代数方程组的解法实验

合集下载

代数方程解法多元一次方程组的求解方法

代数方程解法多元一次方程组的求解方法

代数方程解法多元一次方程组的求解方法代数方程解法——多元一次方程组的求解方法在代数学中,方程组是由多个方程组成的集合。

而一次方程组指的是方程中各个未知数的最高次数均为1的方程。

解一次方程组可以帮助我们求出未知数的值,进而解决实际问题。

本文将介绍多元一次方程组的求解方法,以帮助读者更好地理解和应用代数学知识。

一、消元法消元法是解一次方程组常用的方法之一。

其基本思想是通过逐步简化方程组,使其中的未知数的系数逐渐减少,从而逐步求解出未知数的值。

下面通过一个实例来说明消元法的具体步骤。

以二元一次方程组为例:```a₁x + b₁y = c₁a₂x + b₂y = c₂```首先,我们可以通过消元法将其中一方程化简为含有单一未知数的方程。

假设将第一个方程乘以a₂,第二个方程乘以a₁,得到:```a₁a₂x + b₁a₂y = c₁a₂a₁a₂x + a₁b₂y = a₁c₂```接下来我们两式相减,此时未知数y将会消失,我们可以解得未知数x的值。

然后,再将x的解代入到原始方程中,求得未知数y的值。

这样,我们成功地求解出了方程组的解。

二、代入法代入法是另一种常用的求解一次方程组的方法。

它的核心思想是通过代入已知的解到方程组中,逐步求解出其他未知数的值。

下面我们通过一个实例来理解代入法的具体步骤。

仍以二元一次方程组为例:```a₁x + b₁y = c₁a₂x + b₂y = c₂```假设我们已经求解得到了x的值,那么我们可以将x的值代入其中一个方程,求解出y的值。

例如,我们将x的值代入第一个方程,可以得到:```a₁x + b₁y = c₁a₁(已知的x的值) + b₁y = c₁```通过简化方程,解出y的值。

同样地,我们可以将y的值代入另一个方程,求解出x的值。

这样一来,我们就成功地求解出了方程组的解。

三、矩阵法除了上述的消元法和代入法,矩阵法也是求解一次方程组常用的方法之一。

矩阵法的核心思想是将方程组转化为矩阵形式,并利用矩阵的运算性质求解出未知数的值。

线性代数方程组的数值解法讨论

线性代数方程组的数值解法讨论

线性代数方程组的数值解法讨论解线性方程组的方法,主要分为直接方法和迭代方法两种。

直接法是在没有舍入误差的假设下能在预定的运算次数内求得精确解。

而实际上,原始数据的误差和运算的舍入误差是不可以避免的,实际上获得的也是近似解。

迭代法是构造一定的递推格式,产生逼近精确解的序列。

对于高阶方程组,如一些偏微分方程数值求解中出现的方程组,采用直接法计算代价比较高,迭代法则简单又实用,因此比较受工程人员青睐。

小组成员本着工程应用,讨论将学习的理论知识转变为matlab 代码。

讨论的成果也以各种代码的形式在下面展现。

1 Jacobi 迭代法使用Jacobi 迭代法,首先必须给定初始值,其计算过程可以用以下步骤描述: 步骤1 输入系数矩阵A ,常熟向量b ,初值(0)x ,误差限ε,正整数N ,令1k =.步骤2 (0)11ni i ij jj ii j i x b a x a =≠⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦∑,(0)j x 代表(0)x 的第j 个分量。

步骤3 计算11ni i ij j j ii j i y b a x a =≠⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦∑,判断1max i i i n x y ε≤≤-<,如果是,则结束迭代,转入步骤5;否则,转入步骤4。

步骤4 判断k N =?如果是,则输出失败标志;否则,置1k k =+,i i x y ⇐,1,2,,i n =,转入步骤2。

步骤5 输出12,,n y y y 。

雅可比迭代代码function [x,k]=Fjacobi(A,b,x0,tol)% jacobi 迭代法 计算线性方程组% tol 为输入误差容限,x0为迭代初值max1= 300; %默认最多迭代300,超过要300次给出警告 D=diag(diag(A)); L=-tril(A,-1);U=-triu(A,1); B=D\(L+U); f=D\b; x=B*x0+f;k=1; %迭代次数while norm(x-x0)>=tol x0=x;x=B*x0+f; k=k+1;if(k>=max1)disp('迭代超过300次,方程组可能不收敛'); return; end%[k x'] %显示每一步迭代的结果 End2 高斯赛德尔迭代由Jacobi 迭代法中,每一次的迭代只用到前一次的迭代值,若每一次迭代充分利用当前最新的迭代值,即在计算第i 个分量(1)k i x +时,用最新分量11()k x +,12()k x +…(1)1k i x +-代替旧分量)1(k x ', )2(k x …)3(k x 就得到高斯赛德尔迭代格式,其数学表达式为:1(1)(1)()111(1,2,,)i n k k k ii ij j ij j j j i ii xb a x a x i n a -++==+⎛⎫=--= ⎪⎝⎭∑∑具体形式如下:()()()(1)()()()11221331111(1)(1)()()22112332222(1)(1)(1)(1)(1)112233,11111k k k k n n k k k k n n k k k k k n n n n n n n n nnx a x a x a x b a x a x a x a x b a x a x a x a x a x b a ++++++++--=----+=----+⋯⋯⋯⋯⋯⋯=-----+矩阵形式表示为:()(1)1(1)()(0,1,2,,),k k k k n +-+=++=x D Lx Ux b将(1)(1)()(0,1,2,,)k k k k n ++=++=Dx Lx Ux b 移项整理得: (1)1()1()()(0,1,2,,))k k x D L Ux D L b k n +--=-+-=记11(),()--=-=-M D L U g D L b ,则(1)()k k x x +=+M g高斯塞德尔迭代function [x,k]=Fgseid(A,b,x0,tol)%高斯-塞德尔迭代法 计算线性方程组 % tol 为误差容限max1= 300; %默认最高迭代300次D=diag(diag(A)); L=-tril(A,-1); U=-triu(A,1); G=(D-L)\U; f=(D-L)\b; x=G*x0+f;k=1; while norm(x-x0)>=tol x0=x;x=G*x0+f; k=k+1;if(k>=max1)disp('迭代次数太多,可能不收敛'); return; end% [k,x'] %显示每一步迭代结果 End3 超松弛迭代法在工程中最常遇到的问题便是线性代数方程组的求解,而线性代数方程组的求解一般可以分为两类,一类是直接法(精确法),包括克莱姆法则方法、LD 分解法等,另一类是迭代法(近似法),包括雅克比迭代法、高斯迭代法、超松弛迭代法等。

实验五(线性方程组的数值解法和非线性方程求解)

实验五(线性方程组的数值解法和非线性方程求解)

1大学数学实验 实验报告 | 2014/4/5一、 实验目的1、学习用Matlab 软件数值求解线性代数方程组,对迭代法的收敛性和解的稳定性作初步分析;2、通过实例学习用线性代数方程组解决简化问题。

二、 实验内容项目一:种群的繁殖与稳定收获:种群的数量因繁殖而增加,因自然死亡而减少,对于人工饲养的种群(比如家畜)而言,为了保证稳定的收获,各个年龄的种群数量应维持不变。

种群因雌性个体的繁殖而改变,为方便起见以下种群数量均指其中的雌性。

种群年龄记作k=1,2,…,n ,当年年龄k 的种群数量记作x k ,繁殖率记作b k (每个雌性个体1年的繁殖的数量),自然存活率记作s k (s k =1−d k ,d k 为1年的死亡率),收获量记作ℎk ,则来年年龄k 的种群数量x ̌k 应该为x ̌k =∑b k n k=1x k , x ̌k+1=s k x k −ℎk , (k=1,2,…,n -1)。

要求各个年龄的种群数量每年维持不变就是要求使得x ̌k =x k , (k=1,2,…,n -1).(1) 如果b k , s k 已知,给定收获量ℎk ,建立求各个年龄的稳定种群数量x k 的模型(用矩阵、向量表示).(2) 设n =5,b 1=b 2=b 5=0,b 3=5,b 4=3,s 1=s 4=0.4,s 2=s 3=0.6,如要求ℎ1~ℎ5为500,400,200,100,100,求x 1~x 5.(3) 要使ℎ1~ℎ5均为500,如何达到?问题分析:该问题属于简单的种群数量增长模型,在一定的条件(存活率,繁殖率等)下为使各年龄阶段的种群数量保持不变,各个年龄段的种群数量将会满足一定的要求,只要找到种群数量与各个参量之间的关系,建立起种群数量恒定的方程就可以求解出各年龄阶段的种群数量。

模型建立:根据题目中的信息,令x ̌k =x k ,得到方程组如下:{x ̌1=∑b k nk=1x k =x 1x ̌k+1=s k x k −ℎk =x k+1整理得到:{−x 1∑b k nk=1x k =0−x k+1+s k x k =ℎk2 大学数学实验 实验报告 | 2014/4/52写成系数矩阵的形式如下:A =[b 1−1b 2b 3s 1−100s 2−1…b n−1b n0000⋮⋱⋮000000000⋯00−10s n−1−1]令h =[0, ℎ1,ℎ2,ℎ3,…,ℎn−2,ℎn−1]Tx =[x n , x n−1,…,x 1]T则方程组化为矩阵形式:Ax =h ,即为所求模型。

解线性代数方程

解线性代数方程

解线性代数方程————————————————————————————————作者:————————————————————————————————日期:求解线性方程组的直接解法5.3特殊矩阵的三角分解①实对称矩阵的LDL T分解设A是实对称阵,且A的所有顺序主子式均不为零,则LDR分解中R=L T, 故可用以作LDL T分解.这就是说,当A的对角元素非零时,我们可以作LU分解,也就得到LDL T分解,L相同,是单位上三角阵,U的对角元素构成D.不过没有利用对称性,存储量运算量都未能节省—预计是一半。

试用n=3的计算表格说明如何实现节省。

d1=u11 =a11u12=a12l21=u12/d1u13=a13l31=u13/d1d2=u22=a22-l21u12u23=a23-l21u13l32=u23/d2u33=a33-l31u13-l32u23这样,可用上半部元素逐列计算D,L T。

也可用下半部元素逐行计算L,D。

引进輔助量t1, t2代替u1j,u2j,并利用对称性得到:d1=a11t1=a21l21= t1/d1d2= a22-t1l21t1=a31 l31=t1/d1t2=a32-t1l21l32=t2/d2d3=a33-t1l31-t2l32据此不难写出LDL T分解A=LDL T的计算公式和程序(逐行计算L,D).d1=a11for i=2:nfor j=1:i-1t j=a ij-l j1t1-l j2t2-…-l j,j-1t j-1l ij=t j/d jendd i=a ii-l i1t1-l i2t2-…- l i,i-1t i-1end存储约n(n+1)/2单元,乘加运算各约n3/6.利用LDL T分解解Ax=b分四步:1.分解A=LDL T2.解Lg=b 求g3.解Dy=g 求y4.解L T x=y 求x②实对称正定矩阵的LL T分解A实对称正定时顺序主子式皆正,可作LDL T,D的对角元素皆正,有正的平方根。

线性代数方程组的数值解法_百度文库

线性代数方程组的数值解法_百度文库

线性代数方程组的数值解法【实验目的】1. 学会用MATLAB 软件数值求解线性代数方程组,对迭代法的收敛性和解的稳定性作初步分析;2. 通过实例学习用线性代数方程组解决简化的实际问题。

【实验内容】【题目1】通过求解线性方程组A1x=b1和A2x=b2,理解条件数的意义和方程组的性态对解的影响。

其中A1是n阶范德蒙矩阵,即⎡1x0⎢1x1⎢A1=⎢⎢⎢⎣1xn-12x0x12 2xn-1n-1⎤ x0⎥ x1n-1⎥1,...,n-1 ,xk=1+0.1k,k=0,⎥ n-1⎥ xn-1⎥⎦A2是n阶希尔伯特矩阵,b1,b2分别是A1,A2的行和。

(1)编程构造A1(A2可直接用命令产生)和b1,b2;你能预先知道方程组A1x=和A2x=。

b2的解吗?令n=5,用左除命令求解(用预先知道的解可检验程序)b1(2)令n=5,7,9,…,计算A1,A2的条件数。

为观察它们是否病态,做以下试验:b1,b2不变,A1和A2的元素A1(n,n),A2(n,n)分别加扰动ε后求解;A1和A2不变,b1,b2的分量b1(n),分析A和b的微小扰动对解的影响。

b2(n)分别加扰动ε求解。

ε取10-1010,-8,10-6。

(3)经扰动得到的解记做x~,计算误差-x~x,与用条件数估计的误差相比较。

1.1构造A1,A2和b1,b2首先令n=5,构造出A1,A2和b1,b2。

首先运行以下程序,输出A1。

运行以下程序对A1,A2求行和:由于b1,b2分别是A1,A2的行和,所以可以预知x1=运行下列程序,用左除命令对b1,b2进行求解:得到以下结果: T。

x2=(1,1, ,1)1.2 计算条件数并观察是否为病态1.不加扰动,计算条件数。

运行以下程序:由此可知,A1,A2的条件数分别是3.574∗10, 4,766∗10。

2.b1,b2不变,A1(n,n),A2(n,n)分别加扰动(1)n=5时设x11,x12,x13分别为A1添加扰动10−10,10−8,10−6后的解。

19476-数学建模-代数方程组的解法实验

19476-数学建模-代数方程组的解法实验

实验目的实验内容MATLAB2、通过实例练习用(非)线性方程组求解实际问题.实验软件1、用Matlab 软件掌握(非)线性方程组的解法,对迭代法的收敛性和解的稳定性作初步分析.1、向量和矩阵的范数.2、解线性方程组的方法介绍.3、解非线性方程(组)的方法介绍.2)、条件数的性质:a) 1)(≥A cond ;b) 对于R ∈≠)0(α,)()(A cond A cond =α; c) 对于正交阵n n R Q ⨯∈,)()()(A cond AQ cond QA cond ==;讨论如下表示含有n 个未知数、由n 个方程构成的线性方程组:)1(22112222212111212111⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a从(4)式最后一个方程解出n x ,代入它上面的一个方程解出1-n x ,并如此进行下去,即可依次将1,,x x n 全部解出,这样在),,2,1(0)(n k a k kk =≠的假设下,由上而下的消元由下而上的回代,就构成了方程组的消元法,称高斯消元法。

高斯消元法的MATLAB程序%顺序gauss消去法,gauss函数function [A,u]=gauss(a,n)for k=1:n-1%消去过程for i=k+1:nfor j=k+1:n+1%如果a(k,k)=0,则不能消去if abs(a(k,k))>1e-6%计算第k步的增广矩阵a(i,j)=a(i,j)-a(i,k)/a(k,k)*a(k,j);else%a(k,k)=0,顺序gauss消去失败disp('顺序gauss消去失败');pause;exit;endendendend%回代过程x(n)=a(n,n+1)/a(n,n);for i=n-1:-1:1s=0;for j=i+1:ns=s+a(i,j)*x(j);endx(i)=(a(i,n+1)-s)/a(i,i);end%返回gauss消去后的增广矩阵A=triu(a);%返回方程组的解u=x;例1 用高斯消元法求解方程组:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=++++=+++=++++63521967414832157425421542154321542154321x x x x x x x x x x x x x x x x x x x x x x列主元素消元法的MATLAB程序%列主元gauss消去函数function [A,u]=gauss(a,n)%消去过程for k=1:n-1%选主元c=0;for q=k:nif abs(a(q,k))>cc=a(q,k);l=q;endend%如果主元为0,则矩阵A不可逆if abs(c)<1e-10disp('error');pause;exit;end%如果l不等于k,则交换第l行和第k行if l~=kfor q=k:n+1temp=a(k,q);a(k,q)=a(l.q);a(l,q)=temp;endend%计算第k步的元素值for i=k+1:nfor j=k+1:na(i,j)=a(i,j)-a(i,k)/a(k,k)*a(k,j);endendend%回代过程x(n)=a(n,n+1)/a(n,n); for i=n-1:-1:1s=0;for j=i+1:ns=s+a(i,j)*x(j); endx(i)=(a(i,n+1)-s)/a(i,i); end%返回列主元gauss消去后的增广矩阵A=triu(a);%返回方程组的解u=x;例2 用列主元素消去法重新解例1二、迭代法1、迭代法的总体思想:1)、迭代公式的构造:对线性方程组b Ax =,可以构造一个迭代公式 f BX Xk k +=++)1()1(,给出)0(X 由迭代公式的{})(k X ,如果{})(k X 收敛于*X ,那么*X 就是原方程组的解。

数值分析实验报告-清华大学--线性代数方程组的数值解法

数值分析实验报告-清华大学--线性代数方程组的数值解法

数值分析实验报告-清华大学--线性代数方程组的数值解法(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--线性代数方程组的数值解法实验1. 主元的选取与算法的稳定性问题提出:Gauss 消去法是我们在线性代数中已经熟悉的。

但由于计算机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保Gauss 消去法作为数值算法的稳定性呢?Gauss 消去法从理论算法到数值算法,其关键是主元的选择。

主元的选择从数学理论上看起来平凡,它却是数值分析中十分典型的问题。

实验内容:考虑线性方程组 n n n R b R A b Ax ∈∈=⨯,,编制一个能自动选取主元,又能手动选取主元的求解线性方程组的Gauss 消去过程。

实验要求:(1)取矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=1415157,6816816816 b A ,则方程有解T x )1,,1,1(* =。

取n=10计算矩阵的条件数。

让程序自动选取主元,结果如何?(2)现选择程序中手动选取主元的功能。

每步消去过程总选取按模最小或按模尽可能小的元素作为主元,观察并记录计算结果。

若每步消去过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果。

(3)取矩阵阶数n=20或者更大,重复上述实验过程,观察记录并分析不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元素的选取在消去过程中的作用。

(4)选取其他你感兴趣的问题或者随机生成矩阵,计算其条件数。

重复上述实验,观察记录并分析实验结果。

程序清单n=input('矩阵A 的阶数:n=');A=6*diag(ones(1,n))+diag(ones(1,n-1),1)+8*diag(ones(1,n-1),-1); b=A*ones(n,1);p=input('计算条件数使用p-范数,p='); cond_A=cond(A,p) [m,n]=size(A);Ab=[A b];r=input('选主元方式(0:自动;1:手动),r=');Abfor i=1:n-1switch rcase(0)[aii,ip]=max(abs(Ab(i:n,i)));ip=ip+i-1;case (1)ip=input(['第',num2str(i),'步消元,请输入第',num2str(i),'列所选元素所处的行数:']);end;Ab([i ip],:)=Ab([ip i],:);aii=Ab(i,i);for k=i+1:nAb(k,i:n+1)=Ab(k,i:n+1)-(Ab(k,i)/aii)*Ab(i,i:n+1);end;if r==1Abendend;x=zeros(n,1);x(n)=Ab(n,n+1)/Ab(n,n);for i=n-1:-1:1x(i)=(Ab(i,n+1)-Ab(i,i+1:n)*x(i+1:n))/Ab(i,i);endx运行结果(1)n=10,矩阵的条件数及自动选主元Cond(A,1) =×103Cond(A,2) = ×103Cond(A,inf) =×103程序自动选择主元(列主元)a.输入数据矩阵A的阶数:n=10计算条件数使用p-范数,p=1选主元方式(0:自动;1:手动),r=0b.计算结果x=[1,1,1,1,1,1,1,1,1,1]T(2)n=10,手动选主元a. 每步消去过程总选取按模最小或按模尽可能小的元素作为主元矩阵A 的阶数:n=10计算条件数使用p-范数,p=1选主元方式(0:自动;1:手动),r=1(1)(1)61786115[]861158614A b ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦第1步消元,请输入第1列所选元素所处的行数:1(2)(2) 6.0000 1.00007.00004.6667 1.0000 5.66678.0000 6.000015.0000[]8.00001.000015.00006.0000 1.00008.0000 6.0000 1.000015.00008.0000 6.000014.0000A b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦第2步消元,请输入第2列所选元素所处的行数:2…(实际选择时,第k 步选择主元处于第k 行) 最终计算得x=[, , , , , , , , , ]Tb. 每步消去过程总选取按模最大的元素作为主元 矩阵A 的阶数:n=10计算条件数使用p-范数,p=1选主元方式(0:自动;1:手动),r=1(1)(1)61786115[]861158614A b ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦第1步消元,请输入第1列所选元素所处的行数:2(2)(2)8.0000 6.0000 1.000015.0000-3.50000.7500-4.250008.0000 6.0000 1.000015.0000[]8.0000 6.000015.00008.0000 1.00006.0000 1.000015.00008.0000 6.000014.0000A b ⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦第2步消元,请输入第2列所选元素所处的行数:3…(实际选择时,第k 步选择主元处于第k+1行) 最终计算得x=[1,1,1,1,1,1,1,1,1,1]T(3)n=20,手动选主元a. 每步消去过程总选取按模最小或按模尽可能小的元素作为主元 矩阵A 的阶数:n=20计算条件数使用p-范数,p=1选主元方式(0:自动;1:手动),r=1(1)(1)61786115[]861158614A b ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦第1步消元,请输入第1列所选元素所处的行数:1(2)(2) 6.0000 1.00007.00004.6667 1.0000 5.66678.0000 6.000015.0000[]8.00001.000015.00006.0000 1.00008.0000 6.0000 1.000015.00008.0000 6.000014.0000A b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦第2步消元,请输入第2列所选元素所处的行数:2…(实际选择时,第k 步选择主元处于第k 行) 最终计算得x=[,,,,,,,,,,,,,,,,,,,]T b. 每步消去过程总选取按模最大的元素作为主元 矩阵A 的阶数:n=20计算条件数使用p-范数,p=1选主元方式(0:自动;1:手动),r=1(1)(1)61786115[]861158614A b ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦第1步消元,请输入第1列所选元素所处的行数:2(2)(2)8.0000 6.0000 1.000015.0000-3.50000.7500-4.250008.0000 6.0000 1.000015.0000[]8.0000 6.000015.00008.0000 1.00006.0000 1.000015.00008.0000 6.000014.0000A b ⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦第2步消元,请输入第2列所选元素所处的行数:3…(实际选择时,第k步选择主元处于第k+1行)最终计算得x=[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]T(4)A分别为幻方矩阵,Hilbert矩阵,pascal矩阵和随机矩阵简要分析计算(1)表明:对于同一矩阵,不同范数定义的条件数是不同的;Gauss消去法在消去过程中选择模最大的主元能够得到比较精确的解。

线性代数齐次方程组解法

线性代数齐次方程组解法

D=按第一列展开, =@— a 2 a 1 a 3 a 1 a k a 1a 2 @2 ai) a 3(a 3 aj a k (a k aj a ; 2(a 2将各列的公因 aj a 3D 子提出来 2(a 3aja : 2(a kaj1 'J 1—I Z J H JZAa ? a 〔(a 2 aj a 3a3 (a3a 1 ajaka1ak (ak a1)2@ aja3 (a3ajak(aka1)11 1a 1)(a 3—a 1)…(a k —a 1)a 2a 3a kk 2 a 2 k 2 a 3 k 2a kk a 2a 2得到的k — 1阶范德蒙德行列式,由归纳假设知其值为 佝a j )2 j i k是 D=(a 2— a"(a 3 — a 1)…(a k — a 1) (a i a j )= 2 j i k j因此,对于任意正整数 n > 2,范德蒙德行列式的展开式都成立。

(a i a j )k证毕例1.14 计算n 阶三对角行列式 2 1 0 1 2 1 0 1 2 D n = 0 0 0 00 0 2 11 2解 由行列式的性质1.4,将D n 的第一列的每个元看成两个元之和,得1 1 0 0 0 1 1 0 0 00 2 1 0 0 1 2 1 0 00 1 2 0 0 + 0 1 2 0 00 0 0 2 1 0 0 0 2 10 0 0 1 2 0 0 0 1 2D n=第二个行列式从第一行开始依次加到下一行, 得第一个行列式按第一列展开;D n = D n-1+得到= D n-什1反复利用上面的递推公式,D n=D n-1+1 = D n-2+2= =D1+n —仁2+n —仁n+1例1.15 计算n阶行列式a1b D n= a2(a i 丰 b,i=1,2,…,n)a n解对于这个行列式, 采用一种“加边”的技巧。

D n= a1b a2a n1.4.1 克拉默法则本小节以行列式为工具,研究解线性方程组的问题。

matlab实验1:线性代数方法

matlab实验1:线性代数方法

奇异值分解: 奇异值分解: 其中U,V均为正交矩阵,S为一 个对角阵, 其中U,V均为正交矩阵,S为一 个对角阵,且对角线 U,V均为正交矩阵,S 元素恰好为A的奇异值(A’*A (A’*A的特征值的算术平方 元素恰好为A的奇异值(A’*A的特征值的算术平方 根). A=U*S*V’ 用于处理一些病态方程组的求解 格式一:只返回方阵A 格式一:只返回方阵A的特征值 格式二:其中D是由A 格式二:其中D是由A的特征值组成的对角 矩阵,V为对应特征向量组成的矩阵. ,V为对应特征向量组成的矩阵 矩阵,V为对应特征向量组成的矩阵. 求矩阵的迹: 求矩阵的迹:矩阵的迹等于矩阵的特征值之和
eig(A) [V,D]=eig(A) trace(A)
上机作业
找出你的代数书,利用 重做其中的几个作业。 找出你的代数书,利用Matlab重做其中的几个作业。 重做其中的几个作业源自函数 [Q,R]=qr(A)
功能 (QR分解 分解) 正交变换 (QR分解): 对A进行QR分解,就是把A分解为一个正交矩阵Q和 进行QR分解,就是把A分解为一个正交矩阵Q QR分解 一个上三角矩阵R的乘积形式. 其中Q*Q’=E, 一个上三角矩阵R的乘积形式. 其中Q*Q’=E, 正交 阵!
[U,S,V]=svd( A)
%对高阶的大方程组通常用:LU、QR和cholesky分解 对高阶的大方程组通常用: 、 对高阶的大方程组通常用 和 分解 等方法求方程组的解 其优点是运算速度快、 等方法求方程组的解 。其优点是运算速度快、可以节省 磁盘空间、节省内存。 磁盘空间、节省内存。
3 求线性方程组的通解
的通解。 例:求下面线性方程组Ax=B的通解。 求下面线性方程组 的通解 输出结果: 输出结果:
解法2 解法2:利用 rref 函数

线性代数实验报告

线性代数实验报告

线性代数实验报告
本次实验我们主要学习了线性代数的基础知识,包括向量的表示、矩阵的表示、线性方程组的求解以及线性变换的性质等方面。

在实验中,我们使用MATLAB进行计算及可视化操作。

具体来说,我们学习了以下几个方面的内容:
1. 向量的表示
向量是线性代数的基本概念之一,表示一个有向线段。

而在计算机中,可以通过向量的坐标来表示向量。

本次实验中,我们学习了如何使用MATLAB求出向量的模长、单位向量以及两个向量之间的夹角等。

矩阵是线性代数中的另一个重要概念,常用于表示线性方程组的系数矩阵。

在MATLAB 中,矩阵可以通过嵌套的向量来表示。

我们学习了如何求矩阵的行列式、逆矩阵、特征值等。

3. 线性方程组的求解
线性方程组是线性代数中的一个重要概念,其解法有很多种,包括高斯消元法、LU分解法、Jacobi迭代法等。

本次实验中,我们学习了如何使用MATLAB求解线性方程组,并对几种求解方法进行了比较和分析。

4. 线性变换的性质
线性变换是线性代数中的另一个重要概念,可以将一个向量空间变换成另一个向量空间。

在MATLAB中,可以通过矩阵乘法的方式来表示线性变换。

我们学习了线性变换的一些基本性质,如线性、保持原点等,并通过可视化的方式观察线性变换的效果。

通过本次实验,我们不仅掌握了线性代数的一些基础知识,也学会了使用MATLAB进行线性代数方面的计算和可视化操作。

这对于学习和研究线性代数都有着重要的意义。

大学数学实验五_线性代数方程组的数值解法

大学数学实验五_线性代数方程组的数值解法

【实验目的】 1、学会用 MATLAB 软件数值求解线性代数方程组,对迭代法的收敛性和解
的稳定性作初步分析。 2、通过实例学习用线性代数方程组解决简化的实际问题。
【实验内容】
3 已知方程组 Ax=b,其中
,定义为
试通过迭代法求解此方程组,认识迭代法收敛的含义以及迭代初值和方程组系数矩阵性质对 收敛速度的影响。实验要求: (1) 选取不同的初始向量 x(0)和不同的方程组的右端项向量 b,给定迭代误差要求,用雅
k=k+1; xj=Bj*xj+fj; 多输出了矩阵 P,矩阵 P 可视为一个行向量,其每个元素均为迭代 k 次后得到的 xk。这样以 k 为横轴,解向量为纵轴,可输出图形观察 xk 是否收敛。函数 GaussSeidel 也需作同样修改,修改后的函数在此不再赘述。
模型: 已知某年该植物的数量为 x0,记第 k 年的植物数量为 xk,那么有 xk + pxk-1 + qxk-2 = 0 (k = 2, 3, …… , n)
其中 p = -a1bc,q = -a2b(1-a1)bc。若要求 n 年后数量达到 xn,则 Ax = b
其中


7
① 用稀疏系数矩阵求解。
这个函数中,n 表示矩阵 A 的阶数,在本题中恒取 20,a 表示主对角线元素的值,b 在 本题中恒取-1/4,c 在本题中恒取-1/2。
编写用雅可比迭代法求方程解的函数 Jacobi。
function [xj,k]=Jacobi(A,X0,b,e) D=diag(diag(A)); n=length(A); L=-(tril(A)-D); U=-(triu(A)-D); fj=D\b; Bj=D\(L+U); xj=X0; k=0; while norm(A*xj-b)/norm(b)>e

线性代数方程组数值解法及MATLAB实现综述

线性代数方程组数值解法及MATLAB实现综述

线性代数方程组数值解法及MATLAB 实现综述廖淑芳 20122090 数计学院 12计算机科学与技术1班(职教本科) 一、分析课题随着科学技术的发展,提出了大量复杂的数值计算问题,在建立电子计算机成为数值计算的主要工具以后,它以数字计算机求解数学问题的理论和方法为研究对象。

其数值计算中线性代数方程的求解问题就广泛应用于各种工程技术方面。

因此在各种数据处理中,线性代数方程组的求解是最常见的问题之一。

关于线性代数方程组的数值解法一般分为两大类:直接法和迭代法。

直接法就是经过有限步算术运算,可求的线性方程组精确解的方法(若计算过程没有舍入误差),但实际犹如舍入误差的存在和影响,这种方法也只能求得近似解,这类方法是解低阶稠密矩阵方程组级某些大型稀疏矩阵方程组的有效方法。

直接法包括高斯消元法,矩阵三角分解法、追赶法、平方根法。

迭代法就是利用某种极限过程去逐步逼近线性方程组精确解的方法。

迭代法具有需要计算机的存储单元少,程序设计简单,原始系数矩阵在计算过程始终不变等优点,但存在收敛性级收敛速度问题。

迭代法是解大型稀疏矩阵方程组(尤其是微分方程离散后得到的大型方程组)的重要方法。

迭代法包括Jacobi 法SOR 法、SSOR 法等多种方法。

二、研究课题-线性代数方程组数值解法 一、 直接法 1、 Gauss 消元法通过一系列的加减消元运算,也就是代数中的加减消去法,以使A 对角线以下的元素化为零,将方程组化为上三角矩阵;然后,再逐一回代求解出x 向量。

1.1消元过程1. 高斯消元法(加减消元):首先将A 化为上三角阵,再回代求解。

11121121222212n n n n nn n a a a b a a a b a a a b ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭ (1)(1)(1)(1)11121311(2)(2)(2)(2)222322(3)(3)(3)3333()()000000n n n n n nn n a a a a b a a a b a a b a b ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ 步骤如下:第一步:1111,2,,i a i i n a -⨯+=第行第行11121121222212n n n n nnn a a a b a a a b a a a b ⎛⎫⎪ ⎪⎪⎪⎝⎭ 111211(2)(2)(2)2222(2)(2)(2)200n n n n n n a a a b a a b a a b ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭ 第二步:(2)2(2)222,3,,i a i i n a -⨯+=第行第行111211(2)(2)(2)2222(2)(2)(2)200n nn nnn a a a b a a b a a b ⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭11121311(2)(2)(2)(2)222322(3)(3)(3)3333(3)(3)(3)300000n n n n nn n a a a a b a a a b a a b a a b ⎛⎫ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭类似的做下去,我们有:第k 步:()()k ,1,,k ikk kka i i k n a -⨯+=+第行第行。

数学实验——线性代数方程组的数值解

数学实验——线性代数方程组的数值解

实验5 线性代数方程组的数值解法分1 黄浩 43一、实验目的1.学会用MATLAB软件数值求解线性代数方程组,对迭代法的收敛性和解的稳定性作初步分析;2.通过实例学习用线性代数方程组解决简化的实际问题。

二、For personal use only in study and research; not forcommercial use三、四、实验内容1.《数学实验》第二版(问题1)问题叙述:通过求解线性方程组,理解条件数的意义和方程组性态对解的影响,其中是n阶范德蒙矩阵,即是n阶希尔伯特矩阵,b1,b2分别是的行和。

(1)编程构造(可直接用命令产生)和b1,b2;你能预先知道方程组和的解吗?令n=5,用左除命令求解(用预先知道的解可验证程序)。

(2)令n=5,7,9,…,计算和的条件数。

为观察他们是否病态,做以下试验:b1,b2不变,和的元素,分别加扰动后求解;和不变,b1,b2的分量b1(n),b2(n)分别加扰动后求解。

分析A与b的微小扰动对解的影响。

取10^-10,10^-8,10^-6。

(3)经扰动得到的解记做,计算误差,与用条件数估计的误差相比较。

模型转换及实验过程:(1)小题.由b1,b2为,的行和,可知方程组和的精确解均为n 行全1的列向量。

在n=5的情况下,用matlab编程(程序见四.1),构造,和b1,b2,使用高斯消去法得到的解x1,x2及其相对误差e1,e2(使用excel计算而得)为:由上表可见,当n=5时,所得的解都接近真值,误差在10^-12的量级左右。

(2)小题分别取n=5,7,9,11,13,15,计算和的条件数c1和c2,(程序见四.2),结果如下:由上表可见,二者的条件数都比较大,可能是病态的。

为证实和是否为病态,先保持b不变,对做扰动,得到该情况下的高斯消元解,(程序见四.3),结果如下:(为使结果清晰简洁,在此仅列出n=5,9,13的情况,n=7,11,15略去)=10^-10时:=10^-8时:=10^-6时:由上表可见:a)对于希尔伯特阵,随着阶数的增加,微小扰动对解带来的影响越来越大,到了n=9时,已经有了6倍误差的解,到了n=13时,甚至出现了22倍误差的解元素;而随着的增加,解的偏差似乎也有增加的趋势,但仅凭上述表格无法具体判断(在下一小题中具体叙述)。

利用Mathematica解方程

利用Mathematica解方程
FindRoot[Sin[x]*Exp[2*x]Cos[x]==0,{x,0,1}]
此方法的理论依据是解方程的弦截法。
方2020程/4/1 求解情况比较复杂,有时上述方法不能解决,
三、用DSolve解微分方程
1.命令格式
DSolve[{微分方程,初始条件},未知函数,自变 量]
NDSolve[方程,未知函数,{自变量,a,b}]可求得 微分方程或方程组在自变量指定取值范围内的数值 解
注: 1)在Mathematica中用“=”表示相等关系 ,用“==”表示方程 2)对于高次多项式方程,有时系统也求不出 精确解这时可直接用DSolve求出它的数值解 。例:NSolve[x^5-x^36*x^2+1==0,x,20],命令行中的20表示要求 方程的解精确到小数点以后20位,可根据需要 输入。
,数值解,复数解 1.命令格式 Solve[单个方程,未知元] Solve[{方程组},{未知元表}] 2.边学边做 Solve[a*x+b==0,x]; Solve[x^2+x+1==0,x] Solve[x^4-x^3-6*x^2+1==0,x] a=(1+2*x)^3;b=(3+2*x+y)^4; 20S20/o4/1lve[a==0,b==0,{x,y}]
2020/4/1
二、用FindRoot求解一般方程
1.命令格式
FindRoot[方程,{未知元,初值}]或FindRoot[方 程,{未知元,初值1,初值2}]
2.边学边做
FindRoot[Sin[x]*Exp[2*x]Cos[x]==0,{x,0.5}]
初值0.5是方程根的一个近似值,通常通过作图之 后去确定。此方法的理论依据是解方程的牛顿切线 法。

线性代数方程组的解法

线性代数方程组的解法

线性代数方程组的解法关键词:线性代数方程组;高斯消元法;列主元消元法;三角分解法;杜立特尔分解法;迭代法;雅可比迭代法;高斯-赛德尔迭代法1引言目前,解线性代数方程组在计算机上常用的的方法大致把它分为两类:“直接法”与“迭代法”.在线性代数中曾指出阶线性代数方程组有唯一的解,并且可以用克拉默法则求方程组的解,初次看来问题已经解决,但从使用效果看并不是这样的.因为求阶线性代数方程组,如果用克拉默法则,需要计算个阶行列式,每个阶行列式为项之和,每项又是个元素的乘积,所以计算中仅乘法次数就高达次,当较大时,它的计算量是非常惊人的.因为现在所碰到的很多问题都需要很大的计算量,故需要好用的算法来求解.先来回顾一下回代过程和迭代过程.(1)是一个三角形方程组,当有唯一解时,可以用反推的方式求解,也就是先从第个方程解得, (2)然后代入第个方程,可得到, (3)如此继续下去,假设已得到,, , ,代进第个方程即得的计算, (4)上述求解的过程叫做回代过程.定义1[1] (向量的范数) 若向量的某个实值函数满足1.是非负的,即且的充要条件是 ;2.是齐次的,即 ;3.三角不等式,即对,总是有.那么上向量的范数(或模)就是 .下面给几个最常遇到的向量范数.向量的“1”范数:(5)向量的“2”范数:(6)向量的范数:(7)例1设求 , , .解由式(5),(6)及(7)知.定义2若矩阵的某个实值函数满足1.是非负的,即且的充要条件是 ;2.是齐次的,即 ;3.三角不等式,即对总有;1.矩阵的乘法不等式,即对总有,那么称为上矩阵的范数(或模).表 1是矩阵几个常用算子范数的定义与算式.表 1范数名称记号定义计算公式“1”范数(又名列模)“2”范数(又名谱模)“”范数(又名行模)的极限就是方程组的解向量,这时候在给定允许的误差内,只要适当的大,就可以作为方程组在满足精度要求条件下的近似解.这种求近似解的方法就是解线性方程组的一类基本的迭代解法,其中称为迭代矩阵,公式(9)称迭代公式(或迭代过程),由迭代公式得到的序列叫做迭代序列.如果迭代的序列是收敛的,则称为迭代法收敛;如果迭代的序列是不收敛,则称它是迭代法发散.定理3设 .如果约化主元素,则可以利用高斯消元的方法把方程组约化成三角形方程组来求解,其计算公式如下:(1)消元计算:对依次计算(2)回代计算:3用高斯消元法与列主元消元法解线性代数方程组(重点)!3.1 高斯消元法解方程组用高斯消元的方法求线性代数方程组的解的整个计算过程可分为两个环节,也就是利用按照次序消去未知数的方法,把原来的方程组转化成跟它同解的三角形方程组(这个转化的过程叫消元过程),再通过回代过程求三角形方程组的解,最终得到原来方程组的解.其中按照方程的顺进行消元的高斯消元法,又叫顺序消元法.3.2列主元消元法解方程组列主元消元法实际上是一种行交换的消元法,它跟顺序消元法比较而言,主要特点是在进行第次消元前,不管的值是否等于零,都在子块的第一列中选择一个元,使,并将中的第行元与第行元互相变换(相当于交换同解方程组中的第个方程),然后再进行消元计算得到结果.注:列主元素法的精度虽然稍低于全主元素法[1],但它计算简单,相对比全主元素法它的工作的量大大减少,并且从计算经验和理论分析都可以表明,它与全主元素法同样拥有很好的值稳定性,列主元素法是求解中小型浓密型方程组的最好的方法之一.4用三角分解法解线性代数方程组4.1 矩阵的三角分解定义4把一个阶矩阵分解成两个三角矩阵相乘的形式称为矩阵的三角分解.常见的矩阵三角分解是其中是下三角形的矩阵,是上三角形的矩阵.定理5[1](矩阵三角分解基本定理)设 .若的顺序主子式,那么存在唯一的杜利特尔分解其中是单位下三角形矩阵,为非奇异的上三角形矩阵.如果是单位下三角形的矩阵,是上三角形的矩阵,那么把这种分解法称为杜利特尔分解法,其中杜利特尔分解法是这种三角分解的一种特例,下面主要介绍利用杜利特尔分解法来求方程组的解.4.2 用杜利特尔分解法解线性代数方程组用杜利特尔分解法解方程组的步骤可以把它归纳为(1)实现分解,也就是1.按算式(11)(12)依次计算的第一行元与的第一列元;1.对按算式(13)(14)依次计算的第行元与的第列元.(2)求解三角形方程组,即按算式依次计算 .(3)求解三角形方程组,即按算式依次计算.利用杜利特尔分解法解方程组与高斯消元法是相似的,它重要的优点是:在利用分解,解有相同的系数矩阵的方程组时,用杜利特尔分解法非常方便,只用两个式子就可以得到方程组的解.5用迭代法解线性代数方程组用迭代法求方程组的解,需要考虑迭代过程的收敛性,在下面的讨论中,都假设方程组的系数矩阵的对角阵是不为零的.5.1 用雅可比迭代法解方程组对于一般线性方程组,如果从第个方程解出,就可以把它转化成等价的方程组. (15)从而可以得到对应的迭代公式(16)这就是解一般方程组的分量形式的雅可比(Jacobi)迭代公式.如果把它改成(17)并把系数矩阵表示成(18)其中则可以看出式的左右两端分别是向量和的第个分量,故因为可逆,所以于是就可以得到是雅可比迭代的公式.其中(称为雅可比迭代矩阵), .5.2 用高斯-赛德尔迭代法解方程组高斯-赛德尔迭代法也是常用的迭代法,设线性代数方程组为,则高斯-赛德尔迭代法的迭代公式为(19)其中迭代法(19)就称为高斯-赛德尔迭代法.通过雅可比迭代法类似的途径,就可以得到矩阵的表达式其中(称为高斯-赛德尔迭代矩阵), .高斯-赛德尔迭代法与雅可比迭代法都有算式简单、容易在计算机上实现等优点,但是用计算机来计算时,雅可比迭代法需要两组工作单元用来寄存与的量,而高斯赛-德尔迭代法只需一组工作单元存放或的分量.对于给定的线性方程组,用这两种方法求解可能都收敛或者都不收敛,也可能一个收敛另一个不收敛,两种方法的收敛速度也不一样.5.3 迭代法的收敛条件与误差分析定义6[1]矩阵全部的特征值的模的最大值,叫做矩阵的谱半径,记作 ,即.定理7[1]对任意初始向量迭代过程收敛的充要条件是;当时,越小,那么其收敛的速度是越快的.由定理7可知,用雅可比迭代法求解时,其迭代的过程是收敛的,而用高斯-赛德尔迭代法来求解,其迭代的过程是发散的.在不同条件下,收敛的速度是不同的,对同一矩阵,一种方法是收敛的,一种方法发散.第 7 页。

解线性方程组的直接解法的实验总结与反思

解线性方程组的直接解法的实验总结与反思

解线性方程组的直接解法的实验总结与反思
线性方程组是线性代数的另一核心考点。

考试中,线性方程组的内容往往以解答题的形式出现,分值为11分,2016年数学一考了一道大题,11分,2017年也考察了一道大题,11分。

往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容。

但也不会简单到仅考方程组的计算,还需灵活运用,比如2014年的线性代数第一道解答题,解矩阵方程,而且系数矩阵是不可逆的,这是考研以来第一次这样考,最后归结为求三个非齐次线性方程组通解。

代数方程解法多元二次方程组的求解方法

代数方程解法多元二次方程组的求解方法

代数方程解法多元二次方程组的求解方法多元二次方程组是指由多个二次方程组成的方程组。

解决多元二次方程组的主要方法是代数解法。

本文将介绍几种常见的多元二次方程组求解方法。

一、多元二次方程组的一元化方法多元二次方程组通常形式如下:$$\begin{cases}a_{11}x_1^2+a_{12}x_2^2+\cdots+a_{1n}x_n^2=b_1 \\a_{21}x_1^2+a_{22}x_2^2+\cdots+a_{2n}x_n^2=b_2 \\\cdots \\a_{m1}x_1^2+a_{m2}x_2^2+\cdots+a_{mn}x_n^2=b_m \\\end{cases}$$其中$x_1,x_2,\cdots,x_n$为未知数,$a_{ij}$和$b_i$为常数。

为了解决该方程组,可以通过一元化的方法,将多元二次方程组转化为一元方程的形式。

具体步骤如下:1. 首先,选取一个未知数作为代入变量,将其他未知数用代入变量表示。

2. 然后,将代入后的方程代入原方程组,消去其他未知数,得到关于代入变量的一元二次方程。

3. 最后,解决一元二次方程,得到代入变量的取值,再代入原方程组求解其他未知数的值。

二、解法举例下面以一个具体的多元二次方程组为例,介绍多元二次方程组的求解过程。

$$\begin{cases}2x_1^2+3x_2^2=13 \\4x_1^2+7x_2^2=29 \\\end{cases}$$1. 选取$x_1$作为代入变量,将$x_2$用$x_1$表示:将第一个方程代入第二个方程得:$4x_1^2+7\left(\frac{13-2x_1^2}{3}\right)=29$。

2. 化简得到关于$x_1$的一元二次方程:$23x_1^2-26x_1+30=0$。

3. 解一元二次方程,得到$x_1$的两个解:$x_1=\frac{13}{23}$或$x_1=1$。

4. 将$x_1$的解代入原方程组,即可求解出$x_2$的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、用Matlab软件掌握(非)线性方程组的解法,对迭代法的收敛性和解的稳定性作初步
分析.
2、通过实例练习用(非)线性方程组求解实际问题.
1、向量和矩阵的范数.
2、解线性方程组的方法介绍.
3、解非线性方程(组)的方法介绍.
MATLAB
2)、条件数的性质:
a) 1)(≥A cond ;
b) 对于R ∈≠)0(α,)()(A cond A cond =α; c) 对于正交阵n n R Q ⨯∈,
)()()(A cond AQ cond QA cond ==;
讨论如下表示含有n 个未知数、由n 个方程构成的线性方程组:
)
1(2211222221211
1212111⎪⎪
⎩⎪⎪⎨
⎧=+++=+++=+++n
n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a
从(4)式最后一个方程解出n x ,代入它上面的一个方程解出1-n x ,并如此进行下去,即可依次将1,,x x n 全部解
出,这样在),,2,1(0)
(n k a k kk =≠的假设下,由上而下的
消元由下而上的回代,就构成了方程组的消元法,称高斯消元法。

高斯消元法的MATLAB程序
%顺序gauss消去法,gauss函数
function [A,u]=gauss(a,n)
for k=1:n-1
%消去过程
for i=k+1:n
for j=k+1:n+1
%如果a(k,k)=0,则不能消去
if abs(a(k,k))>1e-6
%计算第k步的增广矩阵
a(i,j)=a(i,j)-a(i,k)/a(k,k)*a(k,j);
else
%a(k,k)=0,顺序gauss消去失败
disp('顺序gauss消去失败');
pause;
exit;
end
end
end
end
%回代过程
x(n)=a(n,n+1)/a(n,n);
for i=n-1:-1:1
s=0;
for j=i+1:n
s=s+a(i,j)*x(j);
end
x(i)=(a(i,n+1)-s)/a(i,i); end
%返回gauss消去后的增广矩阵A=triu(a);
%返回方程组的解
u=x;
例1 用高斯消元法求解方程组:
⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=++++=+++=++++635219
6741483215
7425421542154321542154321x x x x x x x x x x x x x x x x x x x x x x
列主元素消元法的MATLAB程序%列主元gauss消去函数
function [A,u]=gauss(a,n)
%消去过程
for k=1:n-1
%选主元
c=0;
for q=k:n
if abs(a(q,k))>c
c=a(q,k);
l=q;
end
end
%如果主元为0,则矩阵A不可逆
if abs(c)<1e-10
disp('error');
pause;
exit;
end
%如果l不等于k,则交换第l行和第k行if l~=k
for q=k:n+1
temp=a(k,q);
a(k,q)=a(l.q);
a(l,q)=temp;
end
end
%计算第k步的元素值
for i=k+1:n
for j=k+1:n
a(i,j)=a(i,j)-a(i,k)/a(k,k)*a(k,j);
end
end
end
%回代过程
x(n)=a(n,n+1)/a(n,n);
for i=n-1:-1:1
s=0;
for j=i+1:n
s=s+a(i,j)*x(j);
end
x(i)=(a(i,n+1)-s)/a(i,i); end
%返回列主元gauss消去后的增广矩阵
A=triu(a);
%返回方程组的解
u=x;
例2 用列主元素消去法重新解例1
二、迭代法
1、迭代法的总体思想:
1)、迭代公式的构造:对线性方程组b Ax =,可以构造一个迭代公式 f BX X
k k +=++)1()1(,给出)0(X 由迭代公式的{})(k X ,如果{})(k X 收敛于*X ,那么*
X 就是原方程组的解。

2)、矩阵的分解:设线性方程组为b Ax =,其中,
A 非奇异,则可以把A 矩阵分解:
U L D A --=
],,,[2211nn a a a diag D =
⎪⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛-=000
032
1323121
n n n a a a a a a L ⎪⎪⎪⎪⎪
⎪⎭⎫ ⎝
⎛-=-0000,122311312n n n n a a a a a a U
Jacobian迭代的MATLAB程序
function [x,sp]=jac(a,b,n,x1)
%误差
e=ones(n,1);
%迭代的解向量
x2=zeros(n,1);
%迭代的次数
k=0;
%当误差没有满足要求时继续迭代
while norm(e,2)>1e-6
%每隔5步显示迭代结果
if (rem(k,5)==0)
str=sprintf('X%d= %g %g %g %g\n',k,x1);
disp(str)
end
k=k+1;
%计算x2(i)
for i=1:n
s=0;
for j=1:n
s=s+a(i,j)*x1(j);
end
x2(i)=(b(i)-s)/a(i,i)+x1(i);
end
%计算误差向量
e=x2-x1;
%把x2作为新的迭代初值
x1=x2;
end
%返回迭代步数
sp=k;
%返回迭代值
x=x2;
例3、利用Jacobian 迭代法求解方程组:
⎪⎪⎩⎪⎪⎨⎧=+=++=++=+8
4251536221
34232143231x x x x x x x x x x
注:实际上在计算过程的第k 步,往往先计算)()(k x F 和
)()(k x F ',再解方程组)()()()()(k k k x F x x F -=∆'得到)(k x ∆后,令)()()1(k k k x x x ∆+=+即可。

例6 用牛顿迭代法解非线性方程组:
⎪⎩⎪⎨⎧=+-+=-+=+++-030207102322221
323221322121x x x x x x x x x x x x
3 、迭代过程混沌
波音公司飞机最佳定价策略
全球最大的飞机制造商------波音公司自1955年推出波音707开始,成功地开发了一系列的喷气式客机。

问题:讨论该公司对一种新型客机最优定价策略的数学模型。

一、问题分析:
定价策略涉及到诸多因素,这里考虑一下主要因素:
价格、竞争对手的行为、出售客机的数量、波音公司的客机制造量、制造成本、波音公司的市场占有率等等因素。

二、基本假设:
价格记为p,根据实际情况,对于民航飞机制造商,能够与波音公司抗衡的竞争对手只有一个,因此他们在价格上可
以达成一致,具体假设如下:
1、型号:为了研究方便,假设只有一种型号飞机;
2、销售量:其销售量只受价格p的影响。

预测以此价格出售,该型号飞机全球销售量为N。

N应该受到诸多因素影响,假设其中价格是最主要的因素。

根据市场销售的历史规律和需求曲线,假设该公司销售部门预测得到:=p
p
N
=
N
p
+
-
125
78
655
(2+
)
3、市场占有率:既然在价格上达成一致,即价格的变化是同步的,因此不同的定价不会影响波音公司的市场占有率,因此市场占有率是常数,记为h;。

相关文档
最新文档