo;wo_2=wo;wo_3=wo;x=[0,0,0];du_1=0;u_1=0;u_2=0;u_3=0;u_4=0;u_5=0;u_6=0;y_1=0;y_2=0;Oh=zeros(H,1); %Output from NN middle layerI=Oh; %Input to NN middle layererror_2=0;error_1=0;ts=10;for k=1:1:1000time(k)=k*ts;rin(k)=1.0;%Unlinear modelyout(k)=0.9355*y_1+0.0645*u_6;error(k)=rin(k)-yout(k);xi=[rin(k),yout(k),error(k),1];x(1)=error(k)-error_1;x(2)=error(k);x(3)=error(k)-2*error_1+error_2;epid=[x(1);x(2);x(3)];I=xi*wi';for j=1:1:HOh(j)=(exp(I(j))-exp(-I(j)))/(exp(I(j))+exp(-I(j))); %Middle Layer endK=wo*Oh; %Output Layerfor l=1:1:OutK(l)=exp(K(l))/(exp(K(l))+exp(-K(l))); %Getting kp,ki,kd endkp(k)=K(1);ki(k)=K(2);kd(k)=K(3);Kpid=[kp(k),ki(k),kd(k)];du(k)=Kpid*epid;u(k)=u_1+du(k);dyu(k)=sign((yout(k)-y_1)/(du(k)-du_1+0.0001));%Output layerfor j=1:1:OutdK(j)=2/(exp(K(j))+exp(-K(j)))^2;endfor l=1:1:Outdelta3(l)=error(k)*dyu(k)*epid(l)*dK(l);endfor l=1:1:Outfor i=1:1:Hd_wo=xite*delta3(l)*Oh(i)+alfa*(wo_1-wo_2);endendwo=wo_1+d_wo+alfa*(wo_1-wo_2);%Hidden layerfor i=1:1:HdO(i)=4/(exp(I(i))+exp(-I(i)))^2;endsegma=delta3*wo;for i=1:1:Hdelta2(i)=dO(i)*segma(i);endif k==200u(k)=u(k)+1;endd_wi=xite*delta2'*xi;wi=wi_1+d_wi+alfa*(wi_1-wi_2);%Parameters Updatedu_1=du(k);u_6=u_5;u_5=u_4;u_4=u_3;u_3=u_2;u_2=u_1;u_1=u(k);y_2=y_1;y_1=yout(k);wo_3=wo_2;wo_2=wo_1;wo_1=wo;wi_3=wi_2;wi_2=wi_1;wi_1=wi;error_2=error_1;error_1=error(k);endfigure(1);plot(time,rin,'r',time,yout,'b');xlabel('time(s)');ylabel('rin,yout');figure(2);plot(time,error,'r');xlabel('time(s)');ylabel('error');figure(3);plot(time,u,'r');xlabel('time(s)');ylabel('u');figure(4);subplot(311);plot(time,kp,'r');xlabel('time(s)');ylabel('kp');subplot(312);plot(time,ki,'g');xlabel('time(s)');ylabel('ki');subplot(313);plot(time,kd,'b');xlabel('time(s)');ylabel('kd');模糊PID程序:clear all;close all;a=newfis('fuzzpid');a=addvar(a,'input','e',[-3,3]); %Parameter e a=addmf(a,'input',1,'NB','zmf',[-3,-1]);a=addmf(a,'input',1,'NM','t rimf',[-3,-2,0]);a=addmf(a,'input',1,'NS','trimf',[-3,-1,1]);a=addmf(a,'input',1,'Z','t rimf',[-2,0,2]);a=addmf(a,'input',1,'PS','trimf',[-1,1,3]);a=addmf(a,'input',1,'PM','t rimf',[0,2,3]);a=addmf(a,'input',1,'PB','smf',[1,3]);a=addvar(a,'input','ec',[-3,3]); %Parameter ec a=addmf(a,'input',2,'NB','zmf',[-3,-1]);a=addmf(a,'input',2,'NM','t rimf',[-3,-2,0]);a=addmf(a,'input',2,'NS','trimf',[-3,-1,1]);a=addmf(a,'input',2,'Z','t rimf',[-2,0,2]);a=addmf(a,'input',2,'PS','trimf',[-1,1,3]);a=addmf(a,'input',2,'PM','t rimf',[0,2,3]);a=addmf(a,'input',2,'PB','smf',[1,3]);a=addvar(a,'output','kp',[-0.3,0.3]); %Parameter kp a=addmf(a,'output',1,'NB','zmf',[-0.3,-0.1]);a=addmf(a,'output',1,'NM','t rimf',[-0.3,-0.2,0]);a=addmf(a,'output',1,'NS','trimf',[-0.3,-0.1,0.1]);a=addmf(a,'output',1,'Z','t rimf',[-0.2,0,0.2]);a=addmf(a,'output',1,'PS','trimf',[-0.1,0.1,0.3]);a=addmf(a,'output',1,'PM','t rimf',[0,0.2,0.3]);a=addmf(a,'output',1,'PB','smf',[0.1,0.3]);a=addvar(a,'output','ki',[-0.06,0.06]); %Parameter kia=addmf(a,'output',2,'NB','zmf',[-0.06,-0.02]);a=addmf(a,'output',2,'NM','t rimf',[-0.06,-0.04,0]);a=addmf(a,'output',2,'NS','trimf',[-0.06,-0.02,0.02]);a=addmf(a,'output',2,'Z','t rimf',[-0.04,0,0.04]);a=addmf(a,'output',2,'PS','trimf',[-0.02,0.02,0.06]);a=addmf(a,'output',2,'PM','t rimf',[0,0.04,0.06]);a=addmf(a,'output',2,'PB','smf',[0.02,0.06]);a=addvar(a,'output','kd',[-3,3]); %Parameter kpa=addmf(a,'output',3,'NB','zmf',[-3,-1]);a=addmf(a,'output',3,'NM','t rimf',[-3,-2,0]);a=addmf(a,'output',3,'NS','trimf',[-3,-1,1]);a=addmf(a,'output',3,'Z','t rimf',[-2,0,2]);a=addmf(a,'output',3,'PS','trimf',[-1,1,3]);a=addmf(a,'output',3,'PM','t rimf',[0,2,3]);a=addmf(a,'output',3,'PB','smf',[1,3]);rulelist=[1 1 7 1 5 1 1;1 2 7 1 3 1 1;1 3 6 2 1 1 1;1 4 6 2 1 1 1;1 5 5 3 1 1 1;1 6 4 4 2 1 1;1 7 4 4 5 1 1;2 1 7 1 5 1 1;2 2 7 1 3 1 1;2 3 6 2 1 1 1;2 4 5 3 2 1 1;2 5 5 3 2 1 1;2 6 4 43 1 1;2 7 34 4 1 1;3 1 6 1 4 1 1;3 2 6 2 3 1 1;3 3 6 3 2 1 1;3 45 3 2 1 1;3 5 4 4 3 1 1;36 3 5 3 1 1;37 3 5 4 1 1;4 1 6 2 4 1 1;4 2 6 2 3 1 1;4 3 5 3 3 1 1;4 4 4 4 3 1 1;4 5 3 5 3 1 1;4 6 2 6 3 1 1;4 7 2 6 4 1 1;5 1 5 2 4 1 1;5 2 5 3 4 1 1;5 3 4 4 4 1 1;5 4 3 5 4 1 1;5 5 3 5 4 1 1;5 6 2 6 4 1 1;5 7 2 7 4 1 1;6 1 5 4 7 1 1;6 2 4 4 5 1 1;6 3 3 5 5 1 1;6 4 2 5 5 1 1;6 5 2 6 5 1 1;6 6 27 5 1 1;6 7 1 7 7 1 1;7 1 4 4 7 1 1;7 2 4 4 6 1 1;7 3 2 5 6 1 1;7 4 2 6 6 1 1;7 5 2 6 5 1 1;7 6 1 7 5 1 1;7 7 1 7 7 1 1];a=addrule(a,rulelist);a=setfis(a,'DefuzzMethod','centroid');writefis(a,'fuzzpid');a=readfis('fuzzpid');%PID Controllerts=10;sys=tf([1],[150,1],'inputdelay',50);dsys=c2d(sys,ts,'t ustin');[num,den]=tfdata(dsys,'v');u_1=0.0;u_2=0.0;u_3=0.0;u_4=0.0;u_5=0.0;u_6=0.0;y_1=0;y_2=0;x=[0,0,0]';error_2=0;error_1=0;e_1=0.0;ec_1=0.0;kp0=0.0929;kd0=0.0078;ki0=0.0518;for k=1:1:1000time(k)=k*ts;rin(k)=1;%Using fuzzy inference to tunning PIDk_pid=evalfis([e_1,ec_1],a);kp(k)=kp0+k_pid(1);ki(k)=ki0+k_pid(2);kd(k)=kd0+k_pid(3);u(k)=kp(k)*x(1)+kd(k)*x(2)+ki(k)*x(3);if u(k)>=10u(k)=10;endif u(k)<=-10u(k)=-10;endif k==200u(k)=u(k)+1;endyout(k)=-den(2)*y_1+num(2)*u_6;error(k)=rin(k)-yout(k);%%%%%%%%%%%%%%Return of PID parameters%%%%%%%%%%%%%%% u_6=u_5;u_5=u_4;u_4=u_3;u_3=u_2;u_2=u_1;u_1=u(k);y_2=y_1;y_1=yout(k);x(1)=error(k); % Calculating Px(2)=error(k)-error_1; % Calculating Dx(3)=x(3)+error(k); % Calculating Ie_1=x(1);ec_1=x(2);error_2=error_1;error_1=error(k);endshowrule(a)figure(1);plot(time,rin,'b',time,yout,'r');xlabel('time(s)');ylabel('rin,yout');figure(2);plot(time,error,'r');xlabel('time(s)');ylabel('error');figure(3);plot(time,u,'r');xlabel('time(s)');ylabel('u');。