苏科八年级下册第二学期数学《期末考试试题》含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏科八年级下册第二学期数学《期末考试试题》含答案
一、解答题
1.如图,在ABCD中,点O为对角线BD的中点,过点O的直线EP分别交AD,BC于E,F两点,连接BE,DF.
(1)求证:四边形BFDE为平行四边形;
(2)当∠DOE= °时,四边形BFDE为菱形?
2.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE
(1)求证:CE=CF;
(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
3.先化简:
2
2
24
1
a a
a a a
+-
-÷
-
,再从﹣1、0、1、2中选一个你喜欢的数作为a的值代入
求值.
4.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作
AF∥BC交BE的延长线于点F.
(1)求证:四边形ADCF是菱形;
(3)若AC=6,AB=8,求菱形ADCF的面积.
5.如图,四边形ABCD是正方形,点E是BC边上的动点(不与点B、C重合),将射线AE绕点A按逆时针方向旋转45°后交CD边于点F,AE、AF分别交BD于G、H两点.(1)当∠BEA=55°时,求∠HAD的度数;
(2)设∠BEA=α,试用含α的代数式表示∠DFA的大小;
(3)点E运动的过程中,试探究∠BEA与∠FEA有怎样的数量关系,并说明理由.
6.已知:如图,在 ABCD 中,点E 、F 分别在AD 、BC 上,且∠ABE =∠CDF . 求证:四边形BFDE 是平行四边形.
7.如图,在正方形ABCD 内有一点P 满足AP AB =,PB PC =.连接AC 、PD .
(1)求证:APB DPC ∆∆≌;
(2)求PAC ∠的度数.
8.计算:
(12354535
(2()22360,0x y
xy x y ≥≥; (3)48274153. 9.某中学八年级共有10个班,每班40名学生,学校对该年级学生数学学科某次学情调研测试成绩进行了抽样分析,请按要求回答下列问题:
(1)若要从全年级学生中抽取40人进行调查,你认为以下抽样方法中最合理的是 . ①随机抽取一个班级的40名学生的成绩;
②在八年级学生中随机抽取40名女学生的成绩;
③在八年级10个班中每班各随机抽取4名学生的成绩. (2)将抽取的40名学生的成绩进行分组,绘制如下成绩频数分布表:
①m = ,n = ;
②根据表格中的数据,请用扇形统计图表示学生成绩分布情况.
10.2020年4月23日,是第25个世界读书日.为了解学生每周阅读时间,某校随机抽取了部分学生进行调查,根据调查结果,将阅读时间x(单位:小时)分成了4组,A:0≤x <2;B:2≤x<4;C:4≤x<6;D:6≤x<8,试结合图中所给信息解答下列问题:
(1)这次随机抽取了名学生进行调查;扇形统计图中,扇形B的圆心角的度数为.
(2)补全频数分布直方图;
(3)若该校共有2000名学生,试估计每周阅读时间不少于4小时的学生共有多少名?11.如图,在平面直角坐标系中,△ABC和△A'B'C'的顶点都在格点上.
(1)将△ABC绕点B顺时针旋转90°后得到△A1BC1;
(2)若△A'B'C'是由△ABC绕某一点旋转某一角度得到,则旋转中心的坐标是.
12.如图,在▱ABCD中,BC=6cm,点E从点D出发沿DA边运动到点A,点F从点B出发沿BC边向点C运动,点E的运动速度为2cm/s,点F的运动速度为lcm/s,它们同时出发,设运动的时间为t秒,当t为何值时,EF∥AB.
13.如图,在ABC ∆中,90ABC ∠=︒,BD 为AC 的中线,过点C 作CE BD ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接BG 、DF .
(1)求证:BD DF =;
(2)求证:四边形BDFG 为菱形;
(3)若13AG =,6CF =,求四边形BDFG 的周长.
14.已知ABC ∆是边长为8cm 的等边三角形,动点,P Q 同时出发,分别在三角形的边或延长线上运动,他们的运动时间为()t s .
()1如图1,若P 点由A 向B 运动,Q 点由C 向A 运动,他们的速度都是1/cm s ,连接PQ .则AP =__,AQ = ,(用含t 式子表示);
()2在(1)的条件下,是否存在某一时刻,使得APQ ∆为直角三角形?若存在,请求出t 的值,若不存在,请说明理由;
()3如图2,若P 点由A 出发,沿射线AB 方向运动,Q 点由C 出发,沿射线AC 方向运动,P 的速度为3/,cm s Q 的速度为./acm s 是否存在某个a 的值,使得在运动过程中BPO ∆恒为以BP 为底的等腰三角形?如果存在,请求出这个值,如果不存在,请说明理由.
15.已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120゜,∠MBN=60゜,
∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.
(1)当∠MBN绕B点旋转到AE=CF时(如图1),试猜想线段AE、CF、EF之间存在的数量关系为.(不需要证明);
(2)当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE、CF、EF又有怎样的数量关系?请写出你的猜想,不需证明.
【参考答案】***试卷处理标记,请不要删除
一、解答题
1.(1)详见解析;(2)90
【分析】
(1)证△DOE≌△BOF(ASA),得DE=BF,即可得出结论;
(2)由∠DOE=90°,得EF⊥BD,即可得出结论.
【详解】
(1)∵四边形ABCD 是平行四边形,O 为对角线BD 的中点,
∴BO =DO ,AD ∥BC ,
∴∠EDO =∠FBO ,
在△EOD 和△FOB 中,EDO FBO DO BO EOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩
,
∴△DOE ≌△BOF (ASA ),
∴DE =BF ,
又∵DE ∥BF ,
∴四边形BFDE 为平行四边形;
(2)∠DOE =90°时,四边形BFDE 为菱形;
理由如下:
由(1)得:四边形BFDE 是平行四边形,
若∠DOE =90°,则EF ⊥BD ,
∴四边形BFDE 为菱形;
故答案为:90.
【点睛】
本题考查了平行四边形的判定与性质、全等三角形的判定与性质以及菱形的判定等知识,证出△DOE ≌△BOF 是解题的关键.
2.(1)见解析(2)成立
【解析】
试题分析:(1)由DF=BE ,四边形ABCD 为正方形可证△CEB ≌△CFD ,从而证出CE=CF . (2)由(1)得,CE=CF ,∠BCE+∠ECD=∠DCF+∠ECD 即∠ECF=∠BCD=90°又∠GCE=45°所以可
得∠GCE=∠GCF ,故可证得△ECG ≌△FCG ,即EG=FG=GD+DF .又因为DF=BE ,所以可证出GE=BE+GD 成立.
试题解析:(1)在正方形ABCD 中,
{BC CD
B CDF BE DF
∠∠===
∴△CBE ≌△CDF (SAS ).
∴CE=CF .
(2)GE=BE+GD 成立.
理由是:∵由(1)得:△CBE ≌△CDF ,
∴∠BCE=∠DCF ,
∴∠BCE+∠ECD=∠DCF+∠ECD ,即∠ECF=∠BCD=90°,
又∵∠GCE=45°,∴∠GCF=∠GCE=45°. CE =CF
∵∠GCE =∠GCF , GC =GC
∴△ECG ≌△FCG (SAS ).
∴GE=GF .
∴GE=DF+GD=BE+GD .
考点:1.正方形的性质;2.全等三角形的判定与性质.
3.1a 2-
-,当1a =-时,原式1=3
【分析】 本题根据分式的除法和减法运算法则,结合平方差以及提公因式法将题目化简,然后从1-、0、1、2中选一个使得原分式有意义的值代入化简后的式子即可解答本题.
【详解】 原式2(1)1111(2)(2)22
a a a a a a a a a +--=-⨯=-=-+---, 由已知得:若使原分式有意义,需满足0a ≠,20a a -≠,240a -≠,
即当0a =、1、2、2-时原分式无意义,
故当1a =-时,原式11123=-
=--. 【点睛】
本题考查分式的化简求值,解题关键在于对平方差、完全平方公式等运算法则的运用,其次注意计算仔细即可.
4.(1)详见解析;(2)24
【分析】
(1)可先证得△AEF ≌△DEB ,可求得AF=DB ,可证得四边形ADCF 为平行四边形,再利用直角三角形的性质可求得AD=CD ,可证得结论;
(2)将菱形ADCF 的面积转换成△ABC 的面积,再用S △ABC 的面积=
12
AB•AC ,结合条件可求得答案.
【详解】
(1)证明:∵E 是AD 的中点
∴AE =DE
∵AF ∥BC
∴∠AFE =∠DBE 在△AEF 和△DEB 中AFE DBE DEB AEF AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩
∴△AEF ≌△DEB (AAS )
∴AF =DB
∵D 是BC 的中点
∴BD=CD=AF
∴四边形ADCF 是平行四边形
∵∠BAC =90°,
∴AD =CD =12BC ∴四边形ADCF 是菱形;
(2)解:设AF 到CD 的距离为h ,
∵AF ∥BC ,AF =BD =CD ,∠BAC =90°,AC =6,AB =8
∴S 菱形ADCF =CD•h =
12BC•h =S △ABC =12AB•AC =168242
⨯⨯=. 【点睛】
本题主要考查菱形的判定和性质,全等三角形的判定与性质及直角三角形的性质,掌握菱形的判定方法是解题的关键.
5.(1)10°;(2)135DFA α∠=︒-;(3)∠BEA =∠FEA ,理由见解析
【分析】
(1)根据正方形的性质和三角形的内角和解答即可;
(2)根据正方形的性质和三角形内角和解答即可;
(3)延长CB 至I ,使BI =DF ,根据全等三角形的判定和性质解答即可.
【详解】
解:(1)∵四边形ABCD 是正方形,
∴∠EBA =∠BAD =90°,
∴∠EAB =90°﹣∠BAE =90°﹣55°=35°,
∴∠HAD =∠BAD ﹣∠EAF ﹣∠EAB =90°﹣45°﹣35°=10°;
(2)∵四边形ABCD 是正方形,
∴∠EBA =∠BAD =∠ADF =90°,
∴∠EAB =90°﹣∠BAE =90°﹣α,
∴∠DAF =∠BAD ﹣∠EAF ﹣∠EAB =()90459045αα︒-︒-︒--︒=,
∴∠DFA =90°﹣∠DAF =()9045α︒--︒=135°﹣α;
(3)∠BEA =∠FEA ,理由如下:
延长CB 至I ,使BI =DF ,连接AI .
∵四边形ABCD 是正方形,
∴AD =AB ,∠ADF =∠ABC =90°,
∴∠ABI =90°,
又∵BI=DF,
∴△DAF≌△BAI(SAS),
∴AF=AI,∠DAF=∠BAI,
∴∠EAI=∠BAI+∠BAE=∠DAF+∠BAE=45°=∠EAF,
又∵AE是△EAI与△EAF的公共边,
∴△EAI≌△EAF(SAS),
∴∠BEA=∠FEA.
【点睛】
本题主要考查正方形的性质、三角形外角性质及全等三角形,关键是根据正方形的性质及外角和性质得到角之间的关系,然后求解.
6.见解析
【分析】
先根据平行四边形的性质,得出ED∥BF,再结合已知条件∠ABE=∠CDF推断出EB∥DF,即可证明.
【详解】
证明:∵四边形ABCD为平行四边形,
∴AD∥BC,∠ABC=∠ADC,
∴∠ADF=∠DFC,ED∥BF,
∵∠ABE=∠CDF,
∴∠ABC-∠ABE=∠ADC-∠CDF,即∠EBC=∠ADF,
∴∠EBC=∠DFC,
∴EB∥DF,
∴四边形BFDE是平行四边形.
【点睛】
本题考查了平行四边形的性质和平行四边形的判定定理,掌握知识点是解题关键.7.(1)见解析;(2)15°
【分析】
(1)根据PB=PC得∠PBC=∠PCB,从而可得∠ABP=∠DCP,再利用SAS证明即可;
(2)由(1)得△PAD为等边三角形,可求得∠PAB=30°,∠PAC=∠PAD-∠CAD,因此可得结果.
【详解】
解:(1)∵四边形ABCD为正方形,
∴∠ABC=∠DCB=90°,AB=CD,
∵BP=PC,
∴∠PBC=∠PCB,
∴∠ABP=∠DCP,
又∵AB=CD,BP=CP,
在△APB和△DPC中,
AB CD ABP DCP BP CP =⎧⎪∠=∠⎨⎪=⎩
,
∴△APB ≌△DPC (SAS );
(2)由(1)得AP=DP=AB=AD ,
∴△PAD 为等边三角形,
∴∠PAD=60°,∠PAB=30°,
在正方形ABCD 中,∠BAC=∠DAC=45°,
∴∠PAC=∠PAD-∠CAD=60°-45°=15°.
【点睛】
本题考查了全等三角形的判定定理,正方形的性质,以及等腰三角形的性质,熟练掌握全等三角形的几种判定方法是解答的关键.
8.(1)6;(2)3
;(3)
【分析】
(1)利用二次根式的乘法法则运算;
(2)利用二次根式的乘法法则运算;
(3)利用二次根式的除法法则运算.
【详解】
(1
=23×35
=6;
(2()260,0
y xy x y ≥≥
=3
(3
)
=
4﹣=
【点睛】
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
9.(1)③;(2)①16,0.2;②见解析
【分析】
(1)若要从全年级学生中抽取一个40人的样本,在全年级10个班中各随机抽取4名学生比较合理,所以可得出答案;
(2)①用40减去A类,C类和D类的频数,即可得到m值,用C类的频数除以40即可得到n值;
②根据频数分布表画出扇形统计图即可.
【详解】
(1)若要从全年级学生中抽取一个40人的样本,在全年级10个班中各随机抽取4名学生比较合理,
故答案为:③;
(2)①m=40-12-8-4=16,
n=8
40
=0.2;
②扇形统计图如下:
.
【点睛】
本题考查了数据的整理和应用,由图表获取数据是解题关键.
10.(1)200;72° (2)见解析(3)1300名
【分析】
(1)由D组人数及其所占百分比可得总人数;用360°乘以B所占的百分比即可求出扇形B的圆心角的度数;
(2)根据各组人数之和等于总人数求出A组人数,从而补全统计图;
(3)用该校的总人数乘以每周阅读时间不少于4小时的学生所占的百分比即可.
【详解】
解:(1)本次随机抽查的学生人数为:60÷30%=200(名),
扇形B的圆心角的度数为:360°×40
200
=72°;
故答案为:200,72°;
(2)A组人数为:200﹣(40+70+60)=30(人),补全图形如下:
(3)根据题意得:
2000×7060200
=1300(名), 答:估计每周阅读时间不少于4小时的学生共有.
【点睛】
本题考查了频数分布直方图,扇形图,用样本估计总体等知识,总体难度不大,根据直方图和扇形图提供的公共信息D 组信息得到样本容量是解题关键.
11.(1)见解析 (2)(3,4)
【分析】
(1)根据网格结构找出点A 、C 绕点B 顺时针旋转90°后的对应点A 1、C 1的位置,然后顺次连接即可;
(2)根据旋转的性质,确定出旋转中心即可.
【详解】
解:(1)三角形的旋转可以分开看作每条边的旋转,分别找到对应的点,连接即可,故△A 1BC 1如图所示;
(2)连接'AA 并作其垂直平分线,连接'CC 并作其垂直平分线,交点即为旋转中心.如图所示,旋转中心为(3,4),
故答案为(3,4).
【点睛】
本题考查了利用旋转变换作图,熟练掌握网格结构以及旋转的性质,准确找出对应点的位置是解题的关键.
12.t =2
【分析】
当运动时间为t 秒时,BF =tcm ,AE =(6﹣2t )cm ,由EF ∥AB ,BF ∥AE 可得出四边形ABFE 为平行四边形,利用平行四边形的性质可得出关于t 的一元一次方程,解之即可得出结论.
【详解】
解:当运动时间为t 秒时,BF =tcm ,AE =(6﹣2t )cm ,
∵EF ∥AB ,BF ∥AE ,
∴四边形ABFE 为平行四边形,
∴BF =AE ,即t =6﹣2t ,
解得:t =2.
答:当t =2秒时,EF ∥AB .
【点睛】
本题考查了一元一次方程的应用以及平行四边形的判定与性质,利用平行四边形的性质,找出关于t 的一元一次方程是解题的关键.
13.(1)详见解析;(2)详见解析;(3)20
【分析】
(1)先可判断四边形BGFD 是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD FD =;
(2)由邻边相等可判断四边形BGFD 是菱形;
(3)设GF x =,则13AF x =-,2AC x =,在Rt ACF ∆中利用勾股定理可求出x 的值.
【详解】
(1)证明:90ABC ∠=︒,BD 为AC 的中线,
12
BD AC ∴= //AG BD ,BD FG =,
∴四边形BDFG 是平行四边形,
CF BD ⊥
CF AG ∴⊥ 又点D 是AC 的中点
12
DF AC ∴= BD DF ∴=.
(2)证明:由(1)知四边形BDFG 是平行四边形
又BD DF =
BDFG ∴是菱形
(3)解:设GF x =则13AF x =-,2AC x =,6CF =,
在Rt ACF ∆中,222CF AF AC +=
2226(13)(2)x x ∴+-=
解得5x =
4520BDFG C ∴=⨯=菱形.
【点睛】
本题考查了菱形的判定与性质、勾股定理及直角三角形的斜边中线的性质;解答本题的关键是证明四边形BGFD 是菱形.
14.(1)(),6AP tcm AQ t cm ==-;(2)存在,8163t s s
=或;(3)存在, 3/a cm s =.
【分析】
(1)根据路程=时间×速度,即可表示出来
(2)要讨论PA AB ⊥,PQ AC ⊥两种情况,即可求出对应的时间
(3)根据BPQ ∆以BP 为底的等腰三角形,作QM BP ⊥于M ,用a ,t 的代数式表示出
AP ,CQ ,AQ ,BP 等边长,再根据ABC ∆是等边三角形,求出30AQM ︒∠=,从而得出2AQ AM =,讨论P 在线段AB 内运动和P 在AB 外运动两种情况,即可求出结果.
【详解】
解:()1由题意可知:(),,6AP tcm CQ tcm AQ t cm ===-
()2存在8163t s s
=
或时,使得APQ ∆为直角三角形,理由是 ①当PA AB ⊥时,由题意有28t t =-,解得83
t s = ②当PQ AC ⊥时,由题意有()8,2t t =-解得163
t s = ∴综上所述,存在8163t s s =或时,使得APQ ∆为直角三角形 ()3存在3/a cm s =时,BPQ ∆恒为以BP 为底的等腰三角形,理由是:
作QM BP ⊥于M ,如图2所示
由题意得:3,AP t CQ at ==,则8,83AQ at BP t =+=-
,PQ BQ QM BP =⊥
12
PM BM BP ∴== ABC ∆是等边三角形,
60A ︒∴∠=
30AQM ︒∴∠=
2AQ AM ∴=, ①当83t ≤时,由题意有832382t t at -⎛⎫+=+ ⎪⎝⎭,解得3/a cm s =, ②当83t ≥时,由题意有382382t t at -⎛⎫-=+ ⎪⎝
⎭,解得3/a cm s =, ∴综上所述,存在3/a cm s =时,BPQ ∆恒为以BP 为底的等腰三角形.
【点睛】
本题主要考察了直角三角形,等腰三角形,动点等知识点,记住它们的常用性质和把动点问题转换成代数式求解问题是解题关键.
15.(1)AE+CF=EF ;(2)如图2,(1)中结论成立,即AE+CF=EF ;如图3,(1)中结论不成立,AE=EF+CF .
【分析】
(1)根据题意易得△ABE ≌△CBF ,然后根据全等三角形的性质可得∠ABE=∠CBF=30°,进而根据30°角的直角三角形及等边三角形的性质可求解;
(2)如图2,延长FC 到H ,使CH=AE ,连接BH ,根据题意可得△BCH ≌△BAE ,则有
BH=BE,∠CBH=∠ABE,进而可证△HBF≌△EBF,推出HF=EF,最后根据线段的等量关系可求解;如图3,在AE上截取AQ=CF,连接BQ,根据题意易得△BCF≌△BAQ,推出
BF=BQ,∠CBF=∠ABQ,进而可证△FBE≌△QBE,推出EF=QE即可.
【详解】
解:(1)如图1,AE+CF=EF,理由如下:
∵AB⊥AD,BC⊥CD,
∴∠A=∠C=90°,
∵AB=BC,AE=CF,
∴△ABE≌△CBF(SAS),
∴∠ABE=∠CBF,BE=BF,
∵∠ABC=120°,∠MBN=60°,
∴∠ABE=∠CBF=30°,
∴
11
,
22
AE BE CF BF
==,
∵∠MBN=60°,BE=BF,∴△BEF是等边三角形,
∴
11
22
AE CF BE BF BE EF +=+==,
故答案为AE+CF=EF;
(2)如图2,(1)中结论成立;理由如下:延长FC到H,使CH=AE,连接BH,
∵AB⊥AD,BC⊥CD,
∴∠A=∠BCH=90°,
∴△BCH≌△BAE(SAS),
∴BH=BE,∠CBH=∠ABE,
∵∠ABC=120°,∠MBN=60°,
∴∠ABE+∠CBF=120°-60°=60°,
∴∠HBC+∠CBF=60°,
∴∠HBF=∠MBN=60°,
∴∠HBF=∠EBF,
∴△HBF≌△EBF(SAS),
∴HF=EF,
∵HF=HC+CF=AE+CF,
∴EF=AE+CF,
如图3,(1)中的结论不成立,为AE=EF+CF,理由如下:
在在AE上截取AQ=CF,连接BQ,
∵AB⊥AD,BC⊥CD,
∴∠A=∠BCF=90°,
∵AB=BC,
∴△BCF≌△BAQ(SAS),
∴BF=BQ,∠CBF=∠ABQ,
∵∠MBN=60°=∠CBF+∠CBE,
∴∠CBE+∠ABQ=60°,
∵∠ABC=120°,
∴∠QBE=120°-60°=60°=∠MBN,
∴∠FBE=∠QBE,
∴△FBE≌△QBE(SAS),
∴EF=QE,
∵AE=QE+AQ=EF+CE,
∴AE=EF+CF.
【点睛】
本题主要考查全等三角形的性质与判定、含30°角的直角三角形的性质及等边三角形的性质,熟练掌握全等三角形的性质与判定、含30°角的直角三角形的性质及等边三角形的性质是解题的关键.。