多元线性回归SPSS实验报告

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

、007
专利申请授权数(件)
、000
、000
-、103 -1、454
、189
在校学生数(万人)
-、100
、301
-、296
-、333
、749
教职工总数(万人)
3、046
4、394
、556
、693
、511
a、 因变量: 毕业生数(万人)
注解:回归系数的显著性检验以及回归方程的偏回归系数与常数项的估计值 第二列:常数项估计值=-544、366;其余就是偏回归系数估计值。 第三列:偏回归系数的标准误差。 第四列:标准化偏回归系数。 第五列:偏回归系数T检验的t统计量。 第六列:t统计量对应的概率p值;小于显著性水平0、05,拒接原假设(回归系
1
9 、135
5
、999e 、998 、997 9、774 、000 1、176
1
10 、304 1、917
a、 预测变量: (常量), 教职工总数(万人), 专利申请授权数(件), 研究与试验发展机构数(个), 普通高校数(所), 发表 科技论文数量(篇), 在校学生数(万人)。
b、 预测变量: (常量), 教职工总数(万人), 专利申请授权数(件), 研究与试验发展机构数(个), 普通高校数(所), 发表 科技论文数量(篇)。
特征值
条件索引
(常量)
研究与试 发表科技 专利申请
普通高校 验发展机 论文数量 授权数 在校学生
数(所) 构数(个) (篇)
(件) 数(万人)
教职工总数 (万人)
1
1
6、628 1、000
、00
、00
、00
、00
、00
、00
、00
2
、352 4、340
、00
、00
、00
、00
、04
、00
、00
3
、015 20、902
f、 因变量: 毕业生数(万人)
注解:利用向后筛选策略建立回归模型,经过四步完成回归方程的建立,最终模型 为第五个模型,依次剔除的变量就是在校学生数(万人),普通高校数(所),研究与试 验发展机构数(个),专利申请授权数(件)
模型五的负相关系数R=0、999。
判别系数 =0、998、
调整判别系数 =0、997,若将作用不显著的变量引入方程,则该系数会减少。
、313
、012 80、022
多元线性回归 SPSS 实验报告
发表科技论文数量(篇)
、001 、000 、632 3、749
、007
、008 132、540
专利申请授权数(件)
、000 、000 -、103 -1、454
、189
、043 23、189
在校学生数(万人)
-、100 、301 -、296 -、333
100 的概率)。
3
、 普通高校数(所) 向后(准则:
F-to-remove >= 、
100 的概率)。
4
、 研究与试验发展 向后(准则:
机构数(个)
F-to-remove >= 、
100 的概率)。
5
、 专利申请授权数 向后(准则:
(件)
F-to-remove >= 、
100 的概率)。
a、 已输入所有请求的变量。 b、 因变量: 毕业生数(万人)
c、 预测变量: (常量), 教职工总数(万人), 专利申请授权数(件), 研究与试验发展机构数(个), 发表科技论文数量(篇)。
d、 预测变量: (常量), 教职工总数(万人), 专利申请授权数(件), 发表科技论文数量(篇)。
e、 预测变量: (常量), 教职工总数(万人), 发表科技论文数量(篇)。
、00
、00
、00
、00
、09
、00
、00
4
、004 39、311
、00
、00
、35
、00
、65
、00
、00
5
、001 107、450
、00
、96
、09
、02
、15
、00
、00
6
、000 154、065
、00
、00
、08
、96
、06
、01
、00
7
5、520E-6 1095、777
、99
、04
、49
、02
、 输入
a、 已输入所有请求的变量。
模型汇总
模型 R
调整 R 标准 估计
R方

的误差
1
、999a 、998 、997
9、822
多元线性回归 SPSS 实验报告
输入/移去的变量
移去的变
模型 输入的变量 量
方法
1 教职工总数 (万人), 专 利申请授权 数(件), 研 究与试验发 展机构数 (个), 普通 高校数 (所), 发表 科技论文数 量(篇), 在 校学生数 (万人)a
1
、999a 、998 、997 9、822 、998 776、216
6
7 、000
2
、999b 、998 、998 9、260 、000 、111
1
7 、749
3
、999c 、998 、998 8、967 、000 、440
1
8 、526
4
、999d 、998 、997 9、697 、000 2、693
、 输入
a、 预测变量: (常量), 教职工总数(万人), 专 利申请授权数(件), 研究与试验发展机构数 (个), 普通高校数(所), 发表科技论文数量 (篇), 在校学生数(万人)。
注解:模型的拟合优度检验: 第二列:两变量(被解释变量与解释变量)的复相关系数R=0、999。
第三列:被解释向量(毕业人数)与解释向量的判定系数 =0、998。
6 74881、319 776、216
、000a
残差
675、288
7
96、470
总计
449963、199
13
a、 预测变量: (常量), 教职工总数(万人), 专利申请授权数(件), 研究与试验发展机 构数(个), 普通高校数(所), 发表科技论文数量(篇), 在校学生数(万人)。
b、 因变量: 毕业生数(万人)
模型五中偏F检验的概率P值=0、304,对于显著性水平0、05,接受原假设(剔除 变量的偏回归系数与0无显著性差异),认为:剔除的变量专利申请授权数(件)的偏 回归系数与0无显著性差异。该变量对被解释变量的线性解释没有显著性贡献, 不应保留在回归方程中。
最终保留的回归方程的变量有:教职工总数与发表论文数 回归方程的DW检验值=1、971,表现残差序列存在正相关。说明该回归方程 没有充分说明被解释变量的变化规律,可能方程中遗漏了一些重要的解释变量
数与0不存在显著性差异),认为回归系数部位0,被解释变量与解释变量的线性关 系就是显著的;大于显著性水平0、05,接受原假设(回归系数与0不存在显著性差 异),认为回归系数为0被解释变量与解释变量的线性关系不显著的。
于就是,多元线性回归方程为:
=-544、366+0、032 +
回归分析的进一步分析: 1、多重共线性检验
多元线性回归 SPSS 实验报告
注解:引入/剔除变量表 分别剔除在校学生数(万人),普通高校数(所),研究与试验发展机构数(个),专利申 请授权数(件)四个变量
模型汇总f
更改 Durbin-Wa
R
R 方 调整 R 方 的误差 R 方更改 F 更改
df1
df2

tson
系数a
非标准化系数
标准系数
模型
B
标准 误差 试用版
t
Sig、
1
(常量)
-544、366 327、704
-1、661
、141
普通高校数(所)
、032
、047
、068
、683
、516
研究与试验发展机构数(个)
、009
、008
、142
1、086
、313
发表科技论文数量(篇)
、001
、000
、632
3、749
第四列:被解释向量(毕业人数)与解释向量的调整判定系数 =0、971。在多
个解释变量的时候,需要参考调整的判定系数,越接近1,说明回归方程对样本数 据的拟合优度越高,被解释向量可以被模型解释的部分越多。
第五列:回归方程的估计标准误差=9、822
Anovab
模型
平方与
df
均方
F
Sig、
1
回归
449287、911
多元线性回归 SPSS 实验报告
回归分析基本分析: 将毕业生人数移入因变量,其她解释变量移入自变量。在统计量中选择估计与模型拟合度,得 到如图
输入/移去的变量
移去的变
模型 输入的变量 量
方法
1 教职工总数 (万人), 专 利申请授权 数(件), 研 究与试验发 展机构数 (个), 普通 高校数 (所), 发表 科技论文数 量(篇), 在 校学生数 (万人)a
多元线性回归 SPSS 实验报告
回归方程中。 模型四中偏F检验的概率P值=0、135,对于显著性水平0、05,接受原假设(剔除
变量的偏回归系数与0无显著性差异),认为:剔除的变量研究与试验发展机构数 (个)的偏回归系数与0无显著性差异。该变量对被解释变量的线性解释没有显著 性贡献,不应保留在回归方程中。
回归方程的显著性检验-回归分析的方差分析表 F检验统计量的值=776、216,对应的概率p值=0、000,小于显著性水平0、05,应拒
多元线性回归 SPSS 实验报告
绝回归方程显著性检验原假设(回归系数与0不存在显著性差异),认为:回归系数 不为0,被解释变量(毕业生人数)与解释变量的线性关系显著,可以建立线性模型。
、749
、000 3672、177
教职工总数(万人)
3、046 4、394 、556 、693
、511
、000 2996、649
a、 因变量: 毕业生数(万人)
从容差与方差膨胀因子来瞧,在校学生数与教职工总数与其她解释变量的多重共 线性很严重。在重新建模中可以考虑剔除该变量
共线性诊断a
方差比例
模型
维数
+0、001 -0、1 +3、046
系数a
非标准化系数
标准系 数
共线性统计量
模型
标准 误
B
差 试用版 t
Sig、
容差
VIF
(常量)
-544、366 327、704
-1、661
、141
普通高校数(所)
、032 、047 、068 、683
、516
、022 45、569
研究与试验发展机构数(个)
、009 、008 、142 1、086
估计的标准误差=9、774。 模型二中偏F检验的概率P值=0、749,对于显著性水平0、05,接受原假设(剔除 变量的偏回归系数与0无显著性差异),认为:剔除的变量在校大学生人数的偏回归 系数与0无显著性差异。该变量对被解释变量的线性解释没有显著性贡献,不应保 留在回归方程中。 模型三中偏F检验的概率P值=0、526,对于显著性水平0、05,接受原假设(剔除 变量的偏回归系数与0无显著性差异),认为:剔除的变量普通高校数的偏回归系数 与0无显著性差异。该变量对被解释变量的线性解释没有显著性贡献,不应保留在
、00
、98
1、00
a、 因变量: 毕业生数(万人)
注解:第二列:特征根 第三列:条件指数 从条件指数瞧,第3、4、5、6、7个条件指数都大于10,说明变量之间存在多
重共线性。 第4-10列:各特征根解释各解释变量的方差比。 从方差比瞧,第5个特征根解释投入普通高校人数96%;发表科技论文数
49%;可以认为:这些变量存在多重共线性。需要建立回归方程。
2、重建回归方程
多元线性回归 SPSS 实验报告
输入/移去的变量b
模型
输入的变量
移去的变量
方法
1
教职工总数(万
人), 专利申请授
权数(件), 研究
与试验发展机构
数(个), 普通高
校数(所), 发表
科技论文数量
(篇), 在校学生
数(万人)a
、 输入
2
、 在校学生数(万 向后(准则:
人)
F-to-remove >= 、
相关文档
最新文档