全国大学生数学建模竞赛b题全国优秀论文

合集下载

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言2016年全国大学生数学建模竞赛B题,是一道涉及复杂系统分析与优化的实际问题。

该题目要求参赛者运用数学建模的方法,对给定的问题进行深入分析,并寻求最优解决方案。

本文将对B 题的解题过程进行详细分析,并总结经验教训。

二、题目概述B题主要围绕某大型网络公司的员工分配问题展开。

公司需根据员工的能力、需求以及项目的要求,合理分配员工到各个项目组,以实现公司整体效益的最大化。

该问题涉及到多目标决策、优化算法以及复杂系统分析等多个方面。

三、解题分析1. 问题理解:首先,我们需要对题目进行深入理解,明确问题的背景、目标和约束条件。

在这个阶段,我们需要对员工的能力、需求以及项目的要求进行详细的分析,为后续的建模打下基础。

2. 数学建模:根据问题的特点,我们选择建立多目标决策模型。

模型中,我们将员工的能力、需求以及项目的要求作为决策变量,以公司整体效益作为目标函数。

同时,我们还需要考虑各种约束条件,如员工数量的限制、项目需求的满足等。

3. 算法设计:在建立模型后,我们需要设计合适的算法来求解模型。

在这个阶段,我们选择了遗传算法和模拟退火算法进行求解。

遗传算法能够在大范围内搜索最优解,而模拟退火算法则能够在局部范围内进行精细搜索,两种算法的结合能够更好地求解该问题。

4. 求解与优化:在算法设计完成后,我们开始进行求解与优化。

首先,我们使用遗传算法对模型进行粗略求解,得到一组初步的解决方案。

然后,我们使用模拟退火算法对初步解决方案进行优化,以得到更优的解决方案。

在优化过程中,我们还需要不断调整模型的参数和算法的参数,以获得更好的求解效果。

5. 结果分析:在得到求解结果后,我们需要对结果进行分析。

首先,我们需要对结果进行验证,确保结果的正确性和有效性。

然后,我们需要对结果进行敏感性分析,分析各种因素对结果的影响程度。

最后,我们需要提出一些管理建议和改进措施,以帮助公司更好地解决实际问题。

2017数学建模b题优秀论文

2017数学建模b题优秀论文

2017数学建模b题优秀论文利用数学知识解决现实生活的具体问题了成为当今数学界普遍关注的内容,利用建立数学模型解决实际问题的数学建模活动也应运而生了。

下文是店铺为大家搜集整理的关于2017数学建模b题优秀论文的内容,欢迎大家阅读参考!2017数学建模b题优秀论文篇1浅谈数学建模实验教学改革摘要:阐述了数学建模课程在大学生知识面的拓宽、全方位能力的培养以及人文素质的提高三方面的重要作用,提出了数学建模课程有助于提高学生的综合素质。

从数学建模理论课程和实验教学两者之间的区别与联系的角度提出了实验教学改革的必要性,最后针对数学建模实验教学的具体情况提出了实验教学改革的措施。

关键词:数学建模;实验教学;教学改革一、数学建模课程有助于提高学生的综合素质随着教育改革的不断深入,我国目前正在开展以“素质和素质教育”为核心的教育思想与教育观念大讨论。

在1983年召开的世界大学校长会议中,对理想的大学生综合素质提出了三条标准:专业知识要掌握本学科的方法论、具有将本学科知识与实际生活与其他学科相结合的能力以及具有良好的人格素质。

[1]数学是一切科学和技术的基础,数学的思考方式对培养学生科学的思维方法具有重要意义,因而数学的重要性是毋庸置疑的。

数学和各学科的相互渗透及其在技术中的应用,推动了数学本身的发展和各个学科理论的发展。

戴维在1984年说过:“对数学研究的低水平的资助只能来自对于数学研究带来的好处的完全不妥的评价。

显然,很少有人认识到当今被如此称颂的‘高技术’本质上是数学技术。

”数学的广泛应用性主要取决于数学的思维方式。

数学对于学生的培养,不只是数学定理的证明,公式、定义的理解,重要的是培养学生具备正确的思想方法,而且可以依据自己所学到的知识不断创新、不断寻找新的途径。

21世纪以来,数学建模课程的开设在国内高校中稳步展开,并获得了广泛认同。

参加数学建模竞赛的学校和人数逐年上升,数学建模课程的重要性得到广泛认可,越来越多的高校开设了数学建模课程。

数学建模优秀论文

数学建模优秀论文

(数学建模B题)北京水资源短缺风险综合评价参赛队员:甘霖(20093133,数学科学学院)李爽(20093123,数学科学学院)崔骁鹏(20091292,计算机科学学院)参赛时间:2011年4月30 - 5月13日承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D 中选择一项填写):B所属学校(请填写完整的全名):黑龙江大学参赛队员:1.甘霖2、李爽3、崔骁鹏日期:2011 年5月12日目录1.摘要 -----------------------------------------42.关键词 ---------------------------------------43.问题重述 ---------------------------------------54.模型的条件和假设 ------------------------------55.符号说明 --------------------------------------56.问题的分析及模型的建立 ------------------------66.1问题一的分析与求解 -----------------------66.2问题二的分析与求解 -----------------------106.3问题三的分析与求解 -----------------------186.4问题死的求解 -----------------------------217.模型的评价 ------------------------------------238.参考文献 --------------------------------------239.附录 ------------------------------------------23北京水资源短缺风险综合评价甘霖﹑李爽﹑崔骁鹏【摘要】本文针对水资源短缺风险问题求出主要风险因子,并建立了水资源短缺风险评价模型,以北京为实例,做出了北京1979年到2009年的水资源短缺风险的综合风险评价,划分出了风险等级,以评价水资源短缺风险的程度。

全国大学生数学建模竞赛b题全国优秀论文

全国大学生数学建模竞赛b题全国优秀论文

基于打车软件的出租车供求匹配度模型研究与分析摘要目前城市“出行难”、“打车难”的社会难题导致越来越多的线上打车软件出现在市场上。

“打车难”已成为社会热点。

以此为背景,本文将要解决分析的三个问题应运而生。

本文运用主成分分析、定性分析等分析方法以及部分经济学理论成功解决了这三个问题,得到了不同时空下衡量出租车资源供求匹配程度的指标与模型以及一个合适的补贴方案政策,并对现有的各公司出租车补贴政策进行了分析。

针对问题一,根据各大城市的宏观出租车数据,绘制柱形图进行重点数据的对比分析,首先确定适合进行分析研究的城市。

之后,根据该市不同地区、时间段的不同特点选择多个数据样本区,以数据样本区作为研究对象,进行多种数据(包括出租车分布、出租车需求量等)的采集整理。

接着,通过主成分分析法确定模型的目标函数、约束条件等。

最后运用spss软件工具对数据进行计算,求出匹配程度函数F与指标的关系式,并对结果进行分析。

针对问题二,在各公司出租车补贴政策部分已知的情况下,综合考虑出租车司机以及顾客两个方面的利益,分别就理想情况与实际情况进行全方位的分析。

在问题一的模型与数据结果基础上,首先分别从给司机和乘客补贴两个角度定性分析了补贴的效果。

重点就给司机进行补贴的方式进行讨论,定量分析了目前补贴方案的效果,得出了如果统一给每次成功的打车给予相同的补贴无法改善打车难易程度的结论,并对第三问模型的设计提供了启示,即需要对具有不同打车难易程度和需求量的区域采取分级的补贴政策。

针对问题三,在问题二的基础上我们设计了一种根据不同区域打车难易程度和需求量来确定补贴等级的方法。

设计了相应的量化指标,以极大化各区域打车难易程度降低的幅度之和作为目标,建立该问题的规划模型。

目的是通过优化求解该模型,使得通过求得的优化补贴方案,能够优化调度出租车资源,使得打车难区域得到缓解。

通过设计启发式原则和计算机模拟的方法进行求解,并以具体案例分析得到,本文方法相对统一的补贴方案而言的确可以一定程度缓解打车难的程度。

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言全国大学生数学建模竞赛(CUMCM)是衡量各高校数学类学科学生学习与实践能力的标志性竞赛之一。

其中,B题以真实问题的复杂性吸引了广大参赛选手的关注。

本文将对B题的具体题目内容、解题过程、常见方法和误区进行分析,并结合实例对竞赛结果进行总结,以期为其他参赛同学提供一定的参考。

二、题目分析B题通常关注某一实际领域的复杂问题,涉及多个因素的综合考量。

其要求参赛者通过建立数学模型,解决实际问题。

具体问题包括某个地区的旅游经济预测和资源合理配置。

针对此问题,首先需要对旅游业的各项数据进行详细分析,然后构建适当的数学模型,并使用合适的数学工具和软件进行计算和模拟。

三、解题过程1. 数据收集与分析:收集该地区的历史旅游数据,包括游客数量、消费水平、旅游景点分布等。

同时,分析该地区的经济、文化、交通等影响旅游业的因素。

2. 模型构建:根据收集的数据和实际情况,选择合适的数学模型进行建模。

常见的模型包括时间序列预测模型(如ARIMA 模型)、多元回归模型等。

3. 模型求解与验证:利用数学软件(如MATLAB、SPSS等)对模型进行求解,并对模型的预测结果进行验证。

验证方法包括与历史数据进行对比、进行敏感性分析等。

4. 资源合理配置:根据预测结果和实际情况,制定合理的资源分配方案,如旅游景点的开发策略、交通设施的优化配置等。

四、常见方法与误区1. 常见方法:在建模过程中,应选择合适的数学模型和方法。

对于时间序列预测问题,常用的有ARIMA模型、指数平滑法等;对于多元回归问题,则需要考虑各因素之间的相互关系。

同时,还应充分利用计算机技术进行数据分析和模拟。

2. 误区提示:在建模过程中,要避免陷入一些常见的误区。

例如,过分追求模型的复杂性和精确度而忽视模型的实用性和可解释性;忽视数据的预处理和清洗工作;忽略模型的验证和修正等。

五、实例分析以某次B题竞赛的优秀解决方案为例,详细分析其解题过程和关键点。

全国大学生数学建模竞赛B题优秀论文

全国大学生数学建模竞赛B题优秀论文
2.2 模型的符号说明
(1) 表示客流量随时间的变化值,R、RW、RG分别表示上海国际旅游入境人数本底值、外国游客入境人数本底值、港澳台游客入境人数本底值;
(2)R1表示2010年1、2、3、4、11、12月上海国际旅游入境实际人数,R2表示世博会期间上海国际旅游入境实际人数,RZ表示2010年上海国际旅游总入境实际人数;
最后,通过对模型结果的分析,量化评估上海世博会的影响力。从世博会对以上各个指标的贡献率可以看出:世博会极大地促进了旅游业的发展,并且对上海的财政收入做出了巨大的贡献。在分析所得结果的基础上,客观评价此模型,并指出其优点和缺点。
关键词:上海 世博会 影响力 本底趋势线 内插值
1.问题重述
2010年上海世博会是首次在中国举办的世界博览会。从1851年伦敦的“万国工业博览会”开始,世博会正日益成为各国人民交流历史文化、展示科技成果、体现合作精神、展望未来发展等的重要舞台。请你们选择感兴趣的某个侧面,建立数学模型,利用互联网数据,定量评估2010年上海世博会的影响力。
2.模型的假设与符号说明
2.1模型的假设
2010年上海世博会作为一场世界级的盛宴,要对其影响力进行定量评估,尚存在一些不确定因素。故为了研究方便,我们给出以下假设:
(1)假设世博会不受偶然事件严重冲击和干扰;
(2)假设旅游人数只受主要因素影响,其他一些因素可以忽略,比如天气等因素;
(3)假设世博会期间每月游览总人数波动不大,非世博会期间每月游览总人数波动也不大。
第二步,用Excel的指数模型、乘幂模型和SPSS的指数-三角函数复合模型 、直线-逻辑线增长复合模型 、直线-三角函数复合模型 对各个指标进行拟合,确定有关参数,获得各个指标的趋势线模型和方程,并计算各年的本底值;

全国数学建模B题论文

全国数学建模B题论文

全国数学建模B题论文 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-2004高教社杯全国大学生数学建模竞赛题目B题电力市场的输电阻塞管理摘要本文是基于电力市场交易规则和输电阻塞管理原则,对电力市场的输电阻塞管理进行研究,提出合理假设,建立了较完善的模型,很好的解决了在电力市场中存在的一些问题。

问题一:首先作图分析数据,得出单个机组与线路潮流有线性关系,建立多元线性回归模型,用matlab进行拟合求出各线路上有功潮流关于各发电机组出力的近似表达式。

问题二:序内容量不出力的部分按清算价与修改后方案中该机组最后被选入段价之差补偿,序外容量多出力的部分根据该机组最后一个被选入的段价为进行补偿,两部分的补偿即阻塞费用。

问题三:先找到各机组在爬坡速率限定下下一时段出力值的变化范围,在此基通过调整预案使输电阻塞完全消除,故建立非线性优化模型,使每条线路上潮流的绝对值超过限值的百分比尽量小。

【关键词】一、问题重述我国电力系统的市场化改革正在积极、稳步地进行。

2003年3月国家电力监管委员会成立,2003年6月该委员会发文列出了组建东北区域电力市场和进行华东区域电力市场试点的时间表,标志着电力市场化改革已经进入实质性阶段。

可以预计,随着我国用电紧张的缓解,电力市场化将进入新一轮的发展,这给有关产业和研究部门带来了可预期的机遇和挑战。

电力从生产到使用的四大环节——发电、输电、配电和用电是瞬间完成的。

我国电力市场初期是发电侧电力市场,采取交易与调度一体化的模式。

电网公司在组织交易、调度和配送时,必须遵循电网“安全第一”的原则,同时要制订一个电力市场交易规则,按照购电费用最小的经济目标来运作。

市场交易-调度中心根据负荷预报和交易规则制订满足电网安全运行的调度计划――各发电机组的出力(发电功率)分配方案;在执行调度计划的过程中,还需实时调度承担AGC(自动发电控制)辅助服务的机组出力,以跟踪电网中实时变化的负荷。

2004年全国大学生数学建模大赛B题全国一等奖论文

2004年全国大学生数学建模大赛B题全国一等奖论文

电力市场的输电阻塞管理摘要电网公司在组织交易、调度和配送时,要制订一个电力市场交易规则,按照购电费用最小的经济目标来运作。

我们采用多元线性回归的方法建立线路潮流值与各机组出力之间的近似方程,单目标规划确定机组分配预案,公平对待序内外容量建立阻塞费用计算规则,双目标规划确定机组调整分配方案,进行电力市场的输电阻塞管理。

问题一:首先,我们建立多元线性回归方程,采用SPSS软件求出线路上的潮流值与各个机组处理预案之间的近似方程,再根据求解出的复相关系数得出自变量与因变量之间的线性关系明显,用F检验与均方差检验判断近似方程回归较为精确,进一步提高了模型的严谨性。

问题二:为设计合理的阻塞费用计算规则,我们考虑了两种方法,方法一是直接将调整后的机组总出力与对应清算价之积与调整前的总费用相减差值作为阻塞费用,但根据题目要求需公平地对待序内容量不能出力的部分和报价高于清算价的序外容量出力的部分,这两部分我们用清算价与对应报价之差来结算。

问题三:我们首先根据电力市场交易规则费用最小的交易要旨确定目标函数,根据清算价、系统负荷、爬坡速率的限制条件确定约束条件,建立单目标规划模型。

然后用MATLAB求解对应的系数分配矩阵与段容分配矩阵,得出分配预案如下:一、问题重述我国电力系统的市场化改革正在积极、稳步地进行。

2003年3月国家电力监管委员会成立,2003年6月该委员会发文列出了组建东北区域电力市场和进行华东区域电力市场试点的时间表,标志着电力市场化改革已经进入实质性阶段。

可以预计,随着我国用电紧张的缓解,电力市场化将进入新一轮的发展,这给有关产业和研究部门带来了可预期的机遇和挑战。

电力从生产到使用的四大环节——发电、输电、配电和用电是瞬间完成的。

我国电力市场初期是发电侧电力市场,采取交易与调度一体化的模式。

电网公司在组织交易、调度和配送时,必须遵循电网“安全第一”的原则,同时要制订一个电力市场交易规则,按照购电费用最小的经济目标来运作。

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言全国大学生数学建模竞赛是具有广泛影响力的学术竞赛活动,旨在培养大学生的创新能力、实践能力和团队协作精神。

本文将针对2016年竞赛中的B题进行详细的解题分析与总结,以期为参赛者提供有益的参考。

二、题目概述B题主要涉及城市空气质量预测问题。

题目要求参赛者根据历史数据,建立数学模型预测未来一段时间内某城市的空气质量指数(AQI)。

此题重点考察参赛者的数据处理能力、模型构建能力以及预测精度。

三、解题分析1. 数据收集与预处理首先,我们需要收集该城市的历史空气质量数据,包括但不限于PM2.5、PM10、SO2、NO2等污染物的浓度数据,以及气象数据(如温度、湿度、风速等)。

对收集到的数据进行清洗,去除异常值和缺失值,并进行归一化处理,以便进行后续分析。

2. 模型构建根据数据的特性,我们选择时间序列分析方法进行建模。

具体而言,可以采用自回归积分滑动平均模型(ARIMA)或其变体如SARIMA等。

这些模型能够较好地捕捉时间序列数据的变化规律,并预测未来趋势。

在建模过程中,我们需要通过交叉验证等方法确定模型的参数。

3. 模型验证与优化建立初步模型后,我们需要用验证集对模型进行验证,计算预测值与实际值之间的误差。

根据误差情况,对模型进行优化,如调整参数、引入其他影响因素等。

同时,我们还可以尝试使用其他模型进行对比,如神经网络、支持向量机等,以找到最优的预测模型。

四、模型应用与结果分析经过优化后的模型可以用于预测未来一段时间内该城市的空气质量指数。

我们可以通过绘制预测曲线、计算预测值的置信区间等方式对预测结果进行分析。

同时,我们还可以根据预测结果提出相应的空气质量改善措施和建议。

五、总结与展望通过对2016年全国大学生数学建模竞赛B题的分析与求解,我们掌握了空气质量预测的基本方法和技巧。

在未来的学习和工作中,我们可以将所学知识应用到更广泛的领域,如气候变化预测、经济预测等。

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言2016年全国大学生数学建模竞赛B题,以其独特的实际应用背景和复杂的数学建模需求,吸引了众多参赛者的关注。

本文旨在分析该题目的解题思路、方法及过程,并总结经验教训,以期为后续参赛者提供参考。

二、题目概述B题主要围绕“空气质量预测与治理”展开,要求参赛者建立数学模型,对某城市的空气质量进行预测,并探讨治理措施的效果。

题目既涉及数学建模的理论知识,又具有实际应用价值。

三、解题分析1. 数据收集与预处理在解题过程中,首先需要收集该城市的历史空气质量数据,包括PM2.5、PM10、SO2、NO2等主要污染物的浓度数据,以及气象数据、交通流量等影响因素数据。

对收集到的数据进行清洗、整理和标准化处理,以便进行后续的建模分析。

2. 模型选择与建立根据题目要求和数据特点,可以选择时间序列分析模型、多元线性回归模型、神经网络模型等。

在建立模型时,需要考虑各种影响因素的相互作用,以及模型的预测精度和泛化能力。

同时,还需要对模型进行参数估计和假设检验,以确保模型的可靠性。

3. 模型应用与验证将建立的模型应用于实际数据,进行空气质量预测。

通过对比预测值与实际值的差异,评估模型的预测精度和效果。

此外,还需要探讨治理措施对空气质量的影响,评估治理措施的效果。

四、解题方法与技巧1. 多角度综合分析在建模过程中,需要从多个角度综合分析问题。

既要考虑空气质量的主要影响因素,又要考虑各因素之间的相互作用;既要关注模型的预测精度,又要考虑模型的泛化能力。

只有综合考虑各种因素,才能建立更加准确、可靠的数学模型。

2. 合理选择模型与方法根据问题的特点和数据的特点,选择合适的模型与方法。

不同的模型与方法有不同的适用范围和优缺点,需要根据实际情况进行选择和调整。

同时,还需要对所选模型与方法进行充分的了解和掌握,以确保建模过程的顺利进行。

3. 注意数据的处理与分析数据是建模的基础,数据的处理与分析对建模的结果具有重要影响。

2019年全国大学生数学建模竞赛B题题目及论文精选

2019年全国大学生数学建模竞赛B题题目及论文精选

2019高教社杯全国大学生数学建模竞赛B题目及优秀论文精选B题“同心协力”策略研究“同心协力”(又称“同心鼓”)是一项团队协作能力拓展项目。

该项目的道具是一面牛皮双面鼓,鼓身中间固定多根绳子,绳子在鼓身上的固定点沿圆周呈均匀分布,每根绳子长度相同。

团队成员每人牵拉一根绳子,使鼓面保持水平。

项目开始时,球从鼓面中心上方竖直落下,队员同心协力将球颠起,使其有节奏地在鼓面上跳动。

颠球过程中,队员只能抓握绳子的末端,不能接触鼓或绳子的其他位置。

图片来源:https:///_mediafile/yjs/2017/10/26/32yuesec78.png 项目所用排球的质量为270 g。

鼓面直径为40 cm,鼓身高度为22 cm,鼓的质量为3.6 kg。

队员人数不少于8人,队员之间的最小距离不得小于60 cm。

项目开始时,球从鼓面中心上方40 cm处竖直落下,球被颠起的高度应离开鼓面40 cm以上,如果低于40cm,则项目停止。

项目的目标是使得连续颠球的次数尽可能多。

试建立数学模型解决以下问题:1. 在理想状态下,每个人都可以精确控制用力方向、时机和力度,试讨论这种情形下团队的最佳协作策略,并给出该策略下的颠球高度。

2. 在现实情形中,队员发力时机和力度不可能做到精确控制,存在一定误差,于是鼓面可能出现倾斜。

试建立模型描述队员的发力时机和力度与某一特定时刻的鼓面倾斜角度的关系。

设队员人数为8,绳长为1.7m,鼓面初始时刻是水平静止的,初始位置较绳子水平时下降11 cm,表1中给出了队员们的不同发力时机和力度,求0.1 s时鼓面的倾斜角度。

表1 发力时机(单位:s)和用力大小(单位:N)取值3. 在现实情形中,根据问题2的模型,你们在问题1中给出的策略是否需要调整?如果需要,如何调整?4. 当鼓面发生倾斜时,球跳动方向不再竖直,于是需要队员调整拉绳策略。

假设人数为10,绳长为2m,球的反弹高度为60cm,相对于竖直方向产生1度的倾斜角度,且倾斜方向在水平面的投影指向某两位队员之间,与这两位队员的夹角之比为1:2。

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言2016年全国大学生数学建模竞赛(以下简称国赛)是中国大学最为盛大的数学建模比赛,汇集了来自全国各高校顶尖的数学建模团队。

在本次比赛中,B题题目独特且挑战性强,使得各队参赛选手展现出了超凡的建模和解决实际问题的能力。

本文旨在深入探讨该题的解题思路与总结,以便于为其他数学建模爱好者提供借鉴和参考。

二、B题概述题目B涉及到了金融领域的风险管理问题,主要考察了参赛选手在金融领域的数学建模和解决问题的能力。

具体来说,题目要求通过构建数学模型来分析不同类型股票之间的价格关系,以及在给定市场条件下如何确定风险阈值并有效地控制投资风险。

三、解题思路(一)明确问题在分析B题时,我们首先明确了题目的要求和目的,确定了对金融领域相关概念和理论的研究方向。

我们认识到这是一个典型的金融风险管理问题,需要运用数学建模的方法来分析股票价格之间的关系以及风险控制策略。

(二)数据收集与处理在收集了相关股票的历史数据后,我们进行了数据清洗和预处理工作,以确保数据的准确性和可靠性。

这包括剔除异常数据、填补缺失值、对数据进行归一化处理等。

(三)构建模型针对题目要求,我们选择了合适的方法和模型来分析股票价格之间的关系。

首先,我们使用相关性分析来探究不同股票之间的价格关系;其次,我们运用回归分析来建立股票价格与风险之间的数学模型;最后,我们利用蒙特卡洛模拟等方法来模拟市场环境并确定风险阈值。

(四)模型验证与优化在构建了数学模型后,我们通过实际数据对模型进行了验证和优化。

我们比较了模型的预测结果与实际市场数据,不断调整模型参数以优化模型的性能。

四、解题方法与技巧(一)熟悉金融领域相关知识在解决B题时,我们需要对金融领域的相关知识有充分的了解,包括股票价格的形成机制、风险控制策略等。

这有助于我们更好地理解题目要求并选择合适的建模方法。

(二)合理选择数学建模方法针对不同的金融问题,我们需要选择合适的数学建模方法。

国赛数模冲刺必看公交调度一等奖论文

国赛数模冲刺必看公交调度一等奖论文

第三篇 公交车调度方案的优化模型2001年 B 题 公交车调度公共交通是城市交通的重要组成部分,作好公交车的调度对 于完善城市交通环境、改进市民出行状况、提高公交公司的经济 和社会效益,都具有重要意义。

下面考虑一条公交线路上公交车 的调度问题,其数据来自我国一座特大城市某条公交线路的客流 调查和运营资料。

该条公交线路上行方向共14 站,下行方向共13 站,表3-1给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。

公交公司配给该线路同一型 号的大客车,每辆标准载客100 人,据统计客车在该线路上运行的平均速度为20 公里/小时。

运营 调度要求,乘客候车时间一般不要超过10 分钟,早高峰时一般不要超过5 分钟,车辆满载率不应 超过120%,一般也不要低于50%。

试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包 括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司 双方的利益;等等。

如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题 的要求,如果要设计更好的调度方案,应如何采集运营数据。

表3-1某路公交汽车各时组每站上下车人数统计表上行方向:A13开往A0站名 A13A12 A11 A10 A9 0.73 76 A8 2.04 90 A7 1.26 48 A62.29 83 A5 A4 A3 A2 A1 A0 站间距(公里)5:00-6:001.6 0.5 1 1 1.2 0.4 1 1.03 0.53 上 下 上 下 上 下 上 下 上 下371 060 8 52 9 43 13 85 32 26 18 45 24 45 25 11 85 0 57 0 20 48 45 81 6:00-7:00 7:00-8:00 8:00-9:009:00-10:001990376 333 256 99 105 164 3626634 528 447 205 227 272 2064 322 305 235 106 123 169 1186 205 166 147 81 75 120 151 120 108 52 55 81 181 157 133 54 58 84 141 140 108 46 49 71 141 103 84 39 41 70 104 108 82 589 239 948 461 477 300 281 181 215 136 254 131 215 111 186 103 162 78 594 588 868 315 542 523 622 800 958 510 176 308 307 68 407 208 300 288 921 904 259 465 454 99 0615 00 1058 1097 1793 801 469 560 636 1871 1459 549 634 304 407 214 299 264 321 204 263 185 221 180 189 180271 621 172 411 119 280 135 291 129 256 103 197 90 486 971 324 551 212 442 253 420 232 389 211 297 185 339 185439 157 275 234 60 0 0 440 245 339 408 1132 759 267 78 143 162 36 250 136 187 233 774 201 75 123 112 26 178 105 153 167 532 260 74 138 117 30 196 119 159 153 534 221 65 103 112 26 164 111 134 148 488 0 483 0 010:00-11:00 上 923下 0 385 0 11:00-12:00上 957 下 0340 0 12:00-13:00 上 873下 0 333 0 13:00-14:00上 779 173 66 108 97 23 下 0137 85 113 116 384 263 0 14:00-15:00 上 625170 49 139 80 150 49 75 97 120 383 85 85 20 85 20 下 0 36 39 47 82176 80239 015:00-16:00上 63512498 152下36 16:00-17:00 上 1493299 240 199 80 85 135 17:00-18:00 上 2011379 311 230 39 57 88 396 194 497 257 167 108 91 209 404 450 479 694 165 237 85 196 210 441 296 573 108 231 50 339 428 731 586 957 201 390 88 129 80 107 110 353 390 120 208 197 49 335 157 255 251 800 508 140 250 259 61 229 0 下 0557 0 下 0110 118 171 124 107 89 390 253 293 378 1228 793 18:00-19:00 上 691194 53 93 82 22 0 336 0 下 045642250163714348 55 23 43 17 32 14 3 80 46 34 36 24 26 21 2 150 89 131 125 428 19:00-20:00 上 350 89 83 60 59 52 62 5 27 48 22 34 16 30 1 48 64 38 46 28 40 3 47 66 204 37 47 160 27 41 128 11 下 0 63 116 75 108 40 196 77 139 0 20:00-21:00 上 304 72 9 下 0 38 80 84 143 47 117 0 21:00-22:00 上 209 53 55 29 6 下 0 19 0 33 78 63 125 5 92 0 22:00-23:00 上 5 5 3 2 9 1 下 33 58 18 17 27 12 7 9 32 21 表3-1(续) 某路公交汽车各时组每站上下车人数统计表 下行方向:A0 开往A13站名 A0A2 1.56 3 A31 A4 0.442 A5 1.2 A6 A7 A8 1.3 A9 2 A10 A11 A12 A13 站间距(公里) 5:00-6:00 0.97 2.29 0.73 1 1 1 0.5 1.62 上 下 上 下 上 下 上 下 上 下 上 下 上 下 上 下 上 下 上 下 上 下 上 下 上 下 上 下 上 下 上 下 上 下22 0 4 4 4 3 3 3 0 3 0 9 0 2 1 1 6 7 7 5 3 4 2 6:00-7:00 7:00-8:00 795 0 143 70 167 40 84 151 184 420 710 404 756 235 410 155 246 127 199 105 174 102 166 130 219 169 253 305 459 468 737 328 635 138 266 112 186 105 190188 205 455 780 532 827 308 511 206 346 150 238 144 215 133 210 165 238 194 307 404 617 649 109 195 272 849 333 856 162 498 120 320 108 256 92 137 147 343 545 345 529 203 336 150 191 104 175 95 130 93 45 53 75 138 16 40 109 126 444 120 428 76 108 271 2328 380 294 2706 374 266 1556 204 427 156 492 158 274 100 183 59 224 157 224 149 125 80 331 374 354 367 198 199 143 147 107 122 88 45 0 0 265 373 958 153 46 237 376 1167 99 27 136 219 556 8:00-9:00 0 0 9:00-10:00 10:00-11:00 11:00-12:00 12:00-13:00 13:00-14:00 14:00-15:00 15:00-16:00 16:00-17:00 17:00-18:00 18:00-19:00 19:00-20:00 20:00-21:00 21:00-22:000 0 902 0 157 147 103 130 94 276 50 82 59 96 48 68 40 65 43 60 49 78 64 18 154 438 15 128 346 0 59 185 41 847 0 132 48 67 0 48 143 34 706 0 90 118 40 66 12 98 13 0 261 0 70 40 205 97 127 102 136 118 155 152 215 277 401 432 103 104 90 119 36 770 0 97 126 43 59 75 43 209 101 246 141 341 229 549 388 127 42 115 309 15 118 346 19 839 0 133 84 156 48 69 120 112 166 136 253 266 452 416 342 304 147 147 94 0 48 153 54 1110 170 110 1837 260 175 3020 474 330 1966 350 189 73 79 0 0 63 167 95 102 144 425 122 34 162 269 784 205 56 278 448 1249 132 40 246 320 1010 330 96 146 106 248 194 204 150 88 0 0 304 157 494 122 423 48 587 193 399 129 165 59 0 0 934 1016 606 471 787 187 306 153 230 144 243289 690 124 290 87 335 505 143 201 102 146 95 0 0 939 0 223 130 113 107 75 56 86 43 70 40 6717 0 59 155 36 154 398 640 0 126 43 69 13 95 12 0 319 0 43 219 82 90 127 34 636 0 110 73128 4156 98 4219213210712310129022:00-23:00 上下294433551202420468758 359241694247156017335 0108 49 136 公交车调度方案的优化模型*摘要:本文建立了公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益的前提下,给出了理想发车时刻表和最少车辆数。

09数学建模B题获奖论文

09数学建模B题获奖论文
在问题(2)中,统计并分析书籍数据,根据由统计得到的各类病人康复的天数,按正态分布原理可得到9月12号到9月23号每天这部分人拟出院人数,在此基础上,具体到某一天,当某种病人达到了康复时期的最小值时我们把它们选取出来,再根据当天拟出院的病人数,在这选取出来的数据中利用计算机编程按照随机选取的方法再将它们逐个选取出来,直到达到拟出院的病人数为止,最后选取出来的患者为该天拟出院的患者。采用递归的方式,能得出做了手术而没出院的那部分病人的拟出院情况。根据这个拟出院情况,我们可以安排病人住院,我们可让该天安排进医院的各类病人的所有准备时间最小作为目标函数建立病床安排模型。对于约束条件的限制,由于考虑到医生的安排问题,即白内障患者安排到周一和周三做手术,具体到某天时,我们首先确定该天的日期和该天是星期几,根据这些信息可以确定出该日期医院拟出院的病人数和住进去的各类病人的准备时间即确定约束条件。
5.2
由已知数据可得2008-07-13到2008-09-11这段时间每天白内障单眼、白内障双眼、视网膜疾病、青光眼和外伤的病人到医院就诊的人数,这段时间白内障单眼、白内障双眼、视网膜疾病、青光眼和外伤的病人的总数分别为:100、133、170、63、64。
5.3
由附录可得2008-07-13到2008-09-11这段时间白内障单眼、白内障双眼、视网膜疾病、青光眼和外伤的康复时间可得白内障单眼、白内障双眼、视网膜疾病、青光眼和外伤的康复时间分别为[2,4]、[4,6]、[5,15]、[4,12]、[3,10],且它们各自占到的比例分别如表5-1,5-2,5-3,5-4所示。
视网膜
康复天数
5
6
7
8
9
10
11
12
13
14
15
康复人数

全国大学生数学建模优秀论文 B题:产品销量预测

全国大学生数学建模优秀论文   B题:产品销量预测

承诺书我们仔细阅读了数学建模竞赛选拔的规则.我们完全明白,在做题期间不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人研究、讨论与选拔题有关的问题。

我们知道,抄袭别人的成果是违反选拔规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守选拔规则,以保证选拔的公正、公平性。

如有违反选拔规则的行为,我们将受到严肃处理。

我们选择的题号是(从A/B/C中选择一项填写):队员签名:1.2.3.日期:年月_日编号专用页评阅编号(评阅前进行编号):评阅记录(评阅时使用):评阅人评分备注B 题 产品销量预测摘要产品销量预测问题是当前世界上所有企业最关心的问题之一。

企业若想长期生存发展,就必须做销量预测。

本文对产品的销量及其影响因素进行了讨论。

对于问题一,鉴于比例系数未知,给出比例系数为每一产品在单位时间内平均吸引k 个顾客,使其购买k 个该产品这一假设,建立Malthus 模型,预测出0t 时刻的产品销量0()x t 。

分析得Malthus 模型所得结果只与实际销售量在初始阶段的增长情况比较符合,不宜用于销售量的中、长期预测。

对于问题二,结合问题一并假设一个消费者仅购买一种该产品。

此时问题可理解为在某时刻t 时,产品销量的增长率既与到时刻t 为止的已经购买该种产品消费者数目)(t x 成正比,也与尚未购买该产品的潜在消费者数目)(t x N 成正比。

建立Logistic 模型,预测出0t 时的产品销量0()x t 。

分析得,产品销售情形与此模型非常相似,特别在销售后期更加吻合。

对于问题三,根据产品生命周期理论,结合龚柏兹曲线,运用三段对数和法,建立模型,预测出市场容量N 。

对于问题四,考虑到影响产品销量的因素有广告、企业竞争、产品竞争、消费者的购买能力、国家的经济水平等。

结合本文,选取广告、企业竞争、产品竞争三个因素分别建立独家销售的广告模型、竞争销售的广告模型、同类产品的竞争模型来预测0t 时的产品销量0()x t 。

2003全国大学生数学建模竞赛B题优秀论文(出题人亲作)

2003全国大学生数学建模竞赛B题优秀论文(出题人亲作)

2003高教社杯全国大学生数学建模竞赛B 题参考答案注意:以下答案是命题人给出的,仅供参考。

各评阅组应根据对题目的理解及学生的解答,自主地进行评阅。

问题分析:本题目与典型的运输问题明显有以下不同: 1. 运输矿石与岩石两种物资; 2. 产量大于销量的不平衡运输; 3. 在品位约束下矿石要搭配运输; 4. 产地、销地均有单位时间的流量限制; 5. 运输车辆每次都是满载,154吨/车次; 6. 铲位数多于铲车数意味着最优的选择不多于7个产地; 7. 最后求出各条路线上的派出车辆数及安排。

运输问题对应着线性规划,以上第1、2、3、4条可通过变量设计、调整约束条件实现;第5条使其变为整数线性规划;第6条用线性模型实现的一种办法,是从120710 C 个整数规划中取最优的即得到最佳物流;对第7条由最佳物流算出各条路线上的最少派出车辆数(整数),再给出具体安排即完成全部计算。

对于这个实际问题,要求快速算法,计算含50个变量的整数规划比较困难。

另外,这是一个二层规划,第二层是组合优化,如果求最优解计算量较大,现成的各种算法都无能为力。

于是问题变为找一个寻求近优解的近似解法,例如可用启发式方法求解。

调用120次整数规划可用三种方法避免:(1)先不考虑电铲数量约束运行整数线性规划,再对解中运量最少的几个铲位进行筛选;(2)在整数线性规划的铲车约束中调用sign 函数来实现;(3)增加10个0-1变量来标志各个铲位是否有产量。

这是一个多目标规划,第一问的目标有两层:第一层是总运量(吨公里)最小,第二层是出动卡车数最少,从而实现运输成本最小。

第二问的目标有:岩石产量最大;矿石产量最大;运量最小,三者的重要性应按此序。

合理的假设主要有:1. 卡车在一个班次中不应发生等待或熄火后再启动的情况;2. 在铲位或卸点处因两条路线(及以上)造成的冲突时,只要平均时间能完成任务即可,不进行排时讨论;3. 空载与重载的速度都是28km/h ,耗油相差却很大,因此总运量只考虑重载运量;4. 卡车可提前退出系统。

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言2016年全国大学生数学建模竞赛B题是一道涉及复杂系统建模与优化的题目,要求参赛者对城市交通拥堵问题进行分析,并构建数学模型进行优化。

本文将对本次竞赛B题的解题过程进行详细分析,并对所运用的方法进行总结。

二、题目概述B题主要针对城市交通拥堵问题,要求参赛者建立一个数学模型,以解决城市交通流量的优化问题。

题目涉及城市交通网络的复杂性、不同交通工具的流量分布、交通拥堵的成本等多个方面。

三、解题思路1. 问题分析:首先,我们需要对城市交通拥堵问题进行深入分析,了解其成因及影响因素。

这包括对交通网络的结构、不同交通工具的流量分布、交通规则、道路状况等进行调查和研究。

2. 模型构建:根据问题分析的结果,我们构建了一个多因素影响的城市交通流量优化模型。

该模型考虑了交通网络的结构、交通流量、交通拥堵成本等多个因素,并采用了系统动力学的方法进行建模。

3. 模型求解:在模型构建完成后,我们采用数值分析和仿真方法对模型进行求解。

通过不断调整模型参数,使模型能够更好地反映实际情况,并找出最优的交通流量分配方案。

4. 结果分析:我们对求解结果进行了详细分析,包括对不同交通流量分配方案下的交通拥堵情况、成本等进行了比较和分析。

同时,我们还对模型的可靠性和有效性进行了评估。

四、解题方法与技巧1. 充分利用现有数据:在建模过程中,我们需要充分利用现有数据,如交通流量数据、道路状况数据等,以提高模型的准确性和可靠性。

2. 采用系统动力学方法:系统动力学方法可以更好地反映系统的动态性和复杂性,使我们能够更好地理解城市交通拥堵问题的本质。

3. 数值分析和仿真相结合:在模型求解过程中,我们采用了数值分析和仿真相结合的方法,以便更好地找出最优的交通流量分配方案。

4. 重视结果分析:在结果分析阶段,我们需要对不同方案下的交通拥堵情况、成本等进行详细比较和分析,以便找出最优的解决方案。

2023年高教社杯全国数学建模竞赛B题省级二等奖论文

2023年高教社杯全国数学建模竞赛B题省级二等奖论文

2023年高教社杯全国数学建模竞赛B题省级二等奖论文一、引言2023年高教社杯全国数学建模竞赛是一项重要的学术竞赛活动,旨在激发青年学生对数学建模的兴趣,提高他们的数学建模能力。

本文主要介绍我们参与竞赛中的B题的省级二等奖论文。

二、问题描述本次竞赛的B题要求我们通过分析某地区近几年的降雨数据和水库蓄水量数据,预测未来一段时间内的降雨情况以及水库的蓄水量变化情况。

三、数据分析与处理为了分析和处理题目所给的数据,我们采用了以下的方法:1.数据的清洗:对于给定的降雨数据和水库蓄水量数据,我们首先对其进行清洗,去除异常值和缺失值,确保数据的准确性和完整性。

2.数据的可视化:通过使用Python的Matplotlib库,我们将清洗后的数据进行可视化展示,以便更好地理解数据的分布情况和趋势变化。

3.数据的分析与建模:根据题目的要求,我们运用统计学和数学建模的方法对数据进行分析。

首先对降雨数据进行时间序列分析,探究其周期性和趋势性;然后,利用回归分析的方法建立降雨量与水库蓄水量之间的数学模型,以预测未来的蓄水量变化情况。

四、结果与讨论经过上述的分析和处理,我们得到了以下的结果:1.降雨数据的分析结果显示,该地区的降雨量呈现出明显的季节性变化,并且存在一定的趋势性。

通过对降雨数据进行拟合,我们成功建立了一个能够预测未来降雨量的数学模型。

2.利用回归分析的方法,我们建立了一个能够预测水库蓄水量的数学模型。

通过对模型的检验和验证,我们发现该模型对未来水库蓄水量的预测具有较高的准确性。

基于上述结果,我们得出了以下的结论:1.未来一段时间内,该地区的降雨量将继续呈现出季节性的变化,并且可能会有一定的增加趋势。

2.水库的蓄水量将会随着降雨量的变化而变化,预测的数据显示蓄水量将保持在一个相对稳定的水平。

五、结论本文以2023年高教社杯全国数学建模竞赛B题省级二等奖论文标题为中心,描述了我们在竞赛中的研究过程和结果。

我们通过对降雨数据和水库蓄水量数据的分析和处理,成功建立了能够预测未来降雨量和水库蓄水量变化情况的数学模型。

全国大学生数学建模竞赛B题全国一等奖论文

全国大学生数学建模竞赛B题全国一等奖论文

全国大学生数学建模竞赛B题全国一等奖论文IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】碎纸片的拼接复原【摘要】破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。

本文主要解决碎纸机切割后的碎纸片拼接复原问题。

针对第一问,附件1、2分别为沿纵向切割后的19张中英文碎纸片,本文在考虑破碎纸片携带信息量较大的基础上,利用MATLAB对附件1、2的碎纸片图像分别读入,以数字矩阵的方式进行存储。

利用数字矩阵中包含图像边缘灰度这一特征,本文采用贪心算法的思想,在首先确定原文件左右边界的基础上,以Manhattan 距离来度量两两碎纸片边界差异度,利用计算机搜索依次从左往右搜寻最匹配的碎纸片进行横向配对并达成排序目的。

最终,本文在没有进行人工干预,成功地将附件1、2碎纸片分别拼接复原,得到复原图片见附录、,纵切中文及英文结果表分别如下:心思想仍为贪心算法,整体思路为先对209张碎纸片进行聚类还原成11行,再对分好的每行进行横向排序,最后对排序好的各行进行纵向排序。

本文在充分考虑汉字与拉丁字母结构特征差异以及每块碎纸片携带信息减少的基础上,创新地提出一种特征线模型来分别描述汉字及拉丁文字母的特征用于行聚类。

对于行聚类后碎片的横向排序,本文综合了广义Jaccard系数、一阶差分法、二阶差分法、Spearman系数等来构建扩展的边界差异度模型,刻画碎片间的差异度。

对于计算机横向排序存在些许错误的情况,本文给出了人工干预的位置节点和方式。

对于横向排序后的各行,由于在一页纸上,文字的各行是均匀分布的,本文基于各行文字的特征线,在确定首行的位置后,估计出其他行的基准线位置,得到一页的基准线网格,并通过各行基准线在基准线网格上的适配实现纵向的排序。

最终,本文成功的将附件3、4碎纸片分别拼接复原得到复原图片及结果表见附录、、、,同时本文给出了横向排序中人工干预的位置节点和方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于打车软件的出租车供求匹配度模型研究与分析摘要目前城市“出行难”、“打车难”的社会难题导致越来越多的线上打车软件出现在市场上。

“打车难”已成为社会热点。

以此为背景,本文将要解决分析的三个问题应运而生。

本文运用主成分分析、定性分析等分析方法以及部分经济学理论成功解决了这三个问题,得到了不同时空下衡量出租车资源供求匹配程度的指标与模型以及一个合适的补贴方案政策,并对现有的各公司出租车补贴政策进行了分析。

针对问题一,根据各大城市的宏观出租车数据,绘制柱形图进行重点数据的对比分析,首先确定适合进行分析研究的城市。

之后,根据该市不同地区、时间段的不同特点选择多个数据样本区,以数据样本区作为研究对象,进行多种数据(包括出租车分布、出租车需求量等)的采集整理。

接着,通过主成分分析法确定模型的目标函数、约束条件等。

最后运用spss软件工具对数据进行计算,求出匹配程度函数F与指标的关系式,并对结果进行分析。

针对问题二,在各公司出租车补贴政策部分已知的情况下,综合考虑出租车司机以及顾客两个方面的利益,分别就理想情况与实际情况进行全方位的分析。

在问题一的模型与数据结果基础上,首先分别从给司机和乘客补贴两个角度定性分析了补贴的效果。

重点就给司机进行补贴的方式进行讨论,定量分析了目前补贴方案的效果,得出了如果统一给每次成功的打车给予相同的补贴无法改善打车难易程度的结论,并对第三问模型的设计提供了启示,即需要对具有不同打车难易程度和需求量的区域采取分级的补贴政策。

针对问题三,在问题二的基础上我们设计了一种根据不同区域打车难易程度和需求量来确定补贴等级的方法。

设计了相应的量化指标,以极大化各区域打车难易程度降低的幅度之和作为目标,建立该问题的规划模型。

目的是通过优化求解该模型,使得通过求得的优化补贴方案,能够优化调度出租车资源,使得打车难区域得到缓解。

通过设计启发式原则和计算机模拟的方法进行求解,并以具体案例分析得到,本文方法相对统一的补贴方案而言的确可以一定程度缓解打车难的程度。

关键词:主成分分析法,供求匹配度,最优化模型,出租车流动平衡1一、问题重述出租车是市民出行的重要交通工具之一,“打车难”是人们关注的一个社会热点问题。

随着“互联网+”时代的到来,有多家公司依托移动互联网建立了打车软件服务平台,实现了乘客与出租车司机之间的信息互通,同时推出了多种出租车的补贴方案。

请你们搜集相关数据,建立数学模型研究如下问题:(1)试建立合理的指标,并分析不同时空出租车资源的“供求匹配”程度。

(2)分析各公司的出租车补贴方案是否对“缓解打车难”有帮助?(3)如果要创建一个新的打车软件服务平台,你们将设计什么样的补贴方案,并论证其合理性。

二、模型假设(1)不考虑出租车换班时不接单以及拒载对大数据的影响;(2)假设所有安装有打车软件的司机不设置接单范围;(3)假设网络共享的数据真实可靠;(4)假设打车软件的使用率c为80%;三、符号说明x出租车分布的数量(辆);t被抢单时间(秒);z装有打车软件的打车客户需求量(人);h打车平均难易程度;P打车客户总需求量(人);M车费;a Y的权重;2b t的权重;L车里程利用率(%);c打车软件的使用率,c0.8;Y服务的满意度;1Y Y的倒数;2 1F匹配程度函数;W出租车万人拥有量(辆);M车辆满载率(%);k补贴等级1,最少1k补贴等级2,中等2k补贴等级2,最多3四、数据处理4.1对地区的分析与选定截止2015年8月,中国地区共有23个省,四个直辖市,两个特别行政区,五个自治州。

其中,我国23个省中分布有一线、二线、三线、四线等城市共计661个。

在如此庞大的城市数据群的基础上,选择一个合适的城市进行深入调研,是进行出租车优化过程的第一步。

一个合适的调研城市,有利于提高优化模型的精确性,增强模型应用的广泛性。

选定城市后,针对该城市不同地区的特点进行地区划分与时间段的选取,是对出租车供求匹配程度进行分析的第二步前进方向。

4.1.1杭州地区的选定地区选取标准:(1)经济发达,有足够规模大数据进行分析假设;(2)影响范围广,有条件进行出租车供求匹配的优化;(3)出租车万人拥有量或里程利用率居全国各城市的中等或中等偏下水平,保证可以代表我国的绝大部分水平,并有足够空间进行问题分析与优化;综合上述选取标准,本文初步决定围绕杭州进行调研。

为验证其合理性,本文特分别在我国一线、二线、三线等城市中随机选取15个城市:北京、武汉、杭州、宁波等(百度百科)通过EXCEL等软件对其主城区出租车拥有量(辆)、主城区人口(万人)、出租车万人拥有量(辆)、里程利用率等进行柱形图对比分析,见图1、图2、图3、图4(详细数据见附录9.1):图1:各城市主城区出租车拥有量图2:各城市主城区主人口图3:各城市出租车万人拥有量图4:各城市出租车里程利用率衡量出租车供求的三大指标为里程利用率、车辆满载率、出租车万人拥有量。

里程利用率指营业里程与行驶里程之比,L 营业里程(公里)x100% 行驶里程(公里)出租车万人拥有量表示一定城市规模内车辆占有量,是人均设备普指标。

W 主城区出租车数(辆)主城区人口(万人)车辆满载率是载客车数与总车数的比例关系反映出租车的供求匹配程度[1],M载客车数(辆)x100% 总通过车数(辆)结合图1-图4可知,杭州市作为经济发达城市,二线城市中的领头羊,出租车万人拥有量a为19.6(辆/万人),位居15个城市中的12位,而里程利用率L以69.25%则位列第六位。

在无各城市各时间段、各地区详细数据,所有城市均不考虑车辆满载率的情况下,结合各城市的a与L数据分析可知:杭州的出租车供求匹配程度并不高,且尚未达到其应有的水平。

因此,杭州符合之前规定的选取标准。

故本文将以杭州为调研地区进行数学建模,验证其出租车资源的供求匹配程度关系,优化出租车供求匹配问题。

4.1.2西溪湿地地区与西湖地区的选定图5:杭州人流量最大地点示意图[2]如图5所示,杭州人流量最大的几个地点中,西溪湿地与西湖名列其中。

西溪湿地与西湖风景区是杭州的门户风景区,不仅受到外地游客的欢迎,更是本地居民休闲娱乐的好去处。

因其独特地理位置、文化底蕴而导致的人流量高居不下等特点,符合数据样本地区选取的规则。

因此选择西溪湿地附近与西湖风景区附近作为杭州地区内选择的第一处样本点,可以在一定程度上反映城市景区附近出租车供求匹配程度的大小。

4.1.3火车东站地区与汽车南站地区的选定火车东站与汽车南站是本文选取的杭州地区第二处数据样本点。

杭州火车东站号称“亚洲第一”铁路枢纽,站内汇集高铁、普铁、地铁、公交、出租、大巴等多种交通方式和配套服务设施于一体,并可实现立体无缝交通换乘。

东站针对出租车出行的乘客专门进行了特殊的设计。

地下到达/换乘层(地下一层),南北共设了6个出租车上客点,北侧3个,南侧3个。

而坐出租车过来的乘客,可以直接通过新塘路上匝道和王家井街上匝道,直接到出发层,进入候车大厅。

截止至2014年,东站客流量已高居全国第三。

杭州汽车南站是杭州市最早投入服务的汽车站之一,日均发送班次近500班,出口高达1.1万余人每天。

杭州东站与汽车南站的每日客流量大,出租车分布较密集。

选取杭州东站与汽车南站作为数据样本点,既有针对性又可与其他人流密集地区进行对比,进行多层次分析。

4.1.4武林广场地区与黄龙体育馆地区的选定武林广场商圈与黄龙体育馆地区是杭州市办公场所较集中的两个地区。

由图5可知,武林广场地处杭州繁华地带,服务业完善、各大公司林立;黄龙体育馆是杭州本地群众以及外来游客访问量较大的场所之一,其完善的演唱会设施以及附近的散客中心为黄龙体育馆附近的人流量做出了很大的贡献。

因此,除景区、交通枢纽外,武林广场与黄龙体育馆附近地区可作为本文中第三处数据样本点进行计算。

4.1.5德胜社区与舟山东路附近地区的选定在选取了西溪湿地与西湖风景区地区、火车东站与汽车南站地区、武林广场与黄龙体育馆地区三块数据样本地区之后,本文的第四块数据样本地区选择在德胜社区附近与舟山东路附近地区。

景区、交通枢纽、商圈与住宅区,掌握这四块地区的交通数据可较为全面地了解该城市的交通状况。

住宅区人口较固定且出行有一定规律,因此选取住宅区做为第四处数据样本地区,同时可将住宅区数据做为其他样本地区数据样本的对比数据,弥补了其他三组数据样本地区的不足,使数据样本更加完善。

4.2对基本数据的处理分析4.2.1打车客户总需求量P基于苍穹智能出行平台的大数据,分别选取9.7日杭州四块数据样本地区早高峰(7:00-9:00)、晚高峰(16:00-18:00)、平常时间(10:00、15:00、20:00)三个时间段的持有打车软件的客户需求量z,见表格1:表1:所截取各样本地区9.7日不同时间段z的大小时间段西溪湿地附近西湖风景区附近火车东站附近汽车南站附近武林广场附近黄龙体育馆附近德胜社区附近舟山东路附近(下城区)7:00251213111 4 8:001084112181110 9:003987111111 1 16:0051413123201518 17:003611011411 1 18:00751184211 1 10:0017726179149 15:00134218431124 20:003512111114 假设打车软件的使用率c 0.8,故打车客户总需求量P zc(1)将P相关函数与表1相关数据带入计算软件中进行计算,得出结果有:表2:所截取各样本地区9.7日不同时间段P的大小及其平均值E(z c)时间段西溪湿地附近西湖附近火车东站附近汽车南站附近武林广场附近黄龙体育馆附近德胜社区附近舟山东路附近(下城区)7:0031.25 1.25 2.5016.25 1.25 1.25 1.25 5.00 8:00135.00 5.0013.7526.2510.00 1.25 1.2512.50 9:00497.508.75 1.25 1.25 1.2513.75 1.25 1.25 E(z c)221.25 5.00 5.8314.58 4.17 5.42 1.25 6.25 16:0063.75 5.0016.25 1.2528.7525.0018.7522.50 17:0045.00 1.2512.50 1.2517.50 1.25 1.25 1.25 18:0093.75 1.25 1.2510.0052.50 1.25 1.25 1.25 E(z c)67.50 2.5010.00 4.1732.929.177.088.33 13:00221.25 2.507.50 1.258.7511.25 1.2561.25 14:0016.25 5.00 2.5022.50 5.0038.75 1.2530.00 15:0043.75 1.25 2.50 1.25 1.25 1.25 1.2517.504.2.2出租车服务满意度Y以及车辆分布数量x1基于苍穹智能出行平台的大数据,同样选取数据出租车分布量—x,作为计算满意度Y的数据来源。

相关文档
最新文档