高考物理复习《电磁感应现象的两类情况》专项推断题综合练习及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理复习《电磁感应现象的两类情况》专项推断题综合练习及答案
一、电磁感应现象的两类情况
1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)
(1)求导体棒下滑的最大速度;
(2)求当速度达到5m/s 时导体棒的加速度;
(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).
【答案】(1)18.75m/s (2)a=4.4m/s 2
(32
22mgs mv Rt
-
【解析】
【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;
解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R
θ==, 解得: 222
sin 18.75cos mgR v B L θ
θ
=
=; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A R
θ
=
=, 0.2F BIL N ==, 24.4/a m s =;
(3)根据能量守恒有:22012
mgs mv I Rt =
+ , 解得: 2
02mgs mv I Rt -=
2.如图甲所示,相距d 的两根足够长的金属制成的导轨,水平部分左端ef 间连接一阻值为2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d 、质量为m 的金属棒ab 电阻为R ,通过固定在棒两端的金属轻滑环套在导轨上,滑环与导轨上MG 、NH 段动摩擦因数μ

1
8
(其余部分摩擦不计).MN 、PQ 、GH 相距为L ,MN 、PQ 间有垂直轨道平面向下、磁感应强度为B 1的匀强磁场,PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不计,sin 37°=0.6,cos 37°=0.8,当ab 棒从MN 上方一定距离由静止释放通过MN 、PQ 区域(运动过程中ab 棒始终保持水平),电压传感器监测到U -t 关系如图乙所示.
(1)求ab 棒刚进入磁场B 1时的速度大小. (2)求定值电阻上产生的热量Q 1.
(3)多次操作发现,当ab 棒从MN 以某一特定速度进入MNQP 区域的同时,另一质量为2m ,电阻为2R 的金属棒cd 只要以等大的速度从PQ 进入PQHG 区域,两棒均可同时匀速通过各自场区,试求B 2的大小和方向.
【答案】(1)11.5U B d (2)2
221934-mU mgL B d
;(3)32B 1 方向沿导轨平面向上 【解析】 【详解】
(1)根据ab 棒刚进入磁场B 1时电压传感器的示数为U ,再由闭合电路欧姆定律可得此时的感应电动势:
1 1.52U
E U R U R
=+
⋅= 根据导体切割磁感线产生的感应电动势计算公式可得:
111E B dv =
计算得出:111.5U
v B d
=
. (2)设金属棒ab 离开PQ 时的速度为v 2,根据图乙可以知道定值电阻两端电压为2U ,根据闭合电路的欧姆定律可得:
12
222B dv R U R R
⋅=+ 计算得出:213U
v B d
=
;棒ab 从MN 到PQ ,根据动能定理可得: 222111sin 37cos3722
mg L mg L W mv mv μ︒︒⨯-⨯-=
-安
根据功能关系可得产生的总的焦耳热 :
=Q W 总安
根据焦耳定律可得定值电阻产生的焦耳热为:
122R
Q Q R R
=
+总 联立以上各式得出:
2
12211934mU Q mgL B d
=-
(3)两棒以相同的初速度进入场区匀速经过相同的位移,对ab 棒根据共点力的平衡可得:
221sin 37cos3702B d v
mg mg R
μ︒

--=
计算得出:22
1mgR
v B d =
对cd 棒分析因为:
2sin 372cos370mg mg μ︒︒-⋅>
故cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度B 2沿导轨平面向上,cd 棒也匀速运动则有:
1212sin 372cos37022B dv mg mg B d R μ︒︒⎛⎫
-+⨯⨯⨯= ⎪⎝⎭
将22
1mgR
v B d =
代入计算得出:2132B B =. 答:(1)ab 棒刚进入磁场1B 时的速度大小为
11.5U
B d
; (2)定值电阻上产生的热量为2
22
11934mU mgL B d -;
(3)2B 的大小为132B ,方向沿导轨平面向上.
3.如图所示,两根粗细均匀的金属棒M N 、,用两根等长的、不可伸长的柔软导线将它们连接成闭合回路,并悬挂在光滑绝缘的水平直杆上,并使两金属棒水平。

在M 棒的下方有高为H 、宽度略小于导线间距的有界匀强磁场,磁感应强度为B ,磁场方向垂直纸面向里,此时M 棒在磁场外距上边界高h 处(h <H ,且h 、H 均为未知量),N 棒在磁场内紧贴下边界。

已知:棒M 、N 质量分别为3m 、m ,棒在磁场中的长度均为L ,电阻均为R 。

将M 棒从静止释放后,在它将要进入磁场上边界时,加速度刚好为零;继续运动,在N 棒未离开磁场上边界前已达匀速。

导线质量和电阻均不计,重力加速度为g : (1)求M 棒将要进入磁场上边界时回路的电功率;
(2)若已知M 棒从静止释放到将要进入磁场的过程中,经历的时间为t ,求该过程中M 棒上产生的焦耳热Q ;
(3)在图2坐标系内,已定性画出从静止释放M 棒,到其离开磁场的过程中“v -t 图像”的部分图线,请你补画出M 棒“从匀速运动结束,到其离开磁场”的图线,并写出两纵坐标a 、b 的值。

【答案】(1)22
22
8Rm g B L ;(2)222222412⎛⎫- ⎪⎝⎭Rm g mR t B L B L ;(3),图见解析,224mgR a B L =,22
mgR
b B L =
【解析】 【分析】 【详解】
(1)由牛顿第二定律得
3mg mg BIL -=
M 棒将要进入磁场上边界时回路的电功率
22
2
22
82Rm g P I R B L
== (2)N 棒产生的感应电动势
2E IR BLv ==
由动量守恒得
(3)4mg mg t BLIt mv --=
通过N 棒的电荷量
2BLh
It q R
==
根据能量守恒得
21
(3)422
mg mg h mv Q -=⨯+
联立得2222
22412Rm g mR Q t B L B L ⎛⎫=- ⎪⎝⎭(或22322
2244
448Rm g m g R Q t B L B L =-) (3)对M 棒受力分析
2232B L v
mg mg R
-=
解得22
4mgR
a B L = 由
2'
322BLv mg mg BL
R
-= 解得22
mgR
b B L =
4.如图所示,竖直向上的匀强磁场垂直于水平面内的导轨,磁感应强度大小为B ,质量为M 的导体棒PQ 垂直放在间距为l 的平行导轨上,通过轻绳跨过定滑轮与质量为m 的物块A 连接。

接通电路,导体棒PQ 在安培力作用下从静止开始向左运动,最终以速度v 匀速运动,此过程中通过导体棒PQ 的电量为q ,A 上升的高度为h 。

已知电源的电动势为E ,重力加速度为g 。

不计一切摩擦和导轨电阻,求:
(1)当导体棒PQ 匀速运动时,产生的感应电动势的大小E ’; (2)当导体棒PQ 匀速运动时,棒中电流大小I 及方向; (3)A 上升h 高度的过程中,回路中产生的焦耳热Q 。

【答案】(1) E Blv =;(2) mg I Bl =,方向为P 到Q ;(3)2
1()2
qE mgh m M v --+ 【解析】 【分析】 【详解】
(1)当导体棒PQ 最终以速度v 匀速运动,产生的感应电动势的大小
E Blv =
(2)当导体棒PQ 匀速运动时,安培力方向向左,对导体棒有
T mg F ==安
又因为
F BIl =安
联立得
mg
I Bl
=
根据左手定则判断I 的方向为P 到Q 。

(3) 根据能量守恒可知,A 上升h 高度的过程中,电源将其它形式的能量转化为电能,再将电能转化为其他形式能量,则有
()21
2
qE Q m M v mgh =+
++ 则回路中的电热为
()21
2
Q qE mgh m M v =--
+
5.如图所示,空间存在竖直向下的匀强磁场,磁感应强度B =0.5T .在匀强磁场区域内,有一对光滑平行金属导轨,处于同一水平面内,导轨足够长,导轨间距L =1m ,电阻可忽略不计.质量均为m =lkg ,电阻均为R =2.5Ω的金属导体棒MN 和PQ 垂直放置于导轨上,且与导轨接触良好.先将PQ 暂时锁定,金属棒MN 在垂直于棒的拉力F 作用下,由静止开始以加速度a =0.4m /s 2向右做匀加速直线运动,5s 后保持拉力F 的功率不变,直到棒以最大速度v m 做匀速直线运动.
(1)求棒MN 的最大速度v m ;
(2)当棒MN 达到最大速度v m 时,解除PQ 锁定,同时撤去拉力F ,两棒最终均匀速运动.求解除PQ 棒锁定后,到两棒最终匀速运动的过程中,电路中产生的总焦耳热.
(3)若PQ 始终不解除锁定,当棒MN 达到最大速度v m 时,撤去拉力F ,棒MN 继续运动多远后停下来?(运算结果可用根式表示)
【答案】(1)25m /s m v = (2)Q =5 J (3)5m x = 【解析】 【分析】 【详解】
(1)棒MN 做匀加速运动,由牛顿第二定律得:F -BIL =ma 棒MN 做切割磁感线运动,产生的感应电动势为:E =BLv 棒MN 做匀加速直线运动,5s 时的速度为:v =at 1=2m/s
在两棒组成的回路中,由闭合电路欧姆定律得:2E I R
=
联立上述式子,有:222B L at
F ma R
=+
代入数据解得:F =0.5N 5s 时拉力F 的功率为:P =Fv 代入数据解得:P =1W
棒MN 最终做匀速运动,设棒最大速度为v m ,棒受力平衡,则有:
0m m
P
BI L v -= 2m
m BLv I R
=
代入数据解得
:m v =
(2)解除棒PQ 后,两棒运动过程中动量守恒,最终两棒以相同的速度做匀速运动,设速度大小为v ′,则有:2m mv mv '=
设从PQ 棒解除锁定,到两棒达到相同速度,这个过程中,两棒共产生的焦耳热为Q ,由能量守恒定律可得:2211
222
m Q mv mv '=-⨯ 代入数据解得:Q =5J ;
(3)棒以MN 为研究对象,设某时刻棒中电流为i ,在极短时间△t 内,由动量定理得:-BiL △t =m △v
对式子两边求和有:()()m BiL t m v ∑-∆=∑∆ 而△q =i △t
对式子两边求和,有:()q i t ∑∆=∑∆ 联立各式解得:BLq =mv m , 又对于电路有:2E q It t R
==
由法拉第电磁感应定律得:BLx
E t
= 又2BLx
q R
=
代入数据解得:x =
6.如图所示,在倾角为37︒的光滑斜面上存在两个磁感应强度均为B 的匀强磁场区域。

磁场Ⅰ的方向垂直于斜面向下,其上下边界'AA 与DD'的间距为H 。

磁场H 的方向垂直于斜面向上,其上边界'CC 与'DD 的间距为h 。

线有一质量为m 、边长为L (h <L <H )、电阻为R 的正方形线框由'AA 上方某处沿斜面由静止下滑,恰好能匀速进入磁场Ⅰ。

已知当cd 边刚要进入磁场Ⅱ的前一瞬间,线框的加速度大小为10.2a g =,不计空气阻力,求:
(1)cd 边刚到达'AA 时的速度1v ;
(2)cd 边从'AA 运动到'CC 过程中,线框所产生的热量Q ; (3)当cd 边刚进入磁场H 时,线框的加速度大小2a 。

【答案】(1)12235mgR v B L =(2)322
44
3()2525mg H h m g R Q B L
+=-(3)2a g =- 【解析】 【分析】 【详解】
(1)cd 边刚到达'AA 时有
221
sin 37B L v mg R

= 解得
12235mgR v B L
=
(2)已知当cd 边刚要进入磁场Ⅱ的前一瞬间,由牛顿第二定律得
222
1sin 37B L v mg ma R

-=
解得
222
25mgR
v B L =
由能量守恒得
2
21()sin 372
mg H h Q mv ︒+=+
解得
322
44
3()2525mg H h m g R Q B L
+=- (3)当cd 边刚进入磁场II 时,ab ,cd 两边分别在两磁场中切割磁感线,则有此时线圈中的电动势变为只有cd 切割时的两倍,电流也为两倍,由左手定则可知,ab ,cd 两边受的安
培力相同,方向沿斜面向上,线圈此时受的安培力变为原来的4倍,则有
222
2sin 374B L v mg ma R

-=
解得
2a g =-。

7.如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1 m ,导轨平面与水平面成θ = 37°角,下端连接阻值为R =2Ω的电阻.磁场方向垂直导轨平面向上,磁感应强度为0.4T .质量为0.2kg 、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.金属棒沿导轨由静止开始下滑.(g=10m/s 2,sin37°=0.6,cos37°=0.8)
(1)判断金属棒下滑过程中产生的感应电流方向; (2)求金属棒下滑速度达到5m/s 时的加速度大小; (3)当金属棒下滑速度达到稳定时,求电阻R 消耗的功率. 【答案】(1)由a 到b (2)22/a m s =(3)8P W = 【解析】 【分析】 【详解】
(1)由右手定则判断金属棒中的感应电流方向为由a 到b .
(2)金属棒下滑速度达到5/m s 时产生的感应电动势为0.4152E BLv V V ==⨯⨯=
感应电流为1E
I A R
=
=,金属棒受到的安培力为0.4110.4?F BIL N N ==⨯⨯= 由牛顿第二定律得:mgsin mgcos F ma θμθ--=,解得:22/a m s =.
(3)设金属棒运动达到稳定时,所受安培力为F ',棒在沿导轨方向受力平衡
mgsin mgcos F θμθ=+',解得:0.8F N '=,又:F BI L '=',
0.820.41
F I A A BL ''=
==⨯ 电阻R 消耗的功率:28P I R W ='=. 【点睛】
该题考查右手定则的应用和导体棒沿着斜面切割磁感线的运动,该类题型综合考查电磁感应中的受力分析与法拉第电磁感应定律的应用,要求的解题的思路要规范,解题的能力要求较高.
8.如图所示,粗糙斜面的倾角37θ︒=,斜面上直径0.4m D =的圆形区域内存在着垂直于斜面向下的匀强磁场(图中只画出了磁场区域,未标明磁场方向),一个匝数为100n =的刚性正方形线框abcd ,边长为0.5m ,通过松弛的柔软导线与一个额定功率2W P =的小灯泡L 相连,圆形磁场的一条直径恰好过线框bc 边,已知线框质量2kg m =,总电阻02R =Ω,与斜面间的动摩擦因数0.5μ=,灯泡及柔软导线质量不计,从0t =时刻起,
磁场的磁感应强度按
2
1(T)B t π
=-
的规律变化,开始时线框静止在斜面上,T 在线框运动
前,灯泡始终正常发光,设最大静摩擦力等于滑动摩擦力,2
10m/s g =,
370.6sin ︒=, 370.8cos ︒=.
(1)求线框静止时,回路中的电流I ;
(2)求在线框保持不动的时间内,小灯泡产生的热量Q ;
(3)若线框刚好开始运动时即保持磁场不再变化,求线框从开始运动到bc 边离开磁场的过程中通过小灯泡的电荷量q .(柔软导线及小灯泡对线框运动的影响可忽略,且斜面足够长)
【答案】(1)1A (2)2.83J (3)0.16C 【解析】 【详解】
(1)由法拉第电磁感应定律可得线框中产生的感应电动势大小为
2
14V 22B D E n n t t π∆Φ∆⎛⎫
==⨯⨯= ⎪∆∆⎝⎭
设小灯泡电阻为R ,由
2
20E P I R R R R ⎛⎫== ⎪+⎝

可得
2R =Ω
解得
2A 1A 2
P I R =
== (2)设线框保持不动的时间为t ,根据共点力的平衡条件可得
2sin 1cos mg n
t ID mg θμθπ⎛
⎫=-+ ⎪⎝⎭
解得
0.45t s π=
产生的热量为
2.J 83Q Pt ==
(3)线框刚好开始运动时
210.45T 0.1T B ππ⎛⎫
=-⨯= ⎪⎝⎭
根据闭合电路的欧姆定律可得
00
0B
n
s
E t I R R R R -∆==
++ 根据电荷量的计算公式可得
0.16C nBS
q I t R R =⋅∆=
=+
9.如图所示,将边长为a 、质量为m 、电阻为R 的正方形导线框竖直向上抛出,穿过宽度为b 、磁感应强度为B 的匀强磁场区域,磁场的方向垂直纸面向里,线框向上离开磁场时的速度刚好是进入磁场时速度的一半,线框离开磁场后继续上升一段高度,然后落下并匀速进入磁场.整个运动过程中始终存在着大小恒定的空气阻力f ,且线框不发生转动.求:
(1)线框在下落阶段匀速进入磁场时的速度v 2; (2)线框在上升阶段刚离开磁场时的速度v 1; (3)线框在上升阶段通过磁场过程中产生的焦耳热Q . 【答案】(1)
22mg fR B a - (2)()
2
21
22
R
v mg f B a =-(3)()()()2224432mR Q mg f mg f a b B a
⎡⎤=--++⎣⎦ 【解析】
【分析】
(1)下落阶段匀速进入磁场说明线框所受力:重力、空气阻力及向上的安培力的合力为零.(2)对比线框离开磁场后继续上升一段高度(设为h ),然后下落相同高度h 到匀速进入磁场时两个阶段受力情况不同,合力做功不同,由动能定理:线框从离开磁场至上升到最高点的过程.(3)求解焦耳热Q ,需要特别注意的是线框向上穿过磁场是位移是a+b 而不是b ,这是易错的地方 【详解】
(1)线框在下落阶段匀速进入磁场瞬间,由平衡知识有:222
B a v mg f R
=+
解得:222
()mg f R
v B a -=
(2)线框从离开磁场至上升到最高点的过程,由动能定理:2110()02
mg f h mv -+=- 线圈从最高点落至进入磁场瞬间:211()2
mg f h mv -=
联立解得:12v =
= (3)线框在向上通过磁场过程中,由能量守恒定律有:
22
0111()()22
Q mg f a b mv mv +++=
- 而012v v =
解得:222
44
3[()]()()2mR Q mg f mg f a b B a
=--++ 即线框在上升阶段通过磁场过程中产生的焦耳热为
2
2244
3[()]()()2mR Q mg f mg f a b B a
=--++ 【点睛】
此类问题的关键是明确所研究物体运动各个阶段的受力情况,做功情况及能量转化情况,选择利用牛顿运动定律、动能定理或能的转化与守恒定律解决针对性的问题,由于过程分析不明而易出现错误.
10.如图所示,宽度L =0.5 m 的光滑金属框架MNPQ 固定于水平面内,并处在磁感应强度大小B =0.4 T ,方向竖直向下的匀强磁场中,框架的电阻非均匀分布.将质量m =0.1 kg ,电阻可忽略的金属棒ab 放置在框架上,并与框架接触良好.以P 为坐标原点,PQ 方向为
x 轴正方向建立坐标.金属棒从0x 1?m =
处以0v 2?m /s =的初速度,沿x 轴负方向做2a 2?m /s =的匀减速直线运动,运动中金属棒仅受安培力作用.求:
(1)金属棒ab 运动0.5 m ,框架产生的焦耳热Q ;
(2)框架中aNPb 部分的电阻R 随金属棒ab 的位置x 变化的函数关系;
(3)为求金属棒ab 沿x 轴负方向运动0.4 s 过程中通过ab 的电荷量q ,某同学解法为:先算出经过0.4 s 金属棒的运动距离x ,以及0.4 s 时回路内的电阻R ,然后代入BLx
q R R
∆Φ==求解.指出该同学解法的错误之处,并用正确的方法解出结果. 【答案】(1)0.1 J (2)R 0.4x =(3)0.4C 【解析】 【分析】 【详解】
(1)金属棒仅受安培力作用,其大小
0.120.2?F ma N ⨯===
金属棒运动0.5 m ,框架中产生的焦耳热等于克服安培力做的功
所以0.20.50.1?
Q Fx J ===⨯. (2)金属棒所受安培力为
F BIL =
E BLv I R R ==所以22B L R
F ma v
== 由于棒做匀减速直线运动2002()v v a x x =--所以222000.420.522()222210.40.12
B L R v a x x x x ma --⨯==-⨯-=⨯(3)错误之处是把0.4 s 时回路内的电阻R 代入BLx
q R
=进行计算. 正确的解法是q It = 因为F BIL ma ==
所以ma 0.12
q t 0.40.4?C BL 0.40.5
⨯⨯⨯=
== 【点睛】
电磁感应中的功能关系是通过安培力做功量度外界的能量转化成电能.找两个物理量之间的关系是通过物理规律一步一步实现的.用公式进行计算时,如果计算的是过程量,我们要看这个量有没有发生改变.
11.如图所示,两条相距d 的平行金属导轨位于同一水平面内,其右端接一阻值为R 的电阻.质量为m 的金属杆静置在导轨上,其左侧的矩形匀强磁场区域MNPQ 的磁感应强度大小为B 、方向竖直向下.当该磁场区域以速度v 0匀速地向右扫过金属杆后,金属杆的速度变为v .导轨和金属杆的电阻不计,导轨光滑且足够长,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:
(1)MN 刚扫过金属杆时,杆中感应电流的大小I ; (2)MN 刚扫过金属杆时,杆的加速度大小a ; (3)PQ 刚要离开金属杆时,感应电流的功率P .
【答案】(1)0Bdv R ;(2)220B d v mR ;(3)222
0()B d v v R
-;
【解析】 【分析】
本题的关键在于导体切割磁感线产生电动势E =Blv ,切割的速度(v )是导体与磁场的相对速度,分析这类问题,通常是先电后力,再功能.
(1)根据电磁感应定律的公式可得知产生的电动势,结合闭合电路的欧姆定律,即可求得MN 刚扫过金属杆时,杆中感应电流的大小I ;
(2)根据第一问求得的电流,利用安培力的公式,结合牛顿第二定律,即可求得MN 刚扫过金属杆时,杆的加速度大小a ;
(3)首先要得知,PQ 刚要离开金属杆时,杆切割磁场的速度,即为两者的相对速度,然后结合感应电动势的公式以及功率的公式即可得知感应电流的功率P . 【详解】
(1)感应电动势 0E Bdv =
感应电流E I R =
解得0Bdv I R
= (2)安培力 F BId = 牛顿第二定律 F ma =
解得220
B d v a mR
=
(3)金属杆切割磁感线的速度0=v v v '-,则
感应电动势 0()E Bd v v =-
电功率2
E P R
= 解得2220()B d v v P R -=
【点睛】
该题是一道较为综合的题,考查了电磁感应,闭合电路的欧姆定律以及电功电功率.对于法拉第电磁感应定律是非常重要的考点,经常入选高考物理压轴题,平时学习时要从以下几方面掌握. (1)切割速度v 的问题
切割速度的大小决定了E 的大小;切割速度是由导体棒的初速度与加速度共同决定的.同时还要注意磁场和金属棒都运动的情况,切割速度为相对运动的速度;不难看出,考电磁感应的问题,十之八九会用到牛顿三大定律与直线运动的知识. (2)能量转化的问题
电磁感应主要是将其他形式能量(机械能)转化为电能,可由于电能的不可保存性,很快又会想着其他形式能量(焦耳热等等)转化. (3)安培力做功的问题
电磁感应中,安培力做的功全部转化为系统全部的热能,而且任意时刻安培力的功率等于系统中所有电阻的热功率. (4)动能定理的应用
动能定理当然也能应用在电磁感应中,只不过同学们要明确研究对象,我们大多情况下是通过导体棒的.固定在轨道上的电阻,速度不会变化,显然没有用动能定理研究的必要.
12.如图,水平面上有两根足够长的光滑平行金属导轨,导轨间距为l ,电阻不计,左侧接有定值电阻R ,质量为m 、电阻为r 的导体杆,以初速度v 0沿轨道滑行,在滑行过程中保持与轨道垂直且接触良好,整个装置处于方向竖直向上,磁感应强度为B 的匀强磁场中。

宏观规律与微观规律有很多相似之处,导体杆速度的减小规律类似于放射性元素的半衰期,理论上它将经过无限长的时间衰减完有限的速度。

(1)求在杆的速度从v 0减小到0
2
v 的过程中: ①电阻R 上产生的热量; ②通过电阻R 的电量;
(2)①证明杆的速度每减小一半所用的时间都相等;
②若杆的动能减小一半所用时间为t 0,则杆的动量减小一半所用时间是多少?
【答案】(1)①2
038()Rmv R r +,②
2mv Bl
;(2)①22()v B l t v m R r ∆=∆+,②2t 0。

【解析】 【详解】
(1)①设电路中产生的热量为Q ,由能量守恒定律
22
0011()222
v mv m Q =+ 串联电路中,产生的热量与电阻成正比,可得
Q R =
R
R r
+Q 解得电阻R 产生的热量为
2
38()
R Rmv Q R r =+;
②设该过程所用时间为t ,由动量定理
0(
)2
v BIlt m v -=- 其中
It q =
解得通过R 的电量为:
2mv q Bl
=
; (2)①设某时刻杆的速度为v (从v 0开始分析亦可),则 感应电动势
E =Blv ,
感应电流
I =E R r
+, 安培力
F =BIl =22B l v
R r
+
在很短时间Δt 内,由动量定理
F Δt =m Δv ,(Δv 为速度变化绝对值)
可得
22B l v
t m v R r
∆=∆+ 所以在任意短时间内速度变化的比例为
22
()
v B l t v m R r ∆=∆+ 由于22
()
B l m R r +为定值,可见任何相等时间内速度变化的比例都相等。

所以从任何时刻开始
计算,速度减小一半所用时间都相等。

②杆的动能减小一半,其速度v
,所用时间为t 0,
由①中分析可得,杆的速度从
2
再减小到22⨯所用时间仍为t 0, 所以杆的速度减小一半所用时间为2t 0,即动量减小一半所用时间为2t 0。

13.如图所示,两平行光滑不计电阻的金属导轨竖直放置,导轨上端接一阻值为R 的定值电阻,两导轨之间的距离为d .矩形区域abdc 内存在磁感应强度大小为B 、方向垂直纸面向里的匀强磁场,ab 、cd 之间的距离为L .在cd 下方有一导体棒MN ,导体棒MN 与导轨垂直,与cd 之间的距离为H ,导体棒的质量为m ,电阻为r .给导体棒一竖直向上的恒力,导体棒在恒力F 作用下由静止开始竖直向上运动,进入磁场区域后做减速运动.若导体棒到达ab 处的速度为v 0,重力加速度大小为g .求:
(1)导体棒到达cd 处时速度的大小; (2)导体棒刚进入磁场时加速度的大小;
(3)导体棒通过磁场区域的过程中,通过电阻R 的电荷量和电阻R 产生的热量. 【答案】(1)2()F mg H
v m -=
(2)222()()B d F mg H F a g m R r m m
-=+ (3)
BLd q R r
=
+ 2
01[()()]2R R Q F mg H L mv R r =
-+-+ 【解析】 【分析】 导体棒从开始到运动到cd 处的过程,利用动能定理可求得导体棒到达cd 处时速度的大小; 求出导体棒刚进入磁场时所受的安培力大小,再由牛顿第二定律求得加速度的大小;导体棒通过磁场区域的过程中,根据电量与电流的关系以及法拉第电磁感应定律、欧姆定律结合求通过电阻R 的电荷量.由能量守恒求电阻R 产生的热量; 【详解】
(1)根据动能定理:
21()2
F mg H mv -=
解得导体棒到达cd 处时速度的大小:
2()F mg H
v m
-=
(2)根据牛顿第二定律:
A mg F F ma +-=
安培力:
A =F BId
E
I R r
=
+ E Bdv =
导体棒刚进入磁场时加速度的大小:
F
a g m
=+
(3)导体棒通过磁场区域的过程中,通过电阻R 的电荷量:
q I t =∆
E
I R r
=
+ ΔΔE t Φ
=
通过电阻R 的电荷量:
Δq R r Φ
=
+ 解得:
BLd
q R r
=
+ 根据动能定理:
2
A 01()()=2
F mg H L W mv -+-
电路中的总热量:
Q =W A
电阻R 中的热量:
R R
Q Q R r
=
+ 解得:
2
01[()()]2
R R Q F mg H L mv R r =
-+-+
14.如图所示,在竖直平面内有间距L =0.2 m 的足够长的金属导轨CD 、EF ,在C 、E 之间连接有阻值R =0.05 Ω的电阻。

虚线M 、N 下方空间有匀强磁场,磁感应强度B =1 T ,方向与导轨平面垂直。

质量均为m =0.2 kg 的物块a 和金属杆b 通过一根不可伸长的轻质细绳相连,跨放在质量不计的光滑定滑轮两侧。

初始时a 静止于水平地面上,b 悬于空中并恰好位于磁场边界MN 上(未进入磁场)。

现将b 竖直向上举高h =0.2 m 后由静止释放,一段时间
后细绳绷直,a 、b 以大小相等的速度一起运动,之后做减速运动直至速度减为0。

已知运动过程中a 、b 均未触及滑轮,金属杆与导轨始终垂直且接触良好,金属杆及导轨的电阻不计,取重力加速度g =10 m/s 2,求: (1)整个过程中电阻R 产生的热量; (2)金属杆b 刚进入磁场时的加速度大小; (3)物块a 最终的位置离地面的高度。

【答案】(1)0.2 J(2)2 m/s 2(3)0.5 m 【解析】 【详解】
(1)设细绳绷直前瞬间b 的速度为v 0,绷直后瞬间b 的速度为v ,蹦直瞬间细绳对b 的拉力的冲量大小为I ,则b 自由下落过程中,根据动能定理有
mgh =
2
012
mv -0 细绳蹦直瞬间,对a 、b 根据动量定理分别有
I =mv -0 I =mv 0-mv
此后系统机械能转化为电能并最终变成电阻R 产生的热量Q ,故有
Q =2×
12
mv 2 由以上各式解得
Q =0.2 J ;
(2)设b 刚进入磁场时受到的安培力为F ,绳中拉力为T ,b 的加速度大小为a ,则有
F =BiL , i =
E R
, E =BLv ,
对a 、b 根据牛顿第二定律分别有
mg -T =ma ,
T +F -mg =ma , 由以上各式得
a =2 m/s 2;
(3)联立上面各式可得
22
B L R
v =2ma 对一小段时间Δt ,有
22
B L R
v Δt =2ma Δt 故有
22
B L R
∑v Δt =2m ∑a Δt , 即
22
B L R
Δx =2m Δv 从b 进入磁场到a 、b 速度减为0的过程中
Δv =v -0
所以a 上升的高度
Δx =
22
2mvR
B L 解得
Δx =0.5 m
另解:
由牛顿第二定律得
BiL =2ma
对一小段时间Δt ,有
BiL Δt =2ma Δt BLq =2m Δv
又有
q =
R
其中
ΔΦ=BL Δx
由以上各式得
Δx =
22
2mvR
B L 解得
Δx =0.5 m ;
15.如图所示,两根相距L 1的平行粗糙金属导轨固定在水平面上,导轨上分布着n 个宽度为d 、间距为2d 的匀强磁场区域,磁场方向垂直水平面向上.在导轨的左端连接一个阻值为R 的电阻,导轨的左端距离第一个磁场区域L 2的位置放有一根质量为m ,长为L 1,阻值为r 的金属棒,导轨电阻及金属棒与导轨间的接触电阻均不计.某时刻起,金属棒在一水平向
右的已知恒力F作用下由静止开始向右运动,已知金属棒与导轨间的动摩擦因数为μ,重力加速度为g.
(1)若金属棒能够匀速通过每个匀强磁场区域,求金属棒离开第2个匀强磁场区域时的速度v2的大小;
(2)在满足第(1)小题条件时,求第n个匀强磁场区域的磁感应强度B n的大小;
(3)现保持恒力F不变,使每个磁场区域的磁感应强度均相同,发现金属棒通过每个磁场区域时电路中的电流变化规律完全相同,求金属棒从开始运动到通过第n个磁场区域的整个过程中左端电阻R上产生的焦耳热Q.
【答案】(1)(2)(3)
【解析】
试题分析:(1)金属棒匀加速运动有
解得:
(2)金属棒匀加速运动的总位移为
金属棒进入第n个匀强磁场的速度满足
金属棒在第n个磁场中匀速运动有
解得:
(3)金属棒进入每个磁场时的速度v和离开每个磁场时的速度均相同,由题意可得
金属棒从开始运动到通过第n个磁场区域的过程中,有。

相关文档
最新文档