2018-2019学年高二数学选修2-1课时跟踪训练:(二十二) 空间向量的数量积
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪训练(二十二)空间向量的数量积
1.已知A(2,-5,1),B(2,-2,4),C(1,-4,1),则向量AB与AC的夹角为________.2.已知|a|=2,|b|=3,〈a,b〉=60°,则|2a-3b|=________.
3.若AB=(-4,6,-1),AC=(4,3,-2),|a|=1,且a⊥AB,a⊥AC,则a=________________________________________________________________________.
4.已知a=(1,1,0),b=(0,1,1),c=(1,0,1),p=a-b,q=a+2b-c,则p·q=________.
5.如图,120°的二面角的棱上有A,B两点,直线AC,BD分别
在两个半平面内,且都垂直于AB.若AB=4,AC=6,BD=8,则CD
的长为________.
6.已知a=(1,5,-1),b=(-2,3,5).
(1)若(k a+b)∥(a-3b),求k的值;
(2)若(k a+b)⊥(a-3b),求k的值.
7.已知A(1,1,1),B(2,2,2),C(3,2,4),求△ABC的面积.
8.在长方体OABC-O1A1B1C1中,|OA|=2,|AB|=3,|AA1|=2,E是BC的中点.建立空间直角坐标系,用向量方法解决下列问题.
(1)求直线AO1与B1E所成的角的余弦值;
(2)作O1D⊥AC于D,求点O1到点D的距离.
答 案
1.解析:AB =(0,3,3),AC =(-1,1,0),∴cos 〈AB ,AC 〉=332×2=12
,∴〈AB ,AC 〉=60°.
答案:60°
2.解析:a ·b =2×3×cos 60°=3.∴|2a -3b |=
4|a |2-12a ·b +9|b |2=4×4-12×3+81
=61.
答案:61 3.解析:设a =(x ,y ,z ),由题意有⎩⎪⎨⎪⎧ a·AB =0,a ·AC =0,
|a|=1,代入坐标可解得:⎩⎪⎨⎪⎧ x =313,y =413,z =12
13或⎩⎪⎨⎪⎧ x =-313,y =-413,
z =-1213.
答案:⎝⎛⎭⎫313,413,1213或⎝⎛⎭⎫-313
,-413,-1213 4.解析:∵p =(1,1,0)-(0,1,1)=(1,0,-1),q =(1,1,0)+2(0,1,1)-(1,0,1)=(0,3,1),∴p ·q =1×0+0×3+(-1)×1=-1.
答案:-1
5.解析:∵AC ⊥AB ,BD ⊥AB ,∴AC ·AB =0,BD ·AB =0.又∵二面角为120°,∴〈CA ,BD 〉=60°,∴CD 2=|CD |2=(CA +AB +BD )2=CA 2+AB 2+BD 2+2(CA ·AB +CA ·BD +AB ·BD )=164,∴|CD |=241.
答案:241
6.解:k a +b =(k -2,5k +3,-k +5),
a -3
b =(1+3×2,5-3×3,-1-3×5)
=(7,-4,-16).
2 (1)∵(k a +b )∥(a -3b ),
∴k -27=5k +3-4=-k +5-16,解得k =-13.
(2)∵(k a +b )⊥(a -3b ),
∴(k -2)×7+(5k +3)×(-4)+(-k +5)×(-16)=0.
解得k =1063.
7.解:∵AB =(1,1,1),AC =(2,1,3),
∴|AB |=3,|AC |=14,AB ·AC =6,
∴cos ∠BAC =cos 〈AB ,AC 〉=AB ·AC
|AB ||AC | =6
3×14=427,
∴sin ∠BAC =1-cos 2A =1
7=7
7,
∴S △ABC =1
2|AB ||AC |sin ∠BAC
=12×3×14×77=6
2.
8.解:建立如图所示的空间直角坐标系.(1)由题意得A (2,0,0),
O 1(0,0,2),B 1(2,3,2),E (1,3,0),
∴1AO =(-2,0,2),1B E =(-1,0,-2),
∴cos 〈1AO ,1B E 〉=-2210=-10
10.
故AO 1与B 1E 所成的角的余弦值为10
10.
(2)由题意得1O D ⊥AC ,AD ∥AC ,
∵C (0,3,0),设D (x ,y,0),
∴1O D =(x ,y ,-2),AD =(x -2,y,0),AC =(-2,3,0),
2
∴⎩⎪⎨⎪⎧ -2x +3y =0,x -2-2=y 3,解得⎩⎨⎧ x =1813,y =1213, ∴D ⎝⎛⎭⎫1813,1213,0. O 1D =|1O D |= ⎝⎛⎭⎫18132+⎝⎛⎭⎫12132+4 = 1 144132=228613
.。