江苏省沭阳县上册运动和力的关系单元测试题(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、第四章运动和力的关系易错题培优(难)
1.如图所示,斜面体A静止放置在水平地面上,质量为m的物体B在外力F(方向水平向右)的作用下沿斜面向下做匀速运动,此时斜面体仍保持静止。
若撤去力F,下列说法正确的是()
A.A所受地面的摩擦力方向向左
B.A所受地面的摩擦力可能为零
C.A所受地面的摩擦力方向可能向右
D.物体B仍将沿斜面向下做匀速运动
【答案】A
【解析】
【分析】
【详解】
根据题意可知B物块在外力F的作用下沿斜面向下做匀速直线运动,撤去外力F后,B物块沿斜面向下做加速运动,加速度沿斜面向下,所以A、B组成的系统在水平方向上有向左的分加速度,根据系统牛顿第二定律可知,地面对A的摩擦力水平向左,才能提供系统在水平方向上的分加速度。
故选A。
2.如图所示,斜面体ABC放在水平桌面上,其倾角为37º,其质量为M=5kg.现将一质量为m=3kg的小物块放在斜面上,并给予其一定的初速度让其沿斜面向上或者向下滑动.已知斜面体ABC并没有发生运动,重力加速度为10m/s2,sin37º=0.6.则关于斜面体ABC受到地面的支持力N及摩擦力f的大小,下面给出的结果可能的有( )
A.N=50N,f=40N B.N=87.2N,f=9.6N
C.N=72.8N,f=0N D.N=77N,f=4N
【答案】ABD
【解析】
【分析】
【详解】
设滑块的加速度大小为a,当加速度方向平行斜面向上时,对Mm的整体,根据牛顿第二定律,有:竖直方向:N-(m+M)g=masin37°
水平方向:f=macos37°
解得:N=80+1.8a ① f=2.4a ②
当加速度平行斜面向下,对整体,根据牛顿第二定律,有:竖直方向:-N+(m+M )g=masin37°
水平方向:f=macos37°
解得:N=80-1.8a ③ f=2.4a ④
A 、如果N=50N ,f=40N ,则250a=m/s 3
,符合③④式,故A 正确; B 、如果N=87.2N ,f=9.6N ,则a=-4m/s 2,符合①②两式,故B 正确;
C 、如果N=72.8N ,f=0N ,不可能同时满足①②或③④式,故C 错误;
D 、如果N=77N ,f=4N ,则25a=
m/s 3
,满足③④式,故D 正确; 故选ABD.
3.如图所示,绷紧的水平传送带始终以恒定速率v 1运行.初速度大小为v 2的小物块从与传送带等高的光滑水平地面上滑上传送带,以地面为参考系,v 2>v 1,从小物块滑上传送带开始计时,其v-t 图像可能的是( )
A .
B .
C .
D .
【答案】ABC
【解析】
如果物体一直减速到达左侧仍有速度,则为图像A ;如果恰好见到零,则为图像C ;如果在传送带上减速到零并反向加速至传送带速度,则为图像C .图像D 是不可能的.
4.如图所示,在一个倾角未知的、粗糙的、足够长的斜坡上,现给箱子一个沿坡向下的初速度,一段时间后箱子还在斜面上滑动,箱子和小球不再有相对运动,此时绳子在图中的位置(图中ob 绳与斜坡垂直,od 绳沿竖直方向)( )
A.可能是a、b B.可能是b、c C.可能是c、d D.可能是d、e
【答案】CD
【解析】
【分析】
【详解】
设斜面的倾角为θ,绳子与斜面垂直线的夹角为β。
据题意箱子和小球不再有相对运动,则它们的加速度相同。
对箱子和小球整体作受力分析,易知:如果斜面对箱子的摩擦力小于整体的重力沿斜面的分力,整体将沿斜面向下做匀加速运动,且加速度小于g sinθ;如果斜面对箱子的摩擦力恰等于整体的重力沿斜面的分力,整体将沿斜面向下做匀速运动;如果斜面对箱子的摩擦力大于整体的重力沿斜面的分力,整体将沿斜面向下做匀减速运动。
再对小球作受力分析如图,根据牛顿第二定律分析如下:
对oa情况有
mg sinθ+ F T sinβ=ma
必有a>g sinθ,即整体以加速度大于g sinθ沿斜面向下做匀加速运动,所以oa不可能。
对ob情况有
mg sinθ=ma
得a=g sinθ,即整体以加速度等于g sinθ沿斜面向下做匀加速运动,所以ob不可能。
对oc情况有
mg sinθ- F T sinβ=ma
必有a<g sinθ,即整体以加速度小于g sinθ沿斜面向下做匀加速运动,所以oc可能。
对od情况有a=0,即整体沿斜面向下做匀速直线运动,所以oc可能。
对oe情况有
F T cosβ-mg cosθ=0
mg sinθ-F T sinβ=ma
因β>θ,所以a<0,加速度沿斜面向上,即整体沿斜面向下做匀减速运动,所以oe可能。
由以上分析可知:绳子在图中的位置处于oa、ob均不可能,处于oc、od、oe均可能。
故选CD。
5.如图所示,不可伸长的轻绳上端固定,下端与质量为m的物块P连接;轻弹簧下端固定,上端与质量为2m的物块Q连接,系统处于静止状态.轻绳轻弹簧均与固定光滑斜面平行,已知P、Q间接触但无弹力,重力加速度大小为g,取sin53°=0.8,cos53°=
0.6.下列说法正确的是
A .剪断轻绳前,斜面对P 的支持力大小为45
mg B .剪断轻绳的瞬间,弹簧的弹力大小为8
5
mg
C .剪断轻绳的瞬间,P 的加速度大小为815
mg D .剪断轻绳的瞬间,P 、Q 间的弹力大小为815
mg 【答案】BD
【解析】
【分析】
【详解】
A.剪断轻绳前,对P 进行受力分析如图所示:
则根据平衡条件可知,斜面对P 的支持力为:
3cos535
N mg mg =︒=, 故A 错误;
B.剪断轻绳前,对Q 进行受力分析如图所示:
根据平衡条件可知,弹簧的弹力为:
82sin 535
F mg mg =︒=, 轻绳剪断瞬间,弹簧的弹力不发生突变,即为85
mg ,故B 正确; C.剪断轻绳瞬间PQ 一起向下加速,对PQ 整体进行受力分析如图所示:
根据牛顿第二定律可得其加速度为:
3sin 534315
mg F a g m ︒-=
=, 故C 错误;
D.剪断绳子后对P 物体有: sin 53PQ mg N ma ︒-=
解得PQ 之间的弹力大小为:
8g 15
PQ N m =
, 故D 正确;
6.如图所示,在倾角为θ的光滑斜劈P 的斜面上有两个用轻质弹簧相连的物块A 、B ,C 为一垂直固定在斜面上的挡板.A 、B 质量均为m ,斜面连同挡板的质量为M ,弹簧的劲度系数为k ,系统静止于光滑水平面.现开始用一水平恒力F 作用于P,(重力加速度为g )下列说法中正确的是( )
A .若F=0,挡板受到
B 物块的压力为2sin mg θ
B .力F 较小时A 相对于斜面静止,F 大于某一数值,A 相对于斜面向上滑动
C .若要B 离开挡板C ,弹簧伸长量需达到sin /mg k θ
D .若(2)tan F M m g θ=+且保持两物块与斜劈共同运动,弹簧将保持原长
【答案】AD
【解析】
【分析】
【详解】
A 、F=0时,对物体A 、
B 整体受力分析,受重力、斜面的支持力N 1和挡板的支持力N 2,根据共点力平衡条件,沿平行斜面方向,有N 2-(2m )gsinθ=0,故压力为2mgsinθ,故A 错误;
B、用水平力F作用于P时,A具有水平向左的加速度,设加速度大小为a,将加速度分解如图
根据牛顿第二定律得
mgsinθ-kx=macosθ
当加速度a增大时,x减小,即弹簧的压缩量减小,物体A相对斜面开始向上滑行.故只要有力作用在P上,A即向上滑动,故B错误;
C、物体B恰好离开挡板C的临界情况是物体B对挡板无压力,此时,整体向左加速运动,对物体B受力分析,受重力、支持力、弹簧的拉力,如图
根据牛顿第二定律,有
mg-Ncosθ-kxsinθ=0
Nsinθ-kxcosθ=ma
解得:kx=mgsinθ-macosθ,
sin cos
mg ma
x
k
θθ
-
=故C错误;
D、若F=(M+2m)gtanθ且保持两物块与斜劈共同运动,则根据牛顿第二定律,整体加速度为gtanθ;
对物体A受力分析,受重力,支持力和弹簧弹力,如图
根据牛顿第二定律,有
mgsinθ-k x=macosθ
解得
kx=0
故弹簧处于原长,故D 正确;
7.如图所示,A 、B 两个物体的质量分别为m 1、m 2,两物体之间用轻质弹性细线连接,两物体与水平面的动摩擦因数相等。
现对B 物体施加一水平向右的拉力F ,使A 、B 一起向右做匀加速运动。
下列说法正确的是( )
A .若某时刻撒去F ,则撤去F 的瞬间,A 、
B 的加速度保持不变
B .若F 保持不变,水平面改为光滑的,则弹性细线的拉力大小不变
C .若将F 增大一倍,则两物体的加速度将增大一倍
D .若F 逐渐减小,A 、B 依然做加速运动,则在F 减小的过程中,弹性细线上的拉力与F 的比值不变
【答案】BD
【解析】
【分析】
【详解】
A .有F 作用时,
B 物体水平方向受F 、弹性细绳的拉力和地面对B 的滑动摩擦力作用,撤去F 后,B 物体受弹性细绳的拉力和地面对B 的滑动摩擦力作用,故B 物体的受力情况发生变化,所以B 物体的加速度变化,故A 错误;
B .有F 作用时,水平面粗糙,由牛顿第二定律,得
()()1212F m g m g m m a μ-+=+
11=F m g m a μ-绳
联立解得
112
=m F F m m +绳 若F 保持不变,水平面改为光滑的,由牛顿第二定律,得
()12F m m a =+
1=F m a 绳
联立解得
112
=m F F m m +绳 可知弹性细线的拉力大小不变,故B 正确;
C .有F 作用时,水平面粗糙,由牛顿第二定律,得
()()1212F m g m g m m a μ-+=+
若将F 增大一倍,滑动摩擦力不变,故两物体的加速度不会增大一倍,C 错误; D .有F 作用时,水平面粗糙,由牛顿第二定律,得
()()1212F m g m g m m a μ-+=+
11=F m g m a μ-绳
联立解得
112
=m F F m m +绳 可知,F 减小,弹性绳上的拉力与F 的比值不变,故D 正确。
故选BD 。
8.如图,粗糙的水平地面上有三块材料完全相同的木块A 、B 、C ,质量均为m ,B 、C 之间用轻质细绳连接。
现用一水平恒力F 拉C ,使三者由静止开始一起做匀加速运动,运动过程中把一块橡皮泥粘在某一块上面,系统仍加速运动,且始终没有相对滑动,则在粘上橡皮泥并达到稳定后,下列说法正确的是( )
A .若粘在木块A 上面,绳的拉力不变
B .若粘在木块A 上面,绳的拉力增大
C .若粘在木块C 上面,A 、B 间摩擦力增大
D .若粘在木块C 上面,绳的拉力和A 、B 间摩擦力都减小
【答案】BD
【解析】
【分析】
【详解】
因无相对滑动,根据牛顿第二定律都有
F ﹣3μmg ﹣μ△mg =(3m +△m )a
可知,运动过程中把一块橡皮泥粘在某一块上面,质量都变化,加速度a 都将减小. AB .若粘在A 木块上面,以C 为研究对象,受F 、摩擦力μmg 、绳子拉力T ,根据牛顿第二定律有
F ﹣μmg ﹣T =ma
解得
T =F ﹣μmg ﹣ma
因为加速度a 减小,F 、μmg 不变,所以,绳子拉力T 增大.故B 正确,A 错误; CD .若粘在C 木块上面,对A ,根据牛顿第二定律有
f A =ma
因为加速度a 减小,可知A 的摩擦力减小;
以AB 为整体,根据牛顿第二定律有
T ﹣2μmg =2ma
解得
T =2μmg +2ma
因为加速度a 减小,则绳子拉力T 减小,故D 正确,C 错误。
故选BD 。
9.在大型物流货场,广泛的应用着传送带搬运货物。
如图甲所示,与水平面倾斜的传送带以恒定速率运动,皮带始终是绷紧的,将m =1kg 的货物放在传送带上的A 处,经过1.2s 到达传送带的B 端。
用速度传感器测得货物与传送带的速度v 随时间t 变化图像如图乙所示,已知重力加速度g =10m/s 2。
由v —t 图可知( )
A .A 、
B 两点的距离为2.4m
B .货物与传送带的动摩擦因数为0.5
C .货物从A 运动到B 过程中,传送带对货物做功大小为12.8J
D .货物从A 运动到B 过程中,货物与传送带摩擦产生的热量为4.8J
【答案】BD
【解析】
【分析】
【详解】
A .物块在传送带上先做匀加速直线运动,当速度达到传送带速度,再做加速度运动,所以物块由A 到
B 的间距对应所围梯形的“面积”
1120.2(24)1 3.2m 22
x =⨯⨯++⨯= 故A 错误。
B .由v ﹣t 图像可知,物块在传送带上先做a 1匀加速直线运动,加速度为
2210m /s 0.2
v a t ∆===∆ 对物体受力分析受摩擦力,方向向下,重力和支持力,得
1sin mg f ma θ+=
即
1sin cos mg mg ma θμθ+=
同理,做a 2的匀加速直线运动,对物体受力分析受摩擦力,方向向上,重力和支持力,加速度为
22422m/s 1.20.2
v a t ∆-=
==∆- 得 2sin mg θf ma =-
即
2sin cos mg mg ma θμθ-=
联立解得cos 0.8θ=,0.5μ=,故B 正确。
C .根据功能关系,由B 中可知
cos 0.51010.84N f μmg θ==⨯⨯⨯=
做a 1匀加速直线运动,有
知位移为
1120.20.2m 2
x =⨯⨯= 物体受力分析受摩擦力,方向向下,摩擦力做正功为
f1140.20.8J W fx ==⨯=
同理做a 2匀加速直线运动,位移为
21(24)13m 2
x =⨯+⨯= 物体受力分析受摩擦力,方向向上,摩擦力做负功为
f 224312J W fx ==⨯=﹣﹣﹣
所以整个过程,传送带对货物做功大小为
12J 0.8J 11.2J =﹣
故C 错误。
D .根据功能关系,货物与传送带摩擦产生的热量等于摩擦力乘以相对位移,由C 中可知
cos 0.51010.84N f μmg θ==⨯⨯⨯=
做a 1匀加速直线运动,位移为
1120.20.2m 2
x =⨯⨯= 皮带位移为
20.20.4m x =⨯=皮
相对位移为
11Δ0.40.20.2m x x x ===皮-﹣
同理,做a 2匀加速直线运动,位移为
21(24)13m 2
=x ⨯+⨯= 2212m x =⨯=皮
相对位移为
222Δ321m x x x ==-=-皮
故两者之间的总相对位移为
12ΔΔΔ10.2 1.2m x x x =+=+=
货物与传送带摩擦产生的热量为
Δ4 1.2 4.8J Q W f x ===⨯=
故D 正确。
故选BD 。
10.如图所示,一质量为M 、带有挂钩的小球套在倾角为θ的细杆上,恰能沿杆匀速下滑,小球所受最大静摩擦力等于滑动摩擦力.若在小球下滑过程中在挂钩上加挂质量为m 的物体或改变倾角θ,则下列说法正确的是( )
A .仅增大θ(θ<90°)时,小球被释放后仍能沿杆匀速下滑
B .仅增大θ(θ<90°)时,小球被释放后将沿杆加速下滑
C .θ不变,仅在挂钩上加挂物体时,小球被释放后将沿杆加速下滑
D .θ不变,仅在挂钩上加挂物体时,挂钩对物体的拉力等于物体的重力
【答案】BD
【解析】
【分析】
【详解】
AB .当球形物体沿细杆匀速下滑时,由力的平衡条件可知
cos sin cos N F Mg Mg Mg θ
θμθ
==
解得 tan μθ=
仅增大θ(θ<90°),则有球形物体的重力沿杆的分力大于杆对球形物体的摩擦力,小球被释放后沿杆加速下滑,选项A 错误,B 正确;
CD .当挂上一质量为m 的物体时,以两物体整体为研究对象,沿杆向下的重力分力为
1()sin F M m g θ=+
当挂上一质量为m 的物体时,球形物体所受的摩擦力即沿杆向上的力,大小为
2()cos f F F M m g μθ==+
摩擦力增大,分析可知12F F =,因此球形物体仍沿细杆匀速下滑。
所以挂钩对物体的拉力等于物体的重力。
选项C 错误,D 正确。
故选BD 。
11.如图甲所示,一轻质弹簧的下端固定在水平面上,上端叠放两个质量均为M 的物体A 、B (B 物体与弹簧连接),弹簧的劲度系数为k ,初始时物体处于静止状态.现用竖直向上的 拉力F 作用在物体A 上,使物体A 开始向上做加速度为a 的匀加速运动,测得两个物体的v —t 图像如图乙所示(重力加速度为g ),则( )
A .施加外力前,弹簧的形变量为2g k
B .外力施加的瞬间A 、B 间的弹力大小为M (g -a )
C .A 、B 在t 1时刻分离,此时弹簧弹力恰好为零
D .弹簧恢复到原长时,物体B 的速度达到最大值
【答案】B
【解析】
【分析】
【详解】
A .施加F 前,物体A
B 整体平衡,根据平衡条件有:
2Mg =kx
解得:
2mg x k
=
故A 错误; B .施加外力F 的瞬间,对B 物体,根据牛顿第二定律有:
F 弹—Mg —AB F Ma =
其中
F 弹=2Mg
解得:
()AB F M g a =-
故B 正确;
C .物体A 、B 在t 1时刻分离,此时A 、B 具有共同的v 与a ;且0AB F =;对B :
F '弹Mg Ma -=
解得:
F '弹=() M g a -
弹力不为零,故C 错误;
D .而弹簧恢复到原长时,B 受到的合力为重力,已经减速一段时间;速度不是最大值;故D 错误。
故选B .
【点睛】
本题关键是明确A 与B 分离的时刻,它们间的弹力为零这一临界条件;然后分别对AB 整体和B 物体受力分析,根据牛顿第二定律列方程及机械能守恒的条件进行分析。
12.如图甲所示,质量为0m 的小车放在光滑水平面上,小车上用细线悬吊一质量为m 的小球,0m m >,用一力F 水平向右拉小球,使小球和车一起以加速度a 向右运动时,细线与竖直方向成α角,细线的拉力为T F .若用一力F '水平向左拉小车,使小球和车一起以加速度a '向左运动时,细线与竖直方向也成α角,如图乙所示,细线的拉力为T F ',则( )
A .T T F F F F ''<<,
B .T T F F F F ''<>,
C .T T F F F F ''==,
D .T T F F F F ''>=,
【答案】D
【解析】
【分析】
【详解】
(1)对甲图中小车和小球作为整体根据牛顿第二定律,有 0()F m m a =+
再对甲图中情况下的小球受力分析,如图
根据牛顿第二定律
对小球有
cos 0T F mg α-=
对小车有
0sin T F m a α=
由以上三式可解得
cos T mg F α
= 00
tan m m m F g m α+=() (2)对乙图中小车和小球作为整体根据牛顿第二定律,有
0F m m a ''=+()
再对乙图中小球受力分析,如图
由几何关系得
对小球有
cos 0T F mg α-='
sin T F ma α'='
解得
cos T mg F α'=
0tan m m m F g m
α+'=
() 可知T T F F '=
又由于0m m >,所以F F '>。
选项D 正确,ABC 错误。
故选B 。
13.如图所示,将小砝码置于水平桌面上的薄纸板上,用向右的水平拉力 F 将纸板迅速抽出,砝码最后停在桌面上。
若增加 F 的大小,则砝码( )
A .与纸板之间的摩擦力增大
B .在纸板上运动的时间减小
C .相对于桌面运动的距离增大
D .相对于桌面运动的距离不变
【答案】B
【解析】
【分析】 【详解】
A .砝码对纸板的压力不变,大小等于砝码的重力大小,由f =μN 知砝码与纸板之间的摩擦力不变,故A 错误;
B .增加F 的大小,纸板的加速度增大,而砝码的加速度不变,所以砝码在纸板上运动的时间减小,故B 正确;
CD .设砝码在纸板上运动时的加速度大小为a 1,在桌面上运动时的加速度为a 2;则砝码相对于桌面运动的距离为
22
12
22v v s a a =+ 由
v =a 1t 1
知a 1不变,砝码在纸板上运动的时间t 1减小,则砝码离开纸板时的速度v 减小,由上知砝码相对于桌面运动的距离s 减小,故CD 错误。
故选B 。
14.如图所示,一劲度系为k 的轻度弹簧,上端固定,下端连一质量为m 的物块A ,A 放在质量也为m 的托盘B 上,以F N 表示B 对A 的作用力,x 表示弹簧的伸长量。
初始时,在竖直向上的力F 作用下系统静止,且弹簧处于自然状态(x =0),现改变力F 的大小,使B 以2
g 的加速度匀加速向下运动(f 为重力加速度,空气阻力不计),此过程中F N 或F 随x 变化的图象正确的是( )
A .
B .
C .
D .
【答案】D
【解析】
【分析】
【详解】
设物块和托盘间的压力为零时弹簧的伸长量为x ,则有
mg kx ma -=
解得
2mg x k
=
在此之前,根据 N mg F kx ma --=
可知,二者之间的压力由开始运动时的
2mg 线性减小到零,而力F 由开始时的mg 线性减小到2mg ,此后托盘与物块分离,力F 保持2
mg 不变。
故选D 。
15.如图所示为粮袋的传送装置,已知A 、B 间长度为L ,传送带与水平方向的夹角为θ,工作时运行速度为v ,粮袋与传送带间的动摩擦因数为μ,正常工作时工人在A 点将粮袋放到运行中的传送带上,关于粮袋从A 到B 的运动,以下说法正确的是(设最大静摩擦力等于滑动摩擦力)( )
A .粮袋到达
B 点的速度与v 相比较,可能大,也可能相等或小
B .粮袋开始运动的加速度为g (sin θ − μcos θ),若L 足够大,则粮袋最后将以速度v 做匀速运动
C.若μ≥ tanθ,则粮袋从A到B一定一直做加速运动
D.不论μ大小如何,粮袋从A到B一直做匀加速运动,且a≥ g sinθ
【答案】A
【解析】
【分析】
【详解】
A.粮袋在传送带上可能一直做匀加速运动,到达B点时的速度小于或等于v;可能先匀加速运动,当速度与传送带相同后,做匀速运动,到达B点时速度与v相同;也可能先做加速度较大的匀加速运动,当速度与传送带相同后做加速度较小的匀加速运动,到达B点时的速度大于v,故A正确;
B.粮袋开始时受到沿斜面向下的滑动摩擦力,大小为μmg cosθ,根据牛顿第二定律得到,加速度a = g(sinθ + μcosθ),若μ < tanθ,则重力沿传送带的分力大于滑动摩擦力,故a 的方向一直向下,粮袋从A到B一直是做加速运动,可能是一直以g(sinθ + μcosθ)的加速度匀加速,也可能先以g(sinθ + μcosθ)的加速度匀加速,后以g(sinθ− μcosθ)匀加速;故B错误;
C.若μ≥ tanθ,粮袋从A到B可能是一直做加速运动,有可能在二者的速度相等后,粮袋做匀速直线运动,故C错误;
D.由上分析可知,粮袋从A到B不一定一直匀加速运动,故D错误。
故选A。