第一节:回归分析

合集下载

选修2-3 第三章 第一节:回归分析的基本思想及其初步应用 (学生版)

选修2-3 第三章 第一节:回归分析的基本思想及其初步应用 (学生版)

教学辅导教案学生姓名年级高二学科数学上课时间教师姓名课题人教版选修2-3 回归分析的基本思想及其初步应用1.设有一个回归方程为$23y x=+,变量x增加一个单位时,则()A.y平均增加2个单位B.y平均增加3个单位C.y平均减少2个单位D.y平均减少3个单位2.表中提供了某厂节能降耗技术改造后生产A产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据.根据下表提供的数据,求出y关于x的线性回归方程为$0.70.35y x=+,那么表中t的值为()x 3 4 5 6y 2.5 t 4 4.5A.3 B.3.15 C.3.5 D.4.53.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入x (万元)8.2 8.6 10.0 11.3 11.9支出y(万元) 6.2 7.5 8.0 8.5 9.8据上表得回归直线方程$$y bx a=+$,其中0.76b=$,$a y bx=-$,据此估计,该社区一户收入为15万元家庭年支出为()A.11.4万元B.11.8万元C.12.0万元D.12.2万元4.某企业节能降耗技术改造后,在生产某产品过程中几录的产量x(吨)与相应的生产能耗y (吨)的几组对应数据如表所示:x 3 4 5 61y 2.5 3 4 a若根据表中数据得出y关于x的线性回归方程为$0.70.35y x=+,则表中a的值为()A.3 B.3.15 C.3.5 D.4.55.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:零件的个数x(个) 2 3 4 5加工的时间y(小时) 2.5 3 4 4.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程$$y bx a=+$,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?(注:1221()ni iiniix y nx ybx n x---∑=-∑$,$a y bx=-$)一、散点图1.散点图的概念在考虑两个量的关系时,为了对变量之间的关系有一个大致的了解,人们常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图.2.曲线拟合的概念从散点图可以看出如果变量之间存在着某种关系,这些点会有一个集中的大致趋势,这种趋【变式5】在回归分析中,下列说法错误的是( ) A .用线性回归模型近似真实模型可产生误差 B .R 2越大,模型的拟合效果越好 C .残差平方和越小,模型的拟合效果越好 D .R 2越大,残差平方和也越大【变式6】给出下列结论,正确的个数是( )(1)在回归分析中,可用相关指数R 2的值判断模型的拟合效果,R 2越大,模型的拟合效果越好; (2)在回归分析中,可用残差平方和判断模型的拟合效果,残差平方和越大,模型的拟合效果越好;(3)在回归分析中,可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高. A .0B .1C .2D .3【变式7】设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为$0.8585.71y x =-,则下列结论中不正确的是( )A .身高x 为解释变量,体重y 为预报变量B .y 与x 具有正的线性相关关系C .回归直线过样本点的中心(x ,y )D .若该大学某女生身高为170cm ,则她的体重必为58.79kg1.给出下列四个命题:①由样本数据得到的回归方程$$y bxa =+$必过样本点的中心(x ,y ); ②用相关指数R 2来刻画回归效果,R 2的值越小,说明模型的拟合效果越好;③若线性回归方程为$3 2.5y x =-,则变量x 每增加1个单位时,y 平均减少2.5个单位; ④在残差图中,残差点分布的带状区域的宽度越窄,残差平方和越小. 上述四个命题中,正确命题的个数为( ) A .1 B .2 C .3 D .4 2.身高与体重的关系可以用________来分析( )12.在冬季,某地居民对猪肉的需求情况的一组数据为(右图): 价格x (万元) 12 11 10 9 需求量y (吨)10111213(1)求出y 对x 的回归方程;(2)如果价格升为14万元/吨,请你预测猪肉的需求量是多少.本章重点:回归分析、残差分析、相关指数的意义以及独立性检验中K 2的有关计算. 本章难点:借助于回归分析的思想选择恰当的模型拟合变量间的相关关系(尤其是非线性的),由于该部分内容的数据相对较复杂,故在高考中出现大题的可能性不是很大,应以选择、填空题为主,旨在考察对回归方程的求解及预测,K 2的计算等.1.对于线性回归方程$$y bx a =+$,下列说法中不正确的是( ) A .样本数据中x =0时,一定有$y a= B .x 增加一个单位时,y 平均增加b$个单位 C .样本数据中x =0时,可能有$y a= D .直线必经过点(x ,y )2.从某高中随机选取5名高三男生,其身高和体重的数据如下表所示:身高x (cm ) 160 165 170 175 180 体重y (kg )6366707274根据上表可得回归直线方程$$0.56y x a=+,据此模型预报身高为172cm 的高三男生的体重为据和散点图:定价x(元/kg)10 20 30 40 50 60年销量y(kg)1150 643 424 262 165 86 z=2⋅ln y14.1 12.9 12.1 11.1 10.2 8.9(参考数据:61()()34580i iix x y y=-⋅-=-∑,61()()175.5i iix x z z=-⋅-=-∑,621()776840iiy y=-=∑,61()()3465i iiy y z z=-⋅-=∑)(1)根据散点图判断,y与x,z与x哪一对具有较强的线性相关性(给出判断即可,不必说明理由)?(2)根据(1)的判断结果及数据,建立y关于x的回归方程(方程中的系数均保留两位有效数字).(3)定价为多少元/kg时,年利润的预报值最大?附:对于一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直线$$y bx a=+$的斜率和截距的最小二乘估计分别为:1122211()()=()n ni i i ii in ni ii ix y nx y x x y ybx nx x x====--⋅-∑∑=--∑∑$,$a y nbx=-.8.如图是我国2010年至2016年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1﹣7分别对应年份2010﹣2016.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以证明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2018年我国生活垃圾无害化处理量. 附注:参考数据:719.32i i y ==∑,7140.17i i i t y ==∑,721()0.55i i y y =-=∑,7 2.646≈.参考公式:12211()()()()ni i i nn i i i i t t y y r t t y y ===--∑=--∑∑,回归方程$$y abt =+$中斜率和截距的最小二乘估计公式分别为:121()()=()ni i i ni i t t y y b t t ==-⋅-∑-∑$,$a y bt =-$.9.为了解某地区某种农产品的年产量x (单位:吨)对价格y (单位:千元/吨)和利润z 的影响,对近五年该农产品的年产量和价格统计如表:x 1 2 3 4 5 y7.06.55.53.82.2一、(第1天)1.已知x与y之间的一组数据:x0 1 2 3y m 3 5.5 7已求得关于y与x的线性回归方程$ 2.10.85y x=+,则m的值为.2.若样本点为(21,2.1)、(23,2.3)、(25,2.8)、(27,3.2)、(29,4.1),则样本点的中心为.3.一工厂生产某种产品的月产量y(单位:万件)与月份x构成的实数对(x,y)在直线y=x+1附近,则估计3月份生产该产品万件.4.已知x,y的取值如表:x0 1 3 4y 2.2 4.3 4.8 6.7从散点图分析,y与x线性相关,则回归方程为$$y bx a=+$必过点.5.某商店统计了最近6个月某商品的进价x与售价y(单位:元)的对应数据如表:x 3 5 2 8 9 12y 4 6 3 9 12 14假设得到的关于x和y之间的回归直线方程是$$y bx a=+$,那么该直线必过的定点是.二、(第2天)1.如果发现散点图中所有的样本点都在一条直线上,则残差平方和等于,解释变量和预报变量之间的相关系数等于.2.已知某回归分析中,模型A的残差图的带状区域宽度比模型B的残差图的带状区域宽度窄,则在该回归分析中拟合精度较高的模型是.3.回归分析是处理变量之间关系的一种数量统计方法.4.对于一组数据的两个函数模型,其残差平方和分别为152.6 和169.8,若从中选取一个拟合程度较好的函数模型,应选残差平方和为的那个.。

第一讲 逐步回归分析讲解

第一讲   逐步回归分析讲解

2 1 4 2
A(0)

1
1.5
3
4

4
3
10
5

0.5 0.5 2 1
A(1)

0.5
1
1 3

2
1 2 1
1.5-1×0.5=1 3-1×2=1 4-1×1=3
0.5-0.5×(-0.5)=0.75 2-0.5×1=1.5 1-0.5×3=2.5
SS
1b1

SP12 b2

SP13b3

SP1y
SP21b1 SS 2b2 SP23b3 SP2 y
SP31b1 SP32b2 SS 3b3 SP3y
2b1 1b2 4b3 2 1b1 1.5b2 3b3 4 4b1 3b2 10b3 5
x5
y,%
68.6
70.9
62.2
66.7
57.3
60.5
56.7
60.5
58.0
58.9
x
17.2
13.3
10.3
64.4
62.5
63.4
s
4.1
3.8
4.4
7.0
5.6
3.8
一、计算相关系数阵
1、计算各变量的平均数(为表1—1) 设自变量x1,x2,…,xm与依变量y存在线性关系,m元线性回归 方程为:
由x估测y的估计值 yˆ 的直线回归方程: yˆ =a+bx
第一节 逐步回归分析的基本方法
逐步回归分析的基本方法可以通过一个实例介绍其分析步骤。 例1 为考察舍内干球温度(x1)、湿球温度(x2)、露点温度(x3)、相对湿 度(x4)及舒适度指数(x5)对罗曼蛋鸡产蛋率(y)的影响。随机抽测12个位点 各64只鸡在56—67周令的平均周产蛋率如表1—1。

回归分析预测方法

回归分析预测方法

(3)
i 1
i 1
i 1
即对(3)求极值,有:
Q
n
a
2 ( yi
i 1
a bxi ) 0
(4)
Q
b
2
n i 1
( yi
a
bxi )xi
0
(5)
n
n
n
由(4)得: yi a bxi 0 yi na b xi
i 1
i 1
i 1
(6)
n
n
n
由(5)得: xi yi axi xibxi 0 xi yi a xi b xi2 (7)
有数值对应关系的确定依存关系。换句话说,当 自变量的确定值为x,与其对应值为y。这是回归 分析法预测的前提。 ②确定变量之间的相关密切程度,这是相关分析的主 要目的和主要内容。 3、建立回归预测模型
就是依据变量之间的相关关系,用恰当的数 学表达式表示出来。
4、回归方程模型检验 建立回归方程的目的是预测,但方程用于预测
第一节 回归分析预测法概述
回归分析预测法是在分析因变量与自变量之间的相互关 系,建立变量间的数量关系近似表达的函数方程,并进行参 数估计和显著性检验以后,应用回归方程式预测因变量变化 的方法。回归分析预测法是市场预测的基本方法,目前,这 种方法发展的很成熟了,回归预测方法种类繁多,按回归方 程的变量分,有一元、多元回归方程;按回归性质分有线性、 非线性回归等。本章专门讨论一元和二元线性回归问题。
回归分析起源于生物学的研究。英国的著名生物学 家达尔文在19世纪末,发现了一个非常有趣的现象,父 亲身材高大的,其子也比较高大,父亲矮小的,其子也 比较矮小。即父亲的身高与儿子的身高之间有密切的关 系。在大量的研究资料中,又发现身高有一种向平均身 高回归的倾向,这种身高倾向平均数的现象称为回归 (Regression)。经济学家经研究发现,生物界的这种 现象,在经济领域中也存在这种现象,例如,证券市场 的任何一支股票,无论是牛市或熊市股票的价格都向着 平均价格回归。也正因为如此,回归分析在许多领域中 都得到了广泛的应用,并且取得了很好的效果。

第4章 需求回归分析

第4章 需求回归分析

25 35 -75 65 -35 -65 15 -15 75 -25
625 1225 5625 4225 1225 4225 225 225 5625 625
Y
=175;X =125;∑ (Xi∑(Yi- Y )2=8650;
)( Yi- Y )=10350, X )2=23850;∑(Xi- X
试给出销售量的估计方程。
log Qd log B log b p P log bi I log b0 P0 log bt T
23
幂函数方程的特点:
可以求出相应自变量的边际变化使需求量变化的绝对 数量。但是,这一绝对数量的变化不是既定的常数,而 是受其他自变量数值大小影响。例如: Qd b 1 b0 bt b p aP p I bi P T 0 P 每个系数是相关变量的弹性。例如:
Y
Xi-
X
(Xi-
X
)2
(Xi-
X) ( Yi- Y)
-375 1575 2625 975 1575 975 375 375 2625 -375
(Yi- Y)2 225 2025 1225 225 2025 225 625 625 1225 225
-15 45 -35 15 -45 -15 25 -25 35 15
线性方程 自变量边际变 化引发的因 变量变化的 绝对值 相对比率 不变 变 幂函数 变 不变
25
第三节 需求回归分析 步骤
4. 估计结果及解释
可决系数的 值表示模型的 总解释能力
26
ˆ ±tn-k-1Sb b
如果自变量和因变量之间没有关系,参数b将为零。 因此,应检查在95%的置信区间内是否包括零值。若 不是,则 b ˆ 所度量的X和Y之间的关系在统计上显著 ˆ 不显著 significant;如果包括零,则 b 12 nonsignificant 。

现代统计方法--回归分析1

现代统计方法--回归分析1

现代统计方法的种类
三、相关分析方法 1、定性资料分析 2、回归分析 3、典型相关分析 4、主成分分析 5、因子分析 6、对应分析
现代统计方法的种类
四、预测决策方法: 1、回归分析 2、判别分析 3、定性资料分析 4、聚类分析
统计分析方法应用流程
现实经济问题
提炼具体问题 确定欲达目标
分类研究
结构简化 研究
ˆ 1 、 1
1回归分析2判别分析3定性资料分析4聚类分析统计分析方法应用流程现实经济问题提炼具体问题确定欲达目标根据定性理论设计指标变量搜集整理统计数据选择统计方法构造理论模型进行统计计算估计模型参数修改yes应用分类研究结构简化研究相关分析研究预测决策研究教材统计软件简介eview关于spssspssstatisticalpackagesocialscience即社会科学统计软件包是世界著名的统计分析软件
一元线性回归分析
1、一元线性回归模型 2、回归模型的参数估计 3、OLSE估计的性质 4、回归方程的显著性检验 5、回归方程的拟合优度 6、残差分析 7、回归系数的区间估计
一元线性回归分析模型
1、回归模型建模的实践背景 2、一元线性回归模型的数学形式: 1)、理论模型: y 0 1 x
ξ♐♣☯♧
现代统计方法
前言
统计学的几个问题
1、自1969年设立诺贝尔经济学奖以来,已有 42名学者获奖,而其中有2/3的人是统计学家、 计量经济学家、数学家。 2、目前的研究趋势是:从一般的逻辑推理发展 到重视实证研究;从理论论述发展到数量研 究。 3、硕士和博士的学位论文,如果没有数量模型 和分析,其文章的水平会有问题。
关于S-PLUS

另外Auckland大学的Robert Gentleman 和 Ross Ihaka 及其他志愿人员开发了一个R系 统,其语法形式与S语言基本相同,但实现 不同,两种语言的程序有一定的兼容性。R 是一个GPL自由软件,现在的版本是1.00版, 它比S-PLUS 还少许多功能,但已经具有了 很强的实用性

26 回归分析-27时间序列分析

26 回归分析-27时间序列分析

第二十六章回归分析本章架构图第一节回归分析考点1:回归分析的概念1、含义:回归分析就是根据相关关系的具体形态,选择一个合适的数学模型,来近似的表达变量间的依赖关系。

2.回归模型分类描述因变量如何依赖自变量和误差项的方程称为回归模型,回归模型的类别如下:(1)根据自变量的多少,回归模型可以分为一元回归模型和多元回归模型。

(2)根据回归模型是否线性,回归模型分为线性回归模型和非线性回归模型。

3.一元线性回归模型一元线性回归模型是研究两个变量之间相关关系的最简单的回归模型,只涉及一个自变量。

表示为:为模型的参数(也叫回归系数)即误差项,是一个随机变量,表示除X和Y的线性关系之外的随机因素对Y影响【例题1-单选题·2013、2015年】在一元线性回归模型反应的是( )A.X和Y的线性关系对Y的影响B.由自变量X的变化引起的因变量Y的变化C.X和Y的线性关系对X的影响D.除X和Y的线性关系之外的随机因素对Y的影响考点2:回归分析与相关分析的关系联系:1.它们具有共同的研究对象2.在具体应用时,常常必须互相补充相关分析需要依靠回归分析来表明现象数量相关的具体形式,而回归分析则需要依靠相关分析来表明现象数量变化的相关程度。

只有高度相关时,进行回归分析寻求其相关的具体形式才是有意义的区别:相关分析与回归分析在研究目的和方法上具有明显的区别。

1、相关分析研究变量之间相关的方向和相关的程度2、回归分析是研究变量之间相关关系的具体形式,它对具有相关关系的变量之间的数量联系进行测定,确定相关的数学方程式,根据这个数学方程式可以从已知量来推测未知量,从而为估算和预测提供了一个重要方法【例题2-2014年多选题】关于相关分析和回归分析的说法,正确的的有()A.相关分析可以从一个变量的变化来推测另一个变量的变化B.相关分析研究变量间相关的方向和相关的程度C.相关分析中需要明确自变量和因变量D.回归分析研究变量间相互关系的具体形式E.相关分析和回归分析在研究方法和研究目的有明显区别【例题3-单选题·2017年】若要定量研究边际消费倾向,并预测一定收入条件下的人均消费金额,适用的统计方法是()。

回归分析的性质和基本概念

回归分析的性质和基本概念
相关关系的表达式一般表示为含有未知参数的函数形式,需要进行参数估计。
例如: 居民消费C与可支配收入Y之间的关系,可支配收入的取值确定后, 消费的取值虽不能唯一确定,但有一定的取值范围,0 < C < Y ,遵 循边际消费倾向递减的规律。居民消费C与可支配收入Y之间的关系 可表示为C = + Y, 、为待估参数。
第一节 回归分析释义
一、概述
“回归”的历史溯源:
“回归”一词最先由弗朗西斯•高尔顿(Francis Galton)提 出。 高尔顿发现一个趋势: 父母高,儿女也高;父母矮,儿女也矮。但给定父母的身高, 儿女辈的平均身高却趋向于或者“回归”到全体人口的平均身 高。换言之,尽管父母都异常高或异常矮,但儿女的身高却有 走向人口平均身高的趋势。换句话说,尽管父母都异常矮或异 常高,但儿女的身高却有走向人口总体平均身高的趋势。
精选课件
第三节 符号术语数据
因变量(Dependent variable) 被解释变量(Explained variable) 预测子(Predicted) 回归子(Regressand) 响应(Response) 内生(Endogenous) 结果(outcome) 被控变量(Controlled variable)
特点:可以在有规则的时间间隔收集 Example:每日(股票价格)、每周(联邦储备委员会提供的货币供 给数字)、每月(失业率、消费者价格指数CPI)、每季(如GNP)、 每年(政府预算)、每5年(制造业普查资料)、每10年(人口普查 资料),有些数据每季和每年都有公布,如GDP和消费者支出数据。 极短时间的数据也可以搜集,如股票价格数据,可以得到连续数据 (实时牌价)。
着年龄增加而增加,通过给定年龄平均身高画一条线。

高中数学选修1-2-回归分析第一节.ppt

高中数学选修1-2-回归分析第一节.ppt

,a^ = y -b^ x ,
n
xi- x 2
n
x2i -n x 2
i=1
i=1
其中 x =1ni=n1xi, y =1ni=n1yi,( x , y )称为样本点的中心.
课前探究学习
课堂讲练互动
(3)解释变量和预报变量 线性回归模型与一次函数模型的不同之处是增加了随机误差项e, 因变量y由 自变量x 和 随机误差e 共同确定,即自变量x只解 释部分y的变化,在统计中,我们也把自变量x称为解释变量,因变 量y称为预报变量.
课前探究学习
课堂讲练互动
【变式1】 以下是某地搜集到的新房屋的销售价格y和房屋的面积x 的数据:
房屋面积/m2 115 110 80 135 105 销售价格/万元 24.8 21.6 18.4 29.2 22
(1)画出数据对应的散点图; (2)求线性回归方程,并在散点图中加上回归直线; (3)据(2)的结果估计当房屋面积为150 m2时的销售价格.
1.1 回归分析的基本思想及其初步应用
课前探究学习
课堂讲练互动
【课标要求】 1.了解随机误差、残差、残差分析的概念; 2.会用残差分析判断线性回归模型的拟合效果; 3.掌握建立回归模型的步骤; 4.通过对典型案例的探究,了解回归分析的基本思想方法
和初步应用.
课前探究学习
课堂讲练互动
【核心扫描】 1.利用散点图分析两个变量是否存在相关关系,求线性回归方
6
所以
(yi-y^ i)2≈0.013
6
18,
(yi- y )2=14.678 4.
i=1
i=1
所以,R2=1-01.40.16378184≈0.999 1, 回归模型的拟合效果较好.

第一节一元线性回归分析-

第一节一元线性回归分析-

回 归 分
线 性回归分析 非线性回归分析
一元线性回归分析 多元线性回归分析

一、一元线性回归的数学模型
问题的分析
设 随 机 变 量 Y (因 变 量 )和 普 通 变 量 x ( 自 变 量 )之
间 存 在 着 相 关 关 系
Y
F(y x)表示当x取
确定的值x时,所对应
的Y的分布函数 .
C1
(x2)
求Q的最小值可以利用微分法
n
设 Q (,) (Y i x i)2 ,求 偏 导 可 得 i 1 Q ( ,)2i n 1(Y ixi)0
Q(

,

)

2
n i 1
xi (Yi
来自xi)0


n
(

n
[
i1
2 (


xi )2]
2 n[
n
(


i1
i1
n
= i1
(n1(xin(xx)i(x0x)2x))Yi
i1
因 而 Y ˆ 0 服 从 正 态 分 布 , 其 期 望 值 为
E Y 0 E ( ˆ ˆx 0 ) x 0
D(Yˆ0)=i n1(n 1(xin(xx)i(x0x)2x))2DYi
例1 为研究某一化学反应过程中,温度x(oC)对产 品得率Y(%)的影响,测得数据如下.
温度x(oC) 100 110 120 130 140 150 160 170 180 190
得率Y(%) 45 51 54 61 66 70 74 78 85 89 用MATLAB画出散点图
x=100:10:190;y=[45,51,54,61,66,70,74,78,85,89]; plot(x,y,'.r')

Logistic回归分析(1)

Logistic回归分析(1)
5
53例接受手术的前列腺癌患者情况
6
26例冠心病病人和28例对照者进行 病例对照研究
7
26例冠心病病人和28例对照者进行 病例对照研究
8
根据研究设计不同
• Logistic回归的分类
Logistic回归 二分类 多分类
非条件 :成组资料 1:1配对资料
条件Logistic回归 1:m配对资料 m:n配对资料
24
• 分析因素xi为多分类变量时,为方便起 见,常用1,2,…,k分别表示k个不同 的类别。进行Logistic回归分析前需将 该变量转换成k-1个指示变量或哑变量 (design/dummy variable),这样指示变 量都是一个二分变量,每一个指示变 量均有一个估计系数,即回归系数, 其解释同前。
由于 OR j 值与模型中的常数项 0 无关,
0 在危险因素分析中通常视其为无效参数。
18
回归系数的解释
• 建立Logistic回归方程就是求和i • 意义:常数项是当各种暴露因素为0时,个体发
病与不发病概率之比的自然对数值。
• i意义 • 偏回归系数,表示在其它自变量固定的 • 条件下,第i个自变量每改变一个单位时logit的改
雌激素
使用过
未使用过
病例 对照
55(a) 19(c)
128(b) 164(d)
OR P1 (1 P1 ) ad 55164 3.7089 P0 (1 P0 ) bc 19128
95%CI :
3.7089 exp 1.96
1 1 1 1 55 128 19 164
2.0964 ~ 6.5616
31
四格表资料的logistic回归
• X=1 表示使用过雌激素 • X=0 表示未使用过雌激素

logistic回归分析

logistic回归分析

表13-7 例13-2的logistic回归模型自变量筛选结果
模型
因素 X
第1步 常数项
回归系数 标准误
b
Sb
-2.528 0.238
Wald χ2 P值 112.433 <0.001
OR值
OR值95%可信区间 下限 上限
0.080
治疗11周
2.149 0.289 55.267 <0.001 8.578 4.867 15.117
因素 X 常数项
回归系数 标准误
Waldχ2 P值 OR值
b
Sb
-0.910 0.136 44.870 0.000 0.403
OR值95%可信区间
下限
上限
吸烟
0.886 0.150 34.862 0.000 2.424 1.807
3.253
饮酒
0.526 0.157 11.207 0.001 1.692 1.244
logistic回归分析
Logistic regression analysis
• 医学研究中应变量有时是二分类结果,如发病与不 发病、死亡与生存、有效与无效、复发与未复发等, 当需要研究二分类应变量的影响因素时,适合采用 logistic回归分析。
logistic回归属于概率型非线性回归,它是研究二 分类(可以扩展到多分类)反应变量与多个影响 因素之间关系的一种多变量分析方法。logistic回 归模型参数具有明确的实际意义。
OR值的可信区间:
exp(bj - zα/2 Sbj ) ORj exp(bj zα/2 Sb j )
• 例13-1 研究吸烟(X1)、饮酒(X2)与食道癌 (Y)关系的病例-对照资料,试作logistic回归 分析。

经典计量经济学模型

经典计量经济学模型

假设6也被称为模型没有设定偏误(specification
20e19r/9r/2o0r)
24
案例分析
某地个人储蓄Y,个人可支配收入X。 根据经济理论建立计量经济模型
2019/9/20
25
图形检验
2019/9/20
26
二、参数的普通最小二乘估计(OLS)
给定一组样本观测值(Xi, Yi)(i=1,2,…n) 要求样本回归函数尽可能好地拟合这组值.
(Yi 0 1 X i )2 ]
^
0
0
^
^
2 (Yi 0 1 X i )
^
^
Q [
^
(Yi 0 1 X i )2 ]
^
1
1
^
^
2 (Yi 0 1 X i )X i
2019/9/20
29
方程组(*)称为正规方程组(normal equations)。
普通最小二乘法(Ordinary least squares, OLS)给出的判断标准是:二者之差的平方和
n
n
Q (Yi Yˆi )2 (Yi (ˆ0 ˆ1 X i )) 2
1
1
最小。
2019/9/20
27
2019/9/20
28
求平方和的极值
^
^
Q
^
[
3500 4000
2019/9/20
8
• 概念:
在给定解释变量Xi条件下被解释变量Yi的期望 轨迹称为总体回归线(population regression line),或更一般地称为总体回归曲线 (population regression curve)。

回归分析预测法

回归分析预测法

一元线性回归样本函数
ˆ b ˆX ˆ b Y i 0 1 i ˆ 为E(Y )的估计式; 式中 , Y
i i
ˆ 为b 的估计式; b 0 0 ˆ 为b 的估计式。 b
1 1
回归模型

对于样本中每一个与Xi相对的观测值Yi与由样 本回归函数得到的估计值有一随机偏差,这个 偏差称为随机误差,记为ei。
如此以来,高的伸进了天,低的缩入了地。他百思 不得其解,同时又发现某人种的平均身高是相当稳 定的。最后得到结论:儿子们的身高回复于全体男 子的平均身高,即“回归”——见1889年F.Gallton 的论文《普用回归定律》。 后人将此种方法普遍用于寻找变量之间的规律


二、回归分析与相关分析
相关分析:是研究两个或两个以上随机
2 2222R =1 2
n2
(1 R )
2
3、变量的显著性检验(t检验)
主要对多元线性回归模型而言,在方程的总体 线性关系呈显著性时,并不能说明每个解释变 量对被解释变量的影响是显著的,必须对每个 解释变量进行显著性检验,以决定是否作为解 释变量保留在模型中。其检验的思路与方程显 著性检验相似,用以检验的方法主要有三种: F检验、t检验、z检验。它们区别于方程显著性 检验在于构造统计量不同,其中应用最为普遍 的为t检验。


意义:拟合优度越大,自变量对因变量的解释程度越 高,自变量引起的变动占总变动的百分比高。观察点 在回归直线附近越密集。 取值范围:0-1
修正的
R ,记为R
2
2
在应用过程中,如果在模型中增加一个解释变 量,模型的解释功能增强了,回归平方和增大 R ,记为R R R 2 也增大了。从而给人一个错觉:要使得模 了, 型拟合得好,就必须增加解释变量,但是在样 本容量一定的情况下,增加解释变量必定使得 自由度减少,于是实际应用中引进修正的决定 2 R 系数 ,具体表达式为(其中 n是样本容量,n-k n 1 R =1 (1 R ) n2 =n-2为残差平方和的自由度, n-1为总体平方和 的自由度): n 1

第二章 回归分析的基本思想

第二章 回归分析的基本思想

第二章回归分析的基本思想第一节回归分析的含义回归分析的基本思想根据经济理论建立计量经济学模型时,计量经济学家会大量地用到回归分析(Regression Analysis)技术,这一节我们将根据最简单的线性回归模型--双变量模型介绍回归分析的基本思想。

回归分析的含义回归分析是研究一个变量与另一个(或一些)变量依赖关系的计算方法和理论。

其中,前一个变量称为被解释变量(Explained Variable)或因变量(Dependent Variable),后一个变量称为解释变量(Explanatory Variable)或自变量(Independent Variable)。

在本书中,为统一符号,统一用y表示因变量,x代表自变量,如果有多个自变量,则用适当的下标表示各个不同的自变量,如有n个自变量,则用x1,x2,…,xn表示。

例如,我们可能对某种商品的需求量与该商品的价格、消费者的收入以及其他竞争性商品的价格之间的关系感兴趣;可能对失业率变动与产出增长之间的关系感兴趣;可能对股票价格指数与利率、GDP增长率等因素之间的关系感兴趣;可能对职工工资与受教育年限之间的关系感兴趣;也可能对购买书报支出金额与收入之间的关系感兴趣。

在这些例子中,有的有理论基础,如需求定理就提供了这样的一个理论基础,即某种产品的需求量依赖于该产品的价格、消费者的收入以及竞争性产品的价格等因素;而奥肯定律则表明失业率的降低依赖于实际产出的增长。

一、回归分析与因果关系要特别注意的是,变量之间的因果关系是回归分析的前提,在被解释变量与解释变量之间存在因果关系的基础上,才能进行回归分析,否则,回归分析没有任何意义。

例如,某段时间内,河水与股市都上涨,显然,如果进行回归分析,则也能建立起回归模型,但得到的结果没有什么意义,因为,河水的上涨与股市的上涨之间并没有什么依赖关系。

二、回归分析与相关分析相关分析是讨论变量之间相关程度的一种统计分析方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

回 归 分 析一切运动着的事物都是相互联系、相互制约的,从而描述事物和事物运动的变量之间也是相互联系、相互制约的。

变量之间的相互关系,可分为两类:一类叫做确定性关系,也叫做函数关系,其特征是一个变量随着其他变量的确定而确定。

例如圆面积S 与半径r 之间的关系2S r π=。

另一类关系叫做相关关系,这类关系的特征是:变量之间的关系很难用一种精确的方法表示出来。

例如,人体的身高与体重之间有一定的关系,但是由身高不能精确地计算出体重,由体重也不能精确地计算出身高。

不过,需要指出的是:确定性关系与相关性关系之间没有一道不可逾越的鸿沟。

由于存在测量误差等原因,确定性关系在实际问题中往往通过相关关系表示出来。

另一方面,当对事物内部的规律了解的更加透彻时,相关关系也可以转化为确定性关系。

回归分析就是处理变量之间的相关关系的一种数学方法。

它是最常用的数理统计方法,能解决预测、控制、生产工艺优化等问题。

在工农业生产和科学研究各个领域中均有广泛应用。

回归分析一般分为线性回归分析和非线性回归分析。

本章着重介绍线性回归分析,它是两类回归分析中较简单的一类,也是应用的较多的一类。

第一节 一元线性回归一、数学模型一元线性回归分析的基本模型为ε++=bx a y (1)其中未知参数b a ,称为回归系数,自变量x 也称为回归变量。

ε是随机误差项,总是假设ε~N (0, 2σ)。

(1)式两边同时取期望得:bx a Y +=,称为y 对x 的回归直线方程。

在该模型下,第i 个观测值可以看作样本i i i bx a Y ε++=(这些样本相互独立但不同分布)的实际抽样值,即样本值。

一元线性回归分析的主要任务是:(i )建立因变量y 与自变量x 之间的回归模型; (ii )用样本值对b a ,和σ作点估计; (iii )对回归系数b a ,作假设检验;(iv )在0x x =处对y 作预测,并对y 作区间估计。

二、模型参数估计有n 组独立观测值(x 1,y 1),(x 2,y 2),…,(x n ,y n )设n i bx a Y i i i ,...,2,1,=++=ε, i ε~N (0, 2σ)且n εεε,...,,21相互独立 记 ()∑∑==--===ni i i ni ibx a y b a Q Q 1212),(ε最小二乘法就是选择a 和b 的估计值aˆ,b ˆ使得 ),(min )ˆ,ˆ(,b a Q b aQ ba = 为此,将上式分别对b a ,求偏导数,根据极值存在的必要条件,得⎪⎪⎩⎪⎪⎨⎧=---=∂∂=---=∂∂∑∑==ni ii i ni i i bx a y x bQ bx a y a Q11)(20)(2 整理后得到下面的方程组⎪⎪⎩⎪⎪⎨⎧=+=+∑∑∑∑∑=====ni i i n i n i i i ni i n i i y x x b x a y x b na 111211 此方程组称为正规方程。

解上方程组并用b aˆ,ˆ取代b a ,,得 ⎪⎩⎪⎨⎧--=-=22ˆˆˆx x y x xy b x by a 或()()()∑∑==---=ni ini i ix xy y x xb121ˆ其中∑==n i i x n x 11,∑==n i i y n y 11∑==n i i x n x 1221,∑==n i i i y x n xy 11。

用这种方法求出的估计值b a ˆ,ˆ称为b a ,的最小二乘估计,简称LS 估计。

(经验)回归方程为:)(ˆˆˆˆx x b y x b a y-+=+= 三、一元线性回归模型的检验一元线性回归分析模型的检验分为拟合程度检验和显著性检验,它是利用统计学中的抽样理论来检验回归方程的可靠性。

(一)一元线性回归方程拟合程度的评价所谓拟合程度,是指样本观测值聚集在样本回归线周围的紧密程度。

判断回归模型拟合程度大小的最常用指标是判定系数2r 和估计标准误差。

这两个指标都是建立在对总离差平方和进行分解的基础上的。

对于任一样本观测点,因变量的实际观测值与其样本均值的离差即总离差)(y y -可以分解为两部分:一部分是因变量的回归值与其样本均值的离差)(y y -ˆ,它可以看成是总离差中能够由回归直线解释的部分,称为可解释离差;另一部分是实际观测值与回归值的离差)(y y e ˆ-=,它是总离差中不能由回归直线加以解释的残差,该残差可以看作是回归模型中随机误差项ε的一个估计。

对任意一实际观察值i y 总有:)ˆ()ˆ(y y y yy y -+-=-)( 对于全部样本观测点,可以证明有如下关系式成立:∑∑∑===-+-=-ni ni i i n i i iy y y yy y 112122)ˆ()ˆ()(如果记∑=-=n i i y y SST 12)(,∑=-=n i i y ySSR 12)ˆ(,∑=-=ni i i y y SSE 12)ˆ(,则有: SSE SSR SST +=上式中:SST 是总的离差平方和(或总变差);SSR 是由回归直线可以解释的那一部分离差平方和,称为回归平方和(或回归变差);SSE 是用回归直线无法解释的离差平方和,称为剩余平方和(剩余变差)。

显然,各点观测值与直线越靠拢,回归变差占总变差的比重就越大,说明直线拟合得就越好。

1. 判定系数2r我们把回归平方和与总离差平方和之比定义为样本判定系数,即∑∑--==222)()ˆ(y yy y SSTSSRr ii判定系数2r 是一个回归直线与样本观测值拟合优度的指标。

2r 的值总是在0和1之间。

一个线性回归模型如果充分利用了x 的信息,则2r 越接近于1,拟合优度就越好。

反之,如果2r 不大,说明以模型中给出的x 对y 的信息还不充分,应进行修改,使x 和y 的信息得到充分的利用。

2.回归标准差如上所述,从观测值y 与估计值yˆ的对比来看,回归直线上的各点同对应的观测值各点之间,均存在一定的离差,即观测值曲线上各点的y 值均偏离回归直线。

离差越大,拟合程度越差。

因而需要测定估计值的标准差,而回归标准差s 就是用来估量y 值在回归直线两侧的离差程度,以便在进行实际预测时为预测值建立一个置信区间范围。

回归标准差的计算公式为:2)ˆ(2--=∑n yys i iyy s 值越小,表明回归直线拟合程度越好。

(二)一元线性回归方程的显著性检验回归分析中的显著性检验包括三个方面的内容:一是对各回归系数的显著性检验(t 检验);二是对回归方程整体的显著性检验(F 检验);三是x 与y 之间线性相关程度的检验(r 检验)1.t 检验t 检验的目的在于检验各回归系数的显著性,即x 与y 之间是否真正存在线性关系,具体表现为回归系数是否为0。

若为0,则所求回归直线就为一条水平线,x 与y 之间无线性关系;若不为0,认为x 与y 之间存在线性关系,所建立的回归方程符合变量间的变化规律。

t 检验的步骤如下:(1) 假设观测的样本来自没有线性关系的总体,即:00=b H : 01≠b H :(2)计算回归系数b 的检验统计量t 值:bs b bt -=ˆ式中,b s 为回归系数b 的标准差,其计算公式为:∑-=22)(x x s s yby s 为回归估计标准误差,计算方法是:2)ˆ(2--=∑n yys i iy(3)根据给定的显著性水平α和自由度)(2-n ,查t 分布表,可得相应的临界值2αt 。

(4)决策:若2αt t b >,则拒绝0H ,得到0≠b 的结论; 若2αt t b ≤,则不能拒绝0H 。

2.F 检验F 检验的目的在于检验所得到的线性回归方程在整体上是否显著成立,进一步检验x 与y 之间是否存在线性关系。

其检验步骤如下:(1)假设回归方程是不显著的,即:0H :方程不显著 1H :方程显著(2)计算回归方程的F 统计量:∑∑---=2ˆ1ˆ22n y y y y F )()( (3)根据给定的显著性水平α,分子自由度1和分母自由度)(2-n ,查F 分布表中相应的临界值αF 。

(4)决策:若αF F >,则拒绝原假设0H ,说明回归方程显著;若αF F ≤,则不能拒绝原假设0H ,x 与y 之间的关系不明显或无关系,说明回归方程不显著。

3.r 检验我们已经提到,如果回归变差占总变差的比重就越大,说明直线拟合得就越好,记∑∑∑===----=ni ni iini i iy yx xy y x xr 11221)()())(((或∑∑--==22)()ˆ(y yy y SSTSSRr ii )称为样本相关系数,简称为相关系数。

故统计量r 可用来刻画x 与y 之间线性相关的密切程度,也可用来检验假设00=b H :,其检验方法称为r 检验法。

四、运用回归方程进行估计和预测如果我们利用最小二乘法原理,得到变量x 与y 之间的简单线性回归方程,并且证明了x 与y 之间在统计上具有显著的关系,那么由估计的回归方程给出的对样本数据的拟合,在我们看来就是一个好的拟合。

我们利用估计的回归方程进行估计和预测,应该是合适的。

将已判断出的未来的自变量x 的值代入预测模型,就可以算出预测值。

预测值的置信区间,就是在一定的概率下,估计预测值的范围,或它的上下限。

从理论上讲,如果观测值数据越多,即样本越大,则可用回归标准差来判断预测值的置信区间。

其公式为:y t s t y2ˆα± 对于小样本,即30≤n 时,估算预测值的置信区间,应引入一个校正系数220)()(11∑--++x x x x n ,则置信区间为 2202)()(11ˆ∑--++±x x x x n s t yy t α 五、可线性化的一元非线性回归(曲线回归)例:出钢时所用的盛钢水的钢包,由于钢水对耐火材料的侵蚀,容积不断增大.我们希望知道使用次数与增大的容积之间的关系.对一钢包作试验,测得的数据列于下表:将15,...,2,1),,(=i y x i i 画出散点图,这些点分布在一条曲线附近。

从下图可以看出,开始时侵蚀速度快,然后逐渐减慢,而点的分别逐渐接近于一条平行于x 轴的直线,因此钢包容积不会无限增加。

显然将此例看作一元线性回归是不合适的,此即非线性回归或曲线回归问题(需要配曲线)配曲线的一般方法是:先对两个变量x 和y 作n 次试验观察得n i y x i i ,...,2,1),,(=画出散点图,根据散点图确定须配曲线的类型.然后由n 对试验数据确定每一类曲线的未知参数a和b 。

采用的方法是通过变量代换把非线性回归化成线性回归,即采用非线性回归线性化的方法。

通常选择的六类曲线如下: (1) 双曲线xba y +=1。

(2)幂函数曲线b ax y =, 其中0,0>>a x 。

相关文档
最新文档