代谢组学方法与应用许国旺张强

合集下载

几种现代中医药研究方法的概述

几种现代中医药研究方法的概述

几种现代中医药研究方法的概述邓哲【摘要】屠呦呦之诺奖再次像我们证明了中医药是一座尚待开发的宝库,传统的中医药要与现代的科学技术相结合才能更好的走向国际,造福人类。

而现代中医药的研究可谓“百家争鸣,百花齐放”的局面,各种研究方法层出不穷。

现就近几年中医药中热点方法进行概述,为中医药的现代化奠定基础以及期待更好中医药研究方法的提出。

【关键字】中医药;研究方法;概述;General situation of several of modern research methods in TCM 【Abstract】Tuyouyou, the Nobel prize winner, validates that traditional Chinese medicine(TCM) is a treasury worthy of exploiting. In order to better march for the international market and benefit mankind, modern scientific technology needs to be applied to TCM. However, the research situation of TCM is called “encouraging blossoming and contending of all”, and varieties of research methods emerge in endlessly. Now general situation is summarized about the hot methods in TCM in recent years, which aims to lay foundations to the modernization of TCM and expect better research methods are put forward.【keyword】TCM; research methods; general situation;中医药是我国几千年来劳动人民经验和智慧的结晶,在世界医学中具有不可替代的作用。

代谢组学方法与应用(许国旺)张强

代谢组学方法与应用(许国旺)张强

第1章绪论随着人类基因组测序工作的完成,基因功能的研究逐渐成为热点,随之出现了一系列的“组学”研究,包括研究转录过程的转录组学(transcriptomics)、研究某个生物体系中所有蛋白质及其功能的蛋白质组学(proteomics)及研究代(图1-1)。

谢产物的变化及代谢途径的代谢组学(metabolomics或metabonomics)代谢组学是众多组学中的一种,是随着生命科学的发展而发展起来的。

与其他组学不同,代谢组学是通过考察生物体系(细胞、组织或生物体)受刺激或扰动后(如将某个特定的基因变异或环境变化后),其代谢产物的变化或其随时间的变化,来研究生物体系的一门科学[1]。

所谓代谢组(metabolome)是基因组的下游产物也是最终产物,是一些参与生物体新陈代谢、维持生物体正常功能和生长发育的小分子化合物的集合,主要是相对分子质量小于1000的内源性小分子。

代谢组中代谢物的数量因生物物种不同而差异较大,据估计,植物王国中代谢物的数量在200000种以上,单个植物的代谢物数量在5000~25000,甚至简单的拟南芥(Arabidopsisthaliana)也产生约5000种代谢产物,远远多于微生物中的代谢产物(约1500种)和动物中的代谢产物(约2500种)[2]。

实际上,在人体和动物中,由于还有共存的微生物代谢、食物及其代谢物本身的再降解,到目前为止,还不能估计出到底有多少种代谢产物,浓度分布范围有7~9个数量级。

因此对代谢组学的研究,无论从分析平台、数据处理及其生物解释等方面均面临诸多挑战。

本章对代谢组学发展的历史、国内外现状、研究方法、典型应用领域及研究热点等给予了介绍。

代谢组学简介代谢组学发展的时代背景生命科学是研究生命现象、生命活动的本质、特征和发生、发展规律,以及各种生物之间和生物与环境之间相互关系的科学。

自从1953年Watson和Crick 建立了DNA双螺旋结构模型后,生命科学研究的面貌便焕然一新。

《代谢组学许国旺》课件

《代谢组学许国旺》课件
许国旺教授的学术贡献
许国旺教授的生平简介
出生地与出生日期
工作经历
许国旺教授出生于中国浙江省,具体 的出生日期为XXXX年XX月XX日。
许国旺教授在XXXX年开始其教学生 涯,先后在XXXX大学和XXXX大学任 教。
教育背景
许国旺教授在XXXX年毕业于XXXX大 学,获得学士学位。之后,他前往 XXXX留学,获得博士学位。
代谢组学在生物医学领域的应用
代谢组学在疾病诊断中的应用
代谢组学在疾病诊断中具有重要作用, 通过对生物体代谢产物的检测和分析, 可以发现异常代谢标志物,为疾病的早 期诊断提供依据。
代谢组学技术可以检测血液、尿液等生物样 本中的代谢产物,通过比对正常与异常代谢 产物的差异,有助于发现潜在的疾病风险和 早期预警指标。
体外研究方法包括代谢组学高通量筛 选、代谢组学生物信息学分析、代谢 组学单细胞分析等。这些方法可以帮 助研究者从更宏观的角度了解生物体 的代谢变化,从而为药物研发、疾病 诊断和治疗提供有力支持。
代谢组学的研究技术
代谢组学的研究技术主要包括色谱法、质谱法、核磁 共振波谱法、毛细管电泳法等。这些技术可以帮助研 究者分离和鉴定生物体内的代谢产物,从而了解生物 体的代谢机制和调控规律。
代谢组学的研究内容
01
代谢产物的检测与 分析
研究生物体在不同生理或病理状 态下代谢产物的种类、含量及其 变化规律。
02
代谢调控机制
探讨基因、酶、激素等对代谢过 程的调控作用,以及代谢产物之 间的相互作用。
03
生物标记物的发现 与应用
寻找与疾病发生、发展相关的代 谢标记物,为疾病的早期诊断、 治疗和预后评估提供依据。
代谢组学研究的伦理和社会问题
随着代谢组学的广泛应用,涉及的伦理和社会问题也逐渐凸显,需 要加强相关法规和伦理规范的建设。

代谢指纹分析及其在微生物研究中的应用

代谢指纹分析及其在微生物研究中的应用

代谢指纹分析及其在微生物研究中的应用摘要:代谢指纹分析是新兴的代谢组学的主要研究方法之一,本文综述了代谢指纹分析的研究方法及其在微生物领域的研究应用进展。

关键词:代谢组学;代谢指纹分析;微生物代谢组学是20世纪90年代中期发展起来的一门对生物体或细胞等所有小相对分子质量代谢产物进行定量和定性分析的新技术。

这门新兴的学科凭借其整体论优势在最近几年得到了迅速的发展,广泛地应用到了功能基因组学、生物医学、微生物学等领域。

1.代谢组学简介代谢组学(Metabonomics或Mmetabolomics)是通过考察生物体系受刺激或扰动后(某个特定的基因变异或环境变化)其代谢产物的变化或随时间的变化,是研究生物体系代谢途径的新技术[1]。

Nicholson最初给出的定义是:定量测量生物体因病理生理刺激或基因改变引起的代谢应答变化[2],系统性的代谢组学概念应将机体的代谢过程与微生物代谢以及外源环境因子的相互作用因素综合起来[3]。

研究过程中,逐步提出了一些相关概念,如代谢物靶目标分析(Metabolite target analysis)、代谢轮廓(谱)分析(Metabolic profiling analysis)和代谢指纹分析(Metabolic fingerprinting analysis)等。

2.代谢指纹分析的产生及原理20世纪80年代初,美国BIOLOG公司开发了一种新的微生物鉴定方法-代谢指纹法,并将其应用于微生物的自动化检测。

其原理是根据细菌对碳源(或氮源)利用的差异来区别和鉴定细菌,不同的细菌会利用不同碳源(或氮源)进入新陈代谢过程(称为呼吸),而对其他一些碳源(或氮源)则无法利用,将每种细菌能利用和不能利用的一系列碳源(或氮源)进行排列组合,就构成了该种细菌特定的代谢指纹,由于细菌在利用碳源进行呼吸时,会发生一系列的氧化-还原反应,产生电子,TTC(四唑紫,2,3,5-TriphenylTetrazoliumChloride)在呼收电子后,会由无色的氧化型转变为紫色的还原型,通过肉眼观察或计算机控制的读数仪,将反应结果同数据库中的指纹进行比对,从而得到细菌的鉴定结果。

基于NMR的代谢组学技术在疾病诊断研究中的应用

基于NMR的代谢组学技术在疾病诊断研究中的应用

・诊疗新技术・基于NMR的代谢组学技术在疾病诊断研究中的应用3郭玲玲,吴巧凤,李 亮,卢圣锋,袁成凯,彭 静,唐 勇3(成都中医药大学时间生物实验室,四川成都610075)Application of Metabonomics Techniques Based on Nuclear Magnetic Reso2 nance in Diagno stic St udy on DiseasesGUO Ling2ling,WU Qiao2feng,L I Liang,L U Sheng2feng,YUAN Cheng2kai,PEN GJing,TAN G Y ong (L aboratory of Ti me Organism,Cheng d u U ni versit y of T raditional Chi nese Medici ne,Chen g d u 610075,Chi na)Abstract:As one kind of t he newest“2nomics”met hods,metabonomics technique is gradually applied in medicine,especially in t he diagno sis of some diseases.In t his article we have summarized t he re2 search stat us on metabonomics for t he diagno sis of some diseases in order to supply medical personnels a reference.K ey w ords:Metabonomics;Diagnosis of diseases摘要:代谢组学作为一种比较新颖的组学技术,在医学界也逐渐开始运用,尤其是在疾病诊断中已经取得了一定的成果。

生物信息学教学大纲

生物信息学教学大纲

《生物信息学概论》课程教学大纲一、课程名称(中英文)中文名称:生物信息学概论英文名称:Introduction to Bioinformatics二、课程代码及性质课程代码:0704583性质:学科大类基础课,必修三、学时与学分总学时:16(理论学时:16学时)学分:1四、先修课程先修课程:无.五、授课对象本课程面向生物信息学专业(含国家生命科学与技术人才培养基地班)学生开设.六、课程教学目的(对学生知识、能力、素质培养的贡献和作用)1.介绍本专业的教学、科研与人才培养等情况,帮助学生尽快熟悉专业内容,逐渐适应大学的学习和生活;2. 介绍生物信息学研究各个方向的最新进展,使学生对专业研究有一个较为全面的了解;3. 介绍生物信息学方面的一些基本研究手段以及所需的知识储备,激发学生的学习兴趣。

七、教学重点与难点:课程重点:生物信息学领域各个研究方向的最新进展课程难点:生物信息学与高通量组学、传统实验生物学之间的关系八、教学方法与手段:教学方法:课堂讲授结合幻灯片演示教学手段:口头语言、文字和书籍、印刷教材和多媒体网络技术九、教学内容与学时安排(一)生物信息学专业简介(教师课堂教学学时(4小时)+ 学生课后学习学时(8小时))教学内容:介绍本专业的发展现状,以及最新的研究成果课后文献阅读:Wei, L. and Yu, J. (2008) Bioinformatics in china: a personal perspective, PLoS computational biology, 4, e1000020.课后作业和讨论:根据文献讨论我国生物信息学未来可能的发展方向。

(二)高通量测序技术(教师课堂教学学时(4小时)+ 学生课后学习学时(8小时))教学内容:介绍高通量组学技术,尤其是测序技术在生物信息学研究中的应用。

课后文献阅读:Metzker, M.L. (2010) Sequencing technologies - the next generation, Nat Rev Genet, 11, 31-46.课后作业和讨论:讨论生物信息学与高通量组学和传统实验生物学之间的关系。

代谢组学在中药毒性与安全性评价中的应用综述

代谢组学在中药毒性与安全性评价中的应用综述

代谢组学在中药毒性与安全性评价中的应用【摘要】:目的:综述什么是代谢组学以及其在中药毒性与安全性评价中的应用。

方法:查阅相关文献,采用文献追踪的方法对代谢组学在中药毒性与安全性评价中的应用进行分析归纳。

结论:代谢组学的出现对于中药的发展是一个很好的契机,可以预见它将成为中药安全性研究中的一个新的中药技术手段。

【关键词】代谢组学中药毒性与安全性评价关木通代谢组学[1,2]是继基因组学、转录组学和蛋白质组学之后兴起的系统生物学的一个新的分支,它是通过考察生物体系受刺激或扰动前后(如将某个特定的基因变异或环境变化后)代谢产物图谱及其动态变化研究生物体系的代谢网络的一种技术,研究对象主要是相对分子质量1000以下的内源性小分子。

它是后基因时代出现的一门新的“-omics”组学学科。

Nicholson 研究小组于1985年利用核磁共振(NMR)技术分析大鼠的尿液,于1999年提出了代谢组学的概念。

自1999年提出代谢组学的概念以来,它在药物毒理研究、疾病诊断、系统生物学研究等诸多领域里的应用日益深入。

1 代谢组学简介1.1 代谢组学特点代谢组学是生命学科领域中的一门新兴组学技术,它与基因组学、转录物组学、蛋白组学等共同构成了“系统生物学”(Systems Biology) ,系统生物学强调科学研究的整体性思维和系统论观点,其精髓是以整体论方法研究生物体系中的构件分子族之间以及机体与环境之间的相互作用网络。

基因组学只能检测静态的基因型,而基因的表达受到环境及内在状态的影响,因此无法反映基因组动态的生理状态,无法回答基因的变化是否能够表达。

而代谢物质和代谢表型所反映的是已经发生了的生物学事件,是基因型与环境共同作用的综合结果,是生物体系生理和生化功能状态的直接体现。

因此,作为系统生物学的一个重要组成部分,从代谢组学中分析所获得的信息更能够揭示基因与表现型之间的关系[3]。

1.2 代谢组学的研究方法代谢组学的研究一般包括代谢组数据的采集、数据预处理、多变量数据分析、标记物识别和途径分析等步骤。

0710生物学一级学科硕士研究生培养方案(2012)

0710生物学一级学科硕士研究生培养方案(2012)

生物学硕士研究生培养方案(2012级研究生开始使用)一、专业学科、学制、学习方式一级学科名称:生物学(代码: 0710 )二级学科名称:植物学(代码: 071001 )二级学科名称:动物学(代码: 071002 )二级学科名称:生理学(代码: 071003 )二级学科名称:遗传学(代码: 071007 )二级学科名称:生物化学与分子生物学(代码: 071010 )学制:三年学习方式:全日制二、本学科情况介绍21世纪是生命科学的世纪。

国家、广东和广州都在十一五规划中将生物技术产业列为优先发展的重点高新技术产业,生物技术正在成为发展最快、应用最广、最具有竞争力的领域之一。

本硕士点建立将为广州及珠三角地区(如广州生物岛)培养植物抗逆基因功能研究与分子育种、生物多样性保护、生物资源开发与利用等急需人才,增强服务广州及珠三角地区的能力。

本学科硕士点二级学科的研究方向主要包括植物学(华南植物资源保护与利用)、动物学(动物分类与多样性保护)、遗传学(重要基因的功能研究与利用)、生物化学与分子生物学(植物逆境生物学与分子育种)、生理学(分子生理与内分泌学)。

现有在职硕士导师14人,包括教授11人,副教授3人,其中获得博士学位导师11人,留学归国人员10人。

近年来逐步在植物逆境、华南生物多样性等领域形成了自己的主要特色和优势,受到国内外同行的肯定,部分处于国内领先水平。

如以田长恩教授领导的研究团队开辟了“IQM家族的功能研究”领域,发现IQM家族成员在植物对生物胁迫反应中起着重要作用;以郭培国教授领导的研究团队发现小麦、大麦和香蕉等作物抗逆(如抗旱耐冷等)功能基因30多个、与抗逆密切相关的分子标记5个且用于分子育种;以吴毅教授领导的研究团队发现蝙蝠和单殖吸虫新种20余个、中国或省新记录近20种;以谢国文教授领导的研究团队获得永瓣藤、广东松等10多种广东珍稀濒危植物的种群生态特点,为华南地区动、植物保护和自然保护区建设提供了依据;以肖洁凝教授领导的研究团队利用“多靶点微RNA反义核苷酸技术”等进行新药设计及开发、华南地区名贵珍稀鱼类(石斑鱼、唐鱼等)的生理生态与繁殖育种研究方面形成了自己优势与特色。

代谢组学

代谢组学

代谢组学研究技术与应用曾令冬 (中央民族大学生命与环境科学学院)1.代谢组学概述:随着人类基因组测序工作的完成,人们对生命过程的理解有了很大的提高,研究的热点也转移到基因的功能和几个“组学”研究中,这几个“组学”包括研究核糖核酸(RNA)转录过程的转录组学、研究某个过程中所有蛋白及其功能的蛋白组学、研究代谢产物的变化及代谢途径的代谢组学[1]。

代谢组学(metabonomics)是以组群指标分析为基础,以高通量检测和数据处理为手段,以信息建模与系统整合为目标的系统生物学的一个分支,是继基因组学、转录组学、蛋白质组学后系统生物学的另一重要研究领域,它是研究生物体系受外部刺激所产生的所有代谢产物变化的科学,所关注的是代谢循环中分子量小于1000的小分子代谢物的变化,反映的是外界刺激或遗传修饰的细胞或组织的代谢应答变化[2]。

根据研究的对象和目的的不同,Fiehn等,将代谢组学分为四个层次,即:①代谢物靶标分析:对某个或某几个特定组分的分析。

在这个层次中,需要采取一定的预处理技术,除掉干扰物,以提高检测的灵敏度。

②代谢轮廓(谱)分析:对少数所预设的一些代谢产物的定量分析。

如某一类结构、性质相关的化合物(如氨基酸、顺二醇类)、某一代谢途径的所有中间产物或多条代谢途径的标志性组分。

进行代谢轮廓(谱)分析时,可以充分利用这一类化合物的特有的化学性质,在样品的预处理和检测过程中,采用特定的技术来完成。

③代谢组学:对限定条件下的特定生物样品中所有代谢组分的定性和定量。

进行代谢组学研究时,样品的预处理和检测技术必须满足对所有的代谢组分具有高灵敏度、高选择性、高通量的要求,而且基体干扰要小。

代谢组学涉及的数据量非常大,因此需要有能对其数据进行解析的化学计量学技术。

④代谢指纹分析:不分离鉴定具体单一组分,而是对样品进行快速分类(如表型的快速鉴定)。

[2]2.代谢组学的研究技术:I气相色谱-质谱联用仪(GC-MS)采用GC-MS可以同时测定几百个化学性质不同的化合物,包括有机酸、大多数氨基酸、糖、糖醇、芳胺和脂肪酸,该分析技术被专家称为最宝贵的分析手段。

代谢组学及其技术规范

代谢组学及其技术规范

13/45
ROC曲线分析 ROC曲线用于临床诊断:
ROC曲线下的面积值在 1.0 和 0.5 之 间 。 在 AUC>0.5 的 情 况 下 , AUC越接近于1,说明诊 断 效 果 越 好 。 AUC 在 0.5-0.7时有较低准确性, AUC 在 0.7~0.9 时 有 一 定 准确性, AUC 在 0.9 以上 时 有 较 高 准 确 性 。 AUC=0.5 时 , 说 明 诊 断 方 法完全 不起 作用, 无 诊 断 价 值 。 AUC<0.5 不 符 合真实 情况 ,在实 际 中极少出现。
标品对照 NIST数据库 HMDB数据库
LC-MS
标品对照 HMDB、 Mass Bank 、C-Clound数据库 已发表文献.
11/45
生物意义阐述
KEGG
12/45
HMDB
已有文献
相关分析
图6 差异代谢物含量热点图(Class 1, 健康对 照下;Class 2,抑郁症组,Class 3逍遥散组, 色带-4-4 代表代谢物含量由高到低)
Hunter 和Chroma TOF等 自主开发设计的软件(基于Matlab或R语言): MetSign (Anal Chem. 2011 Oct 15;83(20):7668-75.)
23/45
2.3 数据处理
RAW文件
NMR 代 谢 组 学 , 采 用 MestReNova 软件进行此部分 数据处理
美国加州大学Davis 分校
普渡大学 杜克大学 5/45 等。 国外
中南大学(梁逸曾)
清华大学(罗国安) 上海交通大学(贾伟) 等 国内
1.2 代谢组学分析技术
检测动态范围宽
LC-MS

《代谢组学许国旺》课件

《代谢组学许国旺》课件

论文:《代谢组学在 药物研究中的应用》
研究成果:开发了代 谢组学技术,用于药 物筛选和优化
论文:《代谢组学在 环境研究中的应用》
研究成果:开发了代 谢组学技术,用于环 境监测和治理
04
许国旺的科研团队和实 验室
许国旺实验室的研究方向和特色
研究方向:代谢 组学
研究领域:生物 医学、生物技术、 生物信息学等
感谢您的观看
汇报人:
和效果
代谢组学在其他生物医学领域的应用
药物研发:通过代谢 组学研究药物对生物 体的影响,优化药物 设计和筛选
疾病诊断:通过代谢 组学研究疾病状态下 的代谢变化,辅助疾 病诊断和预后评估
营养学研究:通过代 谢组学研究营养素对 生物体的影响,优化 营养素摄入和营养干 预
环境毒理学研究:通 过代谢组学研究环境 污染物对生物体的影 响,评估环境污染风 险和健康影响
代谢组学许国旺PPT 课件
,
汇报人:
目录 /目录
01
点击此处添加 目录标题
04
许国旺的科研 团队和实验室
02
代谢组学概述
05
代谢组学在生 物医学领域的 应用
03
许国旺的学术 贡献
06
代谢组学的未 来发展前景
01 添加章节标题
02 代谢组学概述
代谢组学的定义
主要研究代谢物的种类、含 量、变化规律及其与生理、 病理过程的关系
07 总结和展望
对许国旺在代谢组学领域的贡献进行总结和评价
添加 标题
许国旺在代谢组学领域的贡献:提出了代谢 组学的概念,并推动了其在医学、生物学等 领域的应用。
添加 标题
许国旺的研究成果:在代谢组学领域发表了 多篇具有影响力的论文,推动了代谢组学的 发展。

代谢组学

代谢组学
分析技术各有优势及适用范围,最好采用联用技 术和多个方法的综合分析。分离分析手段包括: 色谱、质谱、NMR、毛细管电泳、红外光谱、电化 学检测。
NMR对代谢物具有普适性;色谱-质谱联用=色谱: 高分离度、高通量+质谱:普适性、高灵敏度、高 特异性。
色谱:层析分离技术或色层分离技术,是一种分离 复杂混合物中各个组分的有效方法。它是利用不同 物质在由固定相和流动相构成的体系中具有不同的 分配系数,当两相作相对运动时,这些物质随流动 相一起运动,并在两相间进行反复多次的分配,从 而使各物质达到分离。
二 代谢组学的研究方法
运用核磁共振(NMR)、质谱(MS)、气质联用技术 (GC-MS)、高效液相色谱(HPLC)等高通量、高灵敏 度与高精确度的现代分析技术对细胞提取物、组织 提取物和生物体液随时间变化的代谢物浓度进行检 测,结合有效的模式识别方法进行定性、定量和分 类,并将这些代谢信息与病理生理过程中的生物学 事件关联起来,从而了解机体生命活动的代谢过程。
KNApSAcK(http://kanaya.naist.jp/KNApSAcK/): 涵盖大部分植物物种和代谢化合物关系,包括了4 万多种化合物和8千多种植物物种的信息。
PlantCyc()阐述了超过350种植 物体内600多种代谢途径
MassBank(www.massbank.jp):日本质谱协会发展 和维护的高分辨率质谱数据库,近25000高分辨率 质谱数据,提供了多种质谱谱图搜索手段。
步骤
样品采集和制备 代谢组数据的采集 数据预处理 多变量数据分析 标志物识别 途径分析
代谢产物分析4个层次
代谢物靶标分析:对个别特定组分分析。 代谢轮廓分析:对预设组分的分析。 代谢组学:特定样品中所有代谢物分析。 代谢指纹分析:比较代谢物指纹图谱。

代谢组学方法与应用(许国旺)张强

代谢组学方法与应用(许国旺)张强

第1章绪论随着人类基因组测序工作的完成,基因功能的研究逐渐成为热点,随之出现了一系列的“组学"研究,包括研究转录过程的转录组学(transcriptomics)、研究某个生物体系中所有蛋白质及其功能的蛋白质组学(proteomics)及研究代谢产物的变化及代谢途径的代谢组学(metabolomics或metabonomics)(图1—1)。

代谢组学是众多组学中的一种,是随着生命科学的发展而发展起来的。

与其他组学不同,代谢组学是通过考察生物体系(细胞、组织或生物体)受刺激或扰动后(如将某个特定的基因变异或环境变化后),其代谢产物的变化或其随时间的变化,来研究生物体系的一门科学[1]。

所谓代谢组(metabolome)是基因组的下游产物也是最终产物,是一些参与生物体新陈代谢、维持生物体正常功能和生长发育的小分子化合物的集合,主要是相对分子质量小于1000的内源性小分子。

代谢组中代谢物的数量因生物物种不同而差异较大,据估计,植物王国中代谢物的数量在200000种以上,单个植物的代谢物数量在5000~25000,甚至简单的拟南芥(Arabidopsisthaliana)也产生约5000种代谢产物,远远多于微生物中的代谢产物(约1500种)和动物中的代谢产物(约2500种)[2]。

实际上,在人体和动物中,由于还有共存的微生物代谢、食物及其代谢物本身的再降解,到目前为止,还不能估计出到底有多少种代谢产物,浓度分布范围有7~9个数量级.因此对代谢组学的研究,无论从分析平台、数据处理及其生物解释等方面均面临诸多挑战.本章对代谢组学发展的历史、国内外现状、研究方法、典型应用领域及研究热点等给予了介绍。

1.1代谢组学简介1。

1.1代谢组学发展的时代背景生命科学是研究生命现象、生命活动的本质、特征和发生、发展规律,以及各种生物之间和生物与环境之间相互关系的科学。

自从1953年Watson和Crick 建立了DNA双螺旋结构模型后,生命科学研究的面貌便焕然一新.在此基础上发展的分子生物学使得生命的基本问题,如遗传、发育、疾病和进化等,都能从分子机制上得到诠释。

代谢组学许国旺

代谢组学许国旺
21
• 对获得的样品中所有代谢物进行分析鉴定是代谢组学 研究的关键步骤,也是最困难和多变的步骤。
与原有的各种组学技术只分析特定类型的物质不同, 代谢组学分析对象的大小、数量、官能团、挥发性、带电 性、电迁移率、极性以及其他物理化学参数差异很大,要 对它们进行无偏向的全面分析,单一的分离分析手段往往 难以保证。
17
研究方法和步骤
1. 样品制备:足量的代表性样品(-80℃保存) 2. 2.数据采集和标志物识别:常用色谱-质谱联用 、NMR 3. 3.数据分析: PCA、 PLS、 ANN 4. 4.代谢途径分析:代谢轮廓分析和代谢组学分析
18
The strategy for large scale metabonomics research
spectroscopy of biofluids
1989
Haselden, et al.: First independent Pharma publication of Metabonomics
Holmes and Antti Explanation of statistics in Metabonomics
1999 2000
2001 2002
2004
Nicholson: Definition of Metabonomics
Nicholson, Lindon, and Holmes: Publication in Nature on Metabonomics
Increasing # of
publications
7
代谢组学的特点: 1. 关注内源化合物 2. 对生物体系的小分子化合物进行定量定性研究 3. 上述化合物的上调和下调指示了与疾病、毒性、基因
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章绪论随着人类基因组测序工作的完成,基因功能的研究逐渐成为热点,随之出现了一系列的“组学”研究,包括研究转录过程的转录组学(transcriptomics)、研究某个生物体系中所有蛋白质及其功能的蛋白质组学(proteomics)及研究代谢产物的变化及代谢途径的代谢组学(metabolomics或metabonomics)(图1-1)。

代谢组学是众多组学中的一种,是随着生命科学的发展而发展起来的。

与其他组学不同,代谢组学是通过考察生物体系(细胞、组织或生物体)受刺激或扰动后(如将某个特定的基因变异或环境变化后),其代谢产物的变化或其随时间的变化,来研究生物体系的一门科学[1]。

所谓代谢组(metabolome)是基因组的下游产物也是最终产物,是一些参与生物体新陈代谢、维持生物体正常功能和生长发育的小分子化合物的集合,主要是相对分子质量小于1000的内源性小分子。

代谢组中代谢物的数量因生物物种不同而差异较大,据估计,植物王国中代谢物的数量在200000种以上,单个植物的代谢物数量在5000~25000,甚至简单的拟南芥(Arabidopsisthaliana)也产生约5000种代谢产物,远远多于微生物中的代谢产物(约1500种)和动物中的代谢产物(约2500种)[2]。

实际上,在人体和动物中,由于还有共存的微生物代谢、食物及其代谢物本身的再降解,到目前为止,还不能估计出到底有多少种代谢产物,浓度分布范围有7~9个数量级。

因此对代谢组学的研究,无论从分析平台、数据处理及其生物解释等方面均面临诸多挑战。

本章对代谢组学发展的历史、国内外现状、研究方法、典型应用领域及研究热点等给予了介绍。

1.1代谢组学简介生命科学是研究生命现象、生命活动的本质、特征和发生、发展规律,以及各种生物之间和生物与环境之间相互关系的科学。

自从1953年Watson和Crick建立了DNA 双螺旋结构模型后,生命科学研究的面貌便焕然一新。

在此基础上发展的分子生物学使得生命的基本问题,如遗传、发育、疾病和进化等,都能从分子机制上得到诠释。

生物学研究进入了对生命现象进行定量描述的阶段。

分子生物学的飞速发展极大地推动了人们从分子组成水平对生物系统进行深人的了解。

基因组计划向人们展示了包括大肠杆菌、酵母、线虫、果蝇、小鼠等模式生物以及人类的所有遗传信息的组成,生命的奥秘就存在于这些序列中。

技术上的突破使得基因组数据的获得已经不再是生命科学的难点。

人类基因组计划的基本完成标志着后基因组时代的到来,在这一时期,基因组功能分析成为生命科学的主要任务,核心思想是以整体和联系的观点来看待生物体内的物质群,研究遗传信息如何由基因经转录向功能蛋白质传递,基因功能如何由其表达产物蛋白质以及代谢产物来体现。

继基因组(genome)后、转录组(transcriptome)、蛋白质组(proteome)等相继出现,并相应形成“omics”学说,如转录组学(transcriptom-ics)、蛋白质组学(proteomics)等。

但是基因与功能的关系是非常复杂的,还不能用转录组、蛋白质组来表达生物体的全部功能。

生物体内存在着十分完备和精细的调控系统以及复杂的新陈代谢网络,它们共同承担着生命活动所需的物质与能量的产生与调节。

在这一复杂体系中,既有直接参与物质与能量代谢的糖类、脂肪及其中间代谢物,也有对新陈代谢起重要调节作用的物质。

这些物质在体内形成相互关联的代谢网络,基因突变、饮食、环境因素等都会引起这一网络中某个或某些代谢途径的变化,这类物质的变化可以反映机体的状态。

起调节作用的代谢物,从生理功能上来说包括神经递质、激素和细胞信号转导分子等,从化学组成上来说包括多肽、氨基酸及其衍生物、胺类物质、脂类物质和金属离子等,这些调节物质绝大部分都是小分子物质,在植物与微生物中还存在着大量的次生代谢产物。

这些分子广泛分布于体内,对多种生理活动都具有普遍和多样的调节作用,仅微量存在就能够发挥很强的生物效应。

不同活性的分子或协同、或拮抗、或修饰而相互影响,在生物学效应以及信号转导和基因表达调控上形成复杂的网络,承担着维持机体稳态的重要使命,是神经内分泌和免疫网络调节的物质基础和自稳态调节的最重要成分。

转录组、蛋白质组的研究很难涵盖这些非常活跃而且非常重要的生命活性物质,然而对这类物质的生理和病理生理学意义如果不能充分认识,就不可能真正阐明生命功能活动的本质。

传统研究方法是以生理学和药理学实验方法为主,缺乏高通量的研究技术,难以建立生物小分子物质复杂体系的研究模式。

在这种情况下,代谢组(metabolome)和代谢组学(metabolomics或metabonomics)应运而生了,并成为系统生物学的一个重要突破口[3],代谢处于生命活动调控的末端,因此代谢组学比基因组学、蛋白质组学更接近表型。

从广义的代谢组学的意义上来说,代谢组学的历史是相当长的,很早以前人们就已经对生物样品中的某些靶标化合物进行分析以了解生命机体的状态。

目前代谢组学所采用的一些技术平台,如NMR和色谱技术以及质谱技术也有比较长的应用历史。

严格意义上的代谢组学(对限定条件下的特定生物样品中所有代谢组分的定性和定量)从提出到现在只有短短数年的时间。

现在一般认为代谢组学源于代谢轮廓(metabolicprofiling)分析,在代谢轮廓分析中体现了代谢组学的“尽可能多地分析生物样本中的代谢产物”这一理念的萌芽。

在这里,我们对从代谢轮廓分析发展到代谢组学这一过程[4](图1-2)做一简单的介绍。

早在20世纪70年代初,Baylor医学院就发表了有关代谢轮廓分析方面的论文,在他们的工作中采用了GC-MS的方法对多种类固醇、有机酸以及尿中药物的代谢物进行了分析,并将这种多组分分析的方法称为代谢轮廓分析,开创了对复杂样品进行代谢轮廓分析的先河。

此后代谢轮廓分析广泛应用于血、尿等生物样本中代谢物的定性与定量分析,以对疾病进行筛选和诊断。

在临床上使用GC-MS的方法来诊断疾病的方法一直沿用到今天。

紧接着,人们把重点主要放在分析的自动化上,并将GC的方法用于其他类型化合物的分析。

进入20世纪80年代,人们开始使用高效液相色谱和核磁共振的技术来进行代谢轮廓的分析,如1982年,荷兰应用科学研究所(TNO)的vanderGreef[5]在国际上首先采用质谱对尿中代谢指纹进行研究。

1983年,Sadler、Buckingham和Nicholson发表了第一个有关全血和血浆的1H-NMR谱[6]。

在1986年,色谱杂志Journal of Chromatography发表了一期有关代谢轮廊(metabolic profiling)分析的专辑。

进入90年代,代谢轮廓分析技术一直平稳发展,每年都有10~15篇的论文发表,不过这一时期人们的目标更多地集中于某些特定的标靶化合物上。

在90年代初,Sauter等人用基于GC-MS代谢轮廓分析的方法研究了不同除草剂对大麦的影响,这种用代谢轮廓分析来研究各种因素对生物功能的影响的研究思路随即被人们认可。

1997年,Steven Oliver研究小组提出了通过对代谢产物的数量和定性来评估酵母基因的遗传功能及其冗余度,并率先提出了代谢组的概念[7]。

1999年,J.Nicholson等提出metabonomics的概念[8],并在疾病诊断、药物筛选等方面做了大量卓有成效的工作[1,9~11]。

接着,德国的Max-Planck-Institut的科学家们开始了植物代谢组学的研究[12],使代谢组学得到了极大的充实。

代谢组学的特点为:(1)关注内源化合物。

(2)对生物体系中的小分子化合物进行定性定量研究。

(3)上述化合物的上调和下调指示了与疾病、毒性、基因修饰或环境因子的影响。

(4)上述内源性化合物的知识可以被用于疾病诊断和药物筛选。

与转录组学和蛋白质组学比较,代谢组学有以下优点[13]:(1)基因和蛋白质表达的微小变化会在代谢物上得到放大,从而使检测更容易。

(2)代谢组学的研究不需建立全基因组测序及大量表达序列标签(EST)的数据库。

(3)代谢物的种类要远小于基因和蛋白质的数目(每个组织中大约为1〇3数量级,即使在最小的细菌基因组中也有几千个基因)。

(4)研究中采用的技术更通用,这是因为给定的代谢物在每个组织中都是一样的缘故。

代谢组学是近几年才发展的一门新兴的技术,如何对这种技术进行命名曾经有争议,国际上存在metabolomics和metabonomics两个词汇,一般认为,metabolomics是通过考察生物体系受刺激或扰动后(如将某个特定的基因变异或环境变化后)代谢产物的变化或其随时间的变化,来研究生物体系的代谢途径的一种技术。

而metabonomics 是生物体对病理生理刺激或基因修饰产生的代谢物质的质和量的动态变化的研究。

前者一般以细胞作研究对象,后者则更注重动物的体液和组织。

在植物、微生物领域一般用metabolomics,在药物研究和疾病诊断中,一般用metabonomics。

现在这两个定义已经模糊化[6],没有特别的区分。

目前,代谢组学正日益成为生命科学研究的重点之一,在世界范围越来越多的科学工作者已加入到代谢组学的研究中。

这可以从以下几个方面体现。

“W eb of knowledge”是检索科学文献最好的网站之一,在该网站以metabolomics or metabonomics 和metabolic profiling 为主题词进行检索,可得图1-3。

以metabolomics or metabonomics 检索可得1950 篇,以metabolic profiling 检索可得4581 篇(2008 年 1 月 5 日)。

类似地,从“Web of knowledge”使用proteomics 和metabolome 分别检索到总文献9361篇和1000篇(图1-4),发现引用次数分别为112 566和8355,平均每篇引用分别为12. 02和8.35,h指数分别为113和39。

从中可知,尽管代谢组学比较年轻,是新兴技术,文献的总量不多,但与蛋白质组学相比,它们具有非常类似的发展趋势。

代谢组学的学术活动也在蓬勃进行,2001年12月在美国举行了题为“Metabolic Profiling: Pathways in Discovery”的专题会议,一年后(2002年11月)在加利福尼亚州召开的系统组学国际会议也特别强调了代谢组学。

有关植物代谢组学方面的会议更多,2002年4月、2003年4月、2004年6月及2006年7月分别在荷兰、德国、美国和英国举行了第一届、第二届、第三届和第四届植物代谢组学国际会议,会议就分析技术的发展、代谢数据的生物信息和数据统计分析、标准化及数据库、代谢组学在解决生物技术问题中的作用和发展农作物等方面进行了广泛的探讨。

相关文档
最新文档