机场选址问题数学建模优秀论文
上海虹桥机场的数学建模问题解决

一、问题背景与重述1.1问题背景虹桥国际机场采用的是东西两条跑道分工进行飞机起降的任务,所以大多数飞机的起降都要实现跑道穿越的过程,同时在飞机起降的高峰时期,此时人工指挥进行飞机调度就存在着一定的困难和安全隐患。
1.2问题重述1.设计一个跑道的智能调度模型,内容包括:飞机降落时间及落地后的运动规划,飞机起飞前的运动规划和起飞时间,所有航班的起降(次序、时间、地面滑行路径)。
在保证跑道上飞机安全的基础上,考虑准点率和起降效率的提高;2.对附件2的航班起降时间重新编排,在安全的基础上,计算出所有航班起降完需要的最短时间和调度安排(次序、时间、地面滑行路径)。
二、问题分析进近道对于参数较多,图形结构复杂的虹桥机场使用树状图,将其简化为三条主跑道与多条进近道,在此基础上,由南向北的行进过程中分析可能存在的道路,并考虑单一支路上的冲突情况与交叉冲突情形,并将多条可能的选择路线转化为时间效率,接着分析转弯节点处的约束条件与单一跑道的约束条件,将两者结合。
每次选定不同的覆盖航班数,在覆盖范围内唯一确定已经按计划起飞的航班,在此基础上,再对剩余的航班进行规划即可得到目标函数的最佳效益,通过改变每次覆盖的航班数量与可移动覆盖的航班数量,由此得到不同的目标效益最值。
三、模型假设所有斜进近跑道长度相等;飞机的机头调转不能超过90°;飞机在南北方向跑道上是匀速滑行的。
四、符号说明符号说明J第i架飞机的效益值iR最小尾流间隔i表示转弯角iv表示初始速度't起飞客机滑行时间''t降落客机的滑行时间五、模型建立与求解5.1 动态调度模型的建立与求解5.1.1 对虹桥机场跑道的简化(1)飞机起飞上海虹桥机场的跑道图显示,起飞飞机滑行的终点是指定的起飞跑道,此时飞机需要等待跑道被清空后才能完成飞行过程。
根据以上对飞机起飞过程的描述,可得到起飞图5-2 起飞飞机状态图为了简化问题,本文规定由T2机场起飞的飞机只能由H6与H7进近跑道进入滑行跑道,而由T1机场起飞的飞机只能由H7进近跑道进入滑行跑道,并且此时的飞机始终保持匀速滑行。
机场选址调查报告

机场选址调查报告机场选址调查报告一、引言随着全球化进程的加速和人们对旅行需求的增长,机场作为现代交通枢纽的重要组成部分,对于一个地区的经济发展和国际交往起着至关重要的作用。
因此,本次调查报告旨在对机场选址问题进行深入研究和分析,为决策者提供科学的依据和建议。
二、背景分析随着城市化进程的不断推进,人口密集区的交通需求日益增长。
而传统的机场已经无法满足人们对于航空交通的需求,因此,选址一个新的机场成为当务之急。
本次调查报告的选址范围为某地区,我们将从地理条件、经济因素、交通便利性和环境影响等多个角度进行评估。
三、地理条件分析1.气候条件:该地区四季分明,气候温和宜人,无严重天气灾害,适宜机场运营。
2.地形地势:该地区地势平坦,没有重大地质问题,有利于机场建设和运营。
3.水资源:该地区拥有丰富的水资源,有利于机场供水和环境保护。
四、经济因素分析1.经济发展:该地区经济发展迅速,GDP持续增长,有较大的潜在市场需求。
2.产业结构:该地区产业结构多元化,涵盖农业、制造业、服务业等多个领域,为机场提供了广阔的商业机会。
3.就业机会:机场建设和运营将创造大量就业机会,对于当地居民的就业和收入水平提升具有积极意义。
五、交通便利性分析1.道路网络:该地区道路密集,交通便利,与周边城市相连的高速公路和铁路线路完善。
2.公共交通:该地区公共交通发达,交通枢纽和地铁站点较多,便于乘客前往机场。
3.物流便利性:该地区物流网络发达,有利于机场货物运输和物流配送。
六、环境影响分析1.噪音污染:机场建设和运营会产生一定的噪音污染,但该地区人口密度较低,对周边居民影响较小。
2.空气质量:机场运营会对空气质量产生一定的影响,但通过科学的环保措施和技术手段可以有效减少污染排放。
3.生态保护:机场建设需要占用一定的土地资源,但可以通过合理规划和生态恢复措施来保护当地生态环境。
七、结论与建议综合以上分析,我们认为该地区是一个适宜选址机场的地方。
【数学建模案例分析6.选址问题】

出版社销售代理点的选择模型摘要:本文主要是为了解决出版社准备在某市建立两个销售代理点,向七个区的大学生售书,知道每个区的大学生人数(千人)和每个区的位置关系,如图一,每个销售代理点只能向本区和一个相邻区的大学生售书,建立模型确定销售代理点的位置,使得能供应的大学生的数量最大。
我们建立了一个整数线性规划模型,确定决策变量:12x ,13x ,23x ,24x ,34x ,25x ,45x ,46x ,47x ,56x ,67x ,ij x 1=表示(i ,j )区的大学生由一个销售代理点供应,否则0ij x =,写出目标函数,确定约束条件。
用lindo 软件求解,的到的最优解:max 177=, 251x =,471x =。
对图一得各区进行标号,见图二,说明2和5区的大学生由一个销售代理点供应,4和7区的大学生由一个销售代理点供应,该出版社能供应的大学生的最大数量为177千人。
此整数线性规划模型在地区小的范围和销售代理点少的情况小无疑是一个很好的模型,但要在比较大的市场上来选在较多的代理点的话还得考虑其他更好的方案。
关键字:整数线性规划模型 lindo 软件1 问题重述随着现在社会的进步,人民生活水平的提高,市场的公司也是越做越大,销售代理点也是越来越多,而且是做到更小的区域了,以满足更多人的需要,这就要求我们在选择销售代理点的时候,需要考虑的情况也越来越多,在满足更多人方便的时候也得为公司赚取更多的资金。
本文需要解决的题目:一家出版社准备在某市建立两个销售代理点,向七个区的大学生售书,每个区的大学生(单位:千人)已经表示在图上,如图一。
每个销售代理点只能向本区和一个相邻区的大学生售书,这两个销售代理点应该建在何处,才能使所能供应的大学生的数量最大。
2 模型假设及符号说明对七个区分别进行标号,如图二,图中的人数和标号是对应的。
(1)i ,j 表示区,i ,j 1,2,3,4,5,6,7=;(2)i y 表示第i 区大学生的人数;(3)ij x 1=表示(i ,j )区的大学生由一个销售代理点供应,i j <且它们在地图上相邻。
数学建模全国优秀论文范文

数学建模全国优秀论文范文随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,数学建模全国优秀论文1:《浅谈数学建模教育的作用与开展策略》数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文范文,欢迎阅读参考。
大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。
数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。
因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和创新思维,提高其素质和创新能力,实现向素质教育的转化和深入。
一、数学建模的含义及特点数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学方法及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。
一般来说",数学建模"包含五个阶段。
1.准备阶段主要分析问题背景,已知条件,建模目的等问题。
2.假设阶段做出科学合理的假设,既能简化问题,又能抓住问题的本质。
3.建立阶段从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。
4.求解阶段对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。
5.验证阶段用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。
如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。
数学建模论文--物流及选址问题

物流预选址问题2摘要错误!未定义书签。
一、问题重述3二、问题的分析32.1 问题一:分析确定合理的模型确定工厂选址和建造规模42.2 问题二:建立合理的仓库选址和建造规模模型42.3 问题三:工厂向中心仓库供货的最正确方案问题42.4 问题四:根据一组数据对自己的模型进展评价4三、模型假设与符号说明53.1条件假设53.2模型的符号说明5四、模型的建立与求解64.1 问题一:分析确定合理的模型为两个工厂合理选址并确定建造规模64.1.1模型的建立64.2 问题二:建立合理模型确定中心仓库的位置及建造规模84.2.1 基于重心法选址模型94.2.2 基于多元线性回归法确定中心仓库的建造规模104.3 问题三:工厂向中心仓库供货方案114.4 问题四:选用一组数据进展计算12五、模型评价175.1模型的优缺点175.1.1 模型的优点175.1.2 模型的缺点17六参考文献17物流预选址问题摘要在物流网络中,工厂对中心仓库和城市进展供货,起到生产者的作用,而中心仓库连接着工厂和城市,是两者之间的桥梁,在物流系统中有着举足轻重的作用,因此搞好工厂和中心仓库的选址将对物流系统作用的发挥乃至物流经济效益的提高产生重要的影响。
本论文在综述工厂和中心仓库选址问题研究现状的根底上,对二者选址的模型和算法进展了研究。
对于问题一二,通过合理的分析,我们采用了重心法选址模型找到了工厂和中心仓库的大致位置并给出了确定工厂和中心仓库建造规模的参数和公式,通过用数据进展实例化分析,我们确定了工厂和中心仓库位置和建造规模。
对于问题三我们运用LINGO软件简单的解决了工厂对中心仓库的供货情况。
问题四我们选用了一组数据通过求解多元线性规划对问题进展了实例化分析。
为中心仓库的选址问题做了合理说明。
最后我们对模型进展了评价和分析。
关键词:物流网络重心法选址模型多元线性规划一、问题重述某公司是生产某种商品的省知名厂家。
该公司根据需要,方案在本省建立两个生产工厂和假设干个中心仓库向全省所有城市供货。
选址问题数学模型

选址问题数学模型选址问题数学模型摘要本题是用图论与算法结合的数学模型,来解决居民各社区生活中存在三个的问题:合理的建立3个煤气缴费站的问题;如何建立合理的派出所;市领导人巡视路线最佳安排方案的问题。
通过对原型进行初步分析,分清各个要素及求解目标,理出它们之间的联系.在用图论模型描述研究对象时,为了突出与求解目标息息相关的要素,降低思考的复杂度。
对客观事物进行抽象、化简,并用图来描述事物特征及内在联系的过程.建立图论模型是为了简化问题,突出要点,以便更深入地研究问题针对问题1:0-1规划的穷举法模型。
该模型首先采用改善的Floyd-Warshall算法计算出城市间最短路径矩阵见附录表一;然后,用0-1规划的穷举法获得模型目标函数的最优解,其煤气缴费站设置点分别在Q、W、M社区,各社区居民缴费区域见表7-1,居民与最近的缴费点之间平均距离的最小值11.7118百米。
针对问题2:为避免资源的浪费,且满足条件,建立了以最少分组数为目标函数的单目标最优化模型,用问题一中最短路径的Floyd算法,运用LINGO软件编程计算,得到个社区之间的最短距离,再经过计算可得到本问的派出所管辖范围是2.5千米。
最后采用就近归组的搜索方法,逐步优化,最终得到最少需要设置3个派出所,其所在位置有三种方案,分别是:(1)K区,W区,D区;(2)K区,W区,R区;(3)K区,W区,Q区。
最后根据效率和公平性和工作负荷考虑考虑,其第三种方案为最佳方案,故选择K区,W区,Q区,其各自管辖区域路线图如图8-1。
针对问题3:建立了双目标最优化模型。
首先将问题三转化为三个售货员的最佳旅行售货员问题,得到以总路程最短和路程均衡度最小的目标函数,采用最短路径Floyd算法,并用MATLAB和LINGO软件编程计算,得到最优树图,然后按每块近似有相等总路程的标准将最优树分成三块,最后根据最小环路定理,得到三组巡视路程分别为11.8 、11 和12.5 ,三组巡视的总路程达到35.3 ,路程均衡度为12%,具体巡视路线安排见表9-1和图9.2 。
数学建模论文选址优化

安徽建筑大学大学生数学建模竞赛报名表编号(由活动组织者填写):队员详细信息(选手题写)公司新厂选址问题摘要本文针对公司新厂址选址问题,以经济因素作为主要评判指标,综合分析了各城市距原加工厂的距离数值、各城市的月需求量、相关的人工工资和运费标准数据,运用灰色预测法、指数平滑法、线性规划法、重心迭代法分别建立了需求量预测模型、最优生产规模模型和新厂厂址选址模型,运用EXCEL、MATLAB、LINGO数学软件得出了相应的预测数据和地理位置坐标。
最后,我们从运费节省的角度对新厂厂址进行了评价,与原厂厂址的运费花费作对比得到了新厂厂址更优的结论。
针对问题一,根据所给各城市的月需求量,为了减少单种预测方法带来的误差,我们采用了灰色预测法和指数平滑法建立了模型I:组合预测模型。
首先,采用灰色预测法,运用MATLAB数学软件对18个城市本年度第12个月和未来一年的产品需求量进行预测,并将得到的预测值与实际值进行对比分析,得到未来一年中各地区每月的产品需求量。
由对预测结果的分析可知,各城市需求量在1-5月呈递增趋势,但是增长幅度不太明显,在5月份以后各月产量上下波动,波动相对稳定,其中最大需求量出现在1月份,最小需求量在12月份。
针对问题二,根据所给工资标准及运输价格等条件,确定各工厂的生产规模。
在考虑总成本即人工费用和运输费用最小的前提下运用线性规划思想,建立了模型II:最有生产规模模型。
以满足加工厂产量不小于供货城市的需求量为条件,同时为了确定加工厂和供货城市之间的对应关系,我们引入了0—1规划并运用LINGO数学软件分别对11个月份进行线性规划分析,从而得到各个工厂的生产产量和工人人数针对问题三,我们在问题一和问题二的基础上,参考各城市的地理位置重新选址,并给新厂选址做出评价,建立模型III:重心迭代模型。
首先,我们对18个城市地理位置特点进行区域划分。
然后,采用重心法和微分法利用MATLAB软件求解,并通过迭代计算。
航班计划的合理编排-数学建模竞赛优秀论文

湖南省首届研究生数学建模竞赛题目航班计划的合理编排摘要:本文从提高飞机利用率,降低运行成本,提高航空公司经济效益等角度出发,来研究航班计划的合理编排。
我们先后建立了,相关性分析模型,0-1整数规划模型,改进的0-1整数规划,鲁棒性评价模型等模型,并运用matlab,spss等相关软件对各模型进行求解,进而对题中各问题给出了相应的解答。
针对问题1,首先对附件1中的数据进行了检查,并合理地更改了一些不合理的数据,例如对附件1中餐食费为0的数据我们进行了合理的更改(见附录附表1)。
其次,为了找到影响航班收益的主要因素,我们求出了各航线的收益,建立了相关性分析模型,并给出了附件1中各因素与航班收益的相关系数。
通过对相关系数排序,我们找出了8各主要因素(见表1)。
同时基于这8个主要因素,我们对亏损航线提出了相应的整改措施。
针对问题2,首先根据问题中的假设条件,我们将求解航空公司收益最大化问题转化为了求解飞机利用率最高的问题。
为使飞机利用率最高,我们假设每架飞机每天的最大飞行时间为17.5小时,并针对西安、天津两个独立基地以及A320、E190两种机型分别建立了4个0-1整数规划模型,并将其转化为NP-hard 问题求解。
我们利用动态规划算法,通过matlab软件求解,计算出航空公司最少需要再去租4架A320机型和2架E190机型的飞机。
同时,我们还制定了下个月的航班计划(见附录附表1),并计算出公司的最大收益为4237.1万元。
针对问题3,在问题2的基础上,我们进一步考虑了飞机累计飞行130小时就必须在维修基地停场维修24小时的条件,进而建立了改进的0-1整数规划模型。
通过对模型进行求解,我们计算出在问题2的基础上至少需要增加A320机型和E190机型的飞机各2架,同时列出了一份各飞机停场排班表(见表11-14)。
针对问题4,首先给出了评价航班计划“鲁棒性”的评判标准。
基于该评判标准,我们对问题2中制定的航班计划的“鲁棒性”进行了评价。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机场选址问题摘要针对机场选址问题,文章共建立了三个模型用以解决该类问题。
为了计算出任意两城市之间的距离,我们利用公式(1)将利用题目中所给的大地坐标得出了任意两点之间的距离,见附录2。
对于问题1,我们主要利用0-1变量法,从而对问题进行了简化。
我们设了第i个y以及第i个城市是否是以第j个支线机场为最近机场的()j i x,。
城市是否建支线机场的i然后将任意两点之间的距离与该城市的总人数之积,再乘以0-1变量()j i x,,最后得出每一个所有城市到最近机场的距离与该城市人口的乘积,然后利用LINGO进行编写程序,进行最优化求解,最后得出的结果见表1和表2,各大城市以及支线机场的分布见图2。
对于问题2,该问题是属于多目标规划的问题,目标一是居民距离最近机场的距离最短,目标二是每个机场覆盖人口数尽可能相等。
我们在第一题的基础上,又假设了一些正、负偏差变量,对多个目标函数设立优先级,把目标函数转化为约束条件,进而求得满足题目要求的结果。
对于问题3,我们分析到影响客流量的因素是GDP跟居民人数,所以通过所搜集的资料分析我们给予这两个因素以不同的权重。
然后同样采取问题2中所给的反求机场覆盖的方法,求的各个机场所覆盖的客流量,再让其在平均客流量水平上下浮动。
通过LINGO程序的运行得到的六个机场的坐标见表6,六个机场的分布见图7。
针对论文的实际情况,对论文的优缺点做了评价,文章最后还给出了其他的改进方向,以用于指导实际应用。
关键词:选址问题;多目标规划;LINGO;0-1变量法;加权1.问题的重述近年来,随着我国经济社会的迅猛发展,公共交通基础设施日趋需要进一步完善与提高。
支线机场作为我国交通运输体系的有机组成部分,对促进欠发达地区经济社会的发展具有基础性的作用。
现某区域有30个城市,本区域计划在未来的五年里拟建6个支线机场。
任务1,确定6个支线机场的所在城市,建立居民到最近机场之间的平均距离最小的数学模型。
任务2,在任务一基础上,确定6个支线机场的所在城市,建立使得每个支线机场所覆盖的居民人数尽可能均衡的数学模型。
任务3,在任务一基础上,根据近一年每个城市的GDP 情况,确定6个支线机场的所在城市,建立使得每个支线机场的客流量尽量均衡的数学模型。
2.问题的分析2.1 问题1题目要求是建立居民到最近机场之间的平均距离最小的数学模型,该问题其实就是利用的0-1变量建立的模型。
首先我们设两个0-1变量,一个是控制某个城市是否为支线机场的i y ,一个是控制某个城市的最近机场是哪一个的ij x 。
针对于上述两个0-1变量,我们分别设立了约束条件。
同时又为了满足问题所要求的使局面平均距离最小,我们将某一个城市到离它最近的机场的距离与该城市的人口乘积作为目标函数,在LINGO 软件中,通过设立一约束条件,最后将目标函数进行最优化求解。
2.2 问题2该问题可以归结为多元目标线性规划的问题,所以我们在第一问的基础上又增加了一个目标函数,最后利用加权的方法将两个目标函数转化成了一个目标函数,将另一个目标函数作为约束条件。
同时我们又引入了正负偏差变量,通过控制该变量达到覆盖居民人数均衡以及居民到城市之间的平均距离尽量小。
2.3 问题3该问题要求的是客流量尽量均衡,经过分析可以知道,城市的GDP 越高,说明该城市经济越繁荣,货币流通越快,从而反映出客流量越大。
另一方面城市越大、人口越多,也在一定程度上反映出了该城市客流量越大。
基于上述两点,我们对GDP 跟城市人口分别给予了不同的权重来反映其对客流量的影响大小。
按照第二问的方法,我们依然利用多元目标线性规划的只是进行求解。
通过LINGO 编写程序,最中求得可行解。
3.模型的假设与符号说明3.1 模型的假设(1)各个城市的人口在某个较长的时间段内是不进行流动的,基本保持不变。
(2)两城市之间的距离都按照直线来计算,不存在弯曲线段的情况。
(3)各个城市都满足支线机场的建设条件,不存在某个城市不能建设支线机场的情况。
(4)假设各个支线机场是建在各个城市里面的,也就是说,我们将在这30个城市里面选取6个城市建设支线机场。
(5)各城市在未来一段时间内发展水平基本不变。
3.1 符号说明符号符号说明()j i x , 若第j 个城市建设支线机场,则第i 个城市到第j 个城市距离最近时,()1,=j i x ,其余的各种情况,()0,=j i x 。
ij v第i 个城市到第j 个城市之间的距离,其中30,,2,1 =i ,30,,2,1 =j 。
i w 第i 个城市的总人口,其中30,,2,1 =i 。
i y 第i 个城市被选为建设支线机场时,1=i y ;否则,0=i y , 30,,2,1 =i 。
k g按优先顺序k 极小化的现实目标或约束偏差变量的线性函数,其中3,2,1=k 。
fa 、j f 、j h正偏差变量,其中30,,2,1 =j 。
da 、j d 、j k负偏差变量,其中30,,2,1 =j 。
i q第i 个城市的GDP ,30,,2,1 =i 。
1min问题一中求得的目标函数的最小值。
m30个城市总的GDP 分配到六个支线机场的平均GDP 。
4.模型的准备首先我们将30座城市在大地坐标(经纬度)下的位置用MATLAB 软件画出以下图形(源程序见附录1):404244464850大地坐标下各大城市的位置图1 大地坐标系下的各大城市的位置题目条件所给的数据是经纬度,显然是不能进行距离计算的,首先我们从网上查取了一个公式,用于计算地球上任意两点之间的距离。
所以,我们就利用该公式计算出了任意两个城市之间的距离。
公式如下:212121sin sin cos cos )cos(cos ββββααθ+-= (1)θR L = (2)其中21αα、代表的是地球上两点的经度,1β、2β代表的是地球上两点的纬度,R 代表的是地球的平均半径,km 6371R =。
最后求的任意两点之间的距离见附录2。
5.模型的建立与求解5.1 问题1的模型建立与求解我们将每个城市到离该城市最近的那个支线机场的距离与该城市的总人数之积做为目标函数,求当该目标函数最小时,支线机场所建立的城市。
所以该模型的目标函数可以写作如下:()∑∑=iji ij j i x w v ,min (3)定义()j i x ,作为0-1变量,所以应该满足:()⎩⎨⎧=场个城市距离为最短的机个城市不是以到第个城市不建机场,或第,当第机场个城市的距离为最短的个城市是以到第个城市建立机场,且第,当第j i j 0j i j 1,j i x(4)⎩⎨⎧=个城市不建支线机场,第个城市建设支线机场,第i 0i 1i y (5) 为了使建设机场的个数为6个,还需要满足以下条件:6=∑ii y (6)为了是一座城市只能到一个机场的距离最短,还需要满足以下条件:()1,=∑jj i x (7)为了使()j i x ,满足地i 个城市是否是以第j 个城市中的机场的距离作为最短距离时,所以,还应满足以下条件:()j y j i x ≤, (8)所以可得出该模型的目标函数为:()∑∑=iji ij j i x w v ,min约束条件:()⎩⎨⎧=场个城市距离为最短的机个城市不是以到第个城市不建机场,或第,当第机场个城市的距离为最短的个城市是以到第个城市建立机场,且第,当第j i j 0j i j 1,j i x ⎩⎨⎧=个城市不建支线机场,第个城市建设支线机场,第i 0i 1i y6=∑iiy()1,=∑jj i x()j y j i x ≤,我们利用LINGO 软件进行编程(源程序见附录3,运算结果见附录4),得到如下结果:表1 建设支线机场的城市也就是说,只有在以上表中的几个城市建设机场才能使得居民离最近支线机场的距离最小,即应把机场建设在城市1、5、7、11、20、23六处。
以下是以某个支线机场作为最近的机场的城市表2 以某支线机场作为最近的机场的城市编号现在我们将利用MATLAB 将各个城市以及支线机场所在的位置以图像的形式表现出来(源程序见附录5),图形如下:图2 各大城市以及支线机场的位置5.2 问题2的模型建立与求解我们将各个正负偏差变量的之和作为目标函数,将求解该目标函数的最小值作为问题的目的,所以目标函数可以写成下面的形式:⎭⎬⎫⎩⎨⎧=∑j j d g fa g lex 21,min (9)定义()j i x ,作为10-变量,所以应该满足:()⎩⎨⎧=场个城市距离为最短的机个城市不是以到第个城市不建机场,或第,当第机场个城市的距离为最短的个城市是以到第个城市建立机场,且第,当第j i j 0j i j 1,j i x (10)⎩⎨⎧=个城市不建支线机场,第个城市建设支线机场,第i 0i 1i y (11) 为了使建设机场的个数为6个,还需要满足以下条件:6=∑ii y (12)为了是一座城市只能到一个机场的距离最短,还需要满足以下条件:()1,=∑jj i x (13) 为了使()j i x ,满足地i 个城市是否是以第j 个城市中的机场的距离作为最短距离时,所以,还应满足以下条件:()j y j i x ≤, (14)为了使覆盖的居民人数达到平衡,所以有:()[]1655,=-++∑ij j j i d f w j i x w (15)在上式中,1655是30个城市的总人口平均分配到6个支线机场的人数。
为了使覆盖居民到支线机场的平均距离较小,还需要满足以下情况:()()1min ,=-+∑∑da fa j i x w v iji ij (16)所以该模型的目标函数为:⎭⎬⎫⎩⎨⎧=∑j j d g fa g lex 21,min约束条件为:()⎩⎨⎧=场个城市距离为最短的机个城市不是以到第个城市不建机场,或第,当第机场个城市的距离为最短的个城市是以到第个城市建立机场,且第,当第j i j 0j i j 1,j i x ⎩⎨⎧=个城市不建支线机场,第个城市建设支线机场,第i 0i 1i y6=∑iiy()1,=∑jj i x()j y j i x ≤,()[]1655,=-++∑ij j ji d f wj i x w()()1min ,=-+∑∑da fa j i x w v ijiij我们利用LINGO软件进行编程(源程序见附录6,运算结果见附录7),得到如下结果:表3 建设支线机场的城市以下是以某个支线机场作为最近的机场的城市表4 以某支线机场作为最近的机场的城市编号现在我们将利用MATLAB将各个城市以及支线机场所在的位置以图像的形式表现出来(源程序见附录8),图形如所示下:图3 各大城市以及支线机场的位置5.3 问题3的模型建立与求解对于该问题,我们同样利用的是多元线性规划的问题。