北师大版八年级数学上册第二章测试题及答案《实数》(

合集下载

北师大版八年级上第2章《实数》练习题及答案解析

北师大版八年级上第2章《实数》练习题及答案解析

第二章实数2.1认识无理数专题无理数近似值的确定1. 设面积为3的正方形的边长为x,那么关于x的说法正确的是()A.x是有理数B.x取0和1之间的实数C.x不存在 D.x取1和2之间的实数2.(1)如图1,小明想剪一块面积为25cm2的正方形纸板,你能帮他求出正方形纸板的边长吗?(2)若小明想将两块边长都为3cm的正方形纸板沿对角线剪开,拼成如图2所示的一个大正方形,你能帮他求出这个大正方形的面积吗?它的边长是整数吗?若不是整数,那么请你估计这个边长的值在哪两个整数之间.3.你能估测一下我们教室的长、宽、高各是多少米吗?你能估测或实际测量一下数学课本的长、宽和厚度吗?请你再估算一下我们的教室能放下多少本数学书?这些数学书可供多少所像我们这样的学校的初一年级学生使用呢?请你对每一个问题给出估测的数据,再把估算的过程结果一一写出来.答案:1.D 【解析】 ∵面积为3的正方形的边长为x ,∴x 2=3,而12=1,22=4,∴1<x 2<4,∴1<x <2,故选D. 2.解:(1)边长为5cm.(2)设大正方形的边长为x ,∵大正方形的面积=32+32=18,而42=16,52=25,∴16<x 2<25,∴4<x <5,故正方形的边长不是整数,它的值在4和5之间.3.解:估算的过程:教室的长、宽、高可以用我们的身高估计出来;数学课本的长、宽和厚度可以用我们的手指估计出来,也可以用直尺测量出来;我们用长宽高相乘估计出教室的容积与课本的体积相除算出能放下多少本数学书,就是能供多少名学生使用,再用本班人数乘一年级班数估计本校一年级人数,然后相处就可以估计出这些数学书可供多少所像我们这样的学校的初一年级学生使用了.估测的数据、估算的结果略.2.2平方根专题一 非负数问题1. 若2(2)a +与1+b 互为相反数,则a b -的值为( )A .2B .21+C .21-D .12-2. 设a ,b ,c 都是实数,且满足(2-a )2+2a b c +++|c+8|=0,ax 2+bx+c=0,求式子x 2+2x 的算术平方根.3. 若实数x ,y ,z x 1y -2z -= 14(x+y+z+9),求xyz 的值.专题二 探究题 4. 研究下列算式,你会发现有什么规律?131⨯+=4 =2;241⨯+=9=3;351⨯+=16=4;461⨯+=25=5;…请你找出规律,并用公式表示出来.5.先观察下列等式,再回答下列问题: ①2211112++=1+ 11111-+- =112;②2211123++ =1+ 11221-+=116; ③2211134++=1+ 11331-+=1112. (1)请你根据上面三个等式提供的信息,猜想2211145++的结果,并验证; (2)请你按照上面各等式反映的规律,试写出用含n 的式子表示的等式(n 为正整数).答案:1.D 【解析】 ∵2(2)a +与|b+1|互为相反数,∴2(2)a ++|b+1|=0, ∴2+a =0且b+1=0, ∴a=2,b=﹣1,a b -=12-,故选D.2.解:由题意,得2-a=0,a 2+b+c=0,c+8=0. ∴a=2,c=-8,b=4. ∴2x 2+4x-8=0. ∴x 2+2x=4.∴式子x 2+2x 的算术平方根为2.3.解:将题中等式移项并将等号两边同乘以4得x-4x +y-41y -+z-42z -+9=0,∴(x-4x +4)+(y-1-41y -+4)+(z-2-42z -+4)=0, ∴(x-2)2+(1y --2)2+(2z --2)2=0,∴x-2=0且1y --2=0且2z --2=0, ∴x=21y -=2 2z -=2,∴x=4,y-1=4 ,z-2=4,∴x=4,y=5,z=6.∴xyz=120.4.解:第n 项a n =(2)1n n ++=2(1)n +=n+1,即a n =n+1. 5.解:(1)2211145++=1+ 11441-+=1120. 验证:2211145++=1111625++=25161400400++=441400=1120. (2)22111(1)n n +++=1+111n n -+=1+1(1)n n +(n 为正整数).2.3立方根专题 立方根探究性问题1. (1)填表:a 0.000001 0.001 1 1000 10000003a(2)由上表你发现了什么规律(请你用语言叙述出来);(3)根据发现的规律填空:①已知33=1.442,则33000=_____________;②已知30.000456=0.07696,则3456=_____________.2.观察下列各式:(1)223=223;(2)338=338;(3)4415=4415.探究1:判断上面各式是否成立.(1)________;(2)________;(3)________ .探究2:猜想5524= ________ .探究3:用含有n的式子将规律表示出来,说明n的取值范围,并用数学知识说明你所写式子的正确性.拓展:3227=2327,33326=33326,34463=43463,…根据观察上面各式的结构特点,归纳一个猜想,并验证你的猜想.答案:1.解:(1)直接开立方依次填入:0.01;0.1;1;10;100.(2)从表中发现被开方数小数点向右移动三位,立方根向右移动一位.(3)①14.42 ②7.6962.解:探究1:(1)成立 (2)成立 (3)成立 探究2:5524探究3:21n nn -=21nn n -(n≥2,且n 为整数).理由如下: 21n n n -=321n n n n -+-=221n n n ⨯-=21n n n -. 拓展:331n nn -=331n n n -.理由如下: 331n n n -=4331n n n n -+-=3331n n n ⨯-=331n n n -.2.4估算专题 比较无理数大小1. 设a=1003+997,b=1001+999,c=21001,则a ,b ,c 之间的大小关系是( )A .a >b >cB .a >c >bC .b >a >cD .c >b >a2. 观察下列一组等式,然后解答后面的问题:(2+1)(2-1)=1,(3+2 )(3- 2)=1,(4+3)(4-3)=1,(5+4)(5-4)=1…(1)观察上面的规律,计算下列式子的值. (121++132++143++…+ 120132012+)•( 2013+1).(2)利用上面的规律,试比较1211-与1312-的大小.3. 先填写下表,通过观察后再回答问题.问:(1)被开方数a 的小数点位置移动和它的算术平方根a 的小数点位置移动有无规律? 若有规律,请写出它的移动规律;(2)已知:a =1800,- 3.24 =-1.8,你能求出a 的值吗?(3)试比较a 与a 的大小.答案:1. D 【解析】 ∵a 2=2000+21003997⨯,b 2=2000+21001999⨯,c 2=4004=2000+2×1002,1003×997=1 000 000-9=999 991,1001×999=1 000 000-1=999 999,10022=1 004 004. ∴c >b >a .故选D .2.解:(1)由上面的解题规律可直接写出111n n n n=+-++,则(121++132++143++…+ 120132012+)•( 2013+1) =[(2-1)+ (3- 2)+(4-3)+…+(2013-2012)](2013+1) =( 2013-1) ( 2013+1) =.(2)∵11211-=1211+,11312-=1312+,又1211+<1312+,∴11211-<11312-, ∴1211->1312-.3.解:依次填:0.001,0.01,0.1,1,10,100,1000. (1)有规律,当被开方数的小数点每向左(或向右)移动2位,算术平方根的小数点向左(或向右)移动1位.(2)观察1.8和1800,小数点向右移动了3位,则a 的值为3.24的小数点向右移动6位,即a=3240000; (3)当0<a <1时,a >a ;当a=1或0时,a =a ;当a >1时,a <a .2.6实数专题 实数与数轴1.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画弧,交数轴于点A ,则点A 表示的数是( ) A .2 B .22 C .12 D .122.如图所示,直线L 表示地图上的一条直线型公路,其中A 、B 两点分别表示公路上第140公里处及第157公里处.若将直尺放在此地图上,使得刻度15,18的位置分别对准A ,B 两点,则此时刻度0的位置对准地图上公路的第( )公里处 A .17 B .55 C .72 D .853. 一个等腰直角三角形三角板沿着数轴正方向向前滚动,起始位置如图,顶点C 和A 在数轴上的位置表示的实数为-1和1.那么当顶点C 下一次落在数轴上时,所在的位置表示的实数是___________.4. 如图,已知A 、B 、C 三点分别对应数轴上的数a 、b 、c .(1)化简:|a-b|+|c-b|+|c-a|; (2)若a=4x y ,b=-z 2,c=-4mn .且满足x 与y 互为相反数,z 是绝对值最小的负整数,m 、n 互为倒数,试求98a+99b+100c 的值;(3)在(2)的条件下,在数轴上找一点D ,满足D 点表示的整数d 到点A ,C 的距离之和为10,并求出所有这些整数的和.答案:1.B 【解析】由勾股定理得:正方形的对角线为2,设点A表示的数为x,则2-x=2,解得x=2-2.故选B.2.B 【解析】根据题意,数轴上刻度15,18的位置分别对准A,B两点,而AB两点间距离157-140=17(公里),即数轴上的3个刻度对应实际17公里的距离.又有数轴上刻度0与15之间有15个刻度,故刻度0的位置对准地图上公路的位置距A点有15×173=85(公里), 140-85=55,故刻度0的位置对准地图上公路的55公里处.故选B.3.3+22【解析】在直角△ABC中,AC=CB=2,根据勾股定理可以得到AB=22,则当顶点C下一次落在数轴上时,所在的位置表示的实数是4+22-1=3+22.故答案为:3+22.4.解:(1)由数轴可知:a-b>0,c-b<0,c-a<0,所以原式=(a-b)-(c-b)-(c-a)=a-b-c+b-c+a=2a-2c.(2)由题意可知:x+y=0,z=-1,mn=1,所以a=0,b=-(-1)2=-1,c=-4,∴98a+99b+100c=-99-400=-499.(3)满足条件的D点表示的整数为-7、3,它们的和为-4.2.7二次根式专题一 与二次根式有关的规律探究题1.将1、2、3、6按如图所示的方式排列.若规定(m ,n )表示第m 排从左到右第n 个数,则(4,2)与(21,2)表示的两数之积是( )A.1B.2C. 23D.6 2. 观察下列各式及其验证过程:322322=+,验证:228222223333⨯+===. 333388+=,验证:2327333338888⨯+===.(1)按照上述两个等式及其验证过程,猜想1544+的变形结果并进行验证; (2)针对上述各式反映的规律,写出用a (a 为任意自然数,且2a ≥)表示的等式,并给出验证;(3)针对三次根式及n 次根式(n 为任意自然数,且2n ≥),有无上述类似的变形,如果有,写出用a (a 为任意自然数,且2a ≥)表示的等式,并给出验证.3. 阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=221)(+,善于思考的小明进行了以下探索:设a+b 2=22)(n m +(其中a 、b 、m 、n 均为正整数),则有a+b 2=m 2+2n 2+2mn 2, ∴a=m 2+2n 2,b=2mn.这样小明就找到了一种把部分a+b 2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若a +b 3=2)3(n m +,用含m 、n 的式子分别表示a 、b ,得:a = ,b = ;(2)利用所探索的结论,找一组正整数a 、b 、m 、n 填空: + 3 =( + 3)2;(3)若a +43=2)3(n m +,且a 、m 、n 均为正整数,求a 的值.专题二 利用二次根式的性质将代数式化简 4. 化简二次根式22a aa 的结果是( ) A.2a B.2a C. 2a D.2a5.如图,实数a .b 在数轴上的位置, 化简:222)(b a b a -+-.答案:1.D 【解析】 从图示中知道,(4,2)所表示的数是6.∵前20排共有1+2+3+4+…+20=210个数,∴(21,2)表示的是第210+2=212个数.∵这些数字按照1、2、3、6的顺序循环出现,212÷4=53,∴(21,2)表示的数是6.∴(4,2)与(21,2)表示的两数之积是666⨯=.2.解:(1)44441515+=.验证:24644444415151515⨯+===. (2)2211a a a a a a +=--(a 为任意自然数,且2a ≥). 验证:3322221111a a a a a aa aa a a a -++===----. (3)333311-=-+a a a a a a (a 为任意自然数,且2a ≥). 验证:33334433331111aa a aa aa aa a a a -++===----. 11nnn na aa a a a +=--(a 为任意自然数,且2a ≥). 验证:n n n n n n n n n n a a a a a a a a a a a a 111111-=-=-+-=-+++. 3. 解:(1)223n m + 2mn (2)21 12 3 2(3) ∵223n m a +=,4=2mn, ∴mn=2. ∵ m,n 为正整数,∴m=1,n=2或m=2,n=1, ∴a=13或a=7.4.B 【解析】若二次根式有意义,则22a a+-≥0,-a-2≥0,解得a≤-2,∴原式=2a a a=2a .故选B .5.解:由图知,a <0,b >0,∴a ﹣b <0,∴222)(b a b a -+-=|a |﹣|b |+|a ﹣b |=(﹣a )﹣b +(b ﹣a )=﹣2a .。

八年级数学上册第二章《实数》测试卷-北师大版(含答案)

八年级数学上册第二章《实数》测试卷-北师大版(含答案)

八年级数学上册第二章《实数》测试卷-北师大版(含答案)一、选择题(每题3分,共30分)1.在π,227,-3,38,3.14,0这些数中,无理数的个数是( )A .1B .2C .3D .4 2.下列各式中,无意义的是( )A .- 3B .-3C .3-3 D .(-3)2 3.下列计算错误的是( )A .8=2 2B .2-1=12 C .16=±4 D .|3-2|=2-3 4.与a 3b 不是同类二次根式的是( )A .ab2 B .b a C .1abD .b a 35.下列计算错误的是( )A .62×3=6 6B .27÷3=3C .32-2=3 2D .(2-3)(2+3)=1 6.当1<x <4时,化简(1-x )2-(x -4)2结果是( )A .-3B .3C .2x -5D .57.已知y =(x -4)2-x +5,当x 分别取1,2,3,…,2 022时,所对应y 值的总和是( )A .2 034B .2 033C .2 032D .2 031 8.已知a +b =4,ab =2,则a -b 的值为( )A .2 2B .2 3C .±2 2D .±2 39.将4块尺寸完全相同的长方形薄木板(薄木板如图,厚度忽略不计)进行拼摆,恰好可以不重叠地摆放在如图的甲、乙两个框内.已知薄木板的宽为2,图甲中阴影部分面积为19,则图乙中AD 的长为( )A .219+2B .19+4C .219+4D .19+210.正方形ABCD 在数轴上的位置如图所示,点A ,D 对应的数分别为1和0,若正方形ABCD 绕着顶点按顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2,则翻转2 022次后,数轴上数2 022对应的点是( ) A .D B .C C .B D .A 二、填空题(每题3分,共15分) 11.化简:32=________________,23=____________.12.计算3-64125的结果等于________________.13.已知a ,b 满足-()4+a 2=2 022||b -3,a 2+b 2的平方根为________. 14.对于任意两个不相等的数a ,b ,定义一种新运算“⊕”如下:a ⊕b =a +ba -b ,如:3⊕2=3+23-2=5,那么12⊕4=________. 15.观察下列各式:①223=2+23;②338=3+38;③4415=4+415;….根据这些等式反映的规律,若x 2 022y =x +2 022y ,则x 2-y =________.三、解答题(16题10分,17题7分,第18~21题每题8分,第22~23题每题13分,共75分)16.实数与数轴上的点一一对应,无理数也可以在数轴上表示出来.(1)如图1,点A表示的数是________;(2)如图2,直线l垂直数轴于表示4的点,请用尺规作出表示1-13的点(不写作法,保留作图痕迹).17.计算:(1)18+|3-8|-(3)2;(2)2+32-3-(3+6)(3-6).18.解方程:(1)9(x+2)2-64=0;(2)12(x +3)3=108.19.求代数式a+a2-2a+1的值,其中a=-2 022.小亮的解法为:原式=a+(1-a)2=a+1-a=1.小芳的解法为:原式=a+(1-a)2=a+a-1=-4 045.(1)________的解法是错误的;(2)求代数式a+2a2-6a+9的值,其中a=-2 022.20.已知m-15的平方根是±2,33+4n=3,求m+n的算术平方根.21.已知:如图.化简:a2-(a+b)2+(b-c)2+(a+c)2.22.阅读下面的内容:我们规定:用[x]表示实数x的整数部分,用<x>表示实数x的小数部分,如[3.14]=3,<3.14>=0.14;[2]=1,而大家知道2是无理数,无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2-1来表示2的小数部分,即<2>=2-1.事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是2的小数部分,又例如:∵22<(7)2<32,即2<7<3,∴[7]=2,<7>=7-2.请解答以下问题:(1)[11]=________,<11>=________;(2)如果<5>=a,[41]=b,求a+b-5的平方根.23.(5+2)(5-2)=1,a·a=a(a≥0),(b+1)(b-1)=b-1(b≥0)……像这样,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如,5与5,2+1与2-1,23+3与23-3等都互为有理化因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1)化简:233;(2)计算:12-3+13-2;(3)比较 2 023- 2 022与 2 022- 2 021的大小,并说明理由.参考答案一、1. B 2. B 3. C 4. A 5. D 6. C 7. A 8. C 9. C 10. C 二、11. 42;63 12. -45 13. ±19 14. 2 15. 1 三、16. 解:(1) 5(2)如图,点P 即为所求.17. 解:(1)原式=32+3-22-3=2.(2)原式=(2+3)2(2-3)×(2+3)-(9-6)=4+43+3-3=4+43.18. 解:(1)因为9(x +2)2-64=0,所以9(x +2)2=64, 所以(x +2)2=649, 所以x +2=±83, 所以x =23或x =-143. (2)因为12(x +3)3=108, 所以(x +3)3=216, 所以x +3=6,所以x =3. 19. 解:(1)小芳(2)a +2a 2-6a +9=a +2(a -3)2, 因为a =-2 022,所以a -3<0,所以原式=a +2(3-a )=a +6-2a =6-a =6-(-2 022)=6+2 022= 2 028,即代数式的值是2 028.20.解:因为m-15的平方根是±2,所以m-15=(±2)2,所以m=19.因为33+4n=3,所以3+4n=27,所以n=6.所以m+n的算术平方根为m+n=19+6=5.21.解:根据数轴可得a<0,a+b<0,b-c<0,a+c<0,所以原式=|a|-|a+b|+|b-c|+|a+c|=-a+a+b+c-b-a-c=-a.22.解:(1)3;11-3(2)因为2<5<3,6<41<7,且<5>=a,[41]=b,所以a=5-2,b=6,所以a+b-5=5-2+6-5=4,所以a+b-5的平方根是±2.23.解:(1)233=2×333×3=239.(2)12-3+13-2=2+3(2-3)×(2+3)+3+2(3-2)×(3+2)=2+3+3+2=2+23+2.(3) 2 023- 2 022< 2 022- 2 021.理由如下:因为 2 023- 2 022=12 023+ 2 022,2 022- 2 021=12 022+ 2 021,2 023+ 2 022> 2 022+ 2 021,所以 2 023- 2 022< 2 022- 2 021.。

北师大版八年级数学上册《第二章实数》测试卷-带答案

北师大版八年级数学上册《第二章实数》测试卷-带答案

北师大版八年级数学上册《第二章实数》测试卷-带答案学校班级姓名考号一、选择题1.下列式子中,属于最简二次根式的是()A.B.C.D.2.若成立,则x的值可以是()A.-2 B.0 C.2 D.33.下列运算正确的是()A.B.C.D.4.如图所示的数轴被墨迹污染了,则下列选项中可能被覆盖住的数是()A.B.﹣C.﹣D.﹣5.已知,且,则的值为()A.1 B.-7 C.-1 D.1或-76.是某三角形三边的长,则等于()A.B.C.10 D.47.已知,则代数式的值是()A.0 B.C.D.8.如图,长方形ABCD的边AD=2,AB=1,点A在数轴上对应的数是﹣1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则点E表示的数是()A.+1 B.﹣1 C.D.1﹣二、填空题9.写出一个在1到4之间的无理数.10.计算:.11.请写出一个正整数m的值使得是整数;.12.已知:,则.13.如果的小数部分为a,的整数部分为b,则的值为.三、计算题14.计算:(1)(2)15.已知:16.已知和.(1)求的值.(2)若x的整数部分是a,y的小数部分是b,求的值.17.已知某正数的两个平方根分别是和,的立方根为-3.(1)求的值.(2)求的立方根.18.我们知道无理数都可以化为无限不循环小数,所以的小数部分不可能全部写出来,若的整数部分为a,小数部分为b,则,且b<1.(1)的整数部分是,小数部分是;(2)若的整数部分为m,小数部分为n,求的值.参考答案:1.【答案】D2.【答案】B3.【答案】C4.【答案】B5.【答案】A6.【答案】D7.【答案】C8.【答案】B9.【答案】10.【答案】611.【答案】812.【答案】13.【答案】114.【答案】(1)原式=﹣()××=﹣=﹣1﹣=﹣1(2)原式=3﹣1﹣3+=﹣115.【答案】解:∴ . ∴原式=16.【答案】(1)解:.(2)解:∵∴∴x的整数部分是,y的小数部分是∴.17.【答案】(1)解:∵某正数的两个平方根分别是和∴∴∵的立方根为-3∴∴∴(2)解:当时∴的立方根为4.18.【答案】(1)4;(2)解:∵∴∴m=5,-5 ∴。

北师大版八年级数学上册第二章 实数测试题题(含答案)

北师大版八年级数学上册第二章 实数测试题题(含答案)

北师大版八年级数学上册第二章实数测试题(含答案)一、选择题(共10小题,每小题3跟,共30分)1.下列式子正确的是()A.√9=±3B.√−19=−13C.√(−2)2=2D.√−93=﹣32.下列说法正确的是()A.1的平方根是1B.负数没有立方根C.√81的算术平方根是3D.(−3)2的平方根是−33.下列计算正确的是()A.√4=±2B.√36=6C.√(−6)2=﹣6D.﹣√−83=﹣24.下列四个实数中,是无理数的为()A.0B.√2C.﹣2D.。

125.下列根式中是最简二次根式的是()A.B.C.D.6.如图所示,在数轴上表示实数√10的点可能是()A.点M B.点N C.点P D.点Q 7.给出下列数-2.010010001…,0 ,3.14,237,π,0.333….其中无理数有()个A.1B.2C.3D.48.下列命题正确的是()A.同旁内角互补B.一组数据的方差越大,这组数据波动性越大C.若∠α=72°55′,则∠α的补角为107°45'D.对角线互相垂直的四边形是菱形9.下列运算正确的是()A.√10÷√2=5B.(t−3)2=t2−9C.(−2ab2)2=4a2b4D.x2⋅x=x210.下列运算正确的是()A .√4 =±2B .(−14)−2=﹣16C .x 6÷x 3=x 2D .(2x 2)3=8x 6二、填空题(共5小题,每小题3分,共15分)11.函数y =√2−x x−1的自变量x 的取值范围是 .12.如果 √a −1 有意义,那么a 的取值范围是 .13.一个正数的两个平方根分别是m −4和5,则m 的立方根是 . 14.请写出一个正整数m 的值使得√8m 也是整数,则m 的最小值是 . 15.49的平方根是 ;27的立方根是 .三、解答题(第16题10分,第17-18题每题7分,第19-21每题9分,第22-23每题12分,满分75分)16.在平面直角坐标系中,点P (- √3 ,-1)到原点的距离是多少?17.方老师想设计一个长方形纸片,已知长方形的长是 √140π cm ,宽是 √35π cm ,他又想设计一个面积与其相等的圆,请你帮助方老师求出圆的半径.18.已知2a -1的平方根是±3,3a +b -9的立方根是2,c 是 √8 的整数部分,求a +b +c 的平方根. 19.有一道练习题:对于式子2a-√a 2−4a +4先化简,后求值,其中a=√2。

北师大版八年级上册数学第二章-实数练习题(带解析)

北师大版八年级上册数学第二章-实数练习题(带解析)

北师大版八年级上册数学第二章实数练习题(带解析)考试范围:xxx ;考试时间:100分钟;命题人:xxx题号一二三四<五总分得分[1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释评卷人得分.一、单选题(注释)1、下列各式计算正确的是A.B.(>)C.=、D.2、下列计算中,正确的是()A.B.C.5=5·D.=3a(3、实数a在数轴上的位置如图所示,则a,-a,,a2的大小关系是()A.a<-a<<a2B.-a<<a<a2 C.<a<a2<-a D.<a2<a<-a 4、下列各式中,计算正确的是()A.+=~B.2+=2C.a-b=(a-b)D.=+=2+3=55、在实数中,有()A.最大的数B.最小的数C.绝对值最大的数。

D.绝对值最小的数6、下列说法中正确的是()A.和数轴上一一对应的数是有理数B.数轴上的点可以表示所有的实数C.带根号的数都是无理数D.不带根号的数都不是无理数(7、一个正方形的草坪,面积为658平方米,问这个草坪的周长是()A.B.C.D.8、下列各组数,能作为三角形三条边的是()A.,,<B.,,C.,,D.,, 9、将,,用不等号连接起来为()A.<<B.<<C.<<@D.<<10、用计算器求结果为(保留四个有效数字)()A.B.±C.D.-!11、2nd x2 2 2 5 ) enter显示结果是()A.15B.±15C.-15D.25更多功能介绍、一个正方体的体积为28360立方厘米,正方体的棱长估计为()A.22厘米B.27厘米*C.厘米D.40厘米13、设=,=,下列关系中正确的是()A.a>b B.a≥b C.a<b D.a≤b-14、化简的结果为()A.-5B.5-C.--5D.不能确定15、在无理数,,,中,其中在与之间的有()^A.1个B.2个C.3个D.4个16、的算术平方根在()A.与之间B.与之间,C.与之间D.与之间17、下列说法中,正确的是()A.一个有理数的平方根有两个,它们互为相反数B.一个有理数的立方根,不是正数就是负数C.负数没有立方根D.如果一个数的立方根是这个数本身,那么这个数一定是-1,0,1。

八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)

八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)

八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)班级:姓名:座号:成绩:一、选择题(30 分)1. 16 的平方根是( )A.4B. ±42.下列各式正确的是( )A.√16 =±4B.±√16 =43. 下列各数中,为无理数的是( )22A. π B 一.74. 下列各数中的无理数是( )1A .0B .25. 下列说法正确的是( )A.所有无限小数都是无理数C.有理数都是有限小数6. 实数9 的算术平方根为( )A.3 B.士37. 下列根式中不是最简二次根式的是(A. √10B. √88. 下列变形正确的是( )C.8D. ±8 C.√(−4)2 =-4 D.3√−27 =-3C. 0D. -2 C. D.B.所有无理数都是无限小数D.不是有限小数就不是有理数C.士 3 D.士3)C.√6D.√2A.√(−16)(−25)= √−16 × √−25B.√161 = √16 × √1 =4×14 4 2C.√(−1) 2 =1D.√252 − 242 =25-24=13 39. 若最简二次根式√2x + 1和√4x − 3能合并,则x 的值为( )A.0.5B.1C.2D.2.510.若将−√2,√6,−√3,√11 四个无理数表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A . −√2B . √6C . −√3D . √113 8 5二、填空题(28 分)11. 16 的算术平方根是12. 比较大小: 4 3 713. 若已知 a 一3 + (b 一5)2 = 0 ,那么以a ,b 为边长的直角三角形的第三边长为.14. 请写出一个大于1且小于2的无理数:.15.若= 1 + 7 ,则的整数部分是,小数部分是.16. 计算: ( 4) 2-20220 =.17.如图,,,,是数轴上的四个点,这四个点中最适合表示7 的点是 .三、解答题18.计算:(4×4=16分)(1) ﹣2 (2) 8 + 32 一 2(3) (3 + 5)(2 一 5 )(4) (5 一3)219.再计算:(4×4=16分)(1)(2)27 一一2 3 一 3 x(2 一π)0+(一1)20222 3 (4) .20.还是计算:(4×4=16分)1 1(1) 20×(-3 48)÷ 2 (2) 12( 75+33- 48)(3) 27 ×3-182+8(4)√ ( − 3)2-(-1)2023 -(π-1)0+(|(21-121. 阅读下列材料:(6 分)∵√4< √7< √9,即 2 < √7 < 3 ,∴√7请你观察上述的规律后试解下面的问题:的整数部分为2,小数部分为√7 − 2 .如果√5 的小数部分为ᵄ, √13 的小数部分为ᵄ,求ᵄ + ᵄ−√5 的值.(3)22. 阅读理解:1已知a = ,求 2a 2 一 8a +1的值.2 一 3常a 一 2 = 3 .常 一 =,即 a 2 一 4a + 4 = 3 .常a 2 一 4a = 一1 .常2a 2 一 8a +1 = 2(a 2 一 4a) +1 = 2 x (一1) +1 = 一1 .请根据以上解答过程,解决如下问题:(8 分) 1 = .2 +11 3+2 3 (2 (1)计算:(2)计算:(a 2)2 3 1100 + 2 3 ;99 4 + 3 2 3 2 +1+…+ 2+ +11 ,1 +a = = = + 一一 3)(2 + 3)参考答案6 A11. 212. <13. 5 或 714. 2 ( 3 答案不唯一)15. 3 , 7 216. 317. P18. (1)1 (2) 5 2 (3)1 5 (4)28 10 319. (1)2 3 (2) 1 (3)1+ 2 2 (4)10 + 6 220. (1) 2 10 (2)12 (3)4 (4)521. 13 522. (1) 2 1(2) 910B3A 2D4C 7B5B8C9C1B。

北师大版八年级数学上册《第二章实数》单元测试题(含答案)

北师大版八年级数学上册《第二章实数》单元测试题(含答案)

第二章实数测试题一、选择题(每题3分,共30分)1.有一组数如下:-π,13,|-2|,4,7,39,0.808008…(相邻两个8之间0的个数逐次加1).其中无理数有( )A .4个B .5个C .6个D .7个2.下列说法中,正确说法的个数是( ) ①-64的立方根是-4; ②49的算术平方根是±7; ③127的立方根是13; ④116的平方根是14. A .1 B .2 C .3 D .43.下列各组数中,互为相反数的一组是( )A .-3与3-27 B .-3与(-3)2 C .-3与-13D .||-3与34.下列各式计算正确的是( )A .2+3= 5B .43-33=1C .23×33=6 3D .27÷3=35.下列各式中,无论x 为任何数都没有意义的是( )A .-7xB .-1999x3C .-0.1x2-1D .3-6x2-56.若a =15,则实数a 在数轴上的对应点P 的大致位置是( )图17.如图2是一数值转换机,若输出的结果为-32,则输入的x的值为( )图2A.-4B.4C.±4D.±58.若a,b均为正整数,且a>7,b>320,则a+b的最小值是( )A.6 B.5 C.4 D.39.实数a,b在数轴上所对应的点的位置如图3所示,且||a>||b,则化简a2-||a+b 的结果为( )图3A.2a+b B.-2a+bC.b D.2a-b10.已知x=2-3,则代数式(7+4 3)x2+(2+3)x+3的值是( )A.2+ 3 B.2- 3 C.0 D.7+4 3请将选择题答案填入下表:第Ⅱ卷 (非选择题 共70分)二、填空题(每题3分,共18分) 11.计算:252-242=________.图412.如图4,正方形ODBC 中,OC =1,OA =OB ,则数轴上点A 表示的数是________. 13.用计算器计算并比较大小:39________7.(填“>”“=”或“<”) 14.若|x -y|+y -2=0,则xy -3的值是________.15.若规定一种运算为a ★b =2(b -a),如3★5=2×(5-3)=22,则2★3=________.16.设a ,b 为非零实数,则a |a|+b2b所有可能的值为________. 三、解答题(共52分)17.(6分)实数a ,b 在数轴上所对应的点的位置如图5所示,试化简:a2-b2-(a -b )2.图518.(6分)计算:(1)()-62-25+(-3)2;(2)50×8-6×32;(3)(3+2-1)(3-2+1).19.(6分)已知a ,b 互为相反数,c ,d 互为倒数,x 是2的平方根,求5(a +b )a2+b2-2cd+x 的值.20.(6分)如果a 是100的算术平方根,b 是125的立方根,求a2+4b +1的平方根.21.(6分)某中学要在操场的一块长方形土地上进行绿化,已知这块长方形土地的长为510 m ,宽为415 m .(1)求该长方形土地的面积(精确到0.1 m 2);(2)如果绿化该长方形土地每平方米的造价为180元,那么绿化该长方形土地所需资金约为多少元?22.(6分)如图6所示,某地有一地下工程,其底面是正方形,面积为405 m2,四个角是面积为5 m2的小正方形渗水坑,根据这些条件如何求a的值?与你的同伴进行交流.图6下面是小康提供的解题方案,根据解题方案请你完成本题的解答过程:①设大正方形的边长为x m,小正方形的边长为y m,那么根据题意可列出关于x的方程为__________,关于y的方程为__________;②利用平方根的意义,可求得x=________(取正值,结果保留根号),y=________(取正值,结果保留根号);③所以a=x-2y=____________=__________(结果保留根号);④答:________________________.23.(8分)如图7,在Rt△OA1A2中,∠A1=90°,OA1=A1A2=1,以OA2为直角边向外作直角三角形,…,使A1A2=A2A3=A3A4=…=A n-1A n=1.(1)计算OA2和OA3的长;(2)猜想OA75的长(结果化到最简);(3)请你用类似的思路和方法在数轴上画出表示-3和10的点.图724.(8分)先阅读材料,再回答问题:因为(2-1)(2+1)=1,所以12+1=2-1;因为(3-2)(3+2)=1,所以13+2=3-2;因为(4-3)(4+3)=1,所以14+3=4- 3.依次类推,你会发现什么规律?请用你发现的规律计算式子12+1+13+2+…+1100+99的值.答案1.A 2.B 3.B 4.D 5.C 6.B 7.C 8.A 9.C 10.A 11.7 12.-213.< 14.1215.6-2 16.±2,017.解:由数轴易知a <0,b >0,|a |<|b |, 所以原式=-a -b -(b -a )=-2b . 18.解:(1)原式=6-5+3=4.(2)原式=5 2×2 2-3 22=20-3=17. (3)(3+2-1)(3-2+1)=[]3+(2-1)[]3-(2-1) =3-(2-1)2=3-3+2 2 =2 2.19.解:由题意知a +b =0,cd =1,x =±2. 当x =2时,原式=-2+2=0; 当x =-2时,原式=-2-2=-2 2, 故原式的值为0或-2 2.20.[解析] 先根据算术平方根、立方根的定义求得a ,b 的值,再代入所求代数式即可计算.解:因为a 是100的算术平方根,b 是125的立方根, 所以a =10,b =5,所以a2+4b+1=121,所以a2+4b+11=11,所以a2+4b+11的平方根为±11.21.[解析] (1)根据这块长方形土地的长为5 10 m,宽为415 m,直接得出面积即可;(2)利用绿化该长方形土地每平方米的造价为180元,即可求出绿化该长方形土地所需资金.解:(1)该长方形土地的面积为510×415=100 6≈244.9(m2).(2)因为绿化该长方形土地每平方米的造价为180元,所以180×244.9=44082(元).答:绿化该长方形土地所需资金约为44082元.22.解:①x2=405 y2=5②9 55③9 5-2 57 5④a的值为7 523.解:(1)OA2=12+12=2,OA3=()22+12=3.(2)OA75=75=5 3.(3)如图所示:24.解:规律:当n是正整数时,1n+1+n=n+1-n,故12+1+13+2+…+1100+99=(2-1)+(3-2)+…+(100-99)=100-1=9.。

北师大版八年级上册数学第二章 实数含答案

北师大版八年级上册数学第二章 实数含答案

北师大版八年级上册数学第二章实数含答案一、单选题(共15题,共计45分)1、估算的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间2、下列说法正确的是()A.9 的平方根是 3B.无限小数都是无理数C. 是分数D.任何数都有立方根3、下列各式化简后的结果为3 的是()A. B. C. D.4、下列说法正确的是()A.﹣是无理数B.若a 2=3,则a是3的平方根,且a是无理数C.9的算术平方根是D.无限小数都是无理数5、下列说法错误的是()A.0的平方根是0B. 的算术平方根是C. 的立方根是4 D.-2是4的平方根6、下列说法中,不正确的是( )A.10的立方根是B.-2是4的一个平方根C. 的平方根是D.0.01的算术平方根是0.17、下列各数是无理数的是()A.﹣2B.C.0.010010001D.π8、下列实数中的无理数是()A.0.7B.C.πD.﹣89、4的平方根是()A.4B.±4C.±2D.210、下列实数是无理数是( )A. B.2 -2 C. D.sin45°11、命题:①实数和数轴上的点一一对应;②不带根号的数一定是有理数;③1的平方根与立方根都是1;④;⑤的算术平方根是9.其中真命题有().A.1个B.2个C.3个D.4个12、下列说法中错误的有( )①一个无理数与一个有理数的和是无理数②一个无理数与一个有理数的积是无理数③两个无理数和是无理数④两个无理数积是无理数.A.1个B.2个C.3个D.4个13、下列说法错误的是()A. 与相等B. 与互为相反数C. 与互为相反数 D. 与互为相反数14、16的平方根是()A. ±2B.±4C.4D.±815、要使,的取值为( )。A.m≤4B.m≥ 4C.0≤m≤4D.一切实数二、填空题(共10题,共计30分)16、把5的平方根和立方根按从小到大的顺序排列为________.17、的平方根是________.18、化简:的结果是________.19、如图,在长方形 ABCD 内,两个小正方形的面积分别为 1,2,则图中阴影部分的面积等于________.20、下列各数:、、π、﹣、、0.101001…中是无理数的有________21、已知x+y=﹣5,xy=4,则+ =________.22、已知的整数部分为a,小数部分为b,则a﹣2b=________.23、在函数y=+(x﹣3)0中自变量x的取值范围是________.24、(3+ )(3﹣)=________.25、在数轴上表示实数a的点如图所示,化简+|a﹣2|的结果为________.三、解答题(共5题,共计25分)26、计算:|﹣|+(2016﹣π)0﹣2sin45°+( )﹣2.27、一个数的算术平方根为2M-6,平方根为±(M-2),求这个数.28、已知 2a﹣1 的平方根是±3,b﹣3 的立方根是 2,求的值.29、a、b为实数,在数轴上的位置如图,求|a﹣b|+ 的值.30、阅读理解∵,即2< <3,∴1< -1<2,∴-1的整数部分为1,小数部分为-2.解决问题:已知a是的整数部分,b是的小数部分,求(-a)3+(b+4)2的平方根.参考答案一、单选题(共15题,共计45分)1、D2、D3、C4、B5、C6、C7、D8、C9、C10、D11、A12、C14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、。

(北师大版)北京市八年级数学上册第二单元《实数》测试题(答案解析)

(北师大版)北京市八年级数学上册第二单元《实数》测试题(答案解析)

一、选择题1.计算132252⨯+⨯的结果估计在( ) A .10到11之间 B .9到10之间C .8到9之间D .7到8之间 2.将尺寸如图的4块完全相同的长方形薄木块(厚度忽略不计)进行拼摆,恰好可以不重叠地摆放在如图的甲、乙两个方框内.已知小木块的宽为2,图甲中阴影部分面积为19,则图乙中AD 的长为( )A .2192+B .194+C .2194+D .192+ 3.如图,长方形ABCD 中,43,4AB BC ==,点E 是DC 边上的动点,现将BCE 沿直线BE 折叠,使点C 落在点F 处,则点D 到点F 的最短距离为( )A .5B .4C .3D .24.下列选项中,属于无理数的是( )A .πB .227-C 4D .05.下列各数中,介于6和7之间的数是( ) A 72+ B 45 C 472 D 356.下列运算中正确的是( )A 623=B .233363+=C 826=D .221)3-= 7.计算))202020203232⨯的结果为( ) A .-1B .0C .1D .±1 8.已知||3a =,216b =,且0a b +<,则代数式-a b 的值为( ) A .-1或-7 B .1或-7 C .1或7 D .±1或7±9.下列数中,比3大的实数是( ) A .﹣5 B .0 C .3 D .210.已知三角形的三边长a 、b 、c 满足2(2)a -+ 3b -+|c -7|=0,则三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .不能确定 11.下列说法正确的是( ) A .4的平方根是2B .16的平方根是±4C .-36的算术平方根是6D .25的平方根是±512.已知x =5+2,则代数式x 2﹣x ﹣2的值为( )A .9+55B .9+35C .5+55D .5+35二、填空题13.实数a 、b 在数轴上所对应的点如图所示,则|3﹣b |+|a +3|+2a 的值_____.14.若202120212a b -++=,其中a ,b 均为整数,则符合题意的有序数对(),a b 的组数是______.15.计算:23-=______ ;364=______.16.如图,设AB 是已知线段,经过点B 作BD AB ⊥,使12BD AB =,连接DA ,在DA 上截取DE DB =;在AB 上截取AC AE =.点C 就是线段AB 的黄金分割点.已知线段AB 的长为80cm ,则线段AC 的长为____cm .17.如图,已知OA OB =,若点A 对应的数是a ,则a 与52-的大小关系是a ____52-.18.如图,已知圆柱体底面圆的半径为a π,高为2,AB CD 、分别是两底面的直径,,AD BC 是母线.若一只蚂蚁从A 点出发,从侧面爬行到C 点,则蚂蚁爬行的最短路线的长度是_____.(结果保留根式)19.若2(1)10a b -++=,则20132014a b +=___________. 20.有一列数3,6,3,23,15,,则第100个数是_______.三、解答题21.化简求值:21a,21b =+,求1a b b a ++的值. 22.计算:(1)8a 6÷2a 2﹣4a 3•3a ﹣(4a 2)2;(2)(312﹣21483+)÷23. 23.(1)计算:①27123+;②(23+32)(23 -32).(2)解方程:①4(x -1)2-9 =0;②8x 3+125=0.24.(1)计算:(23)(23)123+-+÷;(2)解方程组:1327x y x y +=-⎧⎨-=⎩. 25.计算:(1)316132722581------ .(2)2433(32)()x x x x x x ⋅---÷-(). 26.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.例如222÷÷,记作2③,读作“2的圈3次方”;再例如(3)(3)(3)(3)-÷-÷-÷-,记作()3-④,读作“3-的圈4次方”;一般地,把n a a a a a ÷÷÷⋅⋅⋅÷个(0a ≠,n 为大于等于2的整数)记作,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:7=③_______________,14⎛⎫-= ⎪⎝⎭⑤__________; (2)关于除方,下列说法错误的是____________;A .任何非零数的圈2次方都等于1;B .对于任何大于等于2的整数c ,;C .89=⑨⑧;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?除方211112222222222⎛⎫→=÷÷÷=⨯⨯⨯=→ ⎪⎝⎭④乘方幂的形式 (1)仿照上面的算式,将下列运算结果直接写成幂的形式:(5)-=⑥___________;12⎛⎫= ⎪⎝⎭⑨___________; (2)将一个非零有理数a 的圈n 次方写成幂的形式为____________;(3)将(m 为大于等于2的整数)写成幂的形式为_________.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先根据二次根式的乘法计算得到原式为41010的范围,即可得出答案.【详解】解:原式1322516104102=⨯⨯== ∵3104<<,∴74108<<,故选:D .【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.解析:C【分析】设木块的长为x ,结合图形知阴影部分的边长为x-2,根据其面积为19得出(x-2)2=19,利用平方根的定义求出符合题意的x 的值,由AD=2x 可得答案.【详解】解:设木块的长为x ,根据题意,知:(x-2)2=19, 则219x -=±,∴219x =+或2192x =-<(舍去)则22194BC x ==+,故选:C .【点睛】本题主要考查算术平方根,解题的关键是结合图形得出木块长、宽与阴影部分面积间的关系.3.B解析:B【分析】连接DB ,DF ,根据三角形三边关系可得DF+BF >DB ,得到当F 在线段DB 上时,点D 到点F 的距离最短,根据勾股定理计算即可.【详解】解:连接DB ,DF ,在△FDB 中,DF+BF >DB ,由折叠的性质可知,FB=CB=4,∴当F 在线段DB 上时,点D 到点F 的距离最短,在Rt △DCB 中,228BD DC BC +=,此时DF=8-4=4,故选:B .【点睛】本题考查的是翻转变换的性质,勾股定理,三角形三边关系.翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解析:A【分析】根据无理数是无限不循环小数,可得答案.【详解】解:A.π是无理数; B.227-是分数,属于有理数;是整数,属于有理数;D.0是整数,属于有理数.故选:A .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式. 5.B解析:B【分析】根据夹逼法逐项判断即得答案.【详解】解:A 、47<<425∴<<,故本选项不符合题意;B 、∵<<67∴<<,故本选项符合题意;C 、36<425∴<<,故本选项不符合题意;D 、25<<56∴<<,故本选项不符合题意.故选:B .【点睛】本题考查了无理数的估算,属于常考题型,掌握夹逼法解答的方法是关键.6.A解析:A【分析】根据二次根式的除法法则对A 进行判断;根据二次根式的加减法对B 、C 进行判断;利用二次根式的乘法法则对D 进行判断.【详解】A =B 、=C ==D 、221)11=-=,原计算错误,不符合题意;故选:A .【点睛】本题考查了二次根式的加减乘除运算,解题的关键是熟悉二次根式的四则运算方法. 7.C解析:C【分析】利用二次根式的运算法则进行计算,即可得出结论.【详解】解:))2020202022⨯ 202022)⎡⎤⎦⎣=2020222⎡⎤=-⎣⎦ 2020(1)=-1=.故选:C .【点睛】本题考查了二次根式的运算,熟练掌握二次根式的运算法则,并能结合乘法公式进行简便运算是解答此题的关键.8.C解析:C【分析】分别求出a 与b 的值,再利用0a b +<这一条件判断出a 、b 的值,进而分情况讨论即可解题.【详解】 解 ||3a =,216b =,3,4a b ∴=±=±,0a b +<,3,4a b ∴==-或3,4a b =-=-,7a b ∴-=或1,故选C .【点睛】本题考查了去绝对值和求平方根,正确的确定a 、b 的值是解答本题的关键.9.C解析:C【详解】1.732≈ ,A,B,D 选项都比1.732小,只有故选C.10.C解析:C【分析】根据非负数的性质可知a ,b ,c 的值,再由勾股定理的逆定理即可判断三角形为直角三角形.【详解】解:()220a c -+-=∴ 0a =,30b -= , 0c =∴a =,3b = ,c =又∵ 222279a c b +=+==∴该三角形为直角三角形故选C .【点睛】本题考查了非负数的性质及勾股定理的逆定理,解题的关键是解出a ,b ,c 的值,并正确运用勾股定理的逆定理.11.D解析:D【分析】 根据平方根和算术平方根的定义判断即可.【详解】解:A. 4的平方根是±2,故错误,不符合题意;±2,故错误,不符合题意;C. -36没有算术平方根,故错误,不符合题意;D. 25的平方根是±5,故正确,符合题意;故选:D .【点睛】本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断. 12.D解析:D【分析】把已知条件变形得到x 2=4x+1,利用降次的方法得到原式=3x-1,然后把 x 的值代入计算即可.【详解】∵x,∴x﹣2∴(x ﹣2)2=5,即x 2﹣4x +4=5,∴x 2=4x +1,∴x 2﹣x ﹣2=4x +1﹣x ﹣2=3x ﹣1,当x 时,原式=3)﹣1=.故选:D .【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值,运用整体代入的方法可简化计算.二、填空题13.﹣2a ﹣b 【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案【详解】解:由数轴可得:a <﹣0<b <故|﹣b|+|a+|+=﹣b ﹣(a+)﹣a =﹣b ﹣a ﹣﹣a =﹣2a ﹣b 故答案为:﹣2a ﹣b 【解析:﹣2a ﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【详解】解:由数轴可得:a 0<b ,故﹣b |+|ab ﹣(a )﹣ab ﹣a ﹣a=﹣2a ﹣b .故答案为:﹣2a ﹣b .【点睛】此题主要考查了实数的运算以及实数与数轴,正确化简各式是解题关键.14.5【分析】由绝对值和算术平方根的非负性求出ab 所有的可能值即可得到答案【详解】解:∵且均为整数又∵∴可分为以下几种情况:①解得:;②解得:或;③解得:或;∴符合题意的有序数对共由5组;故答案为:5【 解析:5【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案.【详解】解:∵20212a -=,且a ,b 均为整数,又∵20210a -≥0≥,∴可分为以下几种情况:①20210a -=2=,解得:2021a =,2017b =-;②20211a -=1=,解得:2020a =或2022a =,2020b =-;③20212a -=0=解得:2019a =或2023a =,2021b =-;∴符合题意的有序数对(),a b 共由5组;故答案为:5.【点睛】本题考查了绝对值的非负性,算术平方根的非负性,解题的关键是掌握非负的性质进行解题.15.-94【分析】分别根据乘方和开方的意义即可求解【详解】解::-9故答案为:-9;4【点睛】本题考查了乘方和开方的意义理解乘方和开方的意义是解题关键注意在计算-32时底数为3解析:-9 4【分析】分别根据乘方和开方的意义即可求解.【详解】解::23-=-94=.故答案为:-9;4.【点睛】本题考查了乘方和开方的意义,理解乘方和开方的意义是解题关键,注意在计算-32时,底数为3.16.【分析】根据通过勾股定理计算得AD ;结合计算得AE 从而得到AC 的值即可得到答案【详解】∵∴∵的长为80cm ∴cm ∴cm ∵∴cm ∴cm ∴cm 故答案为:【点睛】本题考查了勾股定理二次根式线段和与差的知识解析:)401 【分析】 根据BD AB ⊥、12BD AB =,通过勾股定理计算得AD ;结合DE DB =,计算得AE ,从而得到AC 的值,即可得到答案.【详解】∵BD AB ⊥ ∴90ABD ∠= ∵12BD AB =,AB 的长为80cm ∴40BD =cm∴AD ==cm∵DE DB =∴40DE =cm∴)401AE AD DE =-=cm∴)401AC AE ==cm故答案为:)401. 【点睛】本题考查了勾股定理、二次根式、线段和与差的知识;解题的关键是熟练掌握勾股定理和二次根式的性质,从而完成求解. 17.>【分析】根据勾股定理求出OB 长确定点A 表示的数再用估算法比较大小即可【详解】解:由图可知∴则点A 表示的数为∵∴∴故答案为:>【点睛】本题考查了勾股定理实数在数轴上的表示和实数大小的比较熟练的运用勾 解析:>【分析】根据勾股定理求出OB 长,确定点A 表示的数,再用估算法比较大小即可.【详解】解:由图可知,OB = ∴OA OB ==A 表示的数为∵225()2<,∴52<,∴52>-, 故答案为:>.【点睛】 本题考查了勾股定理、实数在数轴上的表示和实数大小的比较,熟练的运用勾股定理求出OB 长,确定A 点表示的数,能够利用算术平方根与被开方数大小之间的关系是解题关键.18.【分析】要求一只蚂蚁从A 点出发从侧面爬行到C 点蚂蚁爬行的最短路线利用在圆柱侧面展开图中线段AC 的长度即为所求【详解】解:圆柱的展开图如下在圆柱侧面展开图中线段AC 的长度即为所求在Rt △ABC 中AB=【分析】要求一只蚂蚁从A 点出发,从侧面爬行到C 点,蚂蚁爬行的最短路线,利用在圆柱侧面展开图中,线段AC 的长度即为所求.【详解】解:圆柱的展开图如下,在圆柱侧面展开图中,线段AC 的长度即为所求,在Rt △ABC 中,AB=π•a π=a ,BC=2,则:2222=+=4AC AB BC a +,所以2+4a 2+4a 2+4a .【点睛】本题以圆柱为载体,考查旋转表面上的最短距离,解题的关键是利用圆柱侧面展开图. 19.2【分析】先根据算术平方根的非负性绝对值的非负性求出ab 的值再代入计算有理数的乘方运算即可得【详解】由算术平方根的非负性绝对值的非负性得:解得则故答案为:2【点睛】本题考查了算术平方根的非负性绝对值 解析:2【分析】先根据算术平方根的非负性、绝对值的非负性求出a 、b 的值,再代入计算有理数的乘方运算即可得.【详解】由算术平方根的非负性、绝对值的非负性得:10a -=,10b +=,解得1a =,1b =-,则()201420132014201311112a b +=+-=+=,故答案为:2.【点睛】本题考查了算术平方根的非负性、绝对值的非负性、有理数的乘方,熟练掌握算术平方根和绝对值的非负性是解题关键. 20.【分析】原来的一列数即为于是可得第n 个数是进而可得答案【详解】解:原来的一列数即为:∴第100个数是故答案为:【点睛】本题考查了数的规律探求属于常考题型熟练掌握二次根式的性质找到规律是解题的关键 解析:103【分析】 3691215,于是可得第n 3n进而可得答案.【详解】,∴第100=.故答案为:【点睛】本题考查了数的规律探求,属于常考题型,熟练掌握二次根式的性质、找到规律是解题的关键.三、解答题21.()2a b abab+-;7【分析】将a、b进行分母有理化,然后求出+a b、ab的值,对代数式变形,采用整体代入的方法求值【详解】∵21a,b=,∴1a==,1b==,∴)()21211ab=+=,11a b+=++=∴1a bb a++221a bab+=+22a b abab++=()2a b abab+-=(2171-==.故1a bb a++的值为7.【点睛】本题考察二次根式的有理化,根据二次根式的乘除法则进行二次根式有理化,代数式求值的问题可以先对代数式进行变形,采用整体代入的方法,可使运算简便22.(1)424a-;(2)14 3【分析】(1)根据整式运算法则运算即可;(2)先把二次根式化为最简二次根式,然后把括号内合并,最后进行二次根式的除法运算.【详解】解:(1)原式=4a4﹣12a4﹣16a4=﹣24a4;(2)原式=(3=143.【点睛】本题考查了整式的运算和二次根式的运算,解题关键是熟练运用法则进行准确计算.23.(1)①5;②6-;(2)52x=或12x=-;②52x=-.【分析】(1)①先把各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算;②根据平方差公式计算即可;(2)①将方程移项,再整理为2x a=的的形式,再根据平方根定义求解即可;②将方程移项,再整理为3x a=根据立方根定义求解即可;【详解】解:(1)解:①原式==5=.②原式1218=-6=-.(2)解:①原方程可化为29(1)4 x-=则312x-=或312x-=-,解得,52x=或12x=-.②原方程可化为31258x =-, 解得,52x =-. 【点睛】 本题考查了平方根、立方根及实数的运算,主要考查学生的运算能力,题目比较好,解题关键是理解平方根、立方根的意义.24.(1)1,(2)12x y =⎧⎨=-⎩【分析】(1)按照二次根式的运算法则计算即可;(2)用加减消元法解方程组即可.【详解】解:(1)=222-+=232-+=1(2)1327x y x y +=-⎧⎨-=⎩①② ①×2+②得,55=x ,1x =,把1x =代入①得,1+y=-1,y=-2,∴方程组的解为:12x y =⎧⎨=-⎩. 【点睛】本题考查了二次根式计算和解二元一次方程组,解题关键是熟练运用二次根式运算法则和加减消元法解方程组.25.(1)4-;(2)2x【分析】(1)先去绝对值号,去根号,再进行合并同类项,加减运算;(2)先进行单项式和多项式的乘除运算,再进行加减运算 .【详解】解:(1)原式=)()413----41312=+-4=-(2)原式=()()23323332x x x x x x ---÷-23323332x x x x =-+-2x =.【点睛】这道题考查的是实数的运算法则和整式的乘除法.熟练掌握整式和实数的运算法则是解题的关键.26.【初步探究】(1)17,64-;(2)C ;【深入思考】(1)415⎛⎫- ⎪⎝⎭,72;(2)21n a -⎛⎫⎪⎝⎭;(3)4m n a +-【分析】初步探究:(1)根据新定义的运算法则进行计算,即可得到答案;(2)根据新定义的运算法则进行判断,即可得到答案;深入思考:(1)由题目中的运算法则转换成幂的形式,即可得到答案;(2)把幂的形式转换为一般形式即可;(3)先把代数式进行化简,然后写成幂的形式即可.【详解】解:【初步探究】(1)177777=÷÷=③;111111()()()()()44444464⎛⎫-=-÷-÷-÷-÷-= ⎪⎭-⎝⑤;故答案为:17;64-;(2)由题意:A 、任何非零数的圈2次方都等于1;正确;B 、对于任何大于等于2的整数c ,;正确;C 、7188888888888=÷÷÷÷÷÷÷÷=⑨,619999999999=÷÷÷÷÷÷÷=⑧,∴89≠⑨⑧,则C 错误;D 、负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;正确;故选:C .【深入思考】(1)4111111(5)(5)()()()()()()555555-=-⨯-⨯-⨯-⨯-⨯-=-⑥;71122222222222⎛⎫=⨯⨯⨯⨯⨯⨯⨯⨯= ⎪⎝⎭⑨; 故答案为:41()5-;72;(2)由(1)可知,根据乘方的运算法则,则将一个非零有理数a 的圈n 次方写成幂的形式为:21n a -⎛⎫= ⎪⎝⎭; 故答案为:21n a -⎛⎫ ⎪⎝⎭;(3)=224m n m n a a a --+-•=; 故答案为:4m n a +-.【点睛】本题考查了新定义的运算法则,幂的乘方,有理数的乘法和除法运算,解题的关键是熟练掌握新定义的运算法则、乘方的运算法则进行解题.。

北师大版八年级上册数学第二章 实数 含答案

北师大版八年级上册数学第二章 实数 含答案

北师大版八年级上册数学第二章实数含答案一、单选题(共15题,共计45分)1、在实数、3.1415、π、、、2.123122312223……(1和3之间的2逐次加1个)中,无理数的个数为()A.2个B.3个C.4个D.5个2、9的算术平方根是()A.±3B.3C.±D.3、计算的结果是A.±3B.3C.±3D.34、在下列各数0,0.2,3π,,6.1010010001…(1之间逐次增加一个0),,中,无理数的个数是()A.1B.2C.3D.45、-8的立方根为()A. B. C. D.6、实数0、、、中,无理数有()A.1个B.2个C.3个D.4个7、下列说法正确的是()A.一个数的平方根有两个,它们互为相反数B.一个数的立方根,不是正数就是负数C.如果一个数的立方根是这个数本身,那么这个数一定是﹣1,0,1中的一个D.如果一个数的平方根是这个数本身,那么这个数是1或者08、实数,﹣,0.1010010001,,π,中,无理数的个数是()A.1B.2C.3D.49、9的算术平方根是()A.±3B.3C.D.10、下列各数中,是有理数的是().A. B. C. D.11、底面为正方形的水池容积为4.86m3,池深1.5m,则底面边长是()A.3.24mB.1.8mC.0.324mD.0.18m12、比值为的比例被公认为是最能引起美感的比例,因此被称为黄金分割.我们国家的国旗宽与长之比接近这个比例,估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间13、关于的叙述正确的是()A.在数轴上不存在表示的点B. =+C. =±2D.与最接近的整数是314、下列说法正确的是()A.0和1的平方根等于本身B.0和1的算术平方根等于本身C.立方根等于本身的数是0D.﹣9的立方根是﹣315、的近似值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间二、填空题(共10题,共计30分)16、当________时,二次根式有意义17、已知m=1+ ,n=1- ,则代数式的值为________18、已知5+ 小数部分为m,11﹣为小数部分为n,则m+n=________.19、一个正数的平方根是2a﹣1和3﹣a,则这个正数是________.20、函数中,自变量x的取值范围是________.21、读取表格中的信息,解决问题.n=1 a1= +2 b1= +2 c1=1+2n=2 a2=b1+2c1b2=c1+2a1c2=a1+2b1n=3 a3=b2+2c2b3=c2+2a2c=a2+2b2…………满足的n可以取得的最小整数是________.22、已知a<b,化简二次根式的正确结果是________.23、计算: ________.24、已知:如图CA=CB,那么数轴上的点A所表示的数是________.25、计算的结果是________.三、解答题(共5题,共计25分)26、计算:﹣2×+()﹣1+(π﹣2017)0.27、求下列各式中的x:(1)(x+2)2=4;(2)1+(x﹣1)3=﹣7.28、计算,其中,小明算出了这样的结果:当a=-1时,;请你说出小明的错误在哪里.29、计算:|﹣2|+30﹣(﹣6)×(﹣).30、已知x+12平方根是±,2x+y﹣6的立方根是2,求3xy的算术平方根.参考答案一、单选题(共15题,共计45分)2、B3、D4、C5、A6、B7、C8、C9、B10、D11、B12、C13、D14、B15、B二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

北师大版八年级上册数学第二章 实数 含答案

北师大版八年级上册数学第二章 实数 含答案

北师大版八年级上册数学第二章实数含答案一、单选题(共15题,共计45分)1、下列实数中,不是无理数的是()A. B.﹣ C.2π(π表示圆周率) D.22、在实数、、、0.1010010001……(1之间0依次增加1个)中,其中无理数一共有()A.1个B.2个C.3个D.4个3、下列四个式子,化简后结果为-3的是()A. B. C.|-3| D.-(-3)4、四个数-2,0,,π,其中是无理数的是A.-2B.0C.D.π5、3的平方根是()A. B. C. D.36、在-,0.,,,0.10010001中,无理数的个数有()A.1个B.2个C.3个D.4个7、下列计算正确的是( )A. B. C. D.8、下列算式中错误的是A. B. C. D.9、数字,,π,sin60°,中是无理数的个数是()A.1个B.2个C.3个D.4个10、下列式子中,正确的是()A. B. C. D.11、12的负的平方根介于( )A.-5和-4之间B.-4与-3之间C.-3与-2之间D.-2与-1之间12、若﹣2x m﹣n y2与3x4y2m+n是同类项,则m﹣3n的立方根是()A.2B.±2C.-2D.213、下列说法中,正确的是()A.16的算术平方根是±4B.25的平方根是5C.﹣27的立方根是﹣3 D.1的立方根是±114、下列各式中无意义的式子是( )A. B. C. D.15、若在实数范围内有意义,则x的取值范围()A.x≥2B.x≤2C.x>2D.x<2二、填空题(共10题,共计30分)16、平方后等于的有理数是________.17、“平方根”节是数学爱好者的节日,这一天的月份和日期的数字正好是当年年份最后两位数字的算术平方根,例如的3月3日,的4月4日,请你再写出本世纪你喜欢的一个“平方根”节(题中所举例子除外)________ 年________ 月________ 日.18、若互为相反数,互为倒数,则________.19、求值:________.20、﹣1的相反数是________,的绝对值是________,的平方根是________.21、若= 成立,则x满足的条件是________.22、化简二次根式的结果是________.23、函数的定义域是________24、计算的结果等于________.25、有下列语句:①把无理数9表示在数轴上;②若a2>b2,则a>b;③无理数的相反数还是无理数。

2024-2025学年北师大版数学八年级上册《第2章 实数》单元测试试卷附答案解析

2024-2025学年北师大版数学八年级上册《第2章 实数》单元测试试卷附答案解析

第1页(共11页)2024-2025学年北师大版数学八年级上册《第2章实数》单元试卷一、选择题(本大题10小题,每小题3分,共30分)1.(3分)在下列实数中:0,2.5,﹣3.1415,4,227,0.343343334…无理数有()A .1个B .2个C .3个D .4个2.(3分)下列x 的值能使−6有意义的是()A .x =1B .x =3C .x =5D .x =73.(3分)将33×2化简,正确的结果是()A .32B .±32C .36D .±364.(3分)下列判断中,你认为正确的是()A .0的倒数是0B .5大于2C .π是有理数D .9的值是±35.(3分)下列计算正确的是()A .310−25=5B11=11C .(75−15)÷3=25D −=26.(3分)若a <5<b ,且a 、b 是两个连续整数,则a +b 的值是()A .2B .3C .4D .57.(3分)点A 在数轴上,点A 所对应的数用2a +1表示,且点A 到原点的距离等于3,则a 的值为()A .﹣2或1B .﹣2或2C .﹣2D .18.(3分)下列说法:①﹣7是49的平方根;②49的平方根是﹣7;③16的算术平方根是4;④(−4)2=(−4)2;⑤(3−8)3=3(−8)3.其中错误的有()A .1个B .2个C .3个D .4个9.(3)A .26B .62C .66D .1210.(3分)实数a ,b 在数轴上对应点的位置如图所示,下列判断正确的是()A .|a |<1B .ab >0C .a +b >0D .1﹣a >1二、填空题(本大题7小题,每小题4分,共28分)。

(常考题)北师大版初中数学八年级数学上册第二单元《实数》测试题(含答案解析)

(常考题)北师大版初中数学八年级数学上册第二单元《实数》测试题(含答案解析)

一、选择题1.下列算式中,运算错误的是( )A =B =C =D .2(=32.下列二次根式中,最简二次根式是( )A B C D 3.下列说法中:①立方根等于本身的是1-,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤23π-是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是( )A .3B .4C .5D .64 )A .3B .﹣3C .±3D .6 5.下列选项中,属于无理数的是( )A .πB .227-CD .06.与数轴上的点一—对应的数是( )A .分数或整数B .无理数C .有理数D .有理数或无理数7.下列实数227,3π,3.14159,-0.1010010001…….(每两个1之间依次多1个0)中无理数有( )A .1个B .2个C .3个D .4个8.下列说法中不正确的是( )A .0是绝对值最小的实数B 2=C .3是9的一个平方根D .负数没有立方根9.在实数3.14,227-, 1.70,-π中,无理数有( ) A .2个 B .3个 C .4个 D .5个10.下列计算正确的是( )A +=B =C 4=D 3=-11. )AB .面积为2的正方形边长为2C .2是2的算术平方根D .2的倒数是﹣212.下列说法中正确的是( )A .使式子3x +有意义的是x >﹣3B .使12n 是正整数的最小整数n 是3C .若正方形的边长为310cm ,则面积为30cm 2D .计算3÷3×3的结果是3二、填空题13.化简:()()2223x x ---=______14.对于正整数n ,规定111()(1)1f n n n n n ==-++,例如:111(1)1212f ==-⨯,111(2)2323f ==-⨯,111(3)3434f ==-⨯,…则(1)(2)(3)(2021)f f f f ++++= _______ 15.如图,A ,B ,C 在数轴上对应的点分别为a ,1-,2,其中1a <-,且AB BC =,则a =_______.16.10的整数部分是a .小数部分是b ,则2a b -=______.17.以下几种说法:①正数、负数和零统称为有理数;②近似数1.70所表示的准确数a 的范围是1.695 1.705a <;164±;④立方根是它本身的数是0和1;其中正确的说法有:_____.(请填写序号)18.若236A =,则A =_____________.19.有一个正方体的集装箱,原体积为364m ,现准备将其扩容以盛放更多的货物,若要使其体积达到3125m ,则它的棱长需要增加__________m .20.求220191222++++的值,可令22019S 1222=++++,则23202022222S =++++,因此2020221S S -=-.仿照以上推理,计算出23201911112222++++的值为______. 三、解答题21.计算:3161532272-22.已知某正数的两个平方根是314a -和2a +,14b -的立方根为-2,求+a b 的算术平方根.23.计算(1(2)()23122⎛⎫-- ⎪⎝⎭.24.先阅读,后回答问题:x 有意义?解:要使该二次根式有意义,需x(x-3)≥0,由乘法法则得0 30? x x ≥⎧⎨-≥⎩或0 30x x ≤⎧⎨-≤⎩, 解得x 3≥或x 0≤,即当x 3≥或x 0≤体会解题思想后,解答:x25.2-.26.计算:101|(2)2π-⎛⎫--+ ⎪⎝⎭.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次根式的加减法则,乘法,除法,乘方法则计算判断即可.【详解】解:∵=∴A 选项不合题意; ∵=∴B 选项不合题意; ∵∵C 选项符合题意;∵﹣2(=3,正确,∴D 选项不合题意;故选:C .【点睛】本题考查了二次根式的混合运算,熟记二次根式运算的基本法则是解题的关键. 2.A解析:A【分析】根据最简二次根式的概念判断即可.【详解】解:A ,是最简二次根式;B 3,故不是最简二次根式;C =,故不是最简二次根式;D ,故不是最简二次根式; 故选:A .【点睛】本题考查了最简二次根式的定义,熟记定义,并能灵活进行化简,判断是解题的关键. 3.A解析:A【分析】根据平方根和立方根的性质,以及无理数的性质判断选项的正确性.【详解】解:立方根等于本身的数有:1-,1,0,故①正确;平方根等于本身的数有:0,故②错误;的和是0,是有理数,故③错误; 实数与数轴上的点一一对应,故④正确;23π-是无理数,不是分数,故⑤错误; 从数轴上来看,两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数,故⑥正确.故选:A .【点睛】本题考查平方根和立方根的性质,无理数的性质,解题的关键是熟练掌握这些概念. 4.A解析:A【分析】9,再利用算术平方根的定义求出答案.【详解】∵9,∴3,故选:A.【点睛】. 5.A解析:A【分析】根据无理数是无限不循环小数,可得答案.【详解】解:A.π是无理数;B.227-是分数,属于有理数;是整数,属于有理数;D.0是整数,属于有理数.故选:A.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.6.D解析:D【分析】实数与数轴上的点一一对应,实数包括有理数和无理数.【详解】A. 分数或整数,只是有理数,不是数轴上所有点,故此项不正确;B. 只是无理数,不是数轴上所有点,故此项不正确;C. 只是有理数,不是数轴上所有点,故此项不正确;D. 有理数和无理数是实数的组成,实数与数轴上的点一一对应,故此项正确;故选D.【点睛】此题考查了实数的意义,能掌握实数与数轴的关系是解答此题的关键.7.C解析:C【分析】根据无理数的概念即可判断.【详解】解:,无理数有:3π,-0.1010010001…….(每两个1之间依次多1个0),共有3个. 故选:C .【点睛】 本题考查了无理数.解题的关键是熟练掌握无理数的概念.8.D解析:D【分析】根据实数,平方根和立方根的概念逐一判断即可.【详解】0的绝对值是0,负数的绝对值为正数,正数的绝对值为正数,正数大于0,故A 正确;2,故B 正确;9的平方根是3±,故C 正确;任何数都有立方根,故D 错误;故选D .【点睛】本题考查了实数的概念,求一个数的平方根或立方根,熟练掌握平方根和立方根的概念是本题的关键.9.A解析:A【分析】由于无理数就是无限不循环小数,利用无理数的定义即可判断得出答案. 【详解】3=-,∴3.14,227-,- 1.7,0都是有理数,-π是无理数,共2个,故选:A .【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π0.8080080008…(每两个8之间依次多1个0)等形式.10.B解析:B【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案.【详解】解:A A 错误;B=,故B正确;C==C错误;=,故D错误;D3故选:B.【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.11.D解析:D【分析】根据无理数的定义,正方形面积的计算公式,算术平方根的定义,倒数的定义依次判断即可得到答案.【详解】解:A是无理数是正确的,不符合题意;B、面积为2是正确的,不符合题意;C是2的算术平方根是正确的,不符合题意;D的倒数是,原来的说法是错误的,符合题意.2故选:D.【点睛】此题考查无理数的定义,正方形面积的计算公式,算术平方根的定义,倒数的定义,熟记各定义是解题的关键.12.B解析:B【分析】直接利用二次根式有意义的条件以及二次根式的乘除运算法则分别计算得出答案.【详解】A有意义的是x≥﹣3,故此选项错误;B n是3,故此选项正确;C、若正方形的边长为cm,则面积为90cm2,故此选项错误;D、的结果是1,故此选项错误;故选:B.【点睛】本题考查了二次根式有意义的条件以及二次根式的乘除运算,正确掌握相关定义是解题的关键;二、填空题13.-1【分析】根据二次根式有意义的条件求出的范围再根据二次根式的性质和绝对值的性质化简即可得到答案【详解】由可知故答案为:【点睛】本题考查了二次根式化简求值正确掌握二次根式有意义的条件二次根式的性质绝解析:-1【分析】根据二次根式有意义的条件,求出x的范围,再根据二次根式的性质和绝对值的性质化简,即可得到答案.【详解】20x-≥,∴2x≤,30x∴-<223x x-=---,∴()2323231x x x x x x---=---=--+=-故答案为:1-.【点睛】本题考查了二次根式化简求值,正确掌握二次根式有意义的条件,二次根式的性质,绝对值的性质是解题关键.14.【分析】根据题意可得:原式=再根据加法的结合律相加计算即可【详解】解:原式=故答案为:【点睛】本题考查了数字类规律探究和新定义问题正确理解题意准确计算是关键解析:20212022【分析】根据题意可得:原式=111111112233420212022-+-+-++-,再根据加法的结合律相加计算即可.【详解】解:原式=11111111202111223342021202220222022-+-+-++-=-=.故答案为:20212022.【点睛】本题考查了数字类规律探究和新定义问题,正确理解题意、准确计算是关键.15.【分析】根据题意先求出BC的长度然后求出a的值即可得到答案【详解】解:根据题意∴∵∴∴∴;故答案为:【点睛】本题考查了数轴上两点之间的距离以及绝对值的意义解题的关键是掌握数轴的定义正确的求出a 的值解析:2+【分析】根据题意,先求出BC 的长度,然后求出a 的值,即可得到答案.【详解】解:根据题意,(1)1BC =-=, ∴1AB BC ==, ∵1AB a =--, ∴11a --=, ∴2a =-∴22a =-=;故答案为:2+【点睛】本题考查了数轴上两点之间的距离,以及绝对值的意义,解题的关键是掌握数轴的定义,正确的求出a 的值.16.6-16【分析】先估算确定ab 的值进而即可求解【详解】∵<<∴3<<4又∵a 是的整数部分b 是的小数部分∴a =3b =−3∴3-(−3)2=3-(10-6+9)=3-10+6-9=6-16故答案是:6-解析:-16【分析】,确定a ,b 的值,进而即可求解.【详解】 ∵∴3<4,又∵a b 的小数部分,∴a =3,b−3,∴2a b -=−3)2-16.故答案是:-16.【点睛】本题考查无理数的估算、完全平方公式,确定a 、b 的值是解决问题的关键. 17.②【分析】根据有理数近似数字平方根立方根等概念即可判断【详解】解:①正有理数负有理数和零统称为有理数故原说法错误;②根据四舍五入可知近似数170所表示的准确数的范围是说法正确;③的平方根是原说法错误解析:②【分析】根据有理数、近似数字、平方根、立方根等概念即可判断.【详解】解:①正有理数、负有理数和零统称为有理数,故原说法错误;a<,说法正②根据四舍五入可知,近似数1.70所表示的准确数a的范围是1.695 1.705确;=的平方根是2±,原说法错误;4④立方根是它本身的数是0和±1,原说法错误;故答案为:②.【点睛】本题考查学生对概念的理解,解题的关键是正确理解有理数、近似数字、平方根、立方根等概念,本题属于基础题型.18.【分析】利用实数的除法法则计算即可【详解】解:∵∴A=故答案为:【点睛】本题主要考查了实数的运算熟练掌握实数的除法法则是解题关键解析:【分析】利用实数的除法法则计算即可.【详解】解:∵A=∴A==故答案为:【点睛】本题主要考查了实数的运算,熟练掌握实数的除法法则是解题关键.19.1【分析】先根据正方体的体积得出其棱长再求出体积达到125m3时的棱长进而可得出结论【详解】解:设正方体集装箱的棱长为a∵体积为64m3∴a==4m;设体积达到125m3的棱长为b则b==5m∴b-解析:1【分析】先根据正方体的体积得出其棱长,再求出体积达到125m3时的棱长,进而可得出结论.【详解】解:设正方体集装箱的棱长为a,∵体积为64m3,∴=4m;设体积达到125m3的棱长为b,则,∴b-a=5-4=1(m).故答案为:1.【点睛】本题考查的是立方根,熟知正方体的体积公式是解题的关键.20.【分析】根据题目所给计算方法令再两边同时乘以求出用求出的值进而求出的值【详解】解:令则∴∴则故答案为:【点睛】本题考查了同底数幂的乘法利用错位相减法消掉相关值是解题的关键 解析:2019112-【分析】 根据题目所给计算方法,令23201911112222S,再两边同时乘以12,求出12S ,用12S S ,求出12S 的值,进而求出S 的值. 【详解】 解:令23201911112222S , 则22023401111122222S , ∴2020111222S S , ∴2020111222S , 则2019112S .故答案为:2019112-【点睛】 本题考查了同底数幂的乘法,利用错位相减法,消掉相关值,是解题的关键.三、解答题21.【分析】根据二次根式的性值计算即可; 【详解】原式662=--⨯+,+6,;【点睛】本题主要考查了二次根式的混合运算,准确计算是解题的关键.【分析】利用正数的平方根有两个,且互为相反数列出方程,求出方程的解即可得到a 的值,根据立方根的定义求出b 的值,根据算术平方根的定义求出a+b 的算术平方根.【详解】解:由题意得,31420a a -++=,148b -=-,解得:3a =,6b =,∴9a b +=,∴+a b 的算术平方根是3.【点睛】本题考查的是平方根、立方根和算术平方根的定义,正数的平方根有两个,且互为相反数;正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.23.(1);(2)-36【分析】(1)由二次根式的性质进行化简,再计算加减运算即可;(2)先由乘方、二次根式的性质、立方根进行化简,然后计算乘法,再计算加减即可.【详解】(1)解:原式=(135=+-=(2)原式()()184434=-⨯+-⨯-3213=---36=-. 【点睛】 本题考查了二次根式的性质,实数的混合运算,解题的关键是熟练掌握运算法则,正确的进行化简.24.x 2≥或1x 3<-. 【分析】根据题目信息,列出不等式组求解即可得到x 的取值范围.【详解】 解:要使该二次根式有意义,需x 23x 1-≥+0, 由乘法法则得20310x x -≥⎧⎨+>⎩或20310x x -≤⎧⎨+<⎩, 解得x 2≥或1x 3<-,即当x 2≥或1x 3<- 【点睛】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的25.4【分析】原式利用平方根、立方根定义及绝对值化简计算即可得到结果.【详解】解:原式282=-+-4=【点睛】本题考查了实数的运算,熟练掌握平方根、立方根定义是解本题的关键.26.1.【分析】利用二次根式的性质、绝对值的性质和负整数指数幂、零指数幂逐项计算即可求解.【详解】101|(2)2π-⎛⎫--+ ⎪⎝⎭12=+-+1=.【点睛】本题考查实数的混合运算,掌握二次根式的性质、绝对值的性质和负整数指数幂是解题的关键.。

北师大版八年级数学上册《第二章实数》单元测试卷(带答案)

北师大版八年级数学上册《第二章实数》单元测试卷(带答案)

北师大版八年级数学上册《第二章实数》单元测试卷(带答案)一、选择题、1.8、π这4个数中,无理数有()1.在√6、32A.1个B.2个C.3个D.4个2.下列说法错误的是()A.4的算术平方根是2B.√2是2的平方根C.−1的立方根是−1D.−3是√(−3)2的平方根3.下列式子中,属于最简二次根式的是()A.√8B.√11C.√45D.√164.如图,√7在数轴上对应的点可能是()A.点E B.点F C.点M D.点P5.无理数−√10+1在()A.−3和−2之间B.−4和−3之间C.−5和−4之间D.−6和−5之间6.若使二次根式√x−3在实数范围内有意义,则x的取值范围是()A.x≤3B.x≥3C.x≠3D.x>37.下列计算正确的是()A.(2√2)2=4√2B.√2×√3=√6C.√2+√3=√5D.√12÷√3=48.如图,在数轴上点B表示的数为1,在点B的右侧作一个边长为1的正方形BACD,将对角线BC绕点B 逆时针转动,使对角线的另一端落在数轴负半轴的点M处,则点M表示的数是()A.√2B.√2 +1 C.1﹣√2D.﹣√2二、填空题9.若一个正数的两个平方根分别是5a+1和a+5,则a的值是.10.一个数的平方等于64,则这个数的立方根是 .11.若a 是√7的整数部分,b 是它的小数部分,则a ﹣b = .12.计算:|1−√3|+√14= . 13.若x ,y 是实数,且y =√x −4+√4−x +3,则12√xy 的值为 .三、解答题14.计算:(1)√−273+√(−3)2+√−13; (2)−12+√643−(−2)×√9.15.计算:(1)√27÷√3−2√15×√10+√8 (2) √3(√2−√3)−√24−|√6−3|16.把下列各实数填在相应的大括号内整 数{ …};分 数{ …};无理数{ …}.17.已知5a +2的立方根是3,4a +2b +1的平方根是±5,求a -2b 的算术平方根.18.如图,有一块长方形木板,木工沿虚线在木板上截出两个面积分别为12 dm 2和27 dm 2的正方形木板,求原长方形木板的面积.1.B2.D3.B4.C5.A6.B7.B8.C9.−110.±211.4−√712.√3−1213.√314.(1)解:√−273+√(−3)2+√−13 =﹣2+|﹣3|﹣1=﹣4+3﹣1=﹣5;(2)解:−12+√645−(−2)×√9=﹣5+4﹣(﹣2)×4=3﹣(﹣6)=3+6=9.15.(1)解:原式=3√3÷√3−25√5×√10+2√2=3−2√2+2√2=3(2)解:原式=√6−3−2√6−3+√6=−617.解:因为5a+2的立方根是3,4a+2b+1的平方根是±5,所以5a+2=27,4a+2b+1=25,解得a =5,b=2,所以a-2b=5-4=1,所以a-2b的算术平方根为118.解:∵两个正方形的面积分别为12 dm2和27 dm2∴这两个正方形的边长分别为√12 dm和√27 dm由题图可知,原长方形的长为(√12+√27) dm,宽为√27 dm∴原长方形的面积为:(√12+√27)×√27=18+27=45(dm2).。

北师大版八年级上册数学第二章 实数 含答案

北师大版八年级上册数学第二章 实数 含答案

北师大版八年级上册数学第二章实数含答案一、单选题(共15题,共计45分)1、下列说法中正确的是()A.25的平方根是5B.0.8的立方根是0.2C. 是的一个平方根D.和数轴上一一对应的数是有理数2、﹣125开立方,结果是()A.±5B.5C.﹣5D.±3、下列说法正确的是()A.绝对值等于它本身的数是正数B.最小的整数是0C.实数与数轴上的点一一对应D.4的平方根是24、的立方根是()A.-B.C.±D.5、的平方根是()A.6B.±6C.D.±6、下列数中,是无理数的是()A. B. C.—2.171171117 D.7、已知a=﹣1,a介于两个连续自然数之间,则下列结论正确的是()A.1<a<2B.2<a<3C.3<a<4D.4<a<58、 4的平方根为()A.2B.±2C.4D.±49、的立方根为()A.2B.C.D.10、下列关于的说法中,错误的是()A. 是无理数B.C.5的平方根是D.11、下列四个实数中,是无理数的为()A. B. C. D.3.141592612、(-2)2的算术平方根是()A.2B.±2C.-2D.13、若5x+19的立方根是4,则2x+7的平方根是( )A.25B.-5C.5D.±514、下列各组数中,互为相反数的是()A.-2与−B.-2与-C.-2与D.|-2|与-215、下列说法中,正确的是()A. =±4B.-3 2的算术平方根是3C.1的立方根是±1D.-是7的一个平方根二、填空题(共10题,共计30分)16、估算=________(误差小于0.1).17、计算:﹣2(+2)2014(﹣2)2015=________.18、若x3=﹣,则x=________.19、命题“如果x2=y2”,那么“x=y”是________命題(填“真”成“假”).20、数轴上有两个点A和B,点A表示的数是,点B与点A相距2个单位长度,则点B所表示的实数是________.21、计算:( -)÷=________.22、化简()2+ =________.23、在实数中,是无理数的是________.24、计算的结果是________.25、已知x、y是有理数,且x、y满足,则x+y=________三、解答题(共5题,共计25分)26、计算:27、在如图数轴上作出表示﹣的点.28、计算(1)(﹣4)﹣(3﹣2);(2)(﹣)2+2×3;(3)5•(﹣4)(a≥0,b≥0).29、2cos45°﹣(π+1)0++()﹣1.30、计算:|﹣3|+•tan30°﹣﹣(2008﹣π)0.参考答案一、单选题(共15题,共计45分)1、C2、C3、C4、B5、D6、D7、C8、B10、C11、C12、A13、D14、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、28、29、30、。

北师大版八年级上册数学第二章《实数》单元测试卷(含答案)

北师大版八年级上册数学第二章《实数》单元测试卷(含答案)

北师大版八年级上册数学第二章《实数》单元测试卷(含答案)一、选择题(每题3分,共30分)1.下列各数中,是无理数的是()A.3.141 5 B. 4 C.227D.62.在-4,-2,0,4这四个数中,最小的数是() A.4 B.0 C.- 2 D.-43.【中考·黄石】若式子x-1x-2在实数范围内有意义,则x的取值范围是()A.x≥1且x≠2 B.x≤1 C.x>1且x≠2 D.x<1 4.下列二次根式中,是最简二次根式的是()A.15B.10 C.50 D.0.55.已知a-3+|b-4|=0,则ab的平方根是()A.32B.±32C.±34D.346.【2020·重庆】下列计算中,正确的是()A.2+3= 5 B.2+2=2 2 C.2×3= 6 D.23-2=3 7.实数a,b在数轴上的对应点的位置如图所示,下列式子成立的是()A.a>b B.|a|<|b| C.a+b>0 D.a b<0(第7题) (第8题)8.【教材P39议一议变式】小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A 作AB⊥OA,使AB=3(如图).以O为圆心,OB长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于()A.1和2之间B.2和3之间C.3和4之间D.4和5之间9.【教材P15习题T6变式】已知a=3+22,b=3-22,则a2b-ab2的值为() A.1 B.17 C.4 2 D.-42 10.【教材P11习题T12变式】如图,长方形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为()A.2B.2C.2 2 D.6二、填空题(每题3分,共24分)11.实数-2的相反数是________,绝对值是________.12.计算:3-8=________.13.一个正数的平方根分别是x+1和x-5,则x=__________.14.【教材P34习题T2(1)改编】比较大小:10-13________23(填“>”“<”或“=”).15.【2020·青海】对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b =a +b a -b ,如:3⊕2=3+23-2=5,那么12⊕4=________. 16.【教材P 11习题T 12变式】若利用计算器求得 6.619≈2.573,66.19≈8.136,则估计6 619的算术平方根是________.17.如图,在△ABC 中,若AB =AC =6,BC =4,D 是BC 的中点,则AD 的长为________.(第17题) (第18题)18.已知a ,b ,c 在数轴上对应点的位置如图所示,化简a 2-(a +b )2+(c -a )2+(b +c )2的结果是________.三、解答题(19题16分,其余每题10分,共66分)19.计算下列各题:(1)(-5)2+(π-3)0+|7-4|; (2)⎝ ⎛⎭⎪⎫-12-1-214-3(-1)2 023;(3)(6-215)×3-612;(4)48÷3-215×30+(22+3)2.20.已知5是2a-3的算术平方根,1-2a-b的立方根为-4.(1)求a和b的值;(2)求3b-2a-2的平方根.21.一个正方体的表面积是2 400 cm2.(1)求这个正方体的体积;(2)若该正方体的表面积变为原来的一半,则体积变为原来的多少?22.已知7+5和7-5的小数部分分别为a,b,试求代数式ab-a+4b-3的值.23.拦河坝的横断面是梯形,如图,其上底是8 m,下底是32 m,高是 3 m.(1)求横断面的面积;(2)若用300 m3的土,可修多长的拦河坝?24.【教材P48习题T4拓展】先阅读材料,再回答问题.已知x=3-1,求x2+2x-1的值.计算此题时,若将x=3-1直接代入,则运算非常麻烦.仔细观察代数式,发现由x=3-1得x+1=3,所以(x +1)2=3.整理,得x2+2x=2,再代入求值会非常简便.解答过程如下:解:由x=3-1,得x+1=3,所以(x+1)2=3.整理,得x2+2x=2,所以x2+2x-1=2-1=1.请仿照上述方法解答下面的题目:已知x=5+2,求6-2x2+8x的值.参考答案一、1.D2.D3.A4.B5.B6.C7.D8.C9.C10.B二、11.2;212.-213.214.>15.216.81.3617.4218.-a点拨:原式=|a|-|a+b|+(c-a)+|b+c|=-a+(a+b)+(c-a)-(b +c)=-a+a+b+c-a-b-c=-a.三、19.解:(1)原式=5+1+4-7=10-7;(2)原式=-2-94-3-1=-2-32+1=-52;(3)原式=18-245-6×22=32-65-32=-65;(4)原式=16-26+11+46=15+26.20.解:(1)因为5是2a -3的算术平方根,1-2a -b 的立方根为-4,所以2a -3=25,1-2a -b =-64.所以a =14,b =37.(2)由(1)知a =14,b =37,所以3b -2a -2=3×37-2×14-2=81.所以3b -2a -2的平方根为±81=±9.21.解:(1)设这个正方体的棱长为a cm(a >0).由题意得6a 2=2 400,所以a =20.则体积为203=8 000(cm 3).(2)若该正方体的表面积变为原来的一半,则有6a 2=1 200.所以a =102.所以体积为(102)3=2 0002(cm 3). 因为2 00028 000=24,所以体积变为原来的24.22.解:因为5的整数部分为2,所以7+5=9+a ,7-5=4+b , 即a =-2+5,b =3-5.所以ab -a +4b -3=(-2+5)(3-5)-(-2+5)+4(3-5)-3=-11+55+2-5+12-45-3=0.23.解:(1)S=12(8+32)×3=12(22+42)×3=12×62×3=36(m2).答:横断面的面积为3 6 m2.(2)3003 6=1006=100 66×6=100 66=50 63(m).答:可修5063m长的拦河坝.24.解:由x=5+2得x-2=5,所以(x-2)2=5.整理,得x2-4x=1.所以6-2x2+8x=6-2(x2-4x)=6-2×1=4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北八上第二章《实数》水平测试(B)
一、精心选一选(每小题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!)
1.下列说法中正确的是().
(A)4是8的算术平方根(B)16的平方根是4
(C)是6的平方根(D)没有平方根
2.下列各式中错误的是().
(A)(B)
(C)(D)
3.若,则().
(A)-0.7 (B)±0.7 (C)0.7 (D)0.49
4.的立方根是().
(A)-4 (B)±4 (C)±2 (D)-2
5.,则的值是().
(A)(B)(C)(D)
6.下列四种说法中:
(1)负数没有立方根;(2)1的立方根与平方根都是1;
(3)的平方根是;(4).
共有()个是错误的.
(A)1 (B)2 (C)3 (D)4
7.x是9的平方根,y是64的立方根,则x y
+的值为()
A.3 B.7 C.3,7 D.1,7
8.
2
x1x1x1
-=+-成立的条件是()
A. x≥1
B. x≥-1
C.-1≤x≤1
D. x≥1或x≤-1
9. 计算515202145+-所得的和结果是( ) A .0 B .5-
C .5
D .53 10. x --23 (x ≤2)的最大值是( )
A .6
B .5
C .4
D .3
二、耐心填一填(每小题3分,共30分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的)
1.若,则是的__________,是的___________.
2.9的算术平方根是__________,
的平方根是___________. 3.下列各数:①3.141、②0.33333……、③75-、④π、⑤252.±、⑥32-、⑦0.3030003000003……(相邻两个3之间0的个数逐次增加2)、⑧))((2727+-中.其中是有理数的有_______;是无理数的有_______.(填序号)
4.的立方根是__________,125的立方根是___________.
5.若某数的立方等于-0.027,则这个数的倒数是____________.
6.已知,则.
7.和数轴上的点一一对应的数集是______.
8. 估计200=__________(误差小于1);30=___________(误差小于0.1).
9.一个正方体的体积变为原来的27倍,则它的棱长变为原来的 倍.
10.如果一个正数的一个平方根是-a ,那么这个数的另一个平方根是______,这个数的算术平方根是______.
三、认真答一答(只要你认真思考, 仔细运算, 一定会解答正确的!每小题10分,共60分)
1.化简下列各式:
(1102982
- (2)(335)(335); 2.甲同学用如下图示方法作出了C 点,表示数13,在△OA B 中,∠OAB =90°,OA =2,
-6 -5 -4 -3 -2 -1 O 1 2 3 4 5 6
B
A
AB =3,且点O 、A 、C 在同一数轴上,OB =OC .
(1)请说明甲同学这样做的理由:
(2)仿照甲同学的做法,在如下所给数轴上描出表示-29的点A .
3.飞出地球,遨游太空,长期以来就是人类的一种理想,可是地球的引力毕竟太大了,飞机飞的再快,也得回到地面,炮弹打得再高,也得落向地面,只有当物体的速度达到一定值时,才能克服地球引力,围绕地球旋转,这个速度叫做第一宇宙速度.计算式子是:v=
gR 千米/秒其中重力加速度g=0.0098千米/秒2,地球半径R=6370千米试求出第一宇宙速度的值.
4.如图所示,要在离地面5米处的电线杆处向两侧引拉线AB 和AC ,固定电线杆,生活经验表明,当拉线的固定点B (或C )与电线杆底端点D 的距离为其一侧AB 长度的31时,电线杆比较稳定,问一条拉线至少需要多长才能符合要求?试用你学过的知识进行解答.(精确到0.1
米)
5.自由下落的物体的高度h (米)与下落时间t (秒)的关系为h =4.92t .
有一学生不慎让一个玻璃杯从19.6米高的楼上自由下落, 刚好另有一学
生站在与下落的玻璃杯同一直线的地面上, 在玻璃杯下落的同时楼上的学
生惊叫一声. 问这时楼下的学生能躲开吗? (声音的速度为340米/秒)
6. 先阅读下列的解答过程,然后再解答:
形如n m 2±的化简,只要我们找到两个数a 、b ,使m b a =+,n ab =,使得m b a =+22)()(,n b a =⋅,那么便有:
b a b a n m ±=±=±2)(2)(b a > 例如:化简347+ 解:首先把347+化为1227+,这里7=m ,12=n ,由于4+3=7,1234=⨯
即7)3()4(22=+,1234=⨯
-6 -5 -4 -3 -2 -1 O 1 2 3 4 5 6
∴347+=1227+=32)34(2
+=+
由上述例题的方法化简:42213-; 参考答案
一、
1.C
2.D
3.B
4.D
5.B
6. C
7.D
8.A
9.D 10.D
二、1.平方,平方根 2.3,±3 3.2.①②⑤⑥⑧,③④⑦; 4.;5 5. 6.0 7.实数集 8.14或15;5.5或5.4 9.3; 10.a ,|a|
三、1.(1)3; (2)22.
2.(1)在直角三角形OAB 中,由勾股定理可得:OB 2=OA 2+AB 2.所以,OC =OB =
13,即点C 表示数13.
(2)略.
3. v=gR 0.00986370⨯≈7.90千米/秒
4. 1.8米
5. 楼下的学生能躲开,玻璃杯从19.6米高的楼上自由下落所用时间为t 119.64.9
167, 声音从19.6米高的楼上到楼下学生听到所用时间为t 2=
19.6340≈0.06,167>0.06,所以,楼下的学生能躲开.
6. 13242-72426-+2(76)76-=。

相关文档
最新文档