基于51单片机课程设计
基于51单片机-PCF8591数字电压表课程设计

课程名称:微机原理课程设计题目:数字电压表ﻬ摘要单片微型计算机简称单片机,是典型的嵌入式微控制器,常用英文字母的缩写MCU表示单片机,单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。
单片机由运算器,控制器,存储器,输入输出设备构成,相当于一个微型的计算机(最小系统),和计算机相比,单片机缺少了外围设备等。
概括的讲:一块芯片就成了一台计算机。
它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。
同时,学习使用单片机是了解计算机原理与结构的最佳选择。
它最早是被用在工业控制领域。
其中我们用于学习用的最多的是STC89C52单片机,STC89C52是STC公司生产的一种低功耗、高性能CMOS8位微控制器,具有8K在系统可编程Flash存储器。
STC89C52使用经典的MCS-51内核,但也做了很多改进使得芯片具有传统51单片机不具备的功能。
STC89C52具有8k字节Flash,512字节RAM,32位I/O口线,看门狗定时器,内置4KB EE PROM,MAX810复位电路,3个16位定时器/计数器,4个外部中断,一个7向量4级中断结构,全双工串行口。
本设计就是以单片机STC89C52为核心,附以外围电路,实现数字电压表的功能,并运用软件Proteus进行仿真来得到实验结果。
关键词:STC89C52单片机、仿真、中断、数字电压表、数码管显示ﻬ目录一、任务要求ﻩ错误!未定义书签。
1.1 设计任务ﻩ错误!未定义书签。
1.2设计要求ﻩ错误!未定义书签。
1.3发挥部分 ...................................................................................... 错误!未定义书签。
1.4 创新部分 ........................................................................................... 错误!未定义书签。
51单片机毕业课程设计功率因数计

51单片机毕业课程设计功率因数计(完整版)51单片机毕业课程设计—功率因数计1. 概述本文档介绍了一种基于51单片机的毕业课程设计方案,即功率因数计。
本设计旨在实现对电网中功率因数的测量和监控,从而提高电能的利用效率。
2. 设计原理本设计主要基于功率因数的定义和计算公式来实现。
功率因数定义为有功功率与视在功率之比,通过测量电网中的电压和电流,并使用适当的算法进行计算,可以获得功率因数的数值。
3. 硬件设计3.1 电路元件本设计所需的电路元件包括:- 51单片机- 电流传感器- 电压传感器- 显示屏3.2 电路连接将电流传感器和电压传感器连接到51单片机的相应引脚上,以实时获取电流和电压值。
通过数字转模拟转换器(DAC)将获取的模拟数据转换为数字形式,然后使用适当的算法计算功率因数,并将结果显示在显示屏上。
4. 软件设计4.1 主程序流程主程序的流程如下:1. 初始化电路连接和显示屏。
2. 循环执行以下步骤:- 读取电流和电压值。
- 使用计算公式计算功率因数。
- 将计算结果显示在显示屏上。
3. 结束程序。
4.2 算法设计本设计中使用的算法主要是根据功率因数的计算公式进行计算。
具体步骤如下:1. 读取电流和电压值。
2. 使用下述公式计算功率因数:- 功率因数 = 有功功率 / 视在功率3. 将计算结果保存,并根据需要进行显示或记录。
5. 总结本文档介绍了一种基于51单片机的毕业课程设计方案,即功率因数计。
通过测量电流和电压,并使用适当的算法进行计算,可以实现对电网中功率因数的测量和监控。
该设计有助于提高电能的利用效率,具有一定的实用性和应用前景。
基于51单片机声光控灯课程设计

基于51单片机声光控灯课程设计引言:51单片机声光控灯是一种能够根据声音的大小和频率来控制灯光亮度和颜色的装置。
本文将介绍基于51单片机的声光控灯的设计原理、硬件电路、软件编程以及实际应用。
一、设计原理声光控灯的设计原理是通过声音传感器检测环境中的声音信号,并将其转换为电信号输入到51单片机中。
通过单片机的模拟转换功能,将声音信号转换为数字信号进行处理。
根据处理后的信号,控制LED灯的亮度和颜色。
二、硬件电路声光控灯的硬件电路主要包括声音传感器、ADC模块、51单片机、三色LED灯等组成。
声音传感器用于检测环境中的声音信号,将其转换为电信号输入到ADC模块中。
ADC模块将模拟信号转换为数字信号,并输入到51单片机中进行处理。
51单片机通过PWM波控制LED灯的亮度和颜色。
三、软件编程声光控灯的软件编程主要包括采集声音信号、信号处理以及LED灯控制等功能。
首先,通过ADC模块采集声音传感器输入的模拟信号,并进行模数转换。
然后,根据转换后的数字信号,进行信号处理,比如判断声音的大小和频率。
最后,根据处理后的信号,通过PWM波控制LED灯的亮度和颜色。
四、实际应用基于51单片机的声光控灯具有广泛的应用前景。
首先,在家庭环境中,可以将其应用于智能家居系统中,实现声控照明功能。
通过声音传感器感知用户的声音指令,控制灯光的亮度和颜色,提高用户的生活体验。
其次,在娱乐场所中,可以将其应用于舞台灯光控制系统中。
根据演出音乐的节奏和声音效果,自动调整舞台灯光的变化,增添演出的氛围和效果。
此外,声光控灯还可以应用于安防领域,通过声音检测来判断是否有异常情况,并通过灯光警示,提醒用户注意安全。
总结:基于51单片机的声光控灯是一种利用声音信号控制灯光亮度和颜色的装置。
通过声音传感器、ADC模块、51单片机和LED灯等组成的硬件电路,以及采集声音、信号处理和LED灯控制等软件编程,实现了声光控灯的功能。
同时,声光控灯在智能家居、娱乐场所和安防领域等方面具有广泛的应用前景。
基于51单片机简易计算器课程设计报告

基于51单片机简易计算器课程设计报告
基于51单片机简易计算器课程设计报告
1. 研究背景
•计算器是人们日常生活和工作中常用的工具之一。
•通过设计简易计算器,可以加深学生对51单片机的理解和应用。
2. 目标和需求
•设计一个基于51单片机的简易计算器,能够进行基本的四则运算和开方运算。
•要求计算器能够显示输入和计算结果。
•要求计算器具备简单的界面和操作。
3. 设计方案
•使用51单片机作为计算器的控制核心。
•通过键盘输入数字和运算符,并显示在液晶屏上。
•根据输入的运算符,进行相应的计算,并将结果显示在液晶屏上。
4. 硬件设计
•使用51单片机作为主控芯片。
•连接液晶屏模块,用于显示输入和计算结果。
•连接键盘模块,用于输入数字和运算符。
5. 软件设计
•使用C语言进行编程。
•设计主程序,包括初始化、输入处理和计算输出等功能。
•设计函数,实现基本的四则运算和开方运算。
6. 实验结果
•成功设计并实现了基于51单片机的简易计算器。
•可以正常进行基本的四则运算和开方运算。
•输入和计算结果能够准确显示在液晶屏上。
7. 总结与展望
•通过设计这个简易计算器,学生对51单片机的理解和应用能力有了提高。
•下一步可以考虑增加更多的功能,如科学计算和数据存储等。
以上是本次基于51单片机简易计算器课程设计的报告。
通过这个实验,学生对51单片机的应用能力得到了提升,进一步增强了对计算器的理解。
在未来的课程设计中,可以进一步拓展功能,提升计算器的实用性和功能性。
51单片机计课程设计

51单片机计课程设计一、课程目标知识目标:1. 理解51单片机的基本组成、工作原理及其在嵌入式系统中的应用。
2. 掌握51单片机的编程语言(C语言),能够阅读和编写简单的程序。
3. 学习51单片机的I/O口编程、定时器/计数器、中断系统等基础应用。
4. 了解51单片机与其他外围设备的通信接口,如串行通信。
技能目标:1. 能够使用51单片机的开发环境,如Keil uVision和Proteus进行程序设计和仿真。
2. 培养学生的动手实践能力,通过实验箱或面包板搭建简单的51单片机应用电路。
3. 培养学生的问题分析和解决能力,通过编程解决实际问题。
4. 学会查阅技术文档和参考资料,提升自主学习能力。
情感态度价值观目标:1. 培养学生对电子制作和编程的兴趣,激发创新意识和探索精神。
2. 强调团队合作和交流分享的重要性,培养学生的团队协作能力。
3. 增强学生的工程意识,认识到科技对于社会发展的重要性。
4. 引导学生形成严谨的科学态度,注重实践操作的准确性和程序的逻辑性。
本课程针对高年级学生,考虑其已有一定电子和编程基础,课程设计注重理论与实践相结合,通过项目驱动的教学方法,使学生在实践中掌握知识,提升技能,同时培养积极的情感态度价值观。
通过本课程的学习,学生将能够独立完成简单的51单片机项目设计,为后续深入学习嵌入式系统打下坚实基础。
二、教学内容1. 51单片机基础知识- 51单片机结构及工作原理- 51单片机引脚功能及内部资源- 编程环境Keil uVision与Proteus使用方法2. 51单片机C语言编程- 数据类型、运算符与表达式- 控制语句(循环、分支)- 函数的定义与调用- 中断处理程序编写3. 51单片机I/O口编程- I/O口输入输出控制- 延时函数编写- 按键与LED控制4. 定时器/计数器- 定时器/计数器工作原理- 定时器/计数器编程方法- 定时器应用案例5. 中断系统- 中断系统原理与分类- 中断系统编程- 中断应用案例6. 串行通信- 串行通信原理- 51单片机串口编程- 串口通信应用案例7. 综合项目设计与实践- 项目需求分析- 硬件电路设计与搭建- 软件程序设计与调试- 项目展示与评价教学内容依据课程目标和学科特点进行安排,注重知识体系的科学性和系统性。
基于51单片机的ic卡智能水表课程设计

基于51单片机的ic卡智能水表课程设计基于51单片机的IC卡智能水表课程设计一、引言随着科技的发展和人们生活水平的提高,水资源的合理利用和管理变得愈发重要。
传统的水表只能实现简单的读数功能,无法满足现代社会对智能化水表的需求。
本文将介绍一种基于51单片机的IC 卡智能水表的课程设计方案,通过对IC卡的读写和水表计量功能的结合,实现对用户用水量的监测和管理。
二、课程设计方案1. 系统框架本课程设计采用51单片机作为控制核心,通过与IC卡、水表及相关传感器的连接与通信,实现智能水表的计量、存储和管理。
系统框架包括IC卡读写模块、水表计量模块、显示模块和数据管理模块。
2. IC卡读写模块IC卡作为存储用户信息和充值记录的介质,需要通过51单片机与系统进行数据交互。
本课程设计中,采用SPI总线通信协议,通过51单片机的SPI接口与IC卡进行通信,实现对IC卡的读写操作。
IC卡中存储了用户的身份信息、充值金额和消费记录等数据,通过读卡器读取IC卡中的数据,传输给51单片机进行处理。
3. 水表计量模块水表计量模块通过与水表传感器的连接与通信,实现对用户用水量的实时计量。
本课程设计中,采用脉冲计量的方式,水表传感器产生的脉冲信号通过51单片机的外部中断引脚接收并计数,实时记录用户的用水量。
通过设置合适的脉冲与用水量的换算关系,可以准确地计量用户的用水量。
4. 显示模块显示模块用于显示用户的用水量和剩余金额等信息,方便用户实时了解自己的用水情况。
本课程设计中,采用LCD液晶显示屏作为显示设备,通过51单片机与LCD显示屏进行通信,将计量数据和相关信息显示在屏幕上。
5. 数据管理模块数据管理模块用于对用户的用水量和消费记录进行管理和统计。
本课程设计中,采用EEPROM作为数据存储介质,通过51单片机与EEPROM进行通信,实现对用户信息、充值记录和消费记录等数据的读写操作。
通过数据管理模块,可以实现对用户用水量和消费情况的管理和查询。
51单片机相关课程设计

51单片机相关课程设计一、课程目标知识目标:1. 理解51单片机的硬件结构,掌握其工作原理;2. 学习并掌握51单片机的指令系统,能进行基本的编程操作;3. 了解并掌握51单片机在嵌入式系统中的应用。
技能目标:1. 能够运用C语言编写简单的51单片机程序,实现基础功能;2. 学会使用仿真软件对51单片机程序进行调试,解决常见问题;3. 能结合实际需求,设计并实现简单的51单片机控制系统。
情感态度价值观目标:1. 培养学生对电子技术及编程的兴趣,激发其创新意识;2. 培养学生团队协作精神,使其在项目实践中学会沟通与分享;3. 强化学生的工程意识,使其认识到技术对社会发展的作用。
课程性质:本课程为实践性较强的课程,旨在帮助学生将理论知识与实际应用相结合,培养其动手能力和创新能力。
学生特点:学生处于高年级阶段,已具备一定的电子技术和编程基础,对单片机有一定了解,但实践经验不足。
教学要求:结合学生特点,注重理论与实践相结合,通过项目驱动教学,使学生在实践中掌握知识,提高技能。
同时,关注学生的情感态度价值观培养,引导其形成积极的学习态度和正确的价值观。
将课程目标分解为具体的学习成果,以便于教学设计和评估。
二、教学内容1. 51单片机硬件结构及原理:介绍51单片机的内部结构,包括CPU、存储器、I/O口、定时器等模块,分析其工作原理及相互关系。
相关教材章节:第一章 51单片机概述与硬件结构2. 51单片机指令系统及编程:讲解51单片机的指令集,学习C语言编程基础,编写简单的程序实现基础功能。
相关教材章节:第二章 51单片机指令系统与编程3. 仿真软件使用与程序调试:学习使用Keil、Proteus等仿真软件,进行51单片机程序的编写、编译、调试及下载。
相关教材章节:第三章 51单片机程序开发与调试4. 51单片机应用实例:分析并实践51单片机在嵌入式系统中的应用,如温度控制、灯光调节等。
相关教材章节:第四章 51单片机应用实例5. 课程项目实践:分组进行项目实践,设计并实现一个简单的51单片机控制系统,如智能小车、智能家居等。
51单片机课程设计

17.课后实践与持续学习:鼓励学生在课后继续进行单片机实践,培养自主学习能力,推荐相关学习资源,引导学生持续深入学习。
18.课程总结与反馈:在课程结束时,组织学生进行课程总结,反馈学习体验和收获,为后续课程的教学提供改进方向。
13.安全教育与操作规范:在教学过程中,穿插安全教育,让学生了解单片机实验操作中的安全注意事项,遵守实验室操作规范。
14.成果展示与评价:组织学生进行课程设计成果的展示,通过自评、互评和教师评价相结合的方式,对学生的设计作品进行评价,促进学生能力的全面提升。
4、教学内容
15.知识拓展与前沿技术:介绍51单片机在现实生活中的应用以及相关前沿技术,如物联网、智能家居等领域的应用,拓宽学生知识面。
51单片机课程设计
一、教学内容
本节“51单片机课程设计”依据八年级下册《信Байду номын сангаас技术》教材第四章“单片机控制”内容展开,主要包括以下知识点:
1. 51单片机的结构和原理:介绍51单片机的内部结构、工作原理及其各个组成部分的功能。
2. 51单片机的指令系统:列举常用的51单片机指令,如数据传送、逻辑运算、算术运算等。
3. 51单片机的I/O口编程:讲解如何通过编程控制51单片机的输入输出口,实现LED灯、蜂鸣器等器件的控制。
4. 51单片机的定时器/计数器:介绍定时器/计数器的工作原理和编程方法,实现精确的时间控制。
5. 51单片机的中断系统:讲述中断的概念、中断源以及中断编程方法,提高程序的响应速度。
6. 51单片机的外部扩展:探讨如何通过外部扩展,实现更多的功能,如扩展RAM、ROM、键盘、显示器等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于51单片机课程设计报告院系:电子通信工程团组:电子设计大赛1组姓名:指导老师:目录一、摘要 (3)二、系统方案的设计 (3)三、硬件资源 (5)四、硬件总体电路搭建 (13)五、程序流程图 (14)六、设计感想 (14)七、参考文献 (16)附录 (17)附录 1 程序代码 (17)一、摘要本设计以STC89C51单片机为核心的温度控制系统的工作原理和设计方法。
温度信号由温度芯片DS18B20采集,并以数字信号的方式传送给单片机。
文中介绍了该控制系统的硬件部分,包括:温度检测电路、温度控制电路。
单片机通过对信号进行相应处理,从而实现温度控制的目的。
文中还着重介绍了软件设计部分,在这里采用模块化结构,主要模块有:数码管显示程序、键盘扫描及按键处理程序、温度信号处理程序、led控制程序、超温报警程序。
关键词:STC89C51单片机 DS18B20温度芯片温度控制 ,LED报警提示.二、系统方案的设计1、设计要求基本功能:不加热时实时显示时间,并可手动设置时间;设定加热水温功能。
人工设定热水器烧水的温度,范围在20~70度之间,打开开关后,根据设定温度与水温确定是否加热,及何时停止加热,可实时显示温度;设定加热时间功能。
限定烧水时间,加热时间内超过温度上限或低于温度下限报警,并可实时显示温度。
2、系统设计的框架本课题设计的是一种以STC89C51单片机为主控制单元,以DS18B20为温度传感器的温度控制系统。
该控制系统可以实时存储相关的温度数据并记录当前的时间。
其主要包括:电源模块、温度测量及调理电路、键盘、数码管显示、指示灯、报警、继电器及单片机最小系统。
图1 系统设计框架3 工作原理温度传感器 DS18B20 从设备环境的不同位置采集温度,单片机STC8951获取采集的温度值,经处理后得到当前环境中一个比较稳定的温度值,再根据当前设定的温度上下限值,通过加热和降温对当前温度进行调整。
当采集的温度经处理后超过设定温度的上限时,单片机通过三极管驱动继电器开启降温设备(压缩制冷器) ,当采集的温度经处理后低于设定温度的下时 , 单片机通过三极管驱动继电器开启升温设备 (加热器) ,这里采用通过LED1和LED2取代!!!当由于环境温度变化太剧烈或由于加热或降温设备出现故障,或者温度传感头出现故障导致在一段时间内不能将环境温度调整到规定的温度限内的时候,单片机通过三极管驱动扬声器发出警笛声,这里采用HLLED提示。
三、硬件资源1、器件选择:1.51单片机一块STC89c51STC8951是一个低功耗,高性能CMOS 8位单片机,片内含8k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash 只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及STC8951引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,功能强大的微型计算机的STC8951可为许多嵌入式控制应用系统提供高性价比的解决方案。
STC8951具有如下特点:40个引脚,8k Bytes Flash片内程序存储器,128 bytes的随机存取数据存储器(RAM),32个外部双向输入/输出(I/O)口,5个中断优先级2层中断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信,片内时钟振荡器。
此外,STC8951设计和配置了振荡频率可为0Hz并可通过软件设置省电模式。
空闲模式下,CPU暂停工作,而RAM定时计数器,串行口,外中断系统可继续工作,掉电模式冻结振荡器而保存RAM的数据,停止芯片其它功能直至外中断激活或硬件复位。
同时该芯片还具有PDIP、TQFP和PLCC等三种封装形式,以适应不同产品的需求。
由于系统控制方案简单 ,数据量也不大 ,考虑到电路的简单和成本等因素 ,因此在本设计中选用STC8951单片机作为主控芯片。
主控模块采用单片机最小系统是由于STC8951芯片内含有8 kB的E2PROM ,无需外扩存储器 ,电路简单可靠 ,其时钟频率为 0~24MHz ,并且价格低廉 ,批量价在 10元以内。
其单片机的外围引脚有40个,分别是:第20脚和40脚分别是电源,即GND和Vcc;第9脚是复位脚RST;第18脚是时钟XTAL2脚,片内振荡电路的输出端;第19脚是时钟XTAL1脚,片内振荡电路的输入端;第29脚:~PSEN脚,当访问外部程序存储器时,此引脚输出负脉冲选通信号,PC的16位地址数据将出现在P0和P2口上;第30脚:ALE/~PROG,当访问外部数据存储器时,ALE(地址锁存)的输出用于锁存地址的低字节;第31脚:~EA/Vpp为程序存储器内外部选通信号;P0^0-P0^7.P1^0-P1^7.P2^0-P2^7.P3^0-P3^7.这32个引脚为数据的输出及输入引脚,即I/0口;单片机图如下:2、8位7段共阴数码管一个7段数码管一般由8个发光二极管组成,其中由7个细长的发光二极管组成数字显示,另外一个圆形的发光二极管显示小数点。
当发光二极管导通时,相应的一个点或一个笔画发光。
控制相应的二极管导通,就能显示出各种字符,尽管显示的字符形状有些失真,能显示的数符数量也有限,但其控制简单,使有也方便。
发光二极管的阳极连在一起的称为共阳极数码管,阴极连在一起的称为共阴极数码管,如图4.9所示。
共阴数码管共阴数码管的编码为:0x3F,0x0C,0x76,0x5E,0x4D,0x5B,0x7B,0x0E,0x7F,0x5F,0x6F,0x79,0x3 3,0x7C,0x73,0x630 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ,A , B, C, D, E, F3、温度显示DS18B20一个DS18B20采用3脚TO-92封装或8脚的SOIC封装,如图1所示。
各引脚的功能:GND为电压地;DQ为单数据总线;V为电源电压;NC为空引脚。
图1DS18B20引脚图DS18B20的DQ单数据总线与单片机P3.7连接,GND电压地、V电源电压分别和电压地和5伏直流电源连接。
本文设计的系统主机只对一个DS18B20进行操作,因此不需要读取ROM编码以及匹配ROM 编码,只要跳过ROM命令,就可以进行如下温度转换和读取操作。
(1)CCH—跳过ROM,直接向DS18B20发送温度变换命令。
(2)44H—读暂存器。
读内部RAM中9字节的温度数据。
(3)BEH—写暂存器。
发出向内部RAM的第2、3字节写上、下限温度数据命令,紧跟该命令之后,再传送两字节数据。
DS18B20在出厂时默认配置为12位,其中最高位为符号位,即温度值共11位,单片机在读取数据时,一次会读两字节共16位,读完后将低11位的二进制数转换为十进制后再乘以0.0625变为所测的温度值。
另外,还需要判断温度的正负。
前5个数字为符号位,这5位同时变化,我们只需判断11位就可以了。
前5位为1时,读取的温度为负值,且测到的数值需要取反再加一再乘以0.0625才可以得到实际的温度值。
前5位为0时,读取的温度为正值,只要将测得的数值乘以0.0625即可得到实际温度值。
由于提前给DS18B20赋了上限、下限值,所以当温度超过上限或者不足下限时,会伴有LED灯闪烁和蜂鸣器响作为警报。
4、按键在按下键时,实际情况下,都会出现抖动。
其直观图如下:按键消抖一般采用硬件和软件消抖两种方法。
硬件消抖是利用电路滤波的原理实现,软件消抖是通过按键延时来实现。
在微机系统中一般都采用软件延时的消抖方法,本文用的是软件延时的消抖方法。
5、74HC573锁存器高性能硅门 CMOS 器件SL74HC573 跟 LS/AL573 的管脚一样。
器件的输入是和标准CMOS 输出兼容的;加上拉电阻,他们能和 LS/ALSTTL 输出兼容。
当锁存使能端LE为高时,这些器件的锁存对于数据是透明的(也就是说输出同步)相当于图上的Dx-Qx相通,I/0口可以进行数据交换。
当锁存使能变低时,符合建立时间和保持时间的数据会被锁存。
在这里我们是将LE接高电平,把锁存器当作驱动器,驱动数码管的显示;6、晶振其晶振的运用,在这地方我们用的是12MHz,主要用在单片机的最小系统中,参照单片机最小系统图示;7.电阻.电容.导线等(一)单片机最小系统电路在课题设计的温度控制系统设计中,控制核心是STC89C52单片机,该单片机为51系列增强型8位单片机,它有32个I/O口,片内含4K FLASH工艺的程序存储器,便于用电的方式瞬间擦除和改写,而且价格便宜,其外部晶振为12MHz,一个指令周期为1μS。
使用该单片机完全可以完成设计任务,其最小系统主要包括:复位电路、震荡电路以及存储器选择模式(EA脚的高低电平选择),电路如下图2所示:图2 单片机最小系统(二)温度传感器电路采用一线制数字温度传感器DS18B20来作为本课题的温度传感器。
传感器输出信号进4.7K的上拉电阻直接接到单片机的P1.0引脚上。
DS18B20温度传感器是美国达拉斯(DALLAS)半导体公司推出的应用单总线技术的数字温度传感器。
该器件将半导体温敏器件、A/D转换器、存储器等做在一个很小的集成电路芯片上。
本设计中温度传感器之所以选择单线数字器件DS18B20,是在经过多方面比较和考虑后决定的,主要有以下几方面的原因:(1)系统的特性:测温范围为20℃~70℃,测温精度为士0.5℃;温度转换精度9~12位可变,能够直接将温度转换值以16位二进制数码的方式串行输出;12位精度转换的最大时间为750ms;可以通过数据线供电,具有超低功耗工作方式。
(2)系统成本:由于计算机技术和微电子技术的发展,新型大规模集成电路功能越来越强大,体积越来越小,而价格也越来越低。
一支DS18B20的体积与普通三极管相差无几,价格只有十元人民币左右。
(3)系统复杂度:由于DS18B20是单总线器件,微处理器与其接口时仅需占用1个I/O端口且一条总线上可以挂接几十个DS18B20,测温时无需任何外部元件,因此,与模拟传感器相比,可以大大减少接线的数量,降低系统的复杂度,减少工程的施工量。
(4)系统的调试和维护:由于引线的减少,使得系统接口大为简化,给系统的调试带来方便。
同时因为DS18B20是全数字元器件,故障率很低,抗干扰性强,因此,减少了系统的日常维护工作。
DS18B20温度传感器只有三根外引线:单线数据传输总线端口DQ ,外供电源线VDD,共用地线GND。
DS18B20有两种供电方式:一种为数据线供电方式,此时VDD接地,它是通过内部电容在空闲时从数据线获取能量,来完成温度转换,相应的完成温度转换的时间较长。
这种情况下,用单片机的一个I/O口来完成对DS18B20总线的上拉。