鼓楼区二中2018-2019学年高三上学期11月月考数学试卷含答案(3)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鼓楼区二中2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ( )
A .为直角三角形
B .为锐角三角形
C .为钝角三角形
D .前三种形状都有可能
2. 设D 为△ABC 所在平面内一点,,则( )
A .
B .
C .
D .
3. 若双曲线C :x 2﹣=1(b >0)的顶点到渐近线的距离为,则双曲线的离心率e=( )
A .2
B .
C .3
D .
4. 抛物线E :y 2=2px (p >0)的焦点为F ,点A (0,2),若线段AF 的中点B 在抛物线上,则|BF|=( )
A .
B .
C .
D .
5. 已知函数f (x+1)=3x+2,则f (x )的解析式是( )
A .3x ﹣1
B .3x+1
C .3x+2
D .3x+4
6. 若等边三角形ABC 的边长为2,N 为AB 的中点,且AB 上一点M 满足CM xCA yCB =+, 则当
14
x y
+取最小值时,CM CN ⋅=( ) A .6 B .5 C .4 D .3 7. 在下面程序框图中,输入44N =,则输出的S 的值是( )
A .251
B .253
C .255
D .260
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是把正整数除以4后按余数分类. 8.满足集合M⊆{1,2,3,4},且M∩{1,2,4}={1,4}的集合M的个数为()
A.1 B.2 C.3 D.4
9.(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切实数x恒成立,则实数m的取值范围是()A.(1,+∞)B.(﹣∞,﹣1)
C.D.
10.已知幂函数y=f(x)的图象过点(,),则f(2)的值为()
A.B.﹣C.2 D.﹣2
11.下面各组函数中为相同函数的是()
A.f(x)=,g(x)=x﹣1 B.f(x)=,g(x)=
C.f(x)=ln e x与g(x)=e lnx D.f(x)=(x﹣1)0与g(x)=
12.已知集合A={﹣1,0,1,2},集合B={0,2,4},则A ∪B 等于( )
A .{﹣1,0,1,2,4}
B .{﹣1,0,2,4}
C .{0,2,4}
D .{0,1,2,4}
二、填空题
13.如果直线3ax+y ﹣1=0与直线(1﹣2a )x+ay+1=0平行.那么a 等于 .
14.已知面积为
的△ABC 中,∠A=
若点D 为BC 边上的一点,且满足
=
,则当AD 取最小时,
BD 的长为 .
15.已知函数21,0
()1,0
x x f x x x ⎧-≤=⎨->⎩,()21x g x =-,则((2))f g = ,[()]f g x 的值域为 .
【命题意图】本题考查分段函数的函数值与值域等基础知识,意在考查分类讨论的数学思想与运算求解能力.
16.平面向量,满足|2﹣|=1,|﹣2|=1,则的取值范围 .
17.已知函数)(x f 的定义域R ,直线1=x 和2=x 是曲线)(x f y =的对称轴,且1)0(=f ,则
=+)10()4(f f .
18.已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,
||||10MF NF +=,则直线MN 的方程为_________.
三、解答题
19.已知函数f (x )=log a (x 2+2),若f (5)=3; (1)求a 的值;
(2)求的值;
(3)解不等式f (x )<f (x+2).
20.已知函数f (x )=,求不等式f (x )<4的解集.
21.如图,在四边形ABCD 中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD 绕
AD 旋转一周所成几何体的表面积.
22.如图所示,两个全等的矩形ABCD 和ABEF 所在平面相交于AB ,M AC ∈,N FB ∈,且
AM FN =,求证://MN 平面BCE .
23.已知等差数列{a n }中,其前n 项和S n =n 2+c (其中c 为常数), (1)求{a n }的通项公式;
(2)设b 1=1,{a n +b n }是公比为a 2等比数列,求数列{b n }的前n 项和T n .
24.(本小题满分12分)
成都市某中学计划举办“国学”经典知识讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从
某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试
成绩(百分制)的茎叶图如图所示.
(1)根据这10名同学的测试成绩,分别估计该班男、女生国学素养测试的平均成绩;
(2)若从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.(注:成绩大于等于75分为优良)
鼓楼区二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)
一、选择题
1.【答案】A
【解析】解:设A(x1,x12),B(x2,x22),
将直线与抛物线方程联立得,
消去y得:x2﹣mx﹣1=0,
根据韦达定理得:x1x2=﹣1,
由=(x1,x12),=(x2,x22),
得到=x1x2+(x1x2)2=﹣1+1=0,
则⊥,
∴△AOB为直角三角形.
故选A
【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为0,两向量互相垂直.
2.【答案】A
【解析】解:由已知得到如图
由===;
故选:A.
【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为.
3.【答案】B
【解析】解:双曲线C:x2﹣=1(b>0)的顶点为(±1,0),
渐近线方程为y=±bx,
由题意可得=,
解得b=1,c==,
即有离心率e==.
故选:B .
【点评】本题考查双曲线的离心率的求法,注意运用点到直线的距离公式,考查运算能力,属于基础题.
4. 【答案】D
【解析】解:依题意可知F 坐标为(,0)
∴B 的坐标为(,1)代入抛物线方程得=1,解得p=
,
∴抛物线准线方程为x=﹣
,
所以点B 到抛物线准线的距离为=,
则B 到该抛物线焦点的距离为
.
故选D .
5. 【答案】A
【解析】∵f (x+1)=3x+2=3(x+1)﹣1
∴f (x )=3x ﹣1 故答案是:A
【点评】考察复合函数的转化,属于基础题.
6. 【答案】D 【解析】
试题分析:由题知(1)CB BM CM CB xCA y =-=+-,BA CA CB =-;设B M k B A =,则,1x k y k =-=-,
可得1x y +=,当
14x y +取最小值时,()141445x y
x y x y x y y x
⎛⎫+=++=++ ⎪⎝⎭,最小值在4y x x y =时取到,此时21,33y x ==,将()
1
,CN 2
CM xCA yCB CA CB =+=
+代入,则()22111233322233x y CM CN xCA yCB CA CB x y +⎛⎫
⋅=++⋅=+=+= ⎪⎝⎭
.故本题答案选D.
考点:1.向量的线性运算;2.基本不等式. 7. 【答案】B
8.【答案】B
【解析】解:∵M∩{1,2,4}={1,4},
∴1,4是M中的元素,2不是M中的元素.
∵M⊆{1,2,3,4},
∴M={1,4}或M={1,3,4}.
故选:B.
9.【答案】C
【解析】解:不等式(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立,
即(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立
若m+1=0,显然不成立
若m+1≠0,则
解得a.
故选C.
【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于0只需.
10.【答案】A
【解析】解:设幂函数y=f(x)=xα,把点(,)代入可得=α,
∴α=,即f(x)=,
故f(2)==,
故选:A.
11.【答案】D
【解析】解:对于A:f(x)=|x﹣1|,g(x)=x﹣1,表达式不同,不是相同函数;
对于B:f(x)的定义域是:{x|x≥1或x≤﹣1},g(x)的定义域是{x}x≥1},定义域不同,不是相同函数;
对于C:f(x)的定义域是R,g(x)的定义域是{x|x>0},定义域不同,不是相同函数;
对于D:f(x)=1,g(x)=1,定义域都是{x|x≠1},是相同函数;
故选:D.
【点评】本题考查了判断两个函数是否是同一函数问题,考查指数函数、对数函数的性质,是一道基础题.12.【答案】A
【解析】解:∵A={﹣1,0,1,2},B={0,2,4},
∴A∪B={﹣1,0,1,2}∪{0,2,4}={﹣1,0,1,2,4}.
故选:A.
【点评】本题考查并集及其运算,是基础的会考题型.
二、填空题
13.【答案】.
【解析】解:∵直线3ax+y﹣1=0与直线(1﹣2a)x+ay+1=0平行,
∴3aa=1(1﹣2a),解得a=﹣1或a=,
经检验当a=﹣1时,两直线重合,应舍去
故答案为:.
【点评】本题考查直线的一般式方程和平行关系,属基础题.
14.【答案】.
【解析】解:AD取最小时即AD⊥BC时,根据题意建立如图的平面直角坐标系,根据题意,设A(0,y),C(﹣2x,0),B(x,0)(其中x>0),
则=(﹣2x,﹣y),=(x,﹣y),
∵△ABC的面积为,
∴⇒=18,
∵=cos=9,
∴﹣2x2+y2=9,
∵AD⊥BC,
∴S=••=⇒xy=3,
由得:x=,
故答案为:.
【点评】本题考查了三角形的面积公式、利用平面向量来解三角形的知识.
15.【答案】2,[1,)-+∞. 【
解
析
】
16.【答案】 [
,1] .
【解析】解:设两个向量的夹角为θ,
因为|2﹣|=1,|﹣2|=1,
所以,
,
所以,
=
所以5
=1,所以,所以5a 2
﹣1∈[
],
[
,1],
所以;
故答案为:[,1].
【点评】本题考查了向量的模的平方与向量的平方相等的运用以及通过向量的数量积定义,求向量数量积的范
围.
17.【答案】2
【解析】直线1=x 和2=x 是曲线)(x f y =的对称轴,
∴(2)()f x f x -=,(4)()f x f x -=,
∴(2)(4)f x f x -=-,∴)(x f y =的周期2T =.
∴(4)(10)(0)(0)2f f f f +=+=.
18.【答案】20x y --=
【解析】解析: 设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的
中点坐标为(4,2).由2114y x =,2224y x =两式相减得121212()()4()y y y y x x +-=-,而1222
y y +=,∴1212
1y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=. 三、解答题
19.【答案】
【解析】解:(1)∵f (5)=3,
∴
, 即log a 27=3
解锝:a=3…
(2)由(1)得函数
,
则=… (3)不等式f (x )<f (x+2),
即为
化简不等式得
…
∵函数y=log 3x 在(0,+∞)上为增函数,且
的定义域为R . ∴x 2+2<x 2+4x+6… 即4x >﹣4,
解得x >﹣1,
所以不等式的解集为:(﹣1,+∞)…
20.【答案】
【解析】解:函数f (x )=
,不等式f (x )<4,
当x ≥﹣1时,2x+4<4,解得﹣1≤x <0;
当x <﹣1时,﹣x+1<4解得﹣3<x <﹣1.
综上x ∈(﹣3,0).
不等式的解集为:(﹣3,0).
21.【答案】
【解析】解:四边形ABCD 绕AD 旋转一周所成的
几何体,如右图:
S表面=S圆台下底面+S圆台侧面+S圆锥侧面=
πr22+π(r1+r2)l2+πr1l1===
22.【答案】证明见解析.
【解析】
考点:直线与平面平行的判定与证明.
23.【答案】
【解析】解:(1)a1=S1=1+c,a2=S2﹣S1=3,a3=S3﹣S2=5﹣﹣﹣﹣﹣(2分)
因为等差数列{a n},所以2a2=a1+a3得c=0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)
∴a1=1,d=2,a n=2n﹣1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)
(2)a2=3,a1+b1=2∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)
∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)
∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12
分)
【点评】本题主要考查等差数列的定义及数列求和的方法,考查学生的运算求解能力,属中档题.
24.【答案】
【解析】【命题意图】本题考查茎叶图的制作与读取,古典概型的概率计算,是概率统计的基本题型,解答的关键是应用相关数据进行准确计算,是中档题.。