单管放大器电路multisim仿真

合集下载

单管放大器电路multisim仿真

单管放大器电路multisim仿真

单管放大器multisim 仿真
电路图如图1,电路由Multisim 11.0 软件制作,本文档中图片均为从中截图, 11.0与10.0的元件有部分不同(电阻外形不同, Vcc 不同)。

接下来是静态工作点的调整,改变电位器的阻值,使IcQ
=1m ( U R
C
=2.599V )(由
于电位器调节公差的限制,此时 I CQ
最接近1mA ,达到合适的工作点,此时
u CE =2.429V 。

-SR * q 上4,"、
1-Dk-D
100^0 Key-A
^2静态工作点的调
RS
R7
2JKQ
mtt-A
BJTNPN VIRTUAL
厂、10
Or
T
T
lOmVrmt 1kHz
C2
* 1DpF
10fjF
ma
IGkn
经过放大后的波形与输入波形如图3,从图上可以看出出单管放大器的放大功能,以及倒相功能。

A通道为输入信号,B通道为输出信号。

由于A通道为
50mV/Div , B通道为500mV/Div,因此实际(同一量程下)的波形与图示差距更大。

符合图4算出的32.5的放大倍数。

由图4,可算出放大倍数A u =32.5
JOWl
I—■
图q篩人与输出电圧肓敎值
vcc

VrtfH
ci
)1
iap
F
B
L~」—
Ltfl -
-Rfi
2 口

k
7
7
R
2
r
t
u
l x>w I IDmVnns
2 7KQ。

电路仿真实验报告

电路仿真实验报告

Multisim模拟电路仿真实验1.实验目的(1)学习用Multisim实现电路仿真分析的主要步骤。

(2)用仿真手段对电路性能作较深入的研究。

2.实验内容实验19-1 基本单管放大电路的仿真研究(2)静态工作点理论上,由V E=1.2V得:I E=V E/(R E1+R E2)=1mA,I B=I E/(β+1)=16.39uA,I C=βI B=0.9836mA;U CE=Vcc- I C*Rc-V E=7.554V。

实测值I B =13.995uA,Ic=0.9916mA,U CE=7.521V;相对误差分别为14.63%,0.817%,0.438%(3)电压放大倍数理论值r be=1.886kΩ,Au=-14.0565实测值Au=-13.8476,相对误差1.486%(4)波特图观察电压放大倍数为Au=-13.8530,下限截止频率为17.6938Hz,上限截止频率为18.07MHz,带宽为18.07MHz。

(5)用交流分析功能测量幅频和相频特性。

(6)加大输入信号强度,观测波形失真情况。

失真度为31.514%(7)测量输入电阻、输出电阻。

测输入电阻:U rms=1.00mV,I rms=148nA,则输入电阻R i= U rms/I rms=6.757kΩ;测输出电阻:空载时U oO=14.0mV,带载时U oL=10.6mV,R L=10kΩ,则输出电阻R o=(U oO/U oL-1)* R L =3.208kΩ(8) 将R E1去掉,R E2=1.2kΩ,重测电压放大倍数,上下限截止频率及输入电阻,对比说明R E1对这三个参数的影响。

测得放大倍数Au=-95.2477,下限截止频率为105.7752Hz,上限截止频率为18.9111MHz,带宽为18.9110MHz,输入电阻R i=1.859kΩ。

由表易知,去掉R E1后电压放大倍数变大;上下截止频率都略有增加,通频带变宽;输入电阻变小。

晶体管放大电器电路MULTISIM仿真实验

晶体管放大电器电路MULTISIM仿真实验

Duty Cycle:设置所要产生信号的占空比 。设定范围为1%-99%。
Amplitude: 设置所 要产生信 号的最大 值 (电压),其可选范围从1μ V级到999KV。本 例选择10mV
Offset:设置偏置电压值,即把正弦波、 三角波、方波叠加在设置的偏置电压上输出
,及可选范围从lμ V级到999KV。
5. 电路噪声分析(Noise Analysis) 噪声分析用于检测电子线路输出信号的噪声功率幅 度,用于计算、分析电阻或晶体管的噪声对电路的影 响。在分析时,假定电路中各噪声源是互不相关的, 因此它们的数值可以分开各自计算。总的噪声是各噪 声在该节点的和(用有效值表示)。噪声分析操作方 法请看第1章中的1.7.6小节。图2.1.11是图2.1.1节 点“2”噪声分析仿真结果。
项性能指标。一个优质放大器,必定是理论设计 与实验调整相结合的产物。因此,除了掌握放大 器的理论知识和设计方法外,还必须掌握必要的 测量和调试技术。
单管放大器静态工作点的分析
1. 函数信号发生器参数设置 双击函数信号发生器图标,出现如图 2.1.2面板图,改动面板上的相关设置,可 改变输出电压信号的波形类型、大小、占空 比或偏置电压等。
uo ui
图2.1.1电阻分压式工作点稳定放大电路
在图2.1.1电路中,当流过偏置电阻RB11和RB12 的
电流远大于晶体管的基极电流IB时(一般5~10倍), 则它的静态工作点可用下式估算
UB RB1 VCC RB1 RB2
IE
UB UBE IC RE
UCE=VCC-IC(RC+RE)
输入波形
输出波形
图2.1.5 示波器显示节点8的波形
3. 直流工作点分析 在输出波形不失真情况下,点击 Options→Preferences→Show node names使 图2.1.1显示节点编号,然后点击

基于Multisim的单极共射放大电路的仿真设计

基于Multisim的单极共射放大电路的仿真设计

基于Multisim的单极共射放大电路的仿真设计齐龙友( 安庆师范学院物理与电气工程学院安徽安庆 246011)指导教师:王鹏摘要: 随着计算机技术的发展,计算机辅助分析与设计在电子电路的设计中得到越来越广泛的应用。

文章叙述了利用Multisim软件对NPN型三极管进行输出特性曲线测试的方法和步骤,及对基本共射放大电路进行静态和动态分析的方法和设计过程。

关键词: Multisim,单极共射放大电路,仿真设计一、引言传统的电子线路分析主要是根据经验和成熟的电路数据来分析、计算、判断,若想更进一步地得到电路的相关数据或波形等参数,则需要搭建试验电路来进行测试,但这种方法费用高、效率低。

随着计算机技术的发展,采用计算机仿真来代替实际的实验电路,可以大大减少工作量,提高工作效率,还能保持仿真过程中产生的大量数据、图形,为电子线路整体分析与改进提供方便。

实验所需时间较长,加上仪器本身的缺陷,所采集到的数据量较少且误差较大, 使用Multisim软件能很好的解决这些问题,它具有直观的图形界面、丰富的元器件库、丰富的测试仪器、完备的分析手段和强大的仿真能力等特点。

Multisim 软件用虚拟的元件搭建各种电路、用虚拟的仪表进行各种参数和性能的测试。

本文将以三极管的单极共射放大电路为例,用Multisim 进行单极共射放大电路的性能设计并进行分析。

二、Multisim相关介绍1 Multisim简介Multisim是加拿大图像交互技术公司(Interactive Image Technoligics简称IIT公司)推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。

它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力,它以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。

它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。

单管放大电路仿真步骤

单管放大电路仿真步骤

单管放大电路仿真步骤
1、绘制单管放大电路
2、对电路进行工作点分析和瞬态分析•步骤1:选择仿真方式并设置仿真参数;
步骤2:启动仿真计算过程,显示信号波形;
步骤3:单击窗口工作点分析标签,显示工作点分析结果;
3、对电路进行温度扫描分析
•步骤1:选择温度扫描方式并设置仿真参数。

设置扫描温度范围
步骤2:显示工作点分析结果
步骤3:仅显示Vout波形
4、对电路进行参数扫描分析
•步骤1:选择参数扫描方式并设置仿真参数。

步骤2:观察输出电压波形变化情况。

Multisim模拟电路仿真实验

Multisim模拟电路仿真实验

实验19 Multisim模拟电路仿真实验1.实验目的(1)学习用Multisim实现电路仿真分析的主要步骤。

(2)用仿真手段对电路性能作较深入的研究。

2.预习内容对仿真电路需要测量的数据进行理论计算,以便将测量值与理论值进行对照。

3.实验内容实验19-1 基本单管放大电路的仿真研究射极电流负反馈放大电路的仿真电路如下图所示。

三极管的电流放大系数设置为60。

(1)调节R w,使V E=1.2V;(2)用“直流工作点分析”功能进行直流工作点分析,测量静态工作点,并与估算值比较;(3)用示波器观测输入、输出电压波形的幅度和相位关系,并测量电压放大倍数,与估算值比较;(4)用波特图仪观测幅频特性和相频特性,并测量电压放大倍数和带宽(测出下线截止频率和上限截止频率即可);(5)用“交流分析”功能测量幅频特性和相频特性;(6)加大输入信号幅度,观测输出电压波形何时会出现失真,并用失真度分析仪测量信号的失真度;(7)设计测量输入电阻、输出电阻的方法并测量之。

(测输入电阻采用“加压求流法”,测输出电阻采用改变负载电阻测输出电压进而估算输出电阻的方法,即。

式中,U oO是输出端空载时的输出电压,U oL是接入负载R L时的输出电压。

输入信号频率选用1000H Z)。

(8)将去掉,将的值改为1.2kΩ,即静态工作点不变,重测电压放大倍数、上下限截止频率及输入电阻。

将测得的放大倍数、上下限截止频率和输入电阻进行列表对比,说明对这三个参数的影响。

实验结果如下:(1)静态直流工作点分析理论上,;;。

实际测量结果如下:;相对误差为0.018%;相对误差为0.018%;相对误差为2.698%;; 相对误差为0.061%;相对误差为0.029%;由此可见,静态工作点的理论预测值与实际测量值十分接近。

其中误差最大,其主要影响因素应当是根据模拟的参数设置,该三极管是实际三极管而并非理想三极管,在实际电流放大倍数方面与理论值有一定的误差。

实验二Multisim的使用—晶体管共射极单管放大器

实验二Multisim的使用—晶体管共射极单管放大器

实验一晶体管共射极单管放大器图1-1实验内容实验电路如图1-1所示。

为防止干扰,各电子仪器的公共端必须连在一起,同时信号源、交流毫伏表和示波器的引线应采用专用电缆线或屏蔽线,如使用屏蔽线,则屏蔽线的外包金属网应接在公共接地端上。

1、调试静态工作点接通直流电源前,先将RW调至最大,函数信号发生器输出旋钮旋至零。

接通+12V电源、调节RW ,使IC=2.0mA(即UE=2.0V),用直流电压表测量UB、UE、U C 及用万用电表测量RB2值。

记入表1-1。

表1-1 实验记录表(I C=2mA)2、测量电压放大倍数在放大器输入端加入频率为1KHz的正弦信号uS,调节函数信号发生器的输出旋钮使放大器输入电压Ui 10mV,同时用示波器观察放大器输出电压u O波形,在波形不失真的条件下用交流毫伏表测量下述三种情况下的UO值,并用双踪示波器观察uO 和ui的相位关系,记入表1-2。

表1-2 实验记录表(Ic=2.0mA , U i= mV)3、观察静态工作点对电压放大倍数的影响置RC =2.4KΩ,RL=∞,Ui适量,调节RW,用示波器监视输出电压波形,在u O 不失真的条件下,测量数组IC和UO值,记入表1-3。

表1-3 实验记录表(R C=2.4KΩ,R L=∞,U i= mV)测量IC 时,要先将信号源输出旋钮旋至零(即使Ui=0)。

4、观察静态工作点对输出波形失真的影响置RC =2.4KΩ,RL=2.4KΩ,ui=0,调节RW使IC=2.0mA,测出UCE值,再逐步加大输入信号,使输出电压u足够大但不失真。

然后保持输入信号不变,分别增大和减小RW ,使波形出现失真,说明是何种失真,并测出失真情况下的IC和UCE 值,记入表1-4中。

每次测IC和UCE值时都要将信号源的输出旋钮旋至零。

表1-4 实验记录表( R C=2.4KΩ,R L=∞,U i= mV)5、测量最大不失真输出电压置RC =2.4KΩ,RL=2.4KΩ,按照实验原理2.4中所叙述方法,同时调节输入信号的幅度和电位器Rw ,用示波器和交流毫伏表测量Uopp及Uo值,记入表1-5。

Multisim仿真—电工及电子学2

Multisim仿真—电工及电子学2

电工及电子学2上机实验规定内容1、单管共射放大仿真
单管共射放大器电路
放大器电压增益的测量
参数扫描分析结果
W
单管共射放大器实际测量电路
从图上读出数据,可得放大器的增益为:
Au=
2、桥式整流∏滤波电路
¸观察波形:
①起始波形:
②平稳后波形:
3、同向比例运算电路
W
① 理论值:通过同向比例运算的公式计算:
V mV k k 110.010101001U 2=⨯Ω
Ω
+
=)(。

② 实际值:电压表示数0.110V 。

4、译码器仿真电路的分析
XWG1为字信号发生器(Word Generation )。

设置其值为0-7。

选择循环时,灯依次点亮,可设断点、可单步执行。

74LS138的真值表:
例:当字发生器-XWG1运行到0000000003时,
5、multisim 11.0 计数仿真实验
74290接成十进制计数器,74ls47是驱动译码器,我们该如何选择限流电阻R2呢?首先我们要知道在本电路中LED数码管中的每个LED灯的开启电压是1.8~2V左右,导通电流是5mA,可双击数码查看。

以最低电流5mA来算,则要保证流过R2的电流至少是5*7=35mA 才能使数码管显示正常(即7个LED灯都亮显示8的时候)。

因为74ls47是输出低电平有效,显示“8”时可以把OA~OG都看成是接地的,LED的导通电压Vh=2v,则R2两端的电压为5-2=3v,因为要保证流过R2的电流>=35mA,则R2<=3/35mA=85Om,即只要保证R2小于85 Om就可以了。

基于Multisim的单管放大电路的设计和仿真分析

基于Multisim的单管放大电路的设计和仿真分析

基于Multisim的单管放大电路的设计和仿真分析作者:沈欢王云秀肖俊沈钻杨来源:《物联网技术》2017年第05期摘要:文中使用Multisim仿真软件这种虚拟实验环境对模拟电路中常用的单管放大电路进行了仿真分析。

在理论分析的基础上,利用Multisim提供的基本仿真分析方法,如直流工作点分析、交流分析等,使学生通过仿真掌握放大电路的主要性能指标,学会调整、检查电路的工作状态,学会测量放大电路的输入电阻、输出电阻和电压放大倍数,了解不同负载情况对放大倍数的影响。

关键词:Multisim;单管放大电路;仿真分析;放大电路中图分类号:TN7;TP39 文献标识码:A 文章编号:2095-1302(2017)05-0-020 引言模拟电子技术是电子、通信类专业的一门专业基础课。

通过这门课的学习,使学生掌握电子电路的基本理论与基本实验技能,并初步具有电子电路的设计和创新能力。

随着科技的发展,电子电路分析和设计方法实现了现代化和自动化,在教学中适当引用计算机辅助工具实现硬件设计软件化,让实验变得简单、方便,同时可帮助学生快速理解理论知识。

使用Multisim 软件不仅可以快速设计电路,还可与理论设计进行比较,为电路的进一步调试提供便利,极大地缩短了产品的研发周期。

本文以典型的单管放大电路为例,具体介绍了利用Multisim设计单管放大电路,并对其进行静态和动态分析,得到放大电路的静态工作点,分析静态工作点的影响因素;在动态分析的基础上得到了电路的电压放大倍数、输入电阻、输出电阻及带宽。

1 Multisim仿真软件功能及特点学习电子技术,不仅要熟练掌握电子器件以及电路的基本原理、参数计算方法,更重要的是对电路的分析、应用以及开发。

Multisim是一款在业内广泛采用的电子电路仿真与设计软件,其功能强大,能最大化满足使用者的需求,其拥有的专业功能可以轻松处理较为复杂的电路设计。

它包含电路原理图的输入、电路硬件描述语言输入,具有丰富的仿真分析能力,元件库中提供了大量仿真模型,确保了仿真结果的准确性、真实性和实用性,并集成了多种虚拟仪表,包含大量设计实例、课程设计和研究项目,使得实验更加简便快捷。

用multisim8对单管放大电路实验故障进行仿真分析

用multisim8对单管放大电路实验故障进行仿真分析
问题 和 解 决 实 际 问题 的 能 力 。 关 键 词 : ls 8仿 真 ; 态 工 作 点 ; 路 ; mu im ti 静 短 断路 ; 号 失真 信
中图分类号 :N 1 T 70
文献标 识码 : A
文章编号 :0 92 1 (0 1 0 ・ 0 1 0 10 -74 2 1 )3 0 5 — 5
管各 极 短路 或 断路对 静态 工 作点 的影 响 , 试 静 态 工作 点 。接 下 来 , 静 态 二 作 点 调试 好 之 后 , 动 调 在 [ 对
态参 数进 行 测试 , 观察 有 波形 输 出 和无波 形输 出与静 态工 作点 的关 联 。通 过 这 种 muti8的仿 真模 ls im
6. k R 5 3 Q( :R + , , > > , 足 发射 结正 偏 , 电结反偏 , 川 ) 满 集 三极 管 工 作在 放 大状态 ( 测试 静态 工作点 时 , 应使 U :0 。 )
学生在 实验过 程 中 , 测数 据与 上面 的正常 值相差 很大 , 所 三极 管甚 至工 作在 截止 区或饱 和 区。
晶体 三极 管 工作 于放 大 电路 时 , 必须 保 证两 个条 件 , 射结 正 偏 , 电结 反偏 。同时有 输 人 、 出 发 集 输
交流 通路 引。
收 稿 日期 :0 O 1— 1 2 l一 2 1
基金项目 : 湖北师范学 院 2 1 0 1年指导性 教研项 目 作者简介 : 张学 文( 9 5 16 一 )女 , , 湖北黄 冈人 , 高级实验师

般我 们取 , 为 1 m 图 1 示 电路 为 4 8~96 集 电极 电位过 高 三 极管 工 作在 截止 c ~3 A, 所 . .V.

5l ・

虚拟仿真实验报告

虚拟仿真实验报告

电子技术虚拟仿真实验报告专业:班级:姓名:学号:实验一、单级阻容耦合放大电路仿真实验一、实验目的1、进一步熟悉multisim10软件的使用方法。

2、学会用multisim10软件分析单管放大电路的主要性能指标。

3、了解仿真分析法中的直流工作点分析法。

4、掌握测量放大器的电压放大倍数。

5、掌握静态工作点变化对放大器输出波形的影响。

6、了解不同的负载对放大倍数的影响。

7、学会测量放大器输入、输出电阻的方法。

二、实验内容及步骤1.静态工作点的测试(1)在电子仿真软件Multisim 10基本界面的电子平台上组建如图1所示的仿真电路。

双击电位器图标,将弹出的对话框的“Valve”选项卡的“Increment”R”。

栏改成“1”,将“Label”选项卡的“RefDes”栏改成“P图1单级阻容耦合放大电路仿真电路图R大约在35%左右时,利用直流工作点分析方法分析直流工作点(2)调节P的值。

直流工作点分析(DC Operating Point Analysis)是用来分析和计算电路静态工作点的,进行分析时,Multisim 10自动将电路分析条件设为电感、交流电压源短路,电容断开。

单击Multisim 10菜单“Simulate/Analyses/DC operating Point…”,在弹出的对话框中选择待分析的电路节点,如2图所示。

单击Simulate 按钮进行直流工作点分析。

分析结果如图3所示。

列出了单级阻容耦合放大电路各节点对地电压数据,根据各节点对地电压数据,可容易计算出直流工作点的值,依据分析结果,将测试结果填入表1中,比较理论估算与仿真分析结果。

图2 直流工作点分析选项对话框图3 直流工作点分析结果2. 电压放大倍数测试(1)关闭仿真开关,从电子仿真软件Multisim 10基本界面虚拟仪器工具条中,调出虚拟函数信号发生器和虚拟双踪示波器,将虚拟函数信号发生器接到电路输入端,将虚拟示波器两个通道分别接到电路的输入端和输出端,如图4所示。

实验3.2 单管放大电路Multisim仿真实验

实验3.2 单管放大电路Multisim仿真实验

实验3.2 单管放大电路
二、实验设备及材料
1.装有Multisim 14的计算机 2. 函数信号发生器 3. 双踪示波器 4. 数字万用表 5. 模拟电路实验箱
实验3.2 单管放大电路
三、实验原理
图3-13 电阻分压式单管放大电路
实验3.2 单管放大电路
三、实验原理
1.静态工作点调试
具体现象 调整动作
V
PR1
V: 7.90 V V(p-p): 1.21 pV V(rms): 0 V V(dc): 7.90 V V(freq): --
V
PR2
C2
10µF Q1 2N3903
V: 1.90 V V(p-p): 0 V V(rms): 0 V V(dc): 1.90 V V(freq): --
PR3
V
R3 100Ω
R6 2.4kΩ
R2 20kΩ
R4
C3
1kΩ
100µF
图3-17 测量探针测量静态工作点示意图
图3-18 使用万用表测量静态工作点示意图
实验3.2 单管放大电路
四、计算机仿真实验内容
C1 10µF
VCC 12V
Rw 100kΩ
R5 2.4kΩ
Key=A 42 %
U2
+
R1 20kΩ
1.705m A
-
C2
DC 1e-009Ohm
U1
10µF
Q1
U3
+
-
0.023m A
+
6.005 V
-
DC 1e-009Ohm
2N3903 DC 10MOhm
R2 20kΩ
R3 100Ω

multisim单管放大电路

multisim单管放大电路

真验一单管搁大电路之阳早格格创做真验手段:1、掌握单管搁大电路的电路个性;2、掌握单管搁大电路的各项参数的尝试要领;3、教习MULTISIM仿真硬件的使用.真验步调:1、用MULTISIM仿真硬件画制电路图;2、共收射极搁大电路的固态处事面的安排;3、共收射极搁大电路的电压搁大倍数的丈量;4、共收射极搁大电路的输进电阻的丈量;5、共收射极搁大电路的输出电阻的丈量.真验真质:一、共收射极搁大电路1、元件采用1)电源V1:Place Source→POWER_SOURCES→DC_POWER.(此处的含意为:单打元器件工具栏的Place Source按钮,正在挨开的窗心的Family列表框中采用POWER_SOURCES,再正在Component列表框中采用DC_POWER)2)接天:Place Source→POWER_SOURCES→GROUND,采用电路中的接天.3)旗号源V2:PlaceSource→SIGNAL_VOLTAGE_SO→AC_VOLTAGE,需要注意,默认的电压为1V,需要树立电压为2mV.4)电阻:Place Basic→RESISTOR,采用2KΩ、10KΩ战750KΩ.5)电容:Place Basi c→CAPACITOR,采用10uF.6)三极管:Place Transistor→GJT_NPN→2N222A.2、电路组成将元器件及电源搁置正在仿真硬件处事窗心符合的位子,对接成图11所示的仿真电路.??、电路仿真??分解曲流处事面图13 基原共收射极搁大电路的固态处事面2)瞅察输进输出波形.将图11所示仿真电路接上示波器,挨开仿真开闭,安排示波器扫描时间战通讲A、B的隐现比率,得到如图14(b)所示的输进、输出波形.a)接上示波器的仿真电路b)基原共收射极搁大电路的输进、输出波形图14 基原共收射极搁大电路的输进、输出波形瞅察4、仿真分解1)固态处事面偏偏矮时爆收停止得真2)固态处事面偏偏下时爆收鼓战得真出现上述二种情况,该怎么样安排电路参数.二、电阻分压式共收射极搁大电路1、电路组成正在仿真硬件的处事窗心符合的位子,形成如图15所示电路.图15 电阻分压式共收射极搁大电路固态处事面可用下式估算:电压搁大倍数为输进电阻为输出电阻为2、仿真分解(1)固态处事面分解函数旗号收射器参数树立:单打函数旗号爆收器图标,出现如图16所示里板图,改换里板上相闭树立,可改变输出电压旗号的波形典型,大小、占空比或者偏偏置电压等.原例采用正弦波、频次1KHz、旗号电压10mV.电位器RP参数树立:单打电位器RP,出现如图17所示对于话框,单打Value选项卡.Key文原框,安排电位器大小.Increment文原框,树立电位器按百分比减少或者缩小.安排图15中的电位器RP决定固态处事面.电位器RP中间标注的笔墨“Key=A”标明按A键,电位器的阻值按5%的速度较少;若要减少,按Shift+A快速键,阻值将以5%的速度减少.电位器变动的数值大小间接以百分比的形式隐现正在一旁.图16 函数旗号爆收器参数树立图17 电位器RP参数树立开用仿真开闭,反复按A键.单打示波器图标,瞅察示波器输出波形.正在输出波形没有得真情况下,单打Options→Sheet Properties菜单下令,再挨开对于话框的Circuit选项卡采用Show All选项,使图15隐现出节面编号,而后真止菜单下令Simulate→Analysis,正在列出的可支配分解典型中采用DC Operating Point,以采用需要用去仿果然变量,单打Simulate按钮,不妨瞅到固态处事面.分解固态处事面是可合理.其余,也不妨采与电压表、电流表的要领、丈量探针的要领推断电路固态处事面.(2)搁大电路的动向指标尝试a、电压搁大倍数丈量当旗号源电压幅值为5mV时,对于图15所示电路举止仿真尝试,测得的输进、输出电压波形如图18所示.从丈量停止瞅,正在图示的尝试线1处,输进旗号的幅值为4.891mV,输出旗号幅值为509.527mV.搁大倍数.图18 输进旗号为5mV时的输进、输出电压波形当图15中的时,电压输出波形如图19所示.创制输出幅值明隐删大许多,共时瞅到输进、输出有一定的相移.那是由于采用的耦合电容较小,正在1KHz频次下耦合电容的矮频效力制成的.正在尝试线1处,输进旗号的幅值为4.398mV,输出旗号的幅值为857.691mV,电压搁大倍数约等于195.当,接流电压搁大倍数约莫惟有57,如图110所示.图19 时的输进、输出电压波形图110 时的输进、输出电压波形果此,该电阻对于搁大倍数的做用较大.2)电压搁大得真分解.情况一:固态处事面分歧适(Q面偏偏下或者偏偏矮),输进旗号大小符合.将如图15所示的电路中的RB11去掉,只死存电位器RP,改变RP的大小,可改变Q面下矮,输出波形会出现得真.瞅察波形.情况二:固态处事面符合,输进旗号偏偏大.当输进旗号幅值为50mV,瞅察输进、输出电压波形.当输进旗号幅值为100mV,瞅察输进、输出电压波形.当输进旗号幅值为200mV,瞅察输进、输出电压波形.3)输进、输出电阻丈量a、丈量接流输进电阻.电路如图111所示,丈量输进电阻.并与估计值比较.图111 搁大电路输进电阻丈量b、丈量输出电阻按图112所示电路,丈量输出电路,并与估计值比较是可普遍.图112 搁大电路输出电阻丈量电路。

电子电路仿真实验1(单级放大器仿真)

电子电路仿真实验1(单级放大器仿真)

电子电路开放实验讲义(单级低频放大器仿真)1. 实验目的(1)熟悉Multisim 软件的使用方法。

(2)掌握Multisim 的直流工作点分析及交流频率分析的方法。

(3)掌握在Multisim 中利用虚拟仪表进行直流工作点的调整与测试方法。

(4)掌握在Multisim 中利用虚拟仪表进行动态指标的仿真测试方法。

(5)了解共发射极放大器电路特性。

2. 虚拟实验仪器及器材 (1)示波器 (2)直流电压源 (3)函数信号发生器 (4)万用表 (5)波特图示仪 3. 仿真系统图4. 实验内容及步骤 (1)绘制仿真系统图 启动Multisim ,按图1-1在电路工作区内绘制单级低频放大器仿真系统图,设置好各元器件的相关参数;检查电路结构、元器件模型及相关参数是否有误;检查无误后进行电路仿真。

(2)静态工作点的调整与测试① 如图1-2选择显示电路节点;从虚拟仪器库中调出万用表按图连接,用来测量三极管发射极对地电压(也可使用探针测试);打开万用表面板,设置好相关参数。

② 打开仿真开关,启动仿真。

③ 调节滑动变阻器R p ,使万用表的读数为2.2V 左右。

然后关闭仿真开关。

图1-1单级低频放大器仿真系统图图1-2 静态工作点的调整与测试仿真电路④用分析方法调测静态工作点选择直流工作点分析方法对电路进行直流分析;并从分析图表中找出与节点电压相对应的三极管的基极电压V BQ、发射极电压V EQ及集电极电压V CQ ,将测试数据填入表1-1,计算V CEQ、V BEQ、R p及I EQ的值(R p 为滑动变阻器的最大值乘上百分比)。

⑤用虚拟仪表调测静态工作点从虚拟仪器库中调出多个万用表分别接在三极管三个极和地之间,启动仿真,从万用表扩展面板上直接读出测试数据记录于表1-1中(也可使用探针测试)。

⑥调节滑动变阻器R p的百分比分别为0%、100%,重复第④至第⑤步。

完成测试后恢复V EQ为2.2V。

表1-1 直流工作点的调整与测试测试方法仿真数据计算数据V BQ(v) V CQ(v) V EQ(v) V CEQ(v) V BEQ(v) I EQ(mA) R p(KΩ)直流分析方法虚拟仪表(3)电压放大倍数测试①按图1-3连接虚拟仪表;设置仪表的相关参数。

单管放大器仿真分析与实验报告

单管放大器仿真分析与实验报告

单管放大器仿真分析与实验报告一、实验目的1. 掌握放大电路静态工作点的调试方法及其对放大电路性能的影响。

2. 掌握低频小信号放大器主要性能指标的综合测试方法。

3. 了解单级共射放大电路的特性。

4. 掌握Multisim 仿真实验方法,逐步理解仿真实验和真实实验的差别。

二、实验电路图1. 电路组成原理共射单级放大电路是单级放大器的三种组态之一,而共射单级放大电路的组成形式也有多种。

图5-1-1是电阻分压式偏置、稳定静态工作点的单级共射低频放大器。

放大是最基本的模拟信号处理能力,包含两个方面:一是能将微弱的低频小信号增强到所需要的数值,即放大电信号以方便测量和使用;二是要求放大后的信号波形与放大前波形的形状相同,即信号不能失真,否则要丢失传送的信息,失去了放大的作用。

基于以上分析可以知道,电阻组成的基本原则也包括两个方面,首先要给电路中的晶体管加上合适的直流偏置电路,即发射结正偏、集电结反偏,使其工作在放大状态,同时施加合适范围的电源和电流,即合适的静态工作点。

其次要保证信号发生器、放大电路和负载之间的信号能够正常传递,即有动态输入u i 时,应该有输出响应u o 。

基极偏置电阻R B1、R B2以及集电极电阻R C 取值得当,与电源V CC 配合,为晶体管设置合适的静态工作点,使之工作于放大区。

它的主要特点是电路的结构能自行稳定由温度的变化带来的静态工作点的变化。

对耦合电路的要求第一、信号发生器和负载接入放大电路时,不能影响晶体管的直流偏置。

第二,在交流信号的频率范围内,耦合电路应能使信号正常地传输。

在分立元件阻容耦合电子电路中,起传递作用的电容器称为耦合电容,如C b 和C c 。

只要电容器的容量足够大,即在信号频率范围内的容抗X C (1/ωc )足够小,就可以保证信号几乎毫无损失地传输。

同时,电容器对直流量的容抗无穷大,使输入端信号发生器的接入以及输出端负载的连接都不会影响放大电路的直流偏置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单管放大器multisim 仿真
电路图如图1,电路由Multisim 11.0软件制作,本文档中图片均为从中截图,11.0与10.0的元件有部分不同(电阻外形不同,Vcc 不同)。

接下来是静态工作点的调整,改变电位器的阻值,使
CQ I =1mA (C R U =2.599V )(由于电位器调节公差的限制,此时CQ I 最接近1mA ),达到合适的工作点,此时CE u =2.429V 。

经过放大后的波形与输入波形如图3,从图上可以看出出单管放大器的放大功能,以及倒相功能。

A通道为输入信号,B通道为输出信号。

由于A通道为50mV/Div,B通道为500mV/Div,因此实际(同一量程下)的波形与图示差距更大。

符合图4算出的32.5的放大倍数。

由图4,可算出放大倍数
A=32.5。

u。

相关文档
最新文档