人教版平行四边形单元达标测试综合卷检测试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点Q为射线DC上的一个动点,将 沿AQ翻折,点D恰好落在直线BQ上的点 处,则 ______;
2.综合与实践.
问题情境:
如图①,在纸片 中, , ,过点 作 ,垂足为点 ,沿 剪下 ,将它平移至 的位置,形状.
深入探究:(2)如图②,在(1)中的四边形纸片 中,在 .上取一点 ,使 ,剪下 ,将它平移至 的位置,拼成四边形 ,试探究四边形 的形状;
一、解答题
1.(1)①6;②结论: (2)为4和16.
【分析】
如图1中,以A为圆心AB为半径画弧交CD于E,作 的平分线交BC于点P,点P即为所求 理由勾股定理可得DE.
如图2中,结论: 只要证明 , 即可解决问题.
分两种情形分别求解即可解决问题.
【详解】
解: 如图1中,以A为圆心AB为半径画弧交CD于E,作 的平分线交BC于点P,点P即为所求.
(2)问题探究:在图2的基础上继续将直角三角板绕点O顺时针 ,如图3,在AB边上的上方以AB为边作等边 ,问:是否存在这样的点D,使得以点A、B、C、D四点为顶点的四边形构成为菱形,若存在,请直接写出点D所有可能的坐标;若不存在,请说明理由.
(3)动点分析:在图3的基础上,过点O作 于点P,如图4,若点F是边OB的中点,点M是射线PF上的一个动点,当 为直角三角形时,求OM的长.
(1)求证: ;
(2)若 ,点 是 的中点,连结 ,
①求证:四边形 是平行四边形;
②求 的长.
6.如图①,已知正方形ABCD中,E,F分别是边AD,CD上的点(点E,F不与端点重合),且AE=DF,BE,AF交于点P,过点C作CH⊥BE交BE于点H.
(1)求证:AF∥CH;
(2)若AB=2 ,AE=2,试求线段PH的长;
(2)由平移推出 ,证得四边形 是平行四边形,根据 得到 ,再根据勾股定理求出AF=5=AD,即可证得四边形 是菱形;
(3)先利用勾股定理求出 ,再根据菱形的面积求出 ;
(4)在BC边上取点E,连接AE,平移△ABE得到△DCF,可得四边形AEFD是平行四边形.
【详解】
(1)四边形 是矩形,
在 中, , ,
拓展延伸:(3)在(2)的条件下,求出四边形 的两条对角线长;
(4)若四边形 为正方形,请仿照上述操作,进行一次平移,在图③中画出图形,标明字母,你能发现什么结论,直接写出你的结论.
3.如下图1,在平面直角坐标系中 中,将一个含 的直角三角板如图放置,直角顶点与原点重合,若点A的坐标为 , .
(1)旋转操作:如下图2,将此直角三角板绕点O顺时针旋转 时,则点B的坐标为.
在 中, , , ,

故答案为6.
如图2中,结论: .
理由:由翻折不变性可知: , ,
垂直平分线段BE,
即 ,




如图 中,当点Q在线段CD上时,设 .
在 中, , , ,

在 中, ,



如图 中,当点Q在线段DC的延长线上时,





在 中, ,

综上所述,满足条件的DQ的值为4或16.
(3)如图③,若△ABO是等边三角形,AB=4,点F在BC边上,且BF=4.则 =(直接填结果).
8.如图,在矩形ABCD中,AD=nAB,E,F分别在AB,BC上.
(1)若n=1,AF⊥DE.
①如图1,求证:AE=BF;
②如图2,点G为CB延长线上一点,DE的延长线交AG于H,若AH=AD,求证:AE+BG=AG;
4.已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交于BE的延长线于点F,且AF=DC,连接CF.
(1)求证:D是BC的中点;
(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.
5.如图,在边长为1的正方形 中, 是边 的中点,点 是边 上一点(与点 不重合),射线 与 的延长线交于点 .
(3)如图②,连结CP并延长交AD于点Q,若点H是BP的中点,试求 的值.
7.如图平行四边形ABCD,E,F分别是AD,BC上的点,且AE=CF,EF与AC交于点O.
(1)如图①.求证:OE=OF;
(2)如图②,将平行四边形ABCD(纸片沿直线EF折叠,点A落在A1处,点B落在点B1处,设FB交CD于点G.A1B分别交CD,DE于点H,P.请在折叠后的图形中找一条线段,使它与EP相等,并加以证明;
人教版平行四边形单元达标测试综合卷检测试卷
一、解答题
1.在四边形ABCD中, , , .
为边BC上一点,将 沿直线AP翻折至 的位置 点B落在点E处
如图1,当点E落在CD边上时,利用尺规作图,在图1中作出满足条件的图形 不写作法,保留作图痕迹,用2B铅笔加粗加黑 并直接写出此时 ______;
如图2,若点P为BC边的中点,连接CE,则CE与AP有何位置关系?请说明理由;
(2)如图3,若E为AB的中点,∠ADE=∠EDF.则 的值是_____________(结果用含n的式子表示).
9.如图①,在 中, ,过 上一点 作 交 于点 ,以 为顶点, 为一边,作 ,另一边 交 于点 .
(1)求证:四边形 为平行四边形;
(2)当点 为 中点时, 的形状为;
(3)延长图①中的 到点 使 连接 得到图②,若 判断四边形 的形状,并说明理由.
10.如图,矩形ABCD中,点O是对角线BD的中点,过点O的直线分别交AB,CD于点E,F.
(1)求证:四边形DEBF是平行四边形;
(2)若四边形DEBF是菱形,则需要增加一个条件是_________________,试说明理由;
(3)在(2)的条件下,若AB=8,AD=6,求EF的长.
【参考答案】***试卷处理标记,请不要删除
由平移可知: ,
∴ ,
∴ ,
∴四边形 是平行四边形,
∵ ,
∴ ,
∴四边形 是矩形;
(2)四边形 是菱形,
在矩形 中, , ,
由平移可知: ,
故答案为4和16.
【点睛】
本题属于几何变换综合题,考查了矩形的性质,翻折变换,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.
2.(1)矩形;(2)菱形;(3) ;(4)见解析
【分析】
(1)由平移推出 ,即可证得四边形 是平行四边形,再根据 ,得到 即可得到结论;
相关文档
最新文档