高考数学压轴专题徐州备战高考《三角函数与解三角形》经典测试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【最新】数学复习题《三角函数与解三角形》专题解析(2)
一、选择题
1.函数()1sin cos 1sin cos 1tan 01sin cos 1sin cos 32x x x x f x x x x x x x π+-++⎛
⎫=++<< ⎪+++-⎝
⎭的最小值为
( ) A
B
C
D
【答案】B 【解析】 【分析】
利用二倍角公式化简函数()f x ,求导数,利用导数求函数的最小值即可. 【详解】
2
2222sin 2sin cos 2cos 2sin cos
1sin cos 1sin cos 2222221sin cos 1sin cos 2cos 2sin cos 2sin 2sin cos 222222
x x x x x x x x x x x x x x x x
x x x x +++-+++=
++++-++ 2sin sin cos 2cos sin cos sin cos 222222222sin cos sin 2cos sin cos 2sin sin cos 22222222x x x x x x x x
x x x x x x x x x ⎛⎫⎛⎫
++ ⎪ ⎪⎝⎭⎝⎭=+=
+=⎛⎫⎛⎫
++ ⎪ ⎪
⎝⎭⎝⎭
, 则()21tan 0sin 32f x x x x π⎛
⎫=
+<< ⎪⎝
⎭, 322222
21sin 2cos 16cos cos 1()sin 3cos sin 3cos 3sin cos x x x x f x x x x x x x '
'
'
--+⎛⎫⎛⎫=+=-+= ⎪ ⎪⎝⎭⎝⎭
. 令()cos 0,1t x =∈,()
32
61g t t t =--+为减函数,且102g ⎛⎫= ⎪⎝⎭
, 所以当03
x π
<<时,
()1
1,02
t g t <<<,从而()'0f x <; 当
3
2
x π
π
<<
时,()1
0,02
t g t <<
>,从而()'0f x >. 故(
)min 33f x f π⎛⎫== ⎪⎝⎭
. 故选:A 【点睛】
本题主要考查了三角函数的恒等变换,利用导数求函数的最小值,换元法,属于中档题.
2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a ﹣c cos B )sin A =c cos A sin B ,则△ABC 的形状一定是( )
A .钝角三角形
B .直角三角形
C .等腰三角形
D .锐角三角形
【答案】C 【解析】 【分析】
根据题意,由(cos )sin cos sin a c B A c A B -=变形可得sin sin a A c C =,进而由正弦定理可得22a c =,即a c =,即可得答案. 【详解】
根据题意,在ABC ∆中,(cos )sin cos sin a c B A c A B -=, 变形可得:
sin cos sin cos sin (cos sin cos sin )sin()sin a A c B A c A B c B A A B c A B c C =+=+=+=,
即有sin sin a A c C =,
又由正弦定理可得22a c =,即a c =. 故选:C . 【点睛】
本题主要考查三角形的形状判断,考查正弦定理的应用,意在考查学生对这些知识点的理解掌握水平,属于基础题.
3.函数()[]()
cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象的交点横坐标的和为( ) A .
53
π B .2π
C .
76
π D .π
【答案】B 【解析】 【分析】
根据两个函数相等,求出所有交点的横坐标,然后求和即可. 【详解】
令sin cos2x x =,有2sin 12sin x x =-,所以sin 1x =-或1
sin 2
x =.又[],2x ππ∈-,所以2x π=-
或32x π=或6x π=或56
x π=,所以函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象交点的横坐标的和3522
266
s π
πππ
π=-+
++=,故选B. 【点睛】
本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养.
4.已知在锐角ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若
2cos cos b C c B =,则
111
tan tan tan A B C
++的最小值为( )
A.27
3
B.5C.
7
3
D
.25
【答案】A
【解析】
【分析】
先根据已知条件,把边化成角得到B,C关系式,结合均值定理可求.
【详解】
∵2cos cos
b C
c B
=,∴2sin cos sinCcos
B C B
=,
∴tan2tan
C B
=.又A B Cπ
++=,
∴
()()
tan tan tan
A B C B C
π
=-+=-+
⎡⎤
⎣⎦
22
tan tan3tan3tan
1tan tan12tan2tan1
B C B B
B C B B
+
=-=-=
---
,
∴
2
1112tan111
tan tan tan3tan tan2tan
B
A B C B B B
-
++=++
27
tan
36tan
B
B
=+.
又∵在锐角ABC
∆中, tan0
B>,∴
272727
tan2tan
36tan36tan
B B
B B
+≥⨯=,当且仅当
7
tan B=时取等号,
∴
min
11127
tan tan tan3
A B C
⎛⎫
++=
⎪
⎝⎭
,故选A.
【点睛】
本题主要考查正弦定理和均值定理,解三角形时边角互化是求解的主要策略,侧重考查数学运算的核心素养.
5.上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.
由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表: 黄赤交角 2341︒'
2357︒'
2413︒'
2428︒'
2444︒'
正切值 0.439 0.444 0.450 0.455 0.461 年代
公元元年
公元前2000年
公元前4000年
公元前6000年
公元前8000年
根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是( ) A .公元前2000年到公元元年 B .公元前4000年到公元前2000年 C .公元前6000年到公元前4000年 D .早于公元前6000年
【答案】D 【解析】 【分析】
先理解题意,然后根据题意建立平面几何图形,在利用三角函数的知识计算出冬至日光与春秋分日光的夹角,即黄赤交角,即可得到正确选项. 【详解】
解:由题意,可设冬至日光与垂直线夹角为α,春秋分日光与垂直线夹角为β, 则αβ-即为冬至日光与春秋分日光的夹角,即黄赤交角, 将图3近似画出如下平面几何图形:
则16tan 1.610α=
=,169.4tan 0.6610
β-==, tan tan 1.60.66
tan()0.4571tan tan 1 1.60.66
αβαβαβ---=
=≈++⨯g .
0.4550.4570.461<<Q ,
∴估计该骨笛的大致年代早于公元前6000年.
故选:D . 【点睛】
本题考查利用三角函数解决实际问题的能力,运用了两角和与差的正切公式,考查了转化思想,数学建模思想,以及数学运算能力,属中档题.
6.设函数f (x )=cos (x +
3
π
),则下列结论错误的是 A .f(x)的一个周期为−2π
B .y=f(x)的图像关于直线x=
83
π
对称
C .f(x+π)的一个零点为x=6
π D .f(x)在(
2
π
,π)单调递减 【答案】D 【解析】
f (x )的最小正周期为2π,易知A 正确; f 8π3⎛⎫
⎪⎝⎭=cos 8ππ33⎛⎫
+ ⎪⎝⎭
=cos3π=-1,为f (x )的最小值,故B 正确; ∵f (x +π)=cos ππ3x ⎛
⎫++ ⎪⎝
⎭=-cos π3x ⎛⎫+ ⎪⎝⎭,∴f ππ6⎛⎫+ ⎪⎝⎭=-cos ππ63⎛⎫
+ ⎪⎝⎭
=-cos 2π=
0,故C 正确; 由于f 2π3⎛⎫
⎪⎝⎭=cos 2ππ33⎛⎫+ ⎪
⎝⎭
=cosπ=-1,为f (x )的最小值,故f (x )在,2ππ⎛⎫ ⎪⎝⎭上不单调,故D 错误. 故选D.
7.要得到函数y =sin (2x +9π)的图象,只需将函数y =cos (2x ﹣9
π
)的图象上所有点( ) A .向左平移518
π
个单位长度 B .向右平移518
π
个单位长度 C .向左平移536
π
个单位长度 D .向右平移
536
π
个单位长度 【答案】D 【解析】 【分析】
先将函数cos 29y x π⎛⎫
=- ⎪⎝
⎭
转化为7sin 218
y x π⎛⎫
=+
⎪⎝
⎭
,再结合两函数解析式进行对比,得出结论. 【详解】 函数75cos 2sin 2sin 2sin 299218369y x x x x ππππππ⎡⎤⎛⎫
⎛⎫⎛
⎫⎛⎫=-
=-+=+=++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝
⎭⎝⎭⎝⎭⎝
⎭⎣⎦ ∴要得到函数sin 29y x π⎛
⎫=+ ⎪⎝
⎭的图象,
只需将函数cos 29y x π⎛
⎫
=- ⎪⎝
⎭
的图象上所有点向右平移
536
π
个单位长度,故选D . 【点睛】
本题考查函数()sin y A x b ωϕ=++的图象变化规律,关键在于能利用诱导公式将异名函数化为同名函数,再根据左右平移规律得出结论.
8.将函数()()sin 0,π2f x x ϕωϕω⎛
⎫=+>< ⎪⎝
⎭的图象向右平移6π个单位长度后,所得图象关
于y 轴对称,且1π2f ω⎛⎫
=- ⎪⎝⎭
,则当ω取最小值时,函数()f x 的解析式为( )
A .()sin 26f x x π⎛
⎫
=+
⎪⎝
⎭
B .()sin 2π6f x x ⎛
⎫=- ⎪⎝
⎭
C .()sin 4π6f x x ⎛
⎫=+ ⎪⎝
⎭
D .()sin 4π6f x x ⎛
⎫=- ⎪⎝
⎭
【答案】C 【解析】 【分析】
由题意利用函数()sin y A x ωφ=+的图象变换规律,可得所得函数的解析式,由
12f πω⎛⎫
=- ⎪⎝⎭
,求出φ,再根据所得图象关于y 轴对称求出ω,可得()f x 的解析式.
【详解】
解:将函数()()sin (0,)2
f x x π
ωφωφ=+><
的图象向右平移
6
π
个单位长度后,可得sin 6y x ωπωφ⎛⎫
=-+ ⎪⎝⎭
的图象;
∵所得图象关于y 轴对称,∴6
2
k ωπ
π
φπ-+=+
,k Z ∈.
∵()1sin sin 2f ππφφω⎛⎫=-=+=- ⎪⎝⎭
,即1sin 2φ=,26ππφφ<=,. ∴63
k ωπ
π
π-
=+
,620k ω=-->, 则当ω取最小值时,取1k =-,可得4ω=, ∴函数()f x 的解析式为()sin 46f x x π⎛⎫
=+ ⎪⎝
⎭
. 故选C . 【点睛】
本题主要考查函数()sin y A x ωφ=+的图象变换规律,正弦函数的性质,属于中档题.
9.已知函数()3cos(
2)2
f x x π
=+,若对于任意的x ∈R ,都有12()()()f x f x f x 剟
成立,则12x x -的最小值为( )
A .4
B .1
C .
12
D .2
【答案】D 【解析】 【分析】
由题意得出()f x 的一个最大值为()2f x ,一个最小值为()1f x ,于此得出12x x -的最小值为函数()y f x =的半个周期,于此得出答案. 【详解】
对任意的x ∈R ,()()()12f x f x f x 剟
成立. 所以()()2min 3f x f x ==-,()()2max 3f x f x ==,所以12min
22
T
x x -=
=,故选D . 【点睛】
本题考查正余弦型函数的周期性,根据题中条件得出函数的最值是解题的关键,另外就是灵活利用正余弦型函数的周期公式,考查分析问题的能力,属于中等题.
10.直线y a =与函数()tan (0)4f x x πωω⎛⎫
=+
> ⎪⎝
⎭
的图象的相邻两个交点的距离为2π,若()f x 在()(),0m m m ->上是增函数,则m 的取值范围是( )
A .(0,
]4
π B .(0,]2
π
C .3(0,
]4
π D .3(0,
]2
π 【答案】B 【解析】 【分析】
根据直线y a =与函数()f x 的图象的相邻两个交点的距离为一个周期,得到1
2
ω=
,则()1
tan 2
4f x x π⎛⎫=+ ⎪⎝⎭,然后求得其单调增区间,再根据()f x 在()(),0m m m ->上是增
函数,由(,)m m -是增区间的子集求解. 【详解】
因为直线y a =与函数()f x 的图象的相邻两个交点的距离为一个周期, 所以12ω=,()1
tan 2
4f x x π⎛⎫=+ ⎪⎝⎭,
由12
242k x k π
ππππ-
<
+<+,得322()22k x k k ππ
ππ-<<+∈Z , 所以()f x 在3,22ππ⎛⎫
-
⎪⎝
⎭上是增函数,
由3(,),22m m ππ⎛⎫
-⊆- ⎪⎝
⎭, 解得02
m π
<≤.
故选:B 【点睛】
本题主要考查正切函数的图象和性质,还考查了运算求解的能力,属于中档题
11.已知2433sin 5cos 77ππαα⎛⎫⎛⎫+=-+ ⎪ ⎪⎝⎭⎝⎭,则tan 14πα⎛⎫-= ⎪⎝
⎭( )
A .5
3-
B .35
-
C .
35
D .
53
【答案】B 【解析】 【分析】
根据诱导公式计算得到35tan 73πα⎛⎫+= ⎪⎝⎭,故3tan tan 147
2πππαα⎡⎤
⎛⎫⎛⎫-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,解得
答案. 【详解】
由诱导公式可知24333sin 3sin 33sin 777πππαπαα⎡⎤⎛⎫⎛⎫⎛⎫
+=++=-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣
⎦, 又2433sin 5cos 77ππαα⎛⎫⎛⎫+=-+
⎪ ⎪⎝⎭⎝⎭得333sin 5cos 77ππαα⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭
, 所以35tan 73πα⎛⎫+= ⎪⎝⎭,313tan tan 314725tan 7πππααπα⎡⎤
⎛⎫⎛⎫-=+-=-=- ⎪
⎪⎢⎥⎛⎫⎝⎭⎝⎭⎣⎦+ ⎪
⎝⎭
. 故选:B . 【点睛】
本题考查了三角恒等变换,意在考查学生的计算能力和转化能力.
12.函数()2
2sin 3cos 2f x x x =+-,2,36x ππ⎡⎤
∈-
⎢⎥⎣
⎦的值域为( ) A .40,3⎡⎤⎢⎥⎣⎦
B .41,3⎡⎤⎢⎥⎣⎦
C .51,4⎡⎤⎢⎥⎣⎦
D .50,4⎡⎤
⎢⎥⎣⎦
【答案】A 【解析】 【分析】
化简得到()2
3sin 2sin 1f x x x =-++,设sin t x =,利用二次函数性质得到答案. 【详解】
根据2
2
sin cos 1x x +=,得()2
3sin 2sin 1f x x x =-++,2,36x ππ⎡⎤∈-⎢⎥⎣⎦
, 令sin t x =,由2,36x ππ⎡⎤
∈-
⎢⎥⎣⎦,得1sin 1,2x ⎡⎤∈-⎢⎥⎣⎦
, 故[]0,1t ∈,有2
321y t t =-++,[]0,1t ∈,二次函数对称轴为13
t =
, 当1
3t =
时,最大值43
y =;当1t =时,最小值0y =, 综上,函数()f x 的值域为40,3⎡⎤
⎢⎥⎣⎦
. 故选:A . 【点睛】
本题考查了三角函数值域,换元可以简化运算,是解题的关键.
13.已知双曲线()22
2210,0x y a b a b
-=>>的左右焦点分别为1F ,2F ,M 为双曲线上一点,若
121
cos 4
F MF ∠=
,122MF MF =,则此双曲线渐近线方程为( ) A
.y = B
.3
y x =±
C .y x =±
D .2y x =±
【答案】A 【解析】 【分析】
因为M 为双曲线上一点,可得122MF MF a -=,在12F MF ∆使用余弦定理,结合已知条件即可求得答案. 【详解】
Q 双曲线()222210,0x y a b a b
-=>>的左右焦点分别为1F ,2F ,M 为双曲线上一点 ∴ 1212
22MF MF a MF MF ⎧-=⎪⎨=⎪⎩,解得:14MF a =,22MF a = 在12F MF ∆中,根据余弦定理可得:
∴ 1212
122
2
122c 2os F F MF MF M MF MF F F ∠=+-⋅⋅
可得:2
2
2
1
(2)(4)(2)2424
c a a a a =+-⋅⋅⋅
化简可得:2c a =
由双曲线性质可得:22222243b c a a a a =-=-=
可得:b =
Q 双曲线渐近线方程为:b y x a
=±
则双曲线渐近线方程为: y = 故选:A. 【点睛】
本题考查了求双曲线渐近线方程问题,解题关键是掌握双曲线的基本知识,数形结合,考查分析能力和计算能力,属于中档题.
14.函数2()sin cos 2cos f x a x a x x =+-的图象关于直线4
π
x =-对称,则()f x 的最大值为( )
A .2
B
C .
D 或【答案】D 【解析】 【分析】
根据函数2
()sin cos 2cos f x a x a x x =+-的图象关于直线4
π
x =-对称,则有()(0)2
f f π
-=,解得a ,得到函数再求最值. 【详解】
因为函数2
()sin cos 2cos f x a x a x x =+-的图象关于直线4
π
x =-对称, 所以()(0)2f f π
-=,
即220a a +-=, 解得2a =-或1a =,
当2a =-时,()sin 2cos 2cos 44f x x x x x π⎛⎫
=--=-
⎪⎝
⎭
,此时()f x 的最大值为
;
当1a =时,()sin cos 2cos 4f x x x x x π⎛
⎫=+-=- ⎪⎝
⎭,此时()f x ;
综上()f x 或. 故选:D 【点睛】
本题主要考查三角函数的性质,还考查了分类讨论的思想和运算求解的能力,属于中档题.
15.已知ABC V 的内角,,A B C 的对边分别为,,a b c ,且cos cos 2cos a B b A C +=
,
1a =,b =c =( )
A
B .1
C
D 【答案】B
【解析】
【分析】
先由正弦定理将cos cos a B b A +=中的边转化为角,可得sin()A B +=可求出角6C π=
,再利用余弦定理可求得结果. 【详解】
解:因为cos cos 2cos a B b A C
+=,
所以正弦定理得,sin cos sin cos A B B A +=
所以sin()A B +=sin 2cos C C C
=,
因为sin 0C ≠,所以cos C =, 又因为(0,)C π∈,所以6C π=
,
因为1a =,b =
所以由余弦定理得,2222cos 13211c a b ab C =+-=+-⨯=, 所以1c =
故选:B
【点睛】
此题考查的是利用正、余弦定理解三角形,属于中档题.
16.函数()sin())f x x x ωϕωϕ=+++(ω>0)的图像过点(1,2),若f (x )相邻的两个零点x 1,x 2满足|x 1-x 2|=6,则f (x )的单调增区间为( )
A .[-2+12k ,4+12k](k ∈Z )
B .[-5+12k ,1+12k](k ∈Z )
C .[1+12k ,7+12k](k ∈Z )
D .[-2+6k ,1+6k](k ∈Z )
【答案】B
【解析】
由题意得()23f x sin x πωϕ⎛
⎫=++ ⎪⎝⎭,根据相邻两个零点满足126x x -=得到周期为12T =,于是可得6
π=
ω.再根据函数图象过点()1,2求出2()k k Z ϕπ=∈,于是可得函数的解析式,然后可求出单调增区间.
【详解】
由题意得()()()23f x sin x x sin x πωϕωϕωϕ⎛⎫=++=++
⎪⎝⎭, ∵()f x 相邻的两个零点1x ,2x 满足126x x -=,
∴函数()f x 的周期为12T =, ∴6
π=ω, ∴()26
3f x sin x ππϕ⎛⎫=++ ⎪⎝⎭. 又函数图象过点()1,2, ∴2222632sin sin cos πππϕϕϕ⎛⎫⎛⎫++=+== ⎪ ⎪⎝⎭⎝⎭
, ∴cos 1ϕ=,
∴2()k k Z ϕπ=∈,
∴()263f x sin x ππ⎛⎫=+
⎪⎝⎭. 由22,2632
k x k k Z ππππππ-+≤+≤
+∈, 得512112,k x k k Z -+≤≤+∈, ∴()f x 的单调增区间为[]
()512,112k k k Z -++∈.
故选B .
【点睛】
解答本题的关键是从题中所给的信息中得到相关数据,进而得到函数的解析式,然后再求出函数的单调递增区间,解体时注意整体代换思想的运用,考查三角函数的性质和应用,属于基础题.
17.已知向量m =r (1,cosθ),(sin ,2)n θ=-r ,且m r ⊥n r
,则sin 2θ+6cos 2θ的值为( )
A .12
B .2
C .
D .﹣2 【答案】B
【解析】
根据m r ⊥n r 可得tanθ,而sin 2θ+6cos 2θ22226sin cos cos sin cos θθθθθ
+=+,分子分母同除以cos 2θ,代入tanθ可得答案.
【详解】 因为向量m =r (1,cosθ),n =r (sinθ,﹣2), 所以sin 2cos m n θθ⋅=-u r r 因为m r ⊥n r ,
所以sin 2cos 0θθ-=,即tanθ=2,
所以sin 2θ+6cos 2θ22222626226141
sin cos cos tan sin cos tan θθθθθθθ++⨯+====+++ 2. 故选:B.
【点睛】 本题主要考查平面向量的数量积与三角恒等变换,还考查运算求解的能力,属于中档题.
18.化简21sin 352sin 20︒︒-
=( )
A .12
B .12-
C .1-
D .1
【答案】B
【解析】
【分析】
利用降次公式和诱导公式化简所求表达式,由此求得正确结论.
【详解】 依题意,原式1cos7011cos701sin 20122sin 202sin 202sin 202
--==-⨯=-⨯=-o o o o o o ,故选B. 【点睛】
本小题主要考查三角函数降次公式,考查三角函数诱导公式,属于基础题.
19.关于函数()()()sin tan cos tan f x x x =-有下述四个结论:
①()f x 是奇函数;
②()f x 在区间0,4π⎛⎫ ⎪⎝⎭
单调递增; ③π是()f x 的周期;
④()f x 的最大值为2.
其中所有正确结论的个数是( )
A .4
B .3
C .2
D .1
【答案】C
【解析】
【分析】
计算()()()sin tan cos tan f x x x -=--得到①错误,根据复合函数单调性判断法则判断②正确,()()f x f x π+=③正确,假设()f x 的最大值为2,取()2f a =,得到矛盾,④错误,得到答案.
【详解】 ()()()sin tan cos tan f x x x =-,
()()()sin tan cos tan f x x x -=---⎡⎤⎡⎤⎣⎦⎣⎦()()sin tan cos tan x x =--,
所以()f x 为非奇非偶函数,①错误; 当0,4x π⎛
⎫∈ ⎪⎝⎭
时,令tan t x =,()0,1t ∈, 又()0,1t ∈时sin y t =单调递增,cos y t =单调递减,根据复合函数单调性判断法则, 当0,4x π⎛
⎫∈ ⎪⎝⎭
时,()sin tan y x =,()cos tan y x =-均为增函数, 所以()f x 在区间0,
4π⎛⎫ ⎪⎝⎭单调递增,所以②正确; ()()()sin tan cos tan f x x x πππ+=+-+⎡⎤⎡⎤⎣⎦⎣⎦()()()sin tan cos tan x x f x =-=, 所以π是()f x 的周期,所以③正确;
假设()f x 的最大值为2,取()2f a =,必然()sin tan 1a =,()cos tan 1a =-, 则tan 22a k π
π=+,k Z ∈与tan 2a k ππ=+,k Z ∈矛盾,所以()f x 的最大值小于
2,所以④错误.
故选:C .
【点睛】
本题考查了三角函数奇偶性,单调性,周期,最值,意在考查学生对于三角函数知识的综合应用.
20.在函数:①cos |2|y x =;②|cos |y x =;③cos 26y x π⎛⎫=+
⎪⎝⎭;④tan 24y x π⎛⎫=-
⎪⎝⎭中,最小正周期为π的所有函数为( ) A .①②③ B .①③④ C .②④ D .①③
【答案】A
【解析】
逐一考查所给的函数:
cos 2cos2y x x == ,该函数为偶函数,周期22
T ππ== ; 将函数cos y x = 图象x 轴下方的图象向上翻折即可得到cos y x = 的图象,该函数的周期为122
ππ⨯= ; 函数cos 26y x π⎛⎫=+ ⎪⎝
⎭的最小正周期为22T ππ== ; 函数tan 24y x π⎛
⎫=- ⎪⎝⎭的最小正周期为22T π
π
== ;
综上可得最小正周期为π的所有函数为①②③.
本题选择A 选项.
点睛:求三角函数式的最小正周期时,要尽可能地化为只含一个三角函数的式子,否则很容易出现错误.一般地,经过恒等变形成“y =A sin(ωx +φ),y =A cos(ωx +φ),y =A tan(ωx +φ)”的形式,再利用周期公式即可.。