五年级下册数学奥数题带答案word百度文库

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级下册数学奥数题带答案word百度文库
一、拓展提优试题
1.观察下表中的数的规律,可知第8行中,从左向右第5个数是.
2.若2副网球拍和7个网球一共220元,且1副网球拍比1个网球贵83元.求网球的单价.
3.四位数的所有因数中,有3个是质数,其它39个不是质数.那么,四位数有个因数.
4.对于自然数N,如果1﹣9这九个自然数中至少有六个数可以整除N,则称N是一个“六合数”,则在大于2000的自然数中,最小的“六合数”
是.
5.(8分)如果两个质数的差恰好是2,称这两个质数为一对孪生质数.
例如3和5是一对孪生质数,29和31也是一对孪生质数.在数论研究中,孪生质数是最热门的研究课题之一.华裔数学家张益唐在该课题的研究中取得了令人瞩目的成就,他的事迹激励着更多的青年学子投身数学研究.在不超过100的整数中,一共可以找到对孪生质数.
6.(8分)图中所示的图形是迎春小学数学兴趣小组的标志,其中,ABCDEF 是正六边形,面积为360,那么四边形AGDH的面积是.
7.用1、2、3、5、6、7、8、9这8个数字最多可以组成个质数(每个数字只能使用一次,且必须使用).
8.一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是分.
9.李双骑车以320米分钟的速度从A地驶向B地,途中因自行车故障推车继续向前步行5分钟到距B地1800米的某地修车,15分钟后以原来骑车速度的1.5倍继续向前驶向B地,到达B地时,比预计时间多用17分钟,则李双推车步行的速度是米/分钟.
10.从1、2、3、4、5中任取3个组成一个三位数,其中不能被3整除的三位
数有个.
11.如图,在梯形ABCD中,若AB=8,DC=10,S△AMD=10,S△BCM=15,则梯形ABCD的面积是.
12.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换多少只鸡?
13.小明准备和面包饺子,他在1.5千克面粉中加入了5千克的水,发现面和得太稀了,奶奶告诉他,包饺子的面需要按照3份面,2份水和面,于是小明分三次加入相同分量的面粉,终于将面按按要求和好了,那么他每次加入了
千克面粉.
14.观察下面数表中的规律,可知x=.
15.A、B两桶水同样重,若从A桶中倒2.5千克水到B桶中,则B桶中水的重量是A桶中水的重量的6倍,那么B桶中原来有水千克.
16.如图是一个正方体的平面展开图,若该正方体相对的两个面上的数值相等,则a﹣b×c的值是.
17.如图,在△ABC中,D、E分别是AB、AC的中点,且图中两个阴影部分
=.
(甲和乙)的面积差是5.04,则S
△ABC
18.(7分)如图,按此规律,图4中的小方块应为 个.
19.(7分)对于a 、b ,定义运算“@”为:a @b =(a +5)×b ,若x @1.3=11.05,则x = .
20.大于0的自然数n 是3的倍数,3n 是5的倍数,则n 的最小值
是 .
21.如图,正方形的边长是6厘米,AE =8厘米,求OB = 厘米.
22.已知13411a b -=,那么()20132065b a --=______。

23.有一行数:1,1,2,3,5,8,13,21,…,从第三个数开始,每个数都是前两个数的和,问在前2007个数中,有 是偶数.
24.用1,2,3,4,5,6,7,8这八个数字组成两个不同的四位数(每个数字只用一次)使他们的差最小,那么这个差是 .
25.幼儿园给小朋友派礼物,如果有2人各派4个,其余各派3个,则还剩余11个,如果4人各派3个,其余各派6个,则剩余10个,问一共有多少件礼物?
26.先将从1开始的自然数排成一列:
123456789101112131415…
然后按一定规律分组:
1,23,456,7891,01112,131415,…
在分组后的数中,有一个十位数,这个十位数是 .
27.数一数,图中有多少个正方形?
28.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”,那么,1000以内最大的“希望数”是.
29.解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需分钟.
30.小松鼠储藏了一些松果过冬.小松鼠原计划每天吃6个松果,实际每天比原计划多吃2个,结果提前5天吃完了松果.小松鼠一共储藏了个松果.
31.(12分)甲、乙两人从A地步行去B地.乙早上6:00出发,匀速步行前往;甲早上8:00才出发,也是匀速步行.甲的速度是乙的速度的2.5倍,但甲每行进半小时都需要休息半小时.甲出发后经过分钟才能追上乙.32.小明从家到学校去上课,如果每分钟走60米,可提前10分钟到校;如果每分钟走50米,要迟到4分钟到校.小明家到学校相距米.
33.定义新运算:a&b=(a+1)÷b,求:2&(3&4)的值为.34.用0、1、2、3、4这五个数字可以组成个不同的三位数.35.(8分)有四个人甲、乙、丙、丁,乙欠甲1元,丙欠乙2元,丁欠丙3元,甲欠丁4元.要想把他们之间的欠款结清,只因要甲拿出元.36.如图中,A、B、C、D为正六边形四边的中点,六边形的面积是16,阴影部分的面积是.
37.小猫咪A、B、C、D、E、F排队依次从猫妈妈手中领鱼干,每只小猫咪每次领一条,领完后在道队尾继续排队领,直到鱼干发完.若猫妈妈有278条鱼干,则最后一个领到鱼干的小猫咪是.
38.将100按“加15,减12,加3,加15,减12,加3,…”的顺序不断重复运算,运算26步后,得到的结果是.(1步指每“加”或“减”一个数)
39.某商店的同种点心有大小两种包装礼盒,大盒85.6元一盒,内有点心32块,小盒46.8元一盒,内有点心15块,若王雷用654元买了9盒点心,则他可得点心块.
40.鸡与兔共100只,鸡的脚比兔的脚多26只.那么,鸡有只.
【参考答案】
一、拓展提优试题
1.解:由图可知,第1行的数为1,
第2行的最后一个数为2×2=4,
第3行的最后一个数为3×3=9,

所以第7行最后一个数为7×7=49,
则第8行第1个数为49+1=50,第5个数为50+4=54,
故答案为:54.
2.解:220﹣83×2
=220﹣166
=54(元)
54÷(2+7)
=54÷9
=6(元)
答:网球每个6元.
3.解:首先根据奇偶位数和相等一定是11的倍数.因数一共的个数是3+39=42(个),将42分解成3个数字相乘42=2×3×7.
=a×b2×c6.
如果是11×52×26=17600(不是四位数不满足条件).再看一下如果这个数字最小是=11×32×26=6336.
=3663=11×37×32.因数的个数共2×2×3=12(个).
故答案为:12个.
4.解:依题意可知:
要满足是六合数.分为是3的倍数和不是3的倍数.
如果不是3的倍数那么一定是1,2,4,8,5,7的倍数,那么他们的最小公倍数为:8×5×7=280.那么280的倍数大于2000的最小的数字是2240.
如果是3的倍数.同时满足是1,2,3,6的倍数.再满足2个数字即可.大于2000的最小是2004(1,2,3,4,6倍数)不符合题意;
2010是(1,2,3,5,6倍数)不符合题意;
2016是(1,2,3,4,6,7,8,9倍数)满足题意.
2016<2240;
故答案为:2016
5.解:在不超过100的整数中,以下8组:3,5;5,7;11,13;17,19;29,31;41,43;59,61;71,73是孪生质数.
故答案为8.
6.解:根据分析,(1)△ABC面积等于六边形面积的,连接AD,
四边形ABCD是正六边形面积的,故△ACD面积为正六边形面积的
(2)S
△ABC :S
△ACD
=1:2,根据风筝模型,BG:GD=1:2;
(3)S
△BGC
:S CGD=BG:GD=1:2,故;
故AGDH面积=六边形总面积﹣(S
△ABC +S
△CGD
)×2=360﹣(+40)×
2=160.
故答案是:160
7.解:可以组成下列质数:
2、3、5、7、61、89,一共有6个.
答:用1、2、3、5、6、7、8、9这8个数字最多可以组成 6个质数.故答案为:6.
8.解:(84×10﹣93)÷(10﹣1)
=747÷9
=83(分)
答:其他9个人的平均分是83分.
故答案为:83.
9.解:1800÷320﹣1800÷(320×1.5)
=5.625﹣3.75
=1.875(分钟)
320×[5﹣(17﹣15+1.875)]÷5
=320×[5﹣3.875]÷5
=320×1.125÷5
=360÷5
=72(米/分钟)
答:李双推车步行的速度是72米/分钟.
故答案为:72.
10.解:1+2+3=6,1+2+4=7,1+2+5=8,2+3+4=9,2+3+5=10,3+4+5=12,
其中不能被3整除的数的和是7、8、10,即有三组(1、2、4),(1、2、5)(2、3、5),
每一组可以组成3×2×1=6个,三组共可以组成6×3=18个,
即不能被3整除的数共有18个.
故答案为:18.
11.解:△ADM 、△BCM 、△ABM 都等高,
所以S △ABM :(S △ADM +S △BCM )=8:10=4:5,
已知S △AMD =10,S △BCM =15,
所以S △ABM 的面积是:(10+15)×=20,
梯形ABCD 的面积是:10+15+20=45;
答:梯形ABCD 的面积是45.
故答案为:45.
12.解:42÷2=21(只)
21÷3×26
=7×26
=182(只)
182÷2×3
=91×3
=273(只)
273×3=819(只)
答:3头牛可以换819只鸡.
13.解:根据分析,因面和水的比为3:2,即每一份水需要:3÷2=1.5份面
粉,
现在有5千克水,则需要面粉:5×1.5=7.5千克,而现有面粉量为:1.5千克,故还须加:7.5﹣1.5=6千克,分三次加入,则每次须加入:6÷3=2千克.
故答案是:2.
14.解:根据分析可得,
81=92,
所以,x=9×5=45;
故答案为:45.
15.解:2.5×2÷(6﹣1)+2.5
=5÷5+2.5
=1+2.5
=3.5(千克)
答:B桶中原来有水3.5千克.
故答案为:3.5.
16.解:依题意可知:
3a+2与17是对立面,3a+2=17,所以a=5;
7b﹣4与10是对立面,7b﹣4=10,所以b=2;
a+3b﹣2c与11的对立面,5+3×2﹣2c=11,所以c=0;
所以a﹣b×c=5
故答案为:5
17.解:根据分析,S△BDC=S△EBC⇒S△DOB=S△EOC,
∴S
甲﹣S

=(S

+S
△DOB
)﹣(S

+S
△EOC
)=5.04,
又∵S
△BDC :S
△DEC
=BC:DE=2:1即:S
△BDC
=2S
△DEC
∴S
四边形DECB =3S
△DEC
;S
△ADE
=S
△DEC
∴S
△ABC =S
四边形DECB
+S
△ADE
=4S
△DEC

设S
△DEC =X,则S
△BDC
=2X,故有2X﹣X=5.04,
∴X=5.04,S
△ABC =4S
△DEC
=4X=4×5.04=20.16
故答案是:20.16
18.解:因为图1中小方块的个数为1+2×3=7个,
图2中小方块的个数为1+(1+2)+3×4=16个,
图3中小方块的个数为1+(1+2)+(1+2+3)+4×5=30个,
所以图4中小方块的个数为1+(1+2)+(1+2+3)+(1+2+3+4)+5×6=50个,
故答案为:50.
19.解:由定义可知:x @1.3=11.05,
(x +5)1.3=11.05,
x +5=8.5,
x =8.5﹣5=3.5
故答案为:3.5
20.解:3n 是5的倍数,3n 的个数一定是0或5
又因为大于0的自然数n 是3的倍数,
所以3n 最小是45
3n =45
n =15
所以n 最小取15时,n 是3的倍数,3n 是5的倍数.
答:n 的最小值是15.
故答案为:15.
21.解:6×6÷2=18(平方厘米),
18×2÷8=4.5(厘米);
答:OB 长4.5厘米.
故答案为:4.5.
22.2068
[解答]由于13411a b -=,所以()6520513451155a b a b -=⨯-=⨯=,所以()()20132065201365202068b a a b --=+-=
23.【分析】因为前两个数相加得偶数,即奇数+奇数=偶数;同理,第四个数是:奇数+偶数=奇数,以此类推,总是奇数、奇数、偶数、奇数、奇数、偶数…;每三个数一个循环周期,然后确定2007个数里面有几个循环周期,再结合余数,即可得出偶数的个数.
解:2007÷3=669,
又因为,每一个循环周期中有2个奇数,1个偶数,
所以前2007个数中偶数的个数是:1×669=669;
答:前2007个数中,有699是偶数.
故答案为:699.
24.【分析】设这两个数为a,b.,且a<b.千位最小差只能是1.为了让差尽量小,只能使a其它位数最大,b的其它位数最小.所以要尽量使a的百位大于b的百位,a的十位大于b的十位,a的个位大于b的个位.因此分别是8和1,7和2,6和3,剩下的4,5分给千位.据此解答.
解:设这两个数为a,b.,且a<b.千位最小差只能是1.根据以上分析,应为:
5123﹣4876=247
故答案为:247.
25.【分析】假设第一次每人都派3个,则还剩余2×(4﹣3)+11=13个,第二次如每人都派6个,同时少了4×(6﹣3)﹣10=2个,就是每人多派6﹣3=3个,则需要13+2=15个礼物,据此可求出人数,进而可求出礼物数.
解:[2×(4﹣3)+11+4×(6﹣3)﹣10]÷(6﹣3)
=[2×1+11+4×3﹣10]÷3
=[2+11+12﹣10]÷3
=15÷3
=5(人)
2×4+(5﹣2)×3+11
=8+3×3+11
=8+9+11
=28(件)
答:一共有28件礼物.
26.解:方法一:
据分组律可得:从131415向后为1617181,92021222,324252627,2829303132(十位数),…;
方法二:位数之前应该有1+2+3+…+9=45位.1位数有9位,10﹣19有20位,20﹣27有16位,所以十位数的开头应为28,为2829303132.
故填:2829303132.
27.解:通过有规律的数,得出:
(1)边长为1的正方形有4×3=12(个);
(2)边长为2的正方形有6个;
(3)边长为3的正方形有2个.
(4)以小正方形的对角线为边的正方形有8个;
(5)以对角线的一半为边长的正方形是17个;
(6)以3个对角线的一半为边长的正方形有1个.
所以图中共有正方形:12+6+2+8+17+1=46(个).
答:图中有46个正方形.
28.解:根据分析可得:1000以内最大的“希望数”就是1000以内最大的完全平方数,
而已知1000以内最大的完全平方数是312=961,
根据约数和定理可知,961的约数个数为:2+1=3(个),符合题意,
答:1000以内的最大希望数是961.
故答案为:961.
29.解:假设每人每分钟修大坝1份
洪水冲毁大坝速度:
(10×45﹣20×20)÷(45﹣20)
=(450﹣400)÷25
=50÷25
=2(份)
大坝原有的份数
45×10﹣2×45
=450﹣90
=360(份)
14人修好大坝需要的时间
360÷(14﹣2)
=360÷12
=30(分钟)
答:14人修好大坝需30分钟.
故答案为:30.
30.解:(6+2)×[(5×6)÷2]
=8×15,
=120(个).
答:小松鼠一共储藏了120个松果.
故答案为:120.
31.解:法一:假设甲一小时走5米,乙一小时走2米,列表如下:时间甲(米)乙(米)时间甲(米)乙(米)0小时043小时7.510
0.5小时 2.55 3.5小时1011
1小时 2.564小时1012
1.5小时57 4.5小时1
2.513
2小时585小时12.514
2.5小时7.59 5.5小时1515
观察得5.5小时恰好追上(如果这时间超过了乙,就要用具体追及公式计算追及时间)
法二:也可以设甲的速度为每小时10a(甲要休息,实际每小时走5a),乙的速度为每小时4a,因此要追8a.半小时内最多追3a,可以先从要追的8a中扣除3a,因为在此之前不可能追上(之前的距离差不止3a).之后再开始按每半小时列出,若不够半小时的话,用追及公式算.前面追的5a,相当于每小时追a,可以用5a÷(5a﹣4a)=5(小时)计算.之后,甲半小时再走2a,乙再走5a,加上还差的3a,正好追上.因此,要追5.5小时,即330分钟.
故答案为:330.
32.解:(60×10+50×4)÷(60﹣50),
=(600+200)÷10,
=800÷10,
=80(分钟),
60×(80﹣10),
=60×70,
=4200(米).
答:小明家到学校相距4200米.
故答案为:4200.
33.解:2&(3&4),
=(2+1)÷[(3+1)÷4],
=3÷1,
=3;
故答案为:3.
34.解:4×4×3,
=16×3,
=48(种);
答:这五个数字可以组成 48个不同的三位数.
故答案为:48.
35.解:根据分析,从甲开始,乙欠甲1元,故甲应得1元,甲欠丁4元,故甲应还4元;
清算时,甲还应拿出4﹣1=3元,此时甲的账就结清了;
再看看丁的账,丁得到甲的4元后,还给丙3元,即可结清;
再看看丙的账,丙得到丁的3元后,还给乙2元,丙的账也清了;
再看看乙的账,乙得到丙的2元后,还给甲1元,乙的账也结清;
综上,甲只须先拿出4元还给丁,后得到乙的1元,故而甲总共只须拿出3元.
故答案是:3.
36.解:如图:连接正方形的一条对角线,延长DA,与最上边正六边形边的延长线交与一点,这样可得两个三角形①、②
三角形①和三角形②是全等三角形,它们的面积相等,进而可得出阴影部分两侧的三角形可补到六边形的角上,这样就成了一个长方形,
阴影部分的面积等于空白部分的面积,所以阴影部分的面积是正六边形面积的一半
16÷2=8
答:阴影部分的面积是8.
故答案为:8.
37.解:共有6只小猫咪,每发6条鱼重复出现,而278÷6=46…2,余数是2,则最后一个领到鱼干的小猫咪是B.
故答案为:B.
38.解:每一个计算周期运算3步,增加:15﹣12+3=6,
则26÷3=8…2,
所以,100+6×8+15﹣12
=100+48+3
=151
答:得到的结果是 151.
故答案为:151.
39.设大合x盒,小盒y盒,依题意有方程:
85.6x+46.8(9﹣x)=654
解方程得x=6,9﹣6=3.
所以大合6盒,小盒3盒,共有32×6+15×3=237块.
答:可得点心237块.
40.解:设鸡有x只,则兔就有100﹣x只,根据题意可得方程:2x﹣4×(100﹣x)=26,
2x﹣400+4x=26,
6x=426,
x=71,
答:鸡有71只.
故答案为:71.。

相关文档
最新文档