丰镇市高中2018-2019学年高二上学期第一次月考测试数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
丰镇市高中2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 以下四个命题中,真命题的是( ) A .2
,2x R x x ∃∈≤-
B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<
C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数
D .已知m ,n 表示两条不同的直线,α,β表示不同的平面,并且m α⊥,n β⊂,则“αβ⊥”是 “//m n ”的必要不充分条件
【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.
2. 已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( ) A .α∥β且l ∥α B .α⊥β且l ⊥β
C .α与β相交,且交线垂直于l
D .α与β相交,且交线平行于l
3. 下列命题中的说法正确的是( )
A .命题“若x 2=1,则x=1”的否命题为“若x 2=1,则x ≠1”
B .“x=﹣1”是“x 2+5x ﹣6=0”的必要不充分条件
C .命题“∃x ∈R ,使得x 2+x+1<0”的否定是:“∀x ∈R ,均有x 2+x+1>0”
D .命题“在△ABC 中,若A >B ,则sinA >sinB ”的逆否命题为真命题
4. 设集合M={x|x 2+3x+2<0},集合
,则M ∪N=( )
A .{x|x ≥﹣2}
B .{x|x >﹣1}
C .{x|x <﹣1}
D .{x|x ≤﹣2}
5. 已知△ABC 的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A 的轨迹方程是( )
A .(x ≠0)
B .(x ≠0)
C .
(x ≠0)
D .
(x ≠0)
6. 满足集合M ⊆{1,2,3,4},且M ∩{1,2,4}={1,4}的集合M 的个数为( ) A .1
B .2
C .3
D .4
7. 如图给出的是计算
的值的一个流程图,其中判断框内应填入的条件是( )
A .i ≤21
B .i ≤11
C .i ≥21
D .i ≥11
8. 已知圆C 1:x 2+y 2=4和圆C 2:x 2+y 2
+4x ﹣4y+4=0关于直线l 对称,则直线l 的方程为( ) A .x+y=0 B .x+y=2 C .x ﹣y=2 D .x ﹣y=﹣2
9. 曲线y=x 3﹣2x+4在点(1,3)处的切线的倾斜角为( ) A .30°
B .45°
C .60°
D .120° 10.现准备将7台型号相同的健身设备全部分配给5个不同的社区,其中甲、乙两个社区每个社区至少2台,其它社区允许1台也没有,则不同的分配方案共有( )
A .27种
B .35种
C .29种
D .125种
11.函数()log 1x
a f x a x =-有两个不同的零点,则实数的取值范围是( )
A .()1,10
B .()1,+∞
C .()0,1
D .()10,+∞ 12.等差数列{a n }中,已知前15项的和S 15=45,则a 8等于( )
A .
B .6
C .
D .3
二、填空题
13.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sinA ,sinB ,sinC 依次成等比数列,c=2a 且•
=24,
则△ABC 的面积是 .
14.函数
的单调递增区间是 .
15.函数f (x )=log a (x ﹣1)+2(a >0且a ≠1)过定点A ,则点A 的坐标为 .
16.设全集U={0,1,2,3,4},集合A={0,1,2},集合B={2,3},则(∁U A )∪B= . 17.平面内两定点M (0,一2)和N (0,2),动点P (x ,y )满足
,动点P 的轨迹
为曲线E ,给出以下命题: ①∃m ,使曲线E 过坐标原点; ②对∀m ,曲线E 与x 轴有三个交点;
③曲线E 只关于y 轴对称,但不关于x 轴对称;
④若P 、M 、N 三点不共线,则△ PMN 周长的最小值为+4;
⑤曲线E 上与M,N 不共线的任意一点G 关于原点对称的另外一点为H ,则四边形GMHN 的面积不大于m 。
其中真命题的序号是 .(填上所有真命题的序号)
18.函数f (x )=log
(x 2
﹣2x ﹣3)的单调递增区间为 .
三、解答题
19.已知椭圆C :
=1(a >2)上一点P 到它的两个焦点F 1(左),F 2 (右)的距离的和是6.
(1)求椭圆C 的离心率的值;
(2)若PF 2⊥x 轴,且p 在y 轴上的射影为点Q ,求点Q 的坐标.
20.(本小题满分12分)
已知圆C :022=++++F Ey Dx y x 的圆心在第二象限,半径为2,且圆C 与直线043=+y x 及y 轴都相切.
(1)求F E D 、、;
(2)若直线022=+-y x 与圆C 交于B A 、两点,求||AB .
21.已知函数f (x )=4sinxcosx ﹣5sin 2x ﹣cos 2x+3.
(Ⅰ)当x ∈[0,
]时,求函数f (x )的值域;
(Ⅱ)若△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足=,
=2+2cos (A+C ),
求f (B )的值.
22.如图,在三棱柱111ABC A B C -中,111,A A AB CB A ABB =⊥. (1)求证:1AB ⊥平面1A BC ;
(2)若15,3,60AC BC A AB ==∠=,求三棱锥1C AA B -的体积.
23.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位
(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出3人进行陈述 发言,设发言的女士人数为X ,求X 的分布列和期望.
参考公式:2
2
()K ()()()()
n ad bc a b c d a c b d -=++++,()n a b c d =+++
24.如图,过抛物线C :x 2=2py (p >0)的焦点F 的直线交C 于M (x 1,y 1),N (x 2,y 2)两点,且x 1x 2=﹣4.
(Ⅰ)p 的值;
(Ⅱ)R ,Q 是C 上的两动点,R ,Q 的纵坐标之和为1,RQ 的垂直平分线交y 轴于点T ,求△MNT 的面积的最小值.
丰镇市高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)
一、选择题
1.【答案】D
2.【答案】D
【解析】解:由m⊥平面α,直线l满足l⊥m,且l⊄α,所以l∥α,
又n⊥平面β,l⊥n,l⊄β,所以l∥β.
由直线m,n为异面直线,且m⊥平面α,n⊥平面β,则α与β相交,否则,若α∥β则推出m∥n,
与m,n异面矛盾.
故α与β相交,且交线平行于l.
故选D.
【点评】本题考查了平面与平面之间的位置关系,考查了平面的基本性质及推论,考查了线面平行、线面垂直的判定与性质,考查了学生的空间想象和思维能力,是中档题.
3.【答案】D
【解析】解:A.命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”,故A错误,
B.由x2+5x﹣6=0得x=1或x=﹣6,即“x=﹣1”是“x2+5x﹣6=0”既不充分也不必要条件,故B错误,
C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1≤0﹣5,故C错误,
D.若A>B,则a>b,由正弦定理得sinA>sinB,即命题“在△ABC中,若A>B,则sinA>sinB”的为真命题.则命题的逆否命题也成立,故D正确
故选:D.
【点评】本题主要考查命题的真假判断,涉及四种命题的关系以及充分条件和必要条件的判断,含有量词的命题的否定,比较基础.
4.【答案】A
【解析】解:∵集合M={x|x2+3x+2<0}={x|﹣2<x<﹣1},
集合={x|2﹣x≤22}={x|﹣x≤2}={x|x≥﹣2},
∴M∪N={x|x≥﹣2},
故选A.
【点评】本题考查集合的运算,解题时要认真审题,仔细解答.
5.【答案】B
【解析】解:∵△ABC的周长为20,顶点B (0,﹣4),C (0,4),
∴BC=8,AB+AC=20﹣8=12,
∵12>8
∴点A到两个定点的距离之和等于定值,
∴点A的轨迹是椭圆,
∵a=6,c=4
∴b2=20,
∴椭圆的方程是
故选B.
【点评】本题考查椭圆的定义,注意椭圆的定义中要检验两个线段的大小,看能不能构成椭圆,本题是一个易错题,容易忽略掉不合题意的点.
6.【答案】B
【解析】解:∵M∩{1,2,4}={1,4},
∴1,4是M中的元素,2不是M中的元素.
∵M⊆{1,2,3,4},
∴M={1,4}或M={1,3,4}.
故选:B.
7.【答案】D
【解析】解:∵S=
并由流程图中S=S+
故循环的初值为1
终值为10、步长为1
故经过10次循环才能算出S=的值,
故i≤10,应不满足条件,继续循环
∴当i≥11,应满足条件,退出循环
填入“i≥11”.
故选D.
8.【答案】D
【解析】【分析】由题意可得圆心C1和圆心C2,设直线l方程为y=kx+b,由对称性可得k和b的方程组,解方程组可得.
【解答】解:由题意可得圆C1圆心为(0,0),圆C2的圆心为(﹣2,2),
∵圆C1:x2+y2=4和圆C2:x2+y2+4x﹣4y+4=0关于直线l对称,
∴点(0,0)与(﹣2,2)关于直线l对称,设直线l方程为y=kx+b,
∴•k=﹣1且=k•+b,
解得k=1,b=2,故直线方程为x﹣y=﹣2,
故选:D.
9.【答案】B
【解析】解:y/=3x2﹣2,切线的斜率k=3×12﹣2=1.故倾斜角为45°.
故选B.
【点评】本题考查了导数的几何意义,以及利用正切函数的图象求倾斜角,本题属于容易题.
10.【答案】B
【解析】
排列、组合及简单计数问题.
【专题】计算题.
【分析】根据题意,可将7台型号相同的健身设备看成是相同的元素,首先分给甲、乙两个社区各台设备,再将余下的三台设备任意分给五个社区,分三种情况讨论分配方案,①当三台设备都给一个社区,②当三台设备分为1和2两份分给2个社区,③当三台设备按1、1、1分成三份时分给三个社区,分别求出其分配方案数目,将其相加即可得答案.
【解答】解:根据题意,7台型号相同的健身设备是相同的元素,
首先要满足甲、乙两个社区至少2台,可以先分给甲、乙两个社区各2台设备,
余下的三台设备任意分给五个社区,
分三种情况讨论:
①当三台设备都给一个社区时,有5种结果,
②当三台设备分为1和2两份分给2个社区时,有2×C52=20种结果,
③当三台设备按1、1、1分成三份时分给三个社区时,有C53=10种结果,
∴不同的分配方案有5+20+10=35种结果;
故选B .
【点评】本题考查分类计数原理,注意分类时做到不重不漏,其次注意型号相同的健身设备是相同的元素.
11.【答案】B 【解析】
试题分析:函数()f x 有两个零点等价于1x
y a ⎛⎫
= ⎪⎝⎭
与log a y x =的图象有两个交点,当01a <<时同一坐标
系中做出两函数图象如图(2),由图知有一个交点,符合题意;当1a >时同一坐标系中做出两函数图象如图
(1),由图知有两个交点,不符合题意,故选B.
x
(1)
(2)
考点:1、指数函数与对数函数的图象;2、函数的零点与函数交点之间的关系.
【方法点睛】本题主要考查指数函数与对数函数的图象、函数的零点与函数交点之间的关系.属于难题.判断方程()y
f x =零点个数的常用方法:①直接法:可利用判别式的正负直接判定一元二次方程根的个数;②转化法:函数()y f x =零点个数就是方程()0f x =根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;③数形结合法:一是转化为两个函数()(),y
g x y
h x ==的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为(),y a y g x ==的交点个数的图象的交点个数问题.本题的解答就利用了方法③. 12.【答案】D
【解析】解:由等差数列的性质可得:S 15==15a 8=45,则a 8=3.
故选:D .
二、填空题
13.【答案】 4 .
【解析】解:∵sinA ,sinB ,sinC 依次成等比数列,
∴sin2B=sinAsinC,由正弦定理可得:b2=ac,
∵c=2a,可得:b=a,
∴cosB===,可得:sinB==,
∵•=24,可得:accosB=ac=24,解得:ac=32,
∴S
△ABC=acsinB==4.
故答案为:4.
14.【答案】[2,3).
【解析】解:令t=﹣3+4x﹣x2>0,求得1<x<3,则y=,
本题即求函数t在(1,3)上的减区间.
利用二次函数的性质可得函数t在(1,3)上的减区间为[2,3),
故答案为:[2,3).
15.【答案】(2,2).
【解析】解:∵log a1=0,
∴当x﹣1=1,即x=2时,y=2,
则函数y=log a(x﹣1)+2的图象恒过定点(2,2).
故答案为:(2,2).
【点评】本题考查对数函数的性质和特殊点,主要利用log a1=0,属于基础题.
16.【答案】{2,3,4}.
【解析】解:∵全集U={0,1,2,3,4},集合A={0,1,2},
∴C U A={3,4},
又B={2,3},
∴(C U A)∪B={2,3,4},
故答案为:{2,3,4}
17.【答案】①④⑤
解析:∵平面内两定点M(0,﹣2)和N(0,2),动点P(x,y)满足||•||=m(m≥4),∴•=m
①(0,0)代入,可得m=4,∴①正确;
②令y=0,可得x 2+4=m ,∴对于任意m ,曲线E 与x 轴有三个交点,不正确; ③曲线E 关于x 轴对称,但不关于y 轴对称,故不正确;
④若P 、M 、N 三点不共线,|
|+|
|≥2
=2
,所以△PMN 周长的最小值为2
+4,正确;
⑤曲线E 上与M 、N 不共线的任意一点G 关于原点对称的点为H ,则四边形GMHN 的面积为2S △MNG =|GM||GN|sin ∠MGN ≤m ,∴四边形GMHN 的面积最大为不大于m ,正确. 故答案为:①④⑤.
18.【答案】 (﹣∞,﹣1) .
【解析】解:函数的定义域为{x|x >3或x <﹣1}
令t=x 2
﹣2x ﹣3,则y=
因为y=在(0,+∞)单调递减
t=x 2﹣2x ﹣3在(﹣∞,﹣1)单调递减,在(3,+∞)单调递增 由复合函数的单调性可知函数的单调增区间为(﹣∞,﹣1) 故答案为:(﹣∞,﹣1)
三、解答题
19.【答案】
【解析】解:(1)根据椭圆的定义得2a=6,a=3;
∴c=;
∴
;
即椭圆的离心率是;
(2);
∴x=
带入椭圆方程
得,y=
;
所以Q (0,).
20.【答案】(1) 22=D ,24-=E ,8=F ;(2)2=AB . 【解析】
试
题解析:(1)由题意,圆C 方程为2)()(22=-+-b y a x ,且0,0><b a , ∵圆C 与直线043=+y x 及y 轴都相切,∴2-=a ,25
|
43|=+b a ,∴22=b , ∴圆C 方程为2)22()2(22=-++y x , 化为一般方程为08242222=+-++y x y x , ∴22=D ,24-=E ,8=F .
(2)圆心)22,2(-C 到直线022=+-y x 的距离为12
|
22222|=+--=d ,
∴21222||22=-=-=d r AB . 考点:圆的方程;2.直线与圆的位置关系.1 21.【答案】
【解析】解:(Ⅰ)f (x )=4
sinxcosx ﹣5sin 2
x ﹣cos 2x+3=2sin2x ﹣
+3=2
sin2x+2cos2x=4sin (2x+
).
∵x ∈[0,],
∴2x+
∈[,
],
∴f (x )∈[﹣2,4].
(Ⅱ)由条件得 sin (2A+C )=2sinA+2sinAcos (A+C ), ∴sinAcos (A+C )+cosAsin (A+C )=2sinA+2sinAcos (A+C ), 化简得 sinC=2sinA , 由正弦定理得:c=2a , 又b=
,
由余弦定理得:a2=b2+c2﹣2bccosA=3a2+4a2﹣4a2cosA ,解得:cosA=
,
故解得:A=,B=
,C=
,
∴f (B )=f (
)=4sin =2.
【点评】本题考查了平方关系、倍角公式、两角和差的正弦公式及其单调性、正弦定理、余弦定理,考查了推理能力和计算能力,属于中档题.
22.【答案】(1)证明见解析;(2
)【解析】
试题分析:(1)有线面垂直的性质可得1BC AB ⊥,再由菱形的性质可得11AB A B ⊥,进而有线面垂直的判定定理可得结论;(2)先证三角形1A AB 为正三角形,再由于勾股定理求得AB 的值,进而的三角形1A AB 的面积,又知三棱锥的高为3BC =,利用棱锥的体积公式可得结果
.
考
点:1、线面垂直的判定定理;2、勾股定理及棱锥的体积公式. 23.【答案】
【解析】【命题意图】本题考查统计案例、超几何分布、分层抽样等基础知识,意在考查统计思想和基本运算能力.
X 的分布列为:
X 的数学期望为
()5151519
E X=⨯+⨯+⨯+⨯=………………12分
0123
282856568
24.【答案】
【解析】解:(Ⅰ)由题意设MN:y=kx+,
由,消去y得,x2﹣2pkx﹣p2=0(*)
由题设,x1,x2是方程(*)的两实根,∴,故p=2;
(Ⅱ)设R(x3,y3),Q(x4,y4),T(0,t),
∵T在RQ的垂直平分线上,∴|TR|=|TQ|.
得,又,
∴,即4(y3﹣y4)=(y3+y4﹣2t)(y4﹣y3).
而y3≠y4,∴﹣4=y3+y4﹣2t.
又∵y3+y4=1,∴,故T(0,).
因此,.
由(Ⅰ)得,x1+x2=4k,x1x2=﹣4,
=.
因此,当k=0时,S△MNT有最小值3.
【点评】本题考查抛物线方程的求法,考查了直线和圆锥曲线间的关系,着重考查“舍而不求”的解题思想方法,考查了计算能力,是中档题.。