7.8存在性问题(第1部分)-2018年中考数学试题分类汇编(word解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七部分专题拓展
7.8 存在性问题
【一】知识点清单
【二】分类试题汇编及参考答案与解析
一、选择题
二、填空题
三、解答题
1.(2018年重庆市A卷-第26题-12分)如图,在平面直角坐标系中,点A在抛物线y=﹣x2+4x 上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1).
(1)求线段AB的长;
(2)点P为线段AB上方抛物线上的任意一点,过点P作AB的垂线交AB于点H,点F为y轴上
一点,当△PBE的面积最大时,求PH+HF+1
2
FO的最小值;
(3)在(2)中,PH+HF+1
2
FO取得最小值时,将△CFH绕点C顺时针旋转60°后得到△CF′H′,
过点F'作CF′的垂线与直线AB交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由.
【知识考点】二次函数综合题.
【思路分析】(1)求出A、B两点坐标,即可解决问题;
(2)如图1中,设P(m,﹣m2+4m),作PN∥y轴J交BE于N.构建二次函数利用二次函数的性质求出满足条件的点P坐标,作直线OG交AB于G,使得∠COG=30°,作HK⊥OG于K交OC于
F,因为FK=OF,推出PH+HF+FO=PH+FH+Fk=PH+HK,此时PH+HF+OF的值最小,解直角
三角形即可解决问题;
(3)分两种情形分别求解即可;
【解答过程】解:(1)由题意A(1,3),B(3,3),
∴AB=2.
(2)如图1中,设P(m,﹣m2+4m),作PN∥y轴J交BE于N.
∵直线BE的解析式为y=x,
∴N(m,m),
∴S△PEB=×2×(﹣m2+3m)=﹣m2+3m,
∴当m=时,△PEB的面积最大,此时P(,),H(,3),
∴PH=﹣3=,
作直线OG交AB于G,使得∠COG=30°,作HK⊥OG于K交OC于F,∵FK=OF,
∴PH+HF+FO=PH+FH+Fk=PH+HK,此时PH+HF+OF的值最小,∵•HG•OC=•OG•HK,
∴HK==+,
∴PH+HF+OF的最小值为+.
(3)如图2中,由题意CH=,CF=,QF=,CQ=1,
∴Q (﹣1,3),D (2,4),DQ=
,
①当DQ 为菱形的边时,S 1(﹣1,3﹣),S 2(﹣1,3+
),
②当DQ 为对角线时,可得S 3(﹣1,8), ③当DR 为对角线时,可得S 4(5,3) 综上所述,满足条件的点S 坐标为(﹣1,3﹣
)或(﹣1,3+
)或(﹣1,8)或(5,3).
【总结归纳】本题考查二次函数综合题、最短问题、菱形的判定和性质、解直角三角形、勾股定理等知识,解题的关键是学会构建二次函数解决最值问题,学会添加常用辅助线,根据垂线段最短解决最短问题,学会用分类讨论的思想思考问题,属于中考压轴题.
2.(2018年重庆市B 卷-第26题-12分)抛物线2y x =-+与x 轴交于点A ,B (点A 在点B 的左边),与y 轴交于点C ,点D 是该抛物线的顶点. (1)如图1,连接CD ,求线段CD 的长;
(2)如图2,点P 是直线AC 上方抛物线上一点,PF ⊥x 轴于点F ,PF 与线段AC 交于点E ;将线段OB 沿x 轴左右平移,线段OB 的对应线段是O 1B 1,当PE+1
2
EC 的值最大时,求四边形PO 1B 1C 周长的最小值,并求出对应的点O 1的坐标;
(3)如图3,点H 是线段AB 的中点,连接CH ,将△OBC 沿直线CH 翻折至△O 2B 2C 的位置,再将△O 2B 2C 绕点B 2旋转一周,在旋转过程中,点O 2,C 的对应点分别是点O 3,C 1,直线O 3C 1分别与直线AC ,x 轴交于点M ,N .那么,在△O 2B 2C 的整个旋转过程中,是否存在恰当的位置,使△AMN 是以MN 为腰的等腰三角形?若存在,请直接写出所有符合条件的线段O 2M 的长;若不存在,请说明理由.
【知识考点】二次函数综合题.
【思路分析】(1)分别表示C和D的坐标,利用勾股定理可得CD的长;
(2)令y=0,可求得A(﹣3,0),B(,0),利用待定系数法可计算直线AC的解析式为:y=,设E(x,),P(x,﹣x2﹣x+),表示PE的长,利用勾股定理计算AC的长,发现∠CAO=30°,得AE=2EF=,计算PE+EC,利用配方法可得当PE+EC的值最大时,x=﹣2,此时P(﹣2,),确定要使四边形PO1B1C周长的最小,
即PO1+B1C的值最小,将点P向右平移个单位长度得点P1(﹣,),连接P1B1,则PO1=P1B1,再作点P1关于x轴的对称点P2(﹣,﹣),可得结论;
(3)先确定对折后O2C落在AC上,△AMN是以MN为腰的等腰三角形存在四种情况:
①如图4,AN=MN,证明△C1EC≌△B2O2M,可计算O2M的长;
②如图5,AM=MN,此时M与C重合,O2M=O2C=;
③如图6,AM=MN,N和H、C1重合,可得结论;
④如图7,AN=MN,过C1作C1E⊥AC于E证明四边形C1EO2B2是矩形,根据O2M=EO2+EM可得结论.
【解答过程】解:(1)如图1,过点D作DK⊥y轴于K,
当x=0时,y=,
∴C(0,),
y=﹣x2﹣x+=﹣(x+)2+,
∴D(﹣,),
∴DK=,CK=﹣=,
∴CD===;(4分)
(2)在y=﹣x2﹣x+中,令y=0,则﹣x2﹣x+=0,
解得:x1=﹣3,x2=,
∴A(﹣3,0),B(,0),
∵C(0,),
易得直线AC的解析式为:y=,
设E(x,),P(x,﹣x2﹣x+),
∴PF=﹣x2﹣x+,EF=,
Rt△ACO中,AO=3,OC=,
∴AC=2,
∴∠CAO=30°,
∴AE=2EF=,
∴PE+EC=(﹣x2﹣x+)﹣(x+)+(AC﹣AE),
=﹣﹣x+[2﹣()],
=﹣﹣x﹣x,
=﹣(x+2)2+,(5分)
∴当PE+EC的值最大时,x=﹣2,此时P(﹣2,),(6分)
∴PC=2,
∵O1B1=OB=,
∴要使四边形PO1B1C周长的最小,即PO1+B1C的值最小,
如图2,将点P向右平移个单位长度得点P1(﹣,),连接P1B1,则PO1=P1B1,再作点P1关于x轴的对称点P2(﹣,﹣),则P1B1=P2B1,
∴PO1+B1C=P2B1+B1C,。