昂昂溪区二中2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
昂昂溪区二中2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 若将函数y=tan (ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan (ωx+
)的图象
重合,则ω的最小值为( )
A .
B .
C .
D .
2. 函数y=2|x|的图象是(
)
A .
B .
C .
D .
3. 如图
,三行三列的方阵中有9个数a ij (i=1,2,3;j=1,2,3),从中任取三个数,则至
少有两个数位于同行或同列的概率是( )A .
B .
C .
D .
4. 已知点A (0,1),B (3,2),C (2,0),若=2,则||为( )
AD → DB → CD →
A .1 B.4
3
C. D .253
5. 方程x 2+2ax+y 2=0(a ≠0)表示的圆( )A .关于x 轴对称
B .关于y 轴对称
C .关于直线y=x 轴对称
D .关于直线y=﹣x 轴对称
6. 数列{a n }满足a 1=3,a n ﹣a n •a n+1=1,A n 表示{a n }前n 项之积,则A 2016的值为( )
A .﹣
B .
C .﹣1
D .1
7. 某校通过随机询问100名性别不同的学生是否能做到“光盘”行动,得到所示联表:做不到“光盘”能做到“光盘”
男4510女30
15
P (K 2≥k )0.100.050.01
k 2.7063.8416.635附:K 2=
,则下列结论正确的是(
)
A .在犯错误的概率不超过1%的前提下,认为“该校学生能否做到‘光盘’与性别无关”
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
B .有99%以上的把握认为“该校学生能否做到‘光盘’与性别有关”
C .在犯错误的概率不超过10%的前提下,认为“该校学生能否做到‘光盘’与性别有关”
D .有90%以上的把握认为“该校学生能否做到‘光盘’与性别无关”
8. “m=1”是“直线(m ﹣2)x ﹣3my ﹣1=0与直线(m+2)x+(m ﹣2)y+3=0相互垂直”的( )
A .必要而不充分条件
B .充分而不必要条件
C .充分必要条件
D .既不充分也不必要条件
9. 若如图程序执行的结果是10,则输入的x 的值是(
)
A .0
B .10
C .﹣10
D .10或﹣10
10.函数y=f (x )在[1,3]上单调递减,且函数f (x+3)是偶函数,则下列结论成立的是( )
A .f (2)<f (π)<f (5)
B .f (π)<f (2)<f (5)
C .f (2)<f (5)<f (π)
D .f (5)<
f (π)<f (2)
11.已知两不共线的向量,,若对非零实数m ,n 有m +n 与﹣2共线,则=( )
A .﹣2
B .2
C .﹣
D .
12.“x 2﹣4x <0”的一个充分不必要条件为( )
A .0<x <4
B .0<x <2
C .x >0
D .x <4
二、填空题
13.已知等差数列{a n }中,a 3=,则cos (a 1+a 2+a 6)= .
14.下列命题:
①集合的子集个数有16个;{},,,a b c d ②定义在上的奇函数必满足;
R ()f x (0)0f =③既不是奇函数又不是偶函数;2
()(21)2(21)f x x x =+--④,,,从集合到集合的对应关系是映射;A R =B R =1
:||
f x x →A B f ⑤在定义域上是减函数.1
()f x x
=
其中真命题的序号是 .
15.一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 .
16.已知,是空间二向量,若=3,||=2,|﹣|=,则与的夹角为 .
17.已知三棱锥的四个顶点均在球的球面上,和所在的平面互相垂直,,
ABC D -O ABC ∆DBC ∆3=AB ,,则球的表面积为
.
3=AC 32===BD CD BC O 18.已知f (x ),g (x )都是定义在R 上的函数,且满足以下条件:①f (x )=a x g (x )(a >0,a ≠1);②g (x )≠0;
③f (x )g'(x )>f'(x )g (x );若,则a= .
三、解答题
19.已知函数f (x )=
.
(1)求函数f (x )的最小正周期及单调递减区间;(2)当时,求f (x )的最大值,并求此时对应的x 的值.
20.如图,已知椭圆C ,点B 坐标为(0,﹣1),过点B 的直线与椭圆C 的另外一个交
点为A ,且线段AB 的中点E 在直线y=x 上.(1)求直线AB 的方程;
(2)若点P 为椭圆C 上异于A ,B 的任意一点,直线AP ,BP 分别交直线y=x 于点M ,N ,直线BM 交椭圆C 于另外一点Q .①证明:OM •ON 为定值;②证明:A 、Q 、N 三点共线.
21.已知函数f(x)=cos(ωx+),(ω>0,0<φ<π),其中x∈R且图象相邻两对称轴之间的距离为;
(1)求f(x)的对称轴方程和单调递增区间;
(2)求f(x)的最大值、最小值,并指出f(x)取得最大值、最小值时所对应的x的集合.
22.已知函数f(x)=|2x+1|+|2x﹣3|.
(Ⅰ)求不等式f(x)≤6的解集;
(Ⅱ)若关于x的不等式f(x)﹣log2(a2﹣3a)>2恒成立,求实数a的取值范围.
23.等差数列{a n} 中,a1=1,前n项和S n满足条件,
(Ⅰ)求数列{a n} 的通项公式和S n;
(Ⅱ)记b n=a n2n﹣1,求数列{b n}的前n项和T n.
24.已知f(x)是定义在R上的奇函数,当x<0时,f(x)=()x.
(1)求当x>0时f(x)的解析式;
(2)画出函数f(x)在R上的图象;(3)写出它的单调区间.
昂昂溪区二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)
一、选择题
1.【答案】D
【解析】解:y=tan(ωx+),向右平移个单位可得:y=tan[ω(x﹣)+]=tan(ωx+)
∴﹣ω+kπ=
∴ω=k+(k∈Z),
又∵ω>0
∴ωmin=.
故选D.
2.【答案】B
【解析】解:∵f(﹣x)=2|﹣x|=2|x|=f(x)
∴y=2|x|是偶函数,
又∵函数y=2|x|在[0,+∞)上单调递增,故C错误.
且当x=0时,y=1;x=1时,y=2,故A,D错误
故选B
【点评】本题考查的知识点是指数函数的图象变换,其中根据函数的解析式,分析出函数的性质,进而得到函数的形状是解答本题的关键.
3.【答案】
D
【解析】
古典概型及其概率计算公式.
【专题】计算题;概率与统计.
【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论.
【解答】解:从9个数中任取3个数共有C93=84种取法,三个数分别位于三行或三列的情况有6种;
∴所求的概率为=
故选D.
【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂,采用间接解法比较简单.
4.【答案】
【解析】解析:选C.设D点的坐标为D(x,y),
∵A(0,1),B(3,2),=2,
AD→DB→
∴(x ,y -1)=2(3-x ,2-y )=(6-2x ,4-2y ),
∴即x =2,y =,{
x =6-2x ,y -1=4-2y )
53
∴=(2,)-(2,0)=(0,),CD → 5353
∴||==,故选C.CD → 02+(53)253
5. 【答案】A
【解析】解:方程x 2+2ax+y 2=0(a ≠0)可化为(x+a )2+y 2=a 2,圆心为(﹣a ,0),∴方程x 2+2ax+y 2=0(a ≠0)表示的圆关于x 轴对称,故选:A .
【点评】此题考查了圆的一般方程,方程化为标准方程是解本题的关键.
6. 【答案】D
【解析】解:∵a 1=3,a n ﹣a n •a n+1=1,∴,得
,
,a 4=3,
…
∴数列{a n }是以3为周期的周期数列,且a 1a 2a 3=﹣1,∵2016=3×672,∴A 2016 =(﹣1)672=1.故选:D .
7. 【答案】C
【解析】解:由2×2列联表得到a=45,b=10,c=30,d=15.则a+b=55,c+d=45,a+c=75,b+d=25,ad=675,bc=300,n=100.
代入K 2=,
得k 2的观测值k=
.
因为2.706<3.030<3.841.
所以有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”.
即在犯错误的概率不超过10%的前提下,认为“该校学生能否做到‘光盘’与性别有关”故选C .
【点评】本题是一个独立性检验,我们可以利用临界值的大小来决定是否拒绝原来的统计假设,若值较大就拒绝假设,即拒绝两个事件无关,此题是基础题.
8. 【答案】B
【解析】解:当m=0时,两条直线方程分别化为:﹣2x ﹣1=0,2x ﹣2y+3=0,此时两条直线不垂直,舍去;
当m=2时,两条直线方程分别化为:﹣6y﹣1=0,4x+3=0,此时两条直线相互垂直;
当m≠0,2时,两条直线相互垂直,则×=﹣1,解得m=1.
综上可得:两条直线相互垂直的充要条件是:m=1,2.
∴“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的充分不必要条件.
故选:B.
【点评】本题考查了直线相互垂直的充要条件、充要条件的判定,考查了分类讨论方法、推理能力与计算能力,属于中档题.
9.【答案】D
【解析】解:模拟执行程序,可得程序的功能是计算并输出y=的值,
当x<0,时﹣x=10,解得:x=﹣10
当x≥0,时x=10,解得:x=10
故选:D.
10.【答案】B
【解析】解:∵函数y=f(x)在[1,3]上单调递减,且函数f(x+3)是偶函数,
∴f(π)=f(6﹣π),f(5)=f(1),
∵f(6﹣π)<f(2)<f(1),
∴f(π)<f(2)<f(5)
故选:B
【点评】本题考查的知识点是抽象函数的应用,函数的单调性和函数的奇偶性,是函数图象和性质的综合应用,难度中档.
11.【答案】C
【解析】解:两不共线的向量,,若对非零实数m,n有m+n与﹣2共线,
∴存在非0实数k使得m+n=k(﹣2)=k﹣2k,或k(m+n)=﹣2,
∴,或,
则=﹣.
故选:C.
【点评】本题考查了向量共线定理、向量共面的基本定理,考查了推理能力与计算能力,属于中档题.
12.【答案】B
【解析】解:不等式x2﹣4x<0整理,得x(x﹣4)<0
∴不等式的解集为A={x|0<x<4},
因此,不等式x 2﹣4x <0成立的一个充分不必要条件,对应的x 范围应该是集合A 的真子集.
写出一个使不等式x 2﹣4x <0成立的充分不必要条件可以是:0<x <2,故选:B .
二、填空题
13.【答案】 .
【解析】解:∵数列{a n }为等差数列,且a 3=,∴a 1+a 2+a 6=3a 1+6d=3(a 1+2d )=3a 3=3×=
,
∴cos (a 1+a 2+a 6)=cos =
.
故答案是:
.
14.【答案】①②【解析】
试题分析:子集的个数是,故①正确.根据奇函数的定义知②正确.对于③为偶函数,故错误.
2n
()2
41f x x =-对于④没有对应,故不是映射.对于⑤减区间要分成两段,故错误.0x =考点:子集,函数的奇偶性与单调性.
【思路点晴】集合子集的个数由集合的元素个数来决定,一个个元素的集合,它的子集的个数是个;对于
2n
奇函数来说,如果在处有定义,那么一定有,偶函数没有这个性质;函数的奇偶性判断主要0x =()00f =根据定义,注意判断定义域是否关于原点对称.映射必须集合中任意一个
()()()(),f x f x f x f x -=-=-A 元素在集合中都有唯一确定的数和它对应;函数的定义域和单调区间要区分清楚,不要随意写并集.1B 15.【答案】 .
【解析】解:由题意可得,2a ,2b ,2c 成等差数列∴2b=a+c
∴4b 2=a 2+2ac+c 2①∵b 2=a 2﹣c 2②
①②联立可得,5c 2+2ac ﹣3a 2=0∵
∴5e 2+2e ﹣3=0∵0<e <1∴故答案为:
【点评】本题主要考查了椭圆的性质的应用,解题中要椭圆离心率的取值范围的应用,属于中档试题
16.【答案】 60° .
【解析】解:∵
|﹣|=,
∴∴
=3,
∴cos <>=
=∵
∴与的夹角为60°.故答案为:60°
【点评】本题考查平面向量数量积表示夹角和模长,本题解题的关键是整理出两个向量的数量积,再用夹角的表示式.
17.【答案】
16π
【解析】如图所示,∵,∴为直角,即过△的小圆面的圆心为的中点,222AB AC BC +=CAB ∠ABC BC O 'ABC △和所在的平面互相垂直,则球心O 在过的圆面上,即的外接圆为球大圆,由等边三角DBC △DBC △DBC △形的重心和外心重合易得球半径为,球的表面积为2R =24π16π
S R =
=18.【答案】 .
【解析】解:由得
,
所以
.
又由f (x )g'(x )>f'(x )g (x ),即f (x )g'(x )﹣f'(x )g (x )>0,也就是
,说明函数
是减函数,
即,故.
故答案为
【点评】本题考查了应用导数判断函数的单调性,做题时应认真观察.
三、解答题
19.【答案】
【解析】解:(1)f(x)=﹣
=sin2x+sinxcosx﹣
=+sin2x﹣
=sin(2x﹣)…3分
周期T=π,
因为cosx≠0,所以{x|x≠+kπ,k∈Z}…5分
当2x﹣∈,即+kπ≤x≤+kπ,x≠+kπ,k∈Z时函数f(x)单调递减,
所以函数f(x)的单调递减区间为,,k∈Z…7分
(2)当,2x﹣∈,…9分
sin(2x﹣)∈(﹣,1),当x=时取最大值,
故当x=时函数f(x)取最大值为1…12分
【点评】本题主要考查了三角函数中的恒等变换应用,三角函数的周期性及其求法,三角函数最值的解法,属于基础题.
20.【答案】
【解析】(1)解:设点E(t,t),∵B(0,﹣1),∴A(2t,2t+1),
∵点A在椭圆C上,∴,
整理得:6t2+4t=0,解得t=﹣或t=0(舍去),
∴E(﹣,﹣),A(﹣,﹣),
∴直线AB的方程为:x+2y+2=0;
(2)证明:设P(x0,y0),则,
①直线AP方程为:y+=(x+),
联立直线AP与直线y=x的方程,解得:x M=,
直线BP的方程为:y+1=,
联立直线BP与直线y=x的方程,解得:x N=,
∴OM•ON=|x M||x N|
=2•||•||
=||
=||
=||
=.
②设直线MB的方程为:y=kx﹣1(其中k==),
联立,整理得:(1+2k2)x2﹣4kx=0,
∴x Q=,y Q=,
∴k AN===1﹣,k AQ==1﹣,
要证A、Q、N三点共线,只需证k AN=k AQ,即3x N+4=2k+2,
将k=代入,即证:x M•x N=,
由①的证明过程可知:|x M|•|x N|=,
而x M与x N同号,∴x M•x N=,
即A、Q、N三点共线.
【点评】本题是一道直线与圆锥曲线的综合题,考查求直线的方程、线段乘积为定值、三点共线等问题,考查运算求解能力,注意解题方法的积累,属于中档题.
21.【答案】
【解析】解:(1)函数f(x)=cos(ωx+)的图象的两对称轴之间的距离为=,
∴ω=2,f(x)=cos(2x+).
令2x+=kπ,求得x=﹣,可得对称轴方程为x=﹣,k∈Z.
令2kπ﹣π≤2x+≤2kπ,求得kπ﹣≤x≤kπ﹣,
可得函数的增区间为,k∈Z.
(2)当2x+=2kπ,即x=kπ﹣,k∈Z时,f(x)取得最大值为1.
当2x+=2kπ+π,即x=kπ+,k∈Z时,f(x)取得最小值为﹣1.
∴f(x)取最大值时相应的x集合为{x|x=kπ﹣,k∈Z};
f(x)取最小值时相应的x集合为{x|x=kπ+,k∈Z}.
22.【答案】
【解析】解:(Ⅰ)原不等式等价于或或
,
解得:<x≤2或﹣≤x≤或﹣1≤x<﹣,
∴不等式f(x)≤6的解集为{x|﹣1≤x≤2}.
(Ⅱ)不等式f(x)﹣>2恒成立⇔+2<f(x)=|2x+1|+|2x﹣3|恒成立⇔+2<f(x)min恒成立,
∵|2x+1|+|2x﹣3|≥|(2x+1)﹣(2x﹣3)|=4,
∴f(x)的最小值为4,
∴+2<4,
即,
解得:﹣1<a<0或3<a<4.
∴实数a的取值范围为(﹣1,0)∪(3,4).
23.【答案】
【解析】解:(Ⅰ)设等差数列的公差为d,
由=4得=4,
所以a2=3a1=3且d=a2﹣a1=2,
所以a n=a1+(n﹣1)d=2n﹣1,
=
(Ⅱ)由b n=a n2n﹣1,得b n=(2n﹣1)2n﹣1.
所以T n=1+321+522+…+(2n﹣1)2n﹣1①
2T n=2+322+523+…+(2n﹣3)2n﹣1+(2n﹣1)2n②
①﹣②得:﹣T n=1+22+222+…+22n﹣1﹣(2n﹣1)2n
=2(1+2+22+…+2n﹣1)﹣(2n﹣1)2n﹣1
=2×﹣(2n﹣1)2n﹣1
=2n(3﹣2n)﹣3.
∴T n=(2n﹣3)2n+3.
【点评】本题主要考查数列求和的错位相减,错位相减法适用于通项为一等差数列乘一等比数列组成的新数列.此方法是数列求和部分高考考查的重点及热点.
24.【答案】
【解析】解:(1)若x>0,则﹣x<0…(1分)
∵当x<0时,f(x)=()x.
∴f(﹣x)=()﹣x.
∵f(x)是定义在R上的奇函数,
f(﹣x)=﹣f(x),
∴f(x)=﹣()﹣x=﹣2x.…(4分)
(2)∵(x)是定义在R上的奇函数,
∴当x=0时,f(x)=0,
∴f(x)=.…(7分)
函数图象如下图所示:
(3)由(2)中图象可得:f(x)的减区间为(﹣∞,+∞)…(11分)(用R表示扣1分)
无增区间…(12分)
【点评】本题考查的知识点是函数的奇偶性,函数的解析式,函数的图象,分段函数的应用,函数的单调性,难度中档.。