人教版小学三年级数学第1讲 加减法的巧算.doc
第1讲 巧算
4.解:
原式=20022002×1999-1999×10001×2002
=1999×(20022002-10001×2002)
=1999×0=0
5.解:
1993×1995×1997×1999积的末位数,等于这四个末位数的积的个位数。3×5×7×9积的个位数是5,同理1992×1994×1996×1998的积的末位数,等于这四个末位数的积的个位数,2×4×6×8的个位数是4。故1993×1995×1997×1999-1992×1994×1996×1998的差的末位是1。
思路剖析
此题目中加数的一个最大特点就是与整十、整百、整千、整万相差不大,那我们就先把它们凑成整十、整百、整千……的数,然后再进行计算,类似于给每个加数找了个基准数,这种方法叫做凑整法。
解答
8+98+998+9998+99998+999998
=(10+100+1000+10000+100000+1000000)-2×6
[例7]计算99999×22222+33333×33334
思路剖析
看到题目应联想到它相似于乘法分配律:(a+b)×c=a×c+b×c中等号的右边,但题目中缺少一个共同的“c”。若找到“c”我们就可以逆用乘法分配律来解决此问题。在寻找“c”的过程中,我们立足于变化其中一个算式,使之得到与另一算式共同的部分。从题目中易发现:可从33333×33334中变化得到99999。解法二中我们将尝试变化99999×22222,得到33333。
6.解:
原式=[(2000-1)×99+2000×100+2000-l+2000-2000+100]÷4000
第1讲 加减法的巧算
第1讲加减法的巧算在进行加减运算时,为了又快又准确,除了要熟练地掌握计算法则外,还需要掌握一些巧算方法。
加减法的巧算主要是“凑整”,就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千……的数,再将各组的结果求和。
这种“化零为整”的思想是加减法巧算的基础。
先讲加法的巧算。
加法具有以下两个运算律:加法交换律:两个数相加,交换加数的位置,它们的和不变。
即a+b=b+a,其中a,b各表示任意一数。
例如,5+6=6+5。
一般地,多个数相加,任意改变相加的次序,其和不变。
例如,a+b+c+d=d+b+a+c=…其中a,b,c,d各表示任意一数。
加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者,先把后两个数相加,再与第一个数相加,它们的和不变。
即a+b+c=(a+b)+c=a+(b+c),其中a,b,c各表示任意一数。
例如,4+9+7=(4+9)+7=4+(9+7)。
一般地,多个数(三个以上)相加,可先对其中几个数相加,再与其它数相加。
我们在进行计算时,要根据题目的具体情况灵活进行,选择合理的方法。
1.计算:(1)289+96 (2)64+2005(3)925-199 (4)487-302我们观察上面的算式可以发现:这几题参与运算的数中都有一个数接近整十、整百或整千,那么计算时,我们就可以根据这一特征,运用加减法的运算性质进行计算。
(1)中的96接近100,把96看作100来计算,这样就多加了4,最后再减去4,就得到正确的结果。
即:多加的要减去。
(2)中的接近,把看作来计算,这样就,最后再就得到正确的结果。
即:。
(3)中的接近,把看作来计算,这样就,最后再就得到正确的结果。
即:。
(4)中的接近,把看作来计算,这样就,最后再就得到正确的结果。
即:。
1计算:(1)276+1002接近,把看作来计算,这样就,最后再就得到正确的结果。
(2)985-398接近,把看作来计算,这样就,最后再就得到正确的结果。
第1讲 加减法巧算+讲义
第1讲加减法巧算【知识点汇总】加减法巧算原理:制造好算的数一、凑整:(1)如果两个数前面的符号相同,则将末位和为10的两个数放在一起算。
例如:−36和−164;36和164(2)如果两个数前面的符号不同,则将末位相同的两个数放在一起算。
例如:−36和136二、脱括号、添括号的原则:(1)括号前面是加号,脱去或添上括号不变号。
例如:36+(125+164)=36+125+164;136+(125−36)=136+125−36(2)括号前面是减号,脱去或添上括号变符号。
例如:136−(125+36)=136−125−36;164−(125−36)=164−125+36三、基准数法:(1)对于靠近整十整百整千的数,可以把这个数写成整十、整百、整千加上或者减去一个较小的数的形式。
例如:99+999+9999=(100−1)+(1000−1)+(10000−1)四、位置原理:例如:123+312+231−222=(1+3+2−2)×100+(2+1+3−2)×10+(3+2+1−2)×1【例1】(1)计算:73+119+231+69+381+17(2)计算:375−138+247−175+139−237【练习1】(1)计算:36+97+32+64+168+103(2)计算:2468−192+532+392−224+1234【例2】(1)计算:162−(162−135)−(35−19)(2)计算:163−(50−18)−(153−76)+(124−18)【练习2】(1)计算:123−(23−45)−(45−67)(2)计算:437−(200−83)+(63−53)【例3】(1)计算:280−24−76−65−35(2)计算:267−162+84−38−147+116【练习3】(1)计算:379−13−158−87−42(2)计算:981+145−181−323+55−77【例4】(1)计算:999+599+199(2)计算:1206−199−297−398【练习4】(1)计算:99+999+9999(2)计算:2345−299+398−1198【例5】计算:246+462+624−888【作业】1.计算:345+779+6552.计算:25−89+127+175+373+2893.计算:622−(357−78)−(600−457)4.计算:1001−97−396−2985.计算:3579−862−138−734+2346.计算:334+343+433−111。
三年级奥数第1讲:巧算加减
举一反三 5
(1) 962-(284+262) (3) 421+(279+195)
(2) 432-(154-168) (4) 812+(168-112)
(5) 823-(175+323)
(6) 538-(283-162)
去括号:括号前面是加号,去掉括号不变号,
括号前面是减号,去掉括号要变号。
举一反三 5
温故知新
872+284-272
224+499 =224+500-1 =724-1 =723
温故知新
516-198 =516-200+2 =316+2 =318
333-244-56 =333-(244+56) =333-300 =33
多加的数要减去,多减的数要加上,连减等于减和。
温故知新
某小组有6个人,他们的数学成绩分别为92分、90分、 88分、93分、91分、89分,求这个组的数学总成绩?
962-(284+262) 432-(154-168)
=962-284-262
=432-154+168
=(962-262)-284 =700-284
=416
=(432+168)-154 =600-154 =446
421+(279+195) =421+279+195 =(421+279)+195 =700+195 =895
=300-(73+27)
=300-100 =200
=1000-(90+80+20+10)
=1000-200 =800
举一反三 4
(1)425-172-28 =225 (2)573-142-58 =373
三年级小学数学奥数基础教程(全)
小学奥数基础教程(三年级)- 1 - 小学奥数基础教程(三年级)第1讲加减法的巧算第2讲横式数字谜(一)第3讲竖式数字谜(一)第4讲竖式数字谜(二)第5讲找规律(一)第6讲找规律(二)第7讲加减法应用题第8讲乘除法应用题第9讲平均数第10讲植树问题第11讲巧数图形第12讲巧求周长第13讲火柴棍游戏(一)第14讲火柴棍游戏(二)第15讲趣题巧解第16讲数阵图(一)第17讲数阵图(二)第18讲能被2,5整除的数的特征第19讲能被3整除的数的特征第20讲乘、除法的运算律和性质第21讲乘法中的巧算第22讲横式数字谜(二)第23讲竖式数字谜(三)第24讲和倍应用题第25讲差倍应用题第26讲和差应用题第27讲巧用矩形面积公式第28讲一笔画(一)第29讲一笔画(二)第30讲包含与排除第2讲横式数字谜(一)在一个数学式子(横式或竖式)中擦去部分数字,或用字母、文字来代替部分数字的不完整的算式或竖式,叫做数字谜题目.解数字谜题就是求出这些被擦去的数或用字母、文字代替的数的数值。
例如,求算式324+□=528中□所代表的数.根据“加数=和—另一个加数"知,□=582-324=258。
又如,求右竖式中字母A,B所代表的数字。
显然个位数相减时必须借位,所以,由12-B=5知,B=12-5=7;由A —1=3知,A=3+1=4.解数字谜问题既能增强数字运用能力,又能加深对运算的理解,还是培养和提高分析问题能力的有效方法。
这一讲介绍简单的算式(横式)数字谜的解法。
解横式数字谜,首先要熟知下面的运算规则:(1)一个加数+另一个加数=和;(2)被减数-减数=差;(3)被乘数×乘数=积;(4)被除数÷除数=商。
由它们推演还可以得到以下运算规则:由(1),得和-一个加数=另一个加数;其次,要熟悉数字运算和拆分。
例如,8可用加法拆分为8=0+8=1+7=2+6=3+5=4+4;24可用乘法拆分为24=1×24=2×12=3×8=4×6(两个数之积)=1×2×12=2×2×6=…(三个数之积)=1×2×2×6=2×2×2×3=…(四个数之积)例1下列算式中,□,○,△,☆,*各代表什么数?(1)□+5=13-6;(2)28—○=15+7;(3)3×△=54; (4)☆÷3=87;(5)56÷*=7。
第一讲巧算加减法
第一讲巧算加减法知识点透析与要求1、掌握加法巧算的方法2、掌握减法巧算的方法3、掌握分组凑整方法整体思想:凑整一、加法巧算1、找个位好朋友(1+9 2+8 3+7 4+6 5+5)方法:1)观察找到好朋友 2)带符号搬家 3)计算2、加补凑整/拆补凑整(适用于式子中找不到好朋友,但数字又很大的题目)3、基准数法(式子中所有加数都接近于同一个数,可以这个数为基准变加为乘)4添去括号凑整(加法直接添去,不变号)二、减法巧算1、打包法(适用于连减,打包后可利用加法巧算技巧的式子)2、消尾法(尾巴相同,可以抵消,往往需要先去括号)*减法添去括号要变号典型例题1、找好朋友2、加补凑整拆补凑整(拆小不拆大) 124+158+76 9+99+999 9+99+999=124+76+158 =10-1+100-1+1000-1 =1+1+7+99+999=200+158 =1110-3 =1+99+1+999+7=358 =1107 =11073、基准数法92+88+93+89+91+91+88+87+94+89=90+2+90-2+90+3+90-1+90+1+90+1+90-2+90-3+90+4+90-1=90×10+2=9024、添去括号凑整5、打包法(63+25+74)+(26+75+37) 200-20-1=63+37+25+75+74+26 =200-(20+18+23+20+19+21)=300 =200-(20+20-2+20+3+20+20-1+20+1)=200-(20×6+1)=796、消尾法7、混合运算(加减法巧算方法都可使用) 1358-(358+840) 818-271-18+64-29+36= =818-18+64+36-(271+29)=160 =800+100-300=600练习与思考。
(1)256+503 (2)327+798(3)379-297 (4)467-103(5)2497+183 (6)3498-4382.直接写出得数( 1 ) 376+174+24 (2)864+(673+136)+227(3)1324―875―125 (4)3842―1567―433―8423.计算下列各题。
三年级第1讲:巧算(一)
板书:
〈1〉110-79-21 〈2〉962-68+18
=110-〈79+21〉 =962-〈68-18〉
=110-100 =962-50
=10 =912
〈3〉73-〈23+19〉 〈4〉96-〈30-24〉
〈3〉82-〈22+29〉 〈4〉76-〈61-24〉
师:同学们,观察第一个式子,你发现了什么?
生:13和17可以凑成30。
师:第一个式子一共减去多少?
生:30。
师:很棒!13+17刚好凑成整十数,像这样连续减去几个数的减法运算,我们可
以加括号,把减去的几个数相加用括号括起来,这样我们又可以凑整简便
学题,相信学了这节课后我们同学也能向高斯一样算得又快又对!
〈板书课题:巧算 〈一〉〉
二、探索发现授课〈40分〉
〈一〉例题一:〈10分〉
计算:〈1〉96+15 〈2〉52+69
〈3〉786+14 〈4〉132+268
师:同学们发现这两个数有什么特点吗?
生:96接近100。
师:没错,96跟100很接近,再加4就是100。为了凑成100,可以把15拆成
运算了。同学们听明白了吗?
生:听明白了。
师:既然小朋友都听明白了,那第二题呢,仔细看,你找到可以凑整的数了吗?
生:53-23=30。
师:我们小朋友真是火眼金睛,一下就发现了53-23=30,刚好凑整,所以我们
可以把后面两个数用减法先算,这样就用括号括起来,就要把加号变成减
第1讲.加减法巧算.教师版.doc
第一讲:加减法巧算教学目标本讲知识点属于计算板块的部分,难度并不大。
要求学生熟记加减法运算规则和运算律,并在计算中运用凑整的技巧。
知识点拨一、基本运算律及公式㈠加法加法交换律:两个数相加,交换加数的位置,他们的和不变。
即:a+b=b+a其中a,b各表示任意一数.例如,7+8=8+7=15.总结:多个数相加,任意交换相加的次序,其和不变.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他们的和不变。
即:a+b+c=(a+b)+c=a+(b+c)其中a,b,c各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).总结:多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变。
㈡减法在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前面的运算符号“搬家”.例如:a-b-c=a-c-b,a-b+c=a+c-b,其中a,b,c各表示一个数.去括号时::如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符在加减法混合运算中,,去括号时在加减法混合运算中号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”.如:a+(b-c)=a+b-ca-(b+c)=a-b-ca-(b-c)=a-b+c在加、减法混合运算中,添括号时:如果添加的括号前面是“+”,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。
如:a+b-c=a+(b-c)a-b+c=a-(b-c)a-b-c=a-(b+c)二、加减法中的速算与巧算㈠凑整法凑整法就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千……的数再将各组的结果相加.①借数凑整法.有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整.②分组凑整法.把几个互为“补数”的减数先加起来,再从被减数中减去,或先减去那些与被减数有相同尾数的减数.“补数”就是两个数相加,如果恰好凑成整十、整百、整千……,就把其中的一个数叫做另一个数的“补数”.㈡找“基准数”法当几个数比较接近于某一整数的数相加时,选这个整数为“基准数”(要注意把多加的数减去,把少加的数加上)㈢数字拆分法根据位值原理将数字进行拆分,然后在凑整或者简单的提取公因数法进行计算。
数学思维三年级第一节 加减巧算
加减巧算知识要点:1、加减法的巧算主要是运用“凑整”的方法,把接近整十、整百、整千……的数看作所接近的整数来进行简算。
2、凑整之后,要根据“多加要减去,少加要再加,多减要加上,少减要再减”的原则进行处理。
3、结合加法交换律、加法结合律,减法的性质来进行凑整,从而简算。
例1、你有好办法迅速算出下面各题的结果吗?(1)199+74 (2)347+102(3)784-297 (4)1384-501练习1、简便计算。
(1)398+64 (2)336+502 (3)876-198 (4)2825-1003练习2、想一想,怎样计算最简便。
(1)903+297 (2)903-297练习3、你有好办法迅速算出下题的结果吗?502+499-398-97例2、你有好办法迅速算出下面各题的和吗?(1)83+78+80+77+84+79 (2)9999+999+99+9练习1、用简便方法计算下面各题的和。
(1)42+38+45+39+41+37 (2)66+57+65+53+60+59+62练习2、你能迅速写出结果吗?(1)99999+9999+999+99+9 (2)1999+199+19练习3、简便计算。
375+283+225+17例3、你有好办法计算下面各题吗?(1)487+321+113+479 (2)723-251+177(3)872+284-272 (4)537-142-58练习1、用简便方法计算下面各题。
(1)321+127+79+73 (2)89+123+11+177(3)235-125+65 (4)483+254-183(5)271+97-171 (6)425-172-28例4、计算下面各题。
(1)321+(279-155)(2)372-(54+72)(3)432-(154-68)练习1、用简便方法计算下面各题。
(1)421+(179-125)(2)375+(125-47)(3)812+(188-123)(4)785-(231+285)(5)523-(175+123)(6)328-(284-172)例5、计算:1000-81-19-82-18-83-17-84-16练习1、速算。
1加减法的巧算
加减法的巧算
掌握了速算的技巧,在工作和生活中的作用很大。
它不仅可以节省运算时间,更主要的是提高了我们的工作效率。
我们在进行速算时,要根据题目的具体情况灵活运用有关定律和法则,选择合理的方法。
下面介绍在整数加减法运算中常用的几种速算方法。
例题与方法
第一题:巧算下面各题
①36+87+64 ②99+136+101 ③1361+972+639+28
第二题:拆数补数
①188+873 ②548+996
第三题:减法中的巧算
①300-73-27 ②1000-90-80-20-10
第四题:巧算
①4723-(723+189)②2356-159-256
第五题:巧算
①506-397 ②323-189
③467+997 ④987-178-222-390
练习与思考
1计算:(1)2458+503 (2)574+798
2.计算:(1)956-597 (2)3475-308
3 用简便方法计算:
(1)783+25+175 (2)2803+(2178+5497)+4722 4. 计算: 999+99+9
作业:
1.计算下面各题,并口述解题思路。
(1)256+503 (2)327+798
(3)379-297 (4)467-103
2.直接写出得数
( 1 ) 376+174+24 *(2)864+(673+136)+227 (3)1324―875―125 *(4)3842―1567―433―842 3.计算:99999+9999+999+99+9。
三年级加减法巧算[终稿]
第一讲加减法巧算前言:在进行加减计算时,“先计算括号中的部分,再从左往右依次计算”是基本的运算法则。
但除此之外,还有许多运算技巧,熟练掌握各种运算技巧可以使你算得更快更准。
“凑整法”是最常用的巧算方法就是在计算时优先计算可以得到整十整百整千的部分,从而达到巧算的目的。
要想凑出整十,两个数的末位相加应该得0,这样的情况除了0+0外,还有1+9,2+8,3+7,4+6,5+5。
同学们在做题时要注意观察各个加数的个位,看能不能找到合适的凑法。
除了加法可以凑整外,减法也可以凑整,个位相同的两个数相减后便能得到整十的数。
在进行加减混合运算时,经常会遇到能够巧算的数不在一起的情况,这时候就需要通过调整运算顺序,把能巧算的放在一起先算。
但需要注意的是,在调整的过程中,每个数都必须带着自己左边的符号一起移动,这种调整可以形象的称“带符号搬家”。
如果搬家的是算式的第一个数,前面没有符号,在这个数之前添一个加号就可以。
例1 (1)计算:73+119+231+69+381+17;(2)计算:375—138+247—175+139—237.分析(1)通过个位凑十来配对,但其中以1和9结尾的部分都分别有两个,应该如何配对呢?(2)加法配对看末位,减法应该如何呢?练习1(1)计算:36+97+32+64+168+103;(2)计算:2468—192+532+392—224+1234.除了“带符号搬家”可以调整顺序外,“脱括号”与“添括号”也是改变运算顺序的常用手段,加减法计算中“脱括号”要遵循下面的规则:括号前面是加号,脱去括号不变符号;括号前面是减号,脱去括号变符号。
例 2 (1)计算:162—(162—135)—(35—19);(2)计算:163—(50—18)—(153—76)+(124—18)。
分析:去掉括号会怎么样呢?练习2(1)计算:123—(23—45)—(45—67);(2)计算:437—(200—83)+(63—53)。
奥数第一讲-三年级-加减法巧算
减法中的巧算
5、先减去那些与被减数有一样尾
数的减数
例5:巧算下面各题:
〔1〕4723-〔723+189〕 〔2〕2356-159-256
= 4723-723-189 = 4000-189 = 3811
= 2356-256-159 = 2100-159 = 1941
一起来找找好朋友 吧?
〔1〕3863-〔145+263〕 〔2〕175-89-75 〔3〕2543-410-43
= 187
〔2〕99 + 136+101
= 99+101+136 = 200 + 136 = 336
〔3〕972+639+28
= 972+28 +639 = 1000 + 639 = 1639
一起来找找好朋友 吧?
森林动物园里,有4个班级,每个 班级的学生数量分别是38人,47人, 52人和33人,请问学校里共有多少 名学生?
我们也来比一比吧!
2、两个数的和为100, 这两个数可能是多少? 11+89=100 33+67=100
63+37=100 45+55=100……
速算巧算方法一:补数凑整
什么叫“补数”
两个数相加,假设能 恰好凑成整十、整百、 整千、整万…,就把 其中的一个数叫做另
一个数的“补数”
你能说说下面式子中的补数吗
O(∩_∩)O
下课啦!
125+46+54
1、用简便方法求和:
①536+〔541+464〕+459
② 588+264+148
③ 8996+3458+7542 ④567+538+562+555+533
2、用简便方法求差: ① 1870-280-520 ② 4995-〔995-480〕 ③ 4250-294+94 ④ 1272-995
三年级奥数加减巧算
• 先讲加法的巧算.加法具有 以下两个运算律:
• 加法交换律:两个数相加,交换 加数的位置,它们的和不变.
•即
• a+b=b+a, • 其中a,b各表示任意数.例
如,5+6=6+5.
• 般地,多个数相加,任意改 变相加的次序,其和不变.例如,
• • a+b+c+d=d+b+a+c=…
• 其中a,b,c,d各表示任意数.
• 3397-146+288-339 • =397+3-3-146+288+12-12-
339
• =397+3+288+12-146+3+12 +339
• =400+300-500
• 练习1 • 巧算下列各题: • 1.42+71+24+29+58. • 2.43+38+45+55+62+57. • 3.698+784+158.
• 在连减或加、减混合运算中,如 果算式中没有括号,那么计算时 可以带着运算符号搬家.
• 例如, • a-b-c=a-c-b,a-b+c=
a+c-b, • 其中a,b,c各表示数.
• 在加、减法混合运算中,去括号时: 如果括号前面是+号,那么去掉括 号后,括号内的数的运算符号不变; 如果括号前面是-号,那么去掉括 号后,括号内的数的运算符号+变 为-,-变为+.
• 21350+49+68+51+32+1650 • =1350+49+68+51+32+1650 • =1350+1650+49+51+68+32 • =3000+100+100 • =3200.
• 例如,计算976+85,可在85中借 出24,即把85拆分成24+61,这 样就可以先用976加上24,凑成 1000,然后再加61.
第1讲加减法的巧算(2024)
引言概述:在数学学习中,加减法是最基础且常用的运算,掌握加减法的巧算方法可以提高计算速度和准确性。
本文将介绍第二部分的加减法巧算技巧,包括进位减法、补数法、拆位运算、近似运算和心算方法。
通过掌握这些巧算方法,可以更轻松地进行加减法运算,提高计算能力。
正文内容:一、进位减法1.进位减法的概念及原理2.进位减法的步骤和操作技巧3.进位减法的应用场景和实例分析4.进位减法的注意事项和常见错误5.进位减法在实际生活中的应用案例二、补数法1.补数法的基本原理和概念2.补数法的步骤和计算方法3.补数法的优势和应用场景4.补数法与进位减法的异同点分析5.补数法在计算机科学中的应用举例三、拆位运算1.拆位运算的定义和意义2.拆位运算的基本原理和策略3.拆位运算中的常用技巧和规则4.拆位运算的应用场景和实例分析5.拆位运算与其他巧算方法的综合应用案例四、近似运算1.近似运算的概念和使用背景2.近似运算的基本原理和方法3.近似运算的误差分析和风险控制4.近似运算在实际问题中的应用实例5.近似运算的优缺点及其适用范围五、心算方法1.心算方法的重要性和优势2.心算方法中的常用规则和技巧3.心算方法的培养和提高策略4.心算方法在日常生活中的应用举例5.心算方法与其他巧算方法的结合应用案例总结:加减法是数学学习中最基础的运算之一,在实际生活中也广泛应用。
通过学习和掌握进位减法、补数法、拆位运算、近似运算和心算方法这些巧算技巧,可以大大提高加减法的计算效率和准确性。
同时,巧算方法的灵活应用还能培养数学思维和逻辑推理能力,在日常生活中也能派上更多用场。
因此,加减法的巧算方法不仅在学习过程中有用,也为未来的工作和生活打下了坚实的基础。
三年级数学第1讲:加减法巧算
第1讲加减法巧算知识梳理【加减法的巧算】在进行加减运算时,为了又快又准确,除了要熟练掌握计算法则外,还需要掌握一些巧算方法。
加减法的巧算主要是“凑数”,就是将算式中的数分成若干组,使每组的运算结果都是整十、整百或整千……的数,再将每组的结果求和。
这种“化零为整”的思想是加减法巧算的基础。
【加法交换律】两个加数交换位置,和不变,这叫做加法交换律。
字母公式:a+b=b+a【加法结合律】先把前两个数相加,或先把后两个数相加,和不变叫做加法结合律。
字母公式:a+b+c=a+(b+c)=(a+b)+c【例题一】凑整法(1)23+54+18+47+82(2)(1350+49+68)+(51+32+1650)【例题二】借数凑整法(1)57+64+238+46(2)4993+3996+5997+848【例题三】分组凑整法(1)875-364+125-236 (2)1847-1928+628-136-64【例题四】加补凑整法(1)512-382 (2)6854-876-97【例题五】利用线段图解决问题(1)小玲家养了46只鸭子,24只鸡,养的鸡和鹅的总只数比养的鸭多5只。
小玲家养了多少只鹅?(2)一个筐里装着52个苹果,另一个筐里装着一些梨。
如果从梨筐里取走18个梨,那么梨就比苹果少12个。
原来梨筐里有多少个梨?(3)某校三年级一班为欢迎“手拉手”小朋友们的到来,买了若干糖果。
已知水果糖比小白兔软糖多15块,巧克力糖比水果糖多28块。
又知巧克力糖的块数恰好是小白兔软糖块数的2倍。
三年级一班共买了多少块糖果?巩固拓展一、计算:42+71+24+58+29 43+(38+45)+(55+62+57)698+784+158 3993+2996+7994+1354356+1287-356 526-73-27-264253-(253-158) 1457-(185+457)二、应用题:1、一桶柴油连桶称重120千克,用去一半柴油后,连桶称还重65千克。
三年级口算与速算
三年级口算与速算集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]第1讲:加减巧算专题分析:加减巧算主要是运用“凑整”的方法,把接近整十、整百、整千的数看做所接近的数进行简算。
凑整之后,对于原数与整十、整百、整千……相差的数,要根据“多加要减去,少加要加上,多减要加上,少减要减去”的原则进行处理。
另外,可结合加法交换律、结合律及减法性质凑整,从而达到简算目的。
例1:你有好办法迅速计算出结果吗?(1)502+799-298-97(2)9999+999+99+9【思路导航】先把接近整十、整百、整千的数看成整十、整百、整千数,再算“零头”,最后把两部分数合起来。
(1)502+799-298-97(2)9999+999+99+9=500+2+800-1-300+2-100+3=10000-1+1000-1+100-1+10-1=(500+800-300-100)+(2-1+2+3)=10000+1000+100+10-4=900+6=11110-4=906=11106例2:计算下面各题。
(1)487+321+113+479(2)723-251+177(3)872+284-272(4)537-142-58【思路导航】通过观察后,发现后几位数互补或相等,通过加减正好能凑成整十、整百、整千数。
(1)487+321+113+479(2)723-251+177=(487+113)+(321+479)=(723+177)-251=600+800=900-251=1400=649(3)872+284-272(4)537-142-58=872-272+284=537-(142+58)=600+284=537-200=884=337例3:计算下面各题。
(1)321+(279-155)(2)327-(54+72)(3)432-(154-68)【思路导航】通过观察,我们可以先去括号,再进行移位凑整计算。
第一讲 加减法巧算
第一讲加减法巧算例1(1)124+158+76=(124+76)+158=200+158=358(2)112+164+133+136+188=(112+188)+(164+136)+133=300+300+133=600+133=733(3)(134+37+55)+(63+866+25)=(134+866)+(37+63)+(55+25)=1000+100+80=1180例1都是加法,采用分组凑整法:把和为整十整百整千的两个数加在一起,再计算就简单很多啦。
注:(3)涉及了去括号添括号的问题这里面老师给你们一个口诀:“加法括号随意变”,意思就是一个算式中都是加法时,括号可以随意添,随意去,不影响题目结果。
例2 (1)586-47-53=586-(47+53)=586-100=486(2)528-36-28=528-28-36=500-36=464例2(1)(2)还是采用分组凑整法,这里面有一点要注意减法当中的整是怎么来的,减去一个数再减去一个数,可以把这两个数加在一起在减去,举个例子来帮助理解:有两包垃圾要丢的时候,先丢一包再丢一包比较麻烦,我们可以把两包垃圾打包在一起,一起丢掉,这个道理在我们的数学当中也是通用的哦。
注:这里面也涉及了添去括号的问题了,老师再送给大家一个口诀:“减法它是反动派,添去括号要变号”,就是说只要在减号后面添去括号,括号里面的符号都要变。
(3)853-148-53-52=800-200=600这道题运用了减法的分组凑整法,还用到一个同尾不同号的方法:1358和—358,尾巴相同都是358,符号不同,我们也把他们分在一组用减法凑整。
(4)1358-(358-840)=1358-358+840=1000+840=1840这道题就是一个减法去括号和同尾不同号的运用了。
例3(1)1518-571+71=1518-(571-71)=1518-500=1018(2)2985-(985+276)=2985-985-276=2000-276=1724(3)152+39-52=152-52+39=100+39=139(4)676+(521-276)=676-276+521=400+521=921例3全部都是加减混合的题型,这里有2句口诀:同尾不同号,同号要凑整。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲加减法的巧算
在进行加减运算时,为了又快又准确,除了要熟练地掌握计算法则外,还需要掌握一些巧算方法。
加减法的巧算主要是“凑整”,就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千……的数,再将各组的结果求和。
这种“化零为整”的思想是加减法巧算的基础。
先讲加法的巧算。
加法具有以下两个运算律:
加法交换律:两个数相加,交换加数的位置,它们的和不变。
即
a+b=b+a,
其中a,b各表示任意一数。
例如,5+6=6+5。
一般地,多个数相加,任意改变相加的次序,其和不变。
例如,
a+b+c+d=d+b+a+c=…
其中a,b,c,d各表示任意一数。
加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者,先把后两个数相加,再与第一个数相加,它们的和不变。
即
a+b+c=(a+b)+c=a+(b+c),
其中a,b,c各表示任意一数。
例如,
4+9+7=(4+9)+7=4+(9+7)。
一般地,多个数(三个以上)相加,可先对其中几个数相加,再与其它数相加。
把加法交换律与加法结合律综合起来应用,就得到加法的一些巧算方法。
1.凑整法
先把加在一起为整十、整百、整千……的加数加起来,然后再与其它的数相加。
例1计算:(1)23+54+18+47+82;
(2)(1350+49+68)+(51+32+1650)。
解:(1)23+54+18+47+82
=(23+47)+(18+82)+54
=70+100+54=224;
(2)(1350+49+68)+(51+32+1650)
=1350+49+68+51+32+1650
=(1350+1650)+(49+51)+(68+32)
=3000+100+100=3200。
2.借数凑整法
有些题目直观上凑整不明显,这时可“借数”凑整。
例如,计算976+85,可在85中借出24,即把85拆分成24+61,这样就可以先用976加上24,“凑”成1000,然后再加61。
例2计算:(1)57+64+238+46;
(2)4993+3996+5997+848。
解:(1)57+64+238+46
=57+(62+2)+238+(43+3)
=(57+43)+(62+238)+2+3
=100+300+2+3=405;
(2)4993+3996+5997+848
=4993+3996+5997+(7+4+3+834)
=(4993+7)+(3996+4)+(5997+3)+834
=5000+4000+6000+834=15834。
下面讲减法和加减法混合运算的巧算。
加、减法有如下一些重要性质:
(1)在连减或加、减混合运算中,如果算式中没有括号,那么计算时可以带着运算符号“搬家”。
例如,
a-b-c=a-c-b,a-b+c=a+c-b,
其中a,b,c各表示一数。
(2)在加、减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”。
例如,
a+(b-c)=a+b-c,
a-(b+c)=a-b-c,
a-(b-c)=a-b+c。
(3)在加、减法混合运算中,添括号时:如果添加的括号前面是“+”号,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”号,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。
例如,
a+b-c=a+(b-c),
a-b+c=a-(b-c),
a-b-c=a-(b+c)。
灵活运用这些性质,可得减法或加、减法混合计算的一些简便方法。
3.分组凑整法
例3计算:(1)875-364-236;
(2)1847-1928+628-136-64;
(3)1348-234-76+2234-48-24。
解:(1)875-364-236
=875-(364+236)
=875-600=275;
(2)1847-1928+628-136-64
=1847-(1928-628)-(136+64)
=1847-1300-200=347;
(3)1348-234-76+2234-48-24
=(1348-48)+(2234-234)-(76+24)
=1300+2000-100=3200。
4.加补凑整法
例4计算:(1)512-382;
(2)6854-876-97;
(3)397-146+288-339。
解:(1)512-382=(500+12)-(400-18)
=500+12-400+18
=(500-400)+(12+18)
=100+30=130;
(2)6854-876-97
=6854-(1000-124)-(100-3)
=6854-1000+124-100+3
=5854+24+3=5881;
(3)397-146+288-339
=397+3-3-146+288+12-12-339
=(397+3)+(288+12)-(146+3+12+339)
=400+300-500=200。
练习1巧算下列各题:
1.42+71+24+29+58。
2.43+(38+45)+(55+62+57)。
3.698+784+158。
4.3993+2996+7994+135。
5.4356+1287-356。
6.526-73-27-26。
7.4253-(253-158)。
8.1457-(185+457)。
9.389-497+234。
10.698-154+269+787。