【最新】苏科版七年级数学上册同步练习 :2.2 有理数与无理数

合集下载

七年级数学上册2.2有理数与无理数一起走近无理数

七年级数学上册2.2有理数与无理数一起走近无理数

一起走近无理数在前面的学习中,我们认识了负数,使数的范围扩展到有理数.现在我们又开始学习无理数,把数的范围扩展到了实数.刚开始学习无理数,认为无理数不像有理数那样直观易懂,总有一种虚幻的感觉.那么该怎样学习无理数呢?一、明确无理数的存在无理数并不是“无理”,也不是人们臆想出来的,而是实实在在的存在.如:(1)两条直角边都为1的等腰直角三角形,它的斜边为2;(2)任何一个圆,它的周长和直径之比为常数π.像2、π这样的数在我们的身边还有很多.二、弄清无理数的定义及常见无理数无理数是指无限不循环小数,这说明无理数可以化为具有两个特征的小数:一是小数的位数时无限的,二是不循环的.我们比较常见的无理数往往具备以下几种表现形式:1.某些含有π的数,如:π,π3等;2.开方开不尽得到的数,如:3、5等;3.依某种规律构造的无限不循环小数,如0.1010010001…(两个1之间依次多一个0).三、了解无理数的性质1.所有的无理数都可以用数轴上唯一的一个点来表示,并且右边的无理数总比左边的大;2.在有理数中的互为相反数的定义、绝对值得定义、大小比较法则及运算法则、运算律等,对于无理数仍然适用,如52-的相反数是25-,因为052<-,所以52-的绝对值是25-.四、澄清一些模糊认识1.无理数包括正无理数、0、负无理数0是一个整数,故它是有理数,因此无理数只能分为正无理数和负无理数两类.2.带根号的数就是无理数 由于像4、38-这样的数通过计算可以化为2和-2,因此它们是有理数,可见带根号的不一定是无理数.特别是π,它是无理数但并不是用根号形式表示的.3.无理数的数量比有理数少有些同学认为1、2、3、4、5这五个数,它们都是有理数,而开平方后得到的无理数只有2、3、5323334、35等无理数,如果再开四次方、五次方……还可以产生更多的无理数.因此无理数并不比有理数少.4.有些无理数是分数因为分数属于有理数,且无理数与有理数是两类不同的数,所以无理数不可能写成分数.当然,有些无理数可以借助分数线来表示,如32,但不能因为它具备了分数的形式就认为它是分数.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列四个实数中最大的是()A B.0C.1D.2【答案】A【解析】根据实数的大小比较法则排列大小,得到答案.【详解】-2<0<1故选:A.【点睛】本题考查的是实数的大小比较,任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2.将一个各面涂成红色的正方体,分割成同样大小的27个小正方体,从这些正方体中任取一个恰有3个面涂成红色的概率是()A.1927B.1227C.23D.827【答案】D【解析】首先确定三面涂有红色的小正方体的个数在27个小正方体中占的比例,根据这个比例即可求出有3个面涂有红色的概率.【详解】将一个各面涂有红色的正方体,分割成同样大小的27个小正方体,从这些正方体中任取一个,恰有3个面涂有红色的小正方体只能在大正方体的8个角上,共8个,故恰有3个面涂有红色的概率是827.故选:D.【点睛】此题考查几何概率,解题关键在于掌握概率公式计算法则.3.将点P(3,﹣1)向左平移2个单位,向下平移3个单位后得到点Q,则点Q坐标为()A.(1,﹣4)B.(1,2)C.(5,﹣4)D.(5,2)【答案】A【解析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:根据题意,3-2=1,-1-3=-4,∴点Q的坐标是(1,-4).故答案为:A.【点睛】本题考查了平移与坐标与图形的变化,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.如图,将纸片沿折叠,则()A.B.C.D.【答案】D【解析】根据翻折不变性和三角形的内角和定理及角平分线的性质解答.【详解】解:延长BD,CE交于点F,如下图:由折叠可知,△ADE≌△FDE,∴∠A=∠F,∠ADE=∠FDE=,∠AED=∠FED=∵∠1+∠ADF=180°,∠2+∠AEF=180°∴∠1+∠2=360°2∠FDE-2∠FED∴∠1+∠2=∴∠1+∠2=2∠F∴∠A=故选择:D.【点睛】本题考查了折叠的性质,邻补角的性质,三角形内角和定理,关键是把∠1+∠2看作整体,对角的和进行转化.5.下列调查中,最适合采用全面调查(普查)方式的是()A.对宜春市居民日平均用水量的调查B.对宜春一套《民生直通车》栏目收视率的调查C.对一批LED节能灯使用寿命的调查D.对某校七年级(1)班同学的身高情况的调查【答案】D【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、对宜春市居民日平均用水量的调查适合抽样调查;B、对宜春一套《民生直通车》栏目收视率的调查适合抽样调查;C、对一批LED节能灯使用寿命的调查适合抽样调查;D、对某校七年级(1)班同学的身高情况的调查适合全面调查;故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(-40,-30)表示,那么(10,20)表示的位置是( )A.点A B.点B C.点C D.点D【答案】B【解析】由题意知(10,20)表示向东走10米,再向北走20米,故为B点.A.﹣a<﹣b B.a﹣3>b﹣3 C.1﹣a>1﹣b D.a+3<b+2【答案】C【解析】根据不等式的3个性质找到变形正确的选项即可.【详解】解:A、由a<b,可得:-a>-b,错误;B、由a<b,可得:a-3<b-3,错误;C、由a<b,可得:1-a>1-b,正确;D、由a<b,可得:a+3<b+3,错误;故选C.【点睛】考查不等式性质的应用;用到的知识点为:不等式的两边加上或减去同一个数或式子,不等号的方向不变;乘以或除以同一个不为0的正数,不等号的方向不变;乘以或除以同一个不为0的负数,不等号的方向改变.8.在3.14,227,3,364,π,2.01001000100001这六个数中,无理数有( )A.1个B.2个C.3个D.4个【答案】B【解析】根据无理数是无限不循环小数,可得答案.【详解】解:在3.14,227,-3,364,π,2.010010001……这六个数中,-3,π是无理数,共2个,故选B.【点睛】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.9.将一张长与宽的比为2:1的长方形纸片按如图①、②所示的方式对折,然后沿图③中的虚线裁剪,得到图④,最后将图④的纸片再展开铺平,则所得到的图案是()A.B.C.D.【答案】A【解析】根据图示的裁剪方式,由折叠的性质,可知此图最后剪去了两个角和一边的中间被剪,因此答案为A.故选A10.如图所示,在长方形纸片ABCD 中,E ,G 为AB 边上两点,且AE EG GB ==;F ,H 为CD 边上两点,且DF FH HC ==.沿虚线EF 折叠,使点A 落在点G 上,点D 落在点H 上;然后再沿虚线GH 折叠,使B 落在点E 上,点C 落在点F 上.叠完后,剪一个直径在EF 上的半圆,再展开,则展开后的图形为( )A .B .C .D .【答案】B 【解析】可按照题中的要求动手操作或通过想象,进而得出结论.【详解】把一个矩形三等分,标上字母,严格按上面方法操作,剪去一个半圆,或者通过想象,得到展开后的图形实际是从原矩形最左边的一条三等分线处剪去一个圆,从矩形右边上剪去半个圆,选项B 符合题意,故选B .【点睛】本题考查图形的展开,主要训练学生的动手操作能力或空间想象能力.二、填空题题11.如图,ABC MDE ∆∆≌,BC 的延长线交DA 于F ,交DE 于G ,25D ∠=︒,105E ∠=︒,16DAC ∠=︒,则DGB ∠的度数为_________.【答案】66°【解析】根据全等三角形对应角相等可得ACB E ∠=∠,再求出ACF ∠,然后根据三角形的内角和定理列式计算即可得解.【详解】解:ABC ADE ∆≅∆,105ACB E ∴∠=∠=︒,18010575ACF ∴∠=︒-︒=︒,即251675DGB ︒+∠=︒+︒,解得66DGB ∠=︒.故答案为:66︒.【点睛】本题考查了全等三角形的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.12.当m =_____时,关于x 的分式方程4133x m x x -=--会产生增根. 【答案】-1【解析】分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出m 的值.【详解】解:去分母得:4x-x+3=-m ,由分式方程有增根,得到x-3=0,即x=3,把x=3代入整式方程得:m=-1,故答案为:-1.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.13.不等式组212x x m-≥⎧⎨+⎩<有三个整数解,则m 的取值范围是__. 【答案】7<m≤8【解析】把m 当成已知数求解不等式即可.【详解】解不等式组可得3≤x <m -2因为不等式组有三个整数解3,4,5,所以5<m -2≤6,求得7<m ≤8.【点睛】了解m -2的取值范围是解题的关键,注意端点处是否有等号,要单独考虑.14.小明、小辉两家所在位置关于学校中心对称.如果小明家距学校2公里,那么他们两家相距__________公里.【答案】1【解析】根据中心对称图形的性质,得出小明、小辉两家到学校距离相等,即可得出答案.【详解】解:∵小明、小辉两家所在位置关于学校中心对称,∴小明、小辉两家到学校距离相等,∵小明家距学校2公里,故答案为1.【点睛】此题主要考查了中心对称图形的性质,根据已知得出小明、小辉两家到学校距离相等是解决问题的关键.15.有一个数值转换器,原理如下:当输入x为4时,输出的y的值是_____.2【解析】根据程序即可进行求解.【详解】解:∵x=4时,它的算术平方根是2又∵2是有理数∴取22∴y2【点睛】此题主要考查算术平方根的定义,解题的关键是熟知算术平方根的性质.16.如果x2+kx+1是一个完全平方式,那么k的值是___________.【答案】k=±1.【解析】试题分析:这里首末两项是x和1这两个数的平方,那么中间一项为加上或减去x的系数和常数1的积的1倍,故k=±1.解:中间一项为加上或减去x的系数和常数1的积的1倍,∴k=±1.故答案为k=±1.17.如图,已知△ABC中,点D在AC边上(点D与点A,C不重合),且BC=CD,连接BD,沿BD折叠△ABC使A落在点E处,得到△EBD.请从下面A、B两题中任选一题作答:我选择_____题.A.若AB=AC,∠A=40°,则∠EBC的度数为______°.B.若∠A=α°,则∠EBC的度数为_______°(用含α的式子表示)【答案】A 或B 40 α【解析】根据AB =AC ,∠A =40°得出70ABC ACB ∠=∠=︒,因为 BC =CD ,所以55CBD CDB ∠=∠=︒,再根据轴对称性质得知ABD EBD ∠=∠即可求解. 【详解】AB =AC ,∠A =40°,70ABC ACB ∴∠=∠=︒,BC =CD55CBD CDB ∴∠=∠=︒,△EBD 沿BD 折叠△ABC 而来,705515ABD EBD ∴∠=∠=︒-︒=︒,551540EBC A ∴∠=∠=︒-︒=︒【点睛】本题主要考查等腰三角形性质,轴对称性质等知识,熟悉掌握是关键.三、解答题18.(1)解分式方程:3433x x x -=--; (2)解二元一次方程组234311x y x y +=⎧⎨-=⎩【答案】(1)原方程无解;(2)21x y =⎧⎨=-⎩ 【解析】(1)根据去分母、去括号、移项、合并同类项、系数化为1求出方程的解,最后进行检验; (2)运用加减消元法解二元一次方程组即可.【详解】(1)去分母,得:()433x x --=,整理得:39x -=-;3x =检验:当3x =时,3x -=03x =是增根,舍去;原方程无解;代入4311x y -=,得:()433211x x --=整理,得:1020x =解得:2x =代入23x y +=,得:223y ⨯+=解得:1y =-∴21x y =⎧⎨=-⎩【点睛】此题主要考查了二元一次方程组的解法,要熟练掌握,注意加减消元法的应用.同时此题还考查了解分式方程.19.先化简,再求值:()()()2232a b ab b b a b a b --÷-+-,其中12a =,1b =-. 【答案】2ab -,1.【解析】先用平方差公式和用多项式除以单项式的法则进行计算,然后去括号,合并同类项化简,最后代入求值.【详解】解:()()()2232a b ab b b a b a b --÷-+-, ()22222a ab b a b =----,22222a ab b a b =---+,2ab =-, 当12a =,1b =-时, 原式()12112=-⨯⨯-=. 【点睛】本题考查整式的化简求值,掌握多项式除以单项式法则及平方差公式,正确计算是本题的解题关键. 20.如图所示,点C 在线段BE 上,AB CD ∥,B D ∠=∠,则DAE ∠与E ∠相等吗?阅读下面的解答过程,并填空.解:DAE E =∠∠∵AB CD ∥(已知)∴B ∠=______(______)∵B D ∠=∠(已知)∴D ∠=______(等量代换)∴____________(______)∴DAE E =∠∠(______)【答案】见解析【解析】由AB CD ∥得到∠B =∠DCE ,再加上B D ∠=∠即可得到∠D =∠DCE ,从而证明AD //BE,再由平行线的性质得到结论.【详解】DAE E =∠∠∵AB CD ∥(已知)∴B ∠=_∠DCE_____(_两直线平行,同位角相等_____)∵B D ∠=∠(已知)∴D ∠=_∠DCE _(等量代换)∴__AD //BE____(_内错角相等,两直线平行_____)∴DAE E =∠∠(_两直线平行,内错角相等_)【点睛】考查了平行线的性质和判定,关键是找准两条直线被第三条直线所截而形成的同位角、内错角. 21.计算与求解: 3987325-. (2)已知32x y =⎧⎨=-⎩是方程组37ax by bx ay +=⎧⎨+=-⎩的解,求a 、b 的值. 【答案】(1)﹣4257(2)13a b =-⎧⎨=-⎩. 【解析】(1)原式利用平方根、立方根定义,以及绝对值的代数意义计算即可求出值;(2)把x 与y 的值代入方程组求出a 与b 的值即可.【详解】(1)原式=﹣2+35﹣7﹣4257(2)把32x y ==⎧⎨-⎩代入方程组得:323327a b b a -⎧⎨--⎩=①=②, ①×3+②×2 得:5a=﹣5, 解得:a=﹣1, 把 a=﹣1 代入①得:b=﹣3,则13a b =-⎧⎨=-⎩. 【点睛】此题考查了二元一次方程组的解,以及实数的运算,熟练掌握运算法则是解本题的关键.22.在平面直角坐标系xOy 中,对于给定的两点P ,Q ,若存在点M ,使得MPQ ∆的面积等于1,即1MPQ S ∆=,则称点M 为线段PQ 的“单位面积点”.解答下列问题:如图,在平面直角坐标系xOy 中,点P 的坐标为()1,0.(1)在点()1,2A ,()1,1B -,()1,2C --,()2,4D -中,线段OP 的“单位面积点”是______.(2)已知点()1,2Q -,()0,1H -,点M ,N 是线段PQ 的两个“单位面积点”,点M 在HQ 的延长线上,若2HMN PQN S S ∆∆=,直接写出点N 纵坐标的取值范围.【答案】(1)A ,C ;(2)y N ⩽2y N ⩾−2y N ⩽2y N ⩾−2【解析】(1)根据“单位面积点”的定义和点的坐标即可得结果;(2)根据“单位面积点”的定义,可得点M 、N 的横坐标,再根据2HMN PQN S S ∆∆=,即可求得点N 的坐标的取值范围.【详解】(1)∵点P 的坐标为(1,0),点O 的坐标为(0,0),∴线段OP 的“单位面积点”的纵坐标为2或−2,∵点A(1,2),B(−1,1),C(−1,−2),D(2,−4),∴线段OP 的“单位面积点”是A. C .故答案为A ,C ;(2)∵点Q(1,−2),点P 的坐标为(1,0),点M ,N 是线段PQ 的两个“单位面积点”,∴点M ,点N 的横坐标为0或2,∵点M 在HQ 的延长线上,∴点M 的横坐标为2,当x=0时,设点N 的坐标为(0,y N ),∵HMN PQN S ∆∆=,∴12×2×|−1−y N |解得y N ⩽y N ⩾−当x=2时,设点N 的坐标为(2,y N ),∵HMN PQN S ∆∆=,∴12×2×|−3−y N |解得y N ⩽y N ⩾−【点睛】此题考查三角形的面积,坐标与图形的性质,解题关键在于注意“单位面积点”的定义和分类讨论思想的应用.23.计算题(1)()23-(2)6- ()32+-【答案】(1)12(2)-2【解析】分析:(1)先根据乘方的意义和立方根的意义化简,然后按有理数的加减法计算即可; (2)先根据绝对值的意义和乘方的意义化简,然后按有理数的加减法计算即可.详解:(1)解:(﹣3)2+=9+3=12(2)解:原式 = 6 – 8= -2点睛:本题考查了实数的运算,熟练掌握乘方的意义、立方根的意义、绝对值的意义是解答本题的关键. 24.为迎接省运会,宝应县绿化部门计划购买甲、乙两种树苗共计n棵对体育休闲公园及周边道路进行绿化,有关甲、乙两种树苗的信息如表所示.甲种树苗乙种树苗单价(元/棵)60 90成活率92% 96%(1)当n=500时,如果购买甲、乙两种树苗共用33000元,那么甲、乙两种树苗各买了多少棵?(2)实际购买这两种树苗的总费用恰好为33000元,其中甲种树苗买了m棵.①写出m与n满足的关系式;②要使这批树苗的成活率不低于95%,求m的最大值.【答案】(1)甲、乙两种树苗各买了400棵,1棵(2)①m=3n-11②1【解析】(1)根据题意可以列出相应的一元一次方程,从而可以解答本题;(2)①根据题意可以得到m与n关系式;②根据题意可以得到关于m的不等式,从而可以求得m的取值范围,进而求得m的最大值.【详解】(1)设甲种树苗买了x棵,则乙种树苗买了(500-x)棵,60x+90(500-x)=33000,解得,x=400,500-x=1,答:甲、乙两种树苗各买了400棵,1棵;(2)①甲种树苗买了m棵,则乙种树苗买了(n-m)棵,60m+90(n-m)=33000,化简,得m=3n-11,即m与n满足的关系式是m=3n-11;②由题意可得,m×92%+(n-m)×96%≥95%n,∵m=3n-11,∴n=m11003+,∴92%m+96%(m11003+-m)≥95%•m11003+,解得,m≤1,答:m的最大值是1.【点睛】本题考查一元一次不等式的应用、函数关系式,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的性质解答.25.已知在平面直角坐标系中,三角形ABC的位置如图所示.(1)请写出A、B、C三点的坐标;(2)将三角形ABC向右平移6个单位, 再向上平移2个单位,请在图中作出平移后的三角形A'B'C',并写出三角形A'B'C'各点的坐标;(3)求出三角形A'B'C'的面积.【答案】(1)A(-1,2),B(-2,-1),A(2,0);(2)图见解析,A'(5,4),B'(4,1),C'(8,2);(3)5.5【解析】(1)根据直角坐标系直接写出;(2)先把各顶点进行平移,再依次连接得到三角形A'B'C',再根据直角坐标系写出坐标;(3)根据割补法即可求出面积.【详解】(1)A(-1,2),B(-2,-1),A(2,0);(2)如图,三角形A'B'C'为所求,A'(5,4),B'(4,1),C'(8,2);(3)三角形A'B'C'的面积为4×3-12×4×1-12×1×3-12×3×2=5.5.【点睛】此题主要考查直角坐标系的图形平移,解题的关键是熟知坐标平移的特点.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下图是某公司2018年度每月收入与支出情况折线统计图,下列说法中正确的是( )A .该公司12月盈利最多B .该公司从10月起每月盈利越来越多C .该公司有4个月盈利超过200万元D .该公司4月亏损了【答案】D 【解析】实线表示收入,虚线表示支出,当两条线之间的距离最大的时候就是节约最多的时候,据此解答即可.【详解】解:A .该公司1月盈利最多,故A 错误;B .该公司从十月起盈利越来越少,故B 错误;C .盈利超过200万的有1月份、10月份、11月份共3个月,故C 错误;D .四月份支出高于收入,所以亏损了,故D 正确.故选D .【点睛】本题是复式折线统计图,要通过坐标轴以及图例等读懂本图,根据图中所示的数量解决问题. 2.已知三角形三边长分别为2,5,x ,则x 的取值范围是( )A .17x <<B .37xC .35x <<D .25x << 【答案】B【解析】根据三角形的三边关系,列出式子即可得到答案.【详解】解:∵三角形三边长分别为2,5,x ,根据三角形的三边关系(三角形两边之和大于第三边,两边只差小于第三边),得到:5252x -<<+,即:37x ,故选B .【点睛】本题主要考查了三角形的三边关系:三角形两边之和大于第三边,两边只差小于第三边;掌握三角形三边关系是解题的关键.3.下列调查中,适合采用全面调查(普查)方式的是()A.对温泉河水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.节能灯厂家对一批节能灯管使用寿命的调查D.对某班50名学生视力情况的调查【答案】D【解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、对巢湖水质情况的调查适合抽样调查,故A选项错误;B、对端午节期间市场上粽子质量情况的调查适合抽样调查,故B选项错误;C、节能灯厂家对一批节能灯管使用寿命的调查适合抽样调查,故C选项错误;D、对某班50名学生视力情况的调查,适于全面调查,故D选项正确.故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.下列式子从左到右变形是因式分解的是()A.12xy2=3xy•4y B.(x+1)(x﹣3)=x2﹣2x﹣3C.x2﹣4x+1=x(x﹣4)+1 D.x3﹣x=x(x+1)(x﹣1)【答案】D【解析】根据因式分解的定义逐个判断即可.【详解】A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.【点睛】此题考查因式分解的定义,能熟记因式分解的定义的内容是解题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.5.某校为了了解七年级女同学的800米跑步情况,随机抽取部分女同学进行800米跑测试,按照成绩分为优秀、良好、合格、不合格四个等级,绘制了如图所示统计图. 该校七年级有400名女生,则估计800米跑不合格的约有( )A .2人B .16人C .20人D .40人【答案】C 【解析】先求出800米跑不合格的百分率,再根据用样本估计总体求出估值.【详解】400×2201216102=+++人. 故选C .【点睛】考查了频率分布直方图,以及用样本估计总体,关键是从上面可得到具体的值.6.在下列各式中,正确的是( )A 2(2)2-=±B .30.080.2-=-C 33(2)2-=-D .233(2)(2)0-+= 【答案】C【解析】根据二次根式的性质分别计算各选项,然后对比即可得出答案.【详解】解:A 2(2)2-,故选项不正确;B 330.080.080.2-=--,故选项不正确;C 33(2)2-=-,故选项正确;D 、233(2)(2)4-+=,故选项不正确;故选C.【点睛】此题考查了二次根式的性质,立方根的定义,属于基础题,难度一般.7.下列说法中,正确的是( )A B .0是正整数 C .227是有理数 D【答案】C【解析】根据分数,整数,有理数,无理数的定义即可解答.【详解】解:A B 、0既不是正整数,也不是负整数.故本选项错误;C 、227是分数,属于有理数,故本选项正确;D 4故选:C .【点睛】本题考查分数,整数,有理数,无理数的定义,熟悉掌握是解题关键.8.为了调查班级中对新班主任老师的印象,下列更具有代表性的样本是( )A .调查前十名的学生B .调查后十名的学生C .调查单号学生D .调查全体男同学【答案】C【解析】根据随机抽样的意义分析即可,随机抽样应使总体中每个个体都有相同的被抽取机会.【详解】A 、B 、D 都不具有随机性,故不具有代表性;C 具有随机性,每个同学都可能被抽调,故C 具有代表性.故选C.【点睛】本题考查了随机抽样,为了获取能够客观反映问题的结果,通常按照总体中每个个体都有相同的被抽取机会的原则抽取样本,这种抽样的方法叫做随机抽样.样本的选取应具有随机性、代表性、容量应足够大. 9.如图,在平面直角坐标系内有点A (1,0),点A 第一次跳动至点A 1(﹣1,1),…,第四次向右跳动5个单位至点A 4(3,2),…,依此规律跳动下去,点A 第100次跳动至点A 100的坐标是( )A.( 48,47) B.(49,48) C.(50,49) D.(51,50)【答案】D【解析】通过图象可知,当跳到A2n时,坐标为(n+1,n)可得.【详解】解:由图象可知,点A每跳两次,纵坐标增加1,A2、A4、A6、A8…各点坐标依次为(2,1)、(3,2)、(4,3)、(5,4)则A2n横坐标为:n+1,纵坐标为n,则A100坐标为(51,50).故选D.【点睛】本题为平面直角坐标系中的点坐标规律探究题,解答时注意分别观察横纵坐标的变化规律.10.下列说法正确的是()A.等于-2 B.±等于3C.﹙-5﹚³的立方根是5 D.平方根是±2【答案】D【解析】根据算术平方根、平方根、立方根的定义逐项分析即可.【详解】A. 等于2,故不正确;B. ±等于±3,故不正确;C. ﹙-5﹚³的立方根是-5,故不正确;D. 平方根是±2,正确;故选D.【点睛】本题考查了算术平方根、平方根、立方根的定义,正确掌握定义是解答本题的关键.二、填空题题11.如图,四边形ABCD中,点M,N分别在AB,BC上,∠C=80°,按如图方式沿着MN折叠,使FN ∥CD ,此时量得∠FMN =40°,则∠B 的度数是_____.【答案】100°【解析】根据两直线平行,同位角相等求出∠BNF ,再根据翻折的性质求出∠BMN 和∠BNM ,然后利用三角形的内角和定理列式计算即可得解.【详解】∵FN ∥DC ,∴∠BNF=∠C=80°,∵△BMN 沿MN 翻折得△FMN ,∴∠BMN=∠FMN=40°,∠BNM=12∠BNF=12×80°=40°, 在△BMN 中,∠B=180°﹣(∠BMN+∠BNM )=180°﹣(40°+40°)=180°﹣80°=100°.故答案为100°.【点睛】本题考查了平行线的性质,用到的知识点是两直线平行,同位角相等的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.12.如图,下面每个图形中的四个数都是按相同的规律填写的,根据此规律确定x 的值为______.【答案】1.【解析】试题分析:观察可得左下角数字为偶数,右上角数字为奇数,所以2n=20,m=2n ﹣1,解得n=10,m=19,又因右下角数字:第一个:1=1×2﹣1,第二个:10=3×4﹣2,第三个:27=5×6﹣3,由此可得第n个:2n (2n ﹣1)﹣n ,即可得x=19×20﹣10=1. 考点:数字规律探究题.13.(1)如图,在平面直角坐标系中,点A (1,1),以原点O 为圆心,OA 为半径画半圆与x 轴交于点P 20)和Q (n ,0). 则n 的值为________;(2)若a 、b 满足37a b =,2s a b =,则s 的取值范围是____________.【答案】2 14-73s ≤≤ 【解析】(1)由圆的性质得到:2,OP OQ ==从而可得答案,(2)分别用含有b a s ,利用b a【详解】解:(1)由题意得:2,OP OQ = Q 在数轴上原点的左边,0,n ∴<2,n ∴=- 故答案为: 2.-(2) 37a b =,73,b a ∴=-∴ 22(73)57,s a b a a a ==-=0,50,a a ≥≥577,a ∴≥-即:7,s ≥- 37a b =,7,3b a -= 14231452,333bbbs a b --∴==-= 0,b ≥50,3b ∴-≤14514.33b -∴≤ 即:14,3s ≤综上:14-73s ≤≤, 故答案为:14-73s ≤≤. 【点睛】本题考查的是数轴上利用距离相等来表示点对应的数,同时考查了利用非负数的非负性求解代数式的最大值与最小值,掌握以上知识是解题的关键.142,那么y 的值是_____.【答案】1【解析】根据算术平方根的定义解答即可.=2,∴y 的值是:1.故答案为1.【点睛】本题考查了算术平方根的知识,正确把握算术平方根的定义是解题关键.15.一组数据的最大值与最小值的差为2.8cm ,若取相距为0.4cm ,应将数据分_________组.【答案】8【解析】根据组数确定方法即可解答.【详解】∵2.8÷04.=7,7+1=8.∴应将这组数据分8组.故答案为:8.【点睛】本题考查的是组数的有关知识,熟知组数的判定方法是解决问题的关键.16.若点()1,36P a a -+位于第二象限,则的a 取值范围是__.【答案】21a -<<【解析】根据第二象限的点的特点列出不等式组求解即可.【详解】∵点()1,36P a a -+位于第二象限∴10360a a -<⎧⎨+>⎩10a -<1a <360a +>36a >-2a >-∴21a -<<故答案为:21a -<<.【点睛】本题考查了解一元一次不等式组的问题,掌握象限的性质、解一元一次不等式组的方法是解题的关键. 17.如图所示,计划把河水引到水池A 中,先作AB ⊥CD ,垂足为B ,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是________________________________。

练习2_有理数与无理数-(苏科版)(解析版)

练习2_有理数与无理数-(苏科版)(解析版)

练习2 有理数与无理数1.把下列各数填入相应的集合里:﹣3,|﹣5|,+(−13),﹣3.14,0,﹣1.2121121112…,﹣(﹣2.5),34,﹣|−45|,3π正数集合:{ |﹣5|,﹣(﹣2.5),34,3π,… };整数集合:{ ﹣3,|﹣5|,0,… };负分数集合:{ +(−13),﹣3.14,﹣|−45|,… }; 无理数集合:{ ﹣1.2121121112…,3π,… }.【分析】先根据绝对值的定义及化简符号的法则去掉绝对值的符号及多重符号,再根据正数、整数、负分数、无理数的定义求解即可.【解答】解:|﹣5|=5,+(−13)=−13,﹣(﹣2.5)=2.5,﹣|−45|=−45, 正数集合:{|﹣5|,﹣(﹣2.5),34,3π,…};整数集合:{﹣3,|﹣5|,0,…};负分数集合:{+(−13),﹣3.14,﹣|−45|,…}; 无理数集合:{﹣1.2121121112…,3π,…}.故答案为:|﹣5|,﹣(﹣2.5),34,3π,…;﹣3,|﹣5|,0,…;+(−13),﹣3.14,﹣|−45|,…;﹣1.2121121112…,3π,…【点评】本题主要考查了有理数的分类及无理数的定义.认真掌握正数、整数、负分数、无理数的定义与特点.特别注意整数和正数的区别,0是整数,但不是正数.2.把下列各数填在相应的横线里:3,0,10%,﹣112,﹣|﹣12|,﹣(﹣5),π2,0.6⋅,127,0.101001000…整数集合:( 3,0,﹣|﹣12|,﹣(﹣5) …); 分数集合:( 10%,﹣112,0.6⋅,127…);无理数集合:(π2,0.101001000… …);非负有理数集合( 3,0,10%,﹣(﹣5),0.6⋅,127…).【分析】按照有理数的分类填写:有理数{整数{正整数0负整数分数{正分数负分数. 【解答】解:整数集合:( 3,0,﹣|﹣12|,﹣(﹣5)…); 分数集合:( 10%,﹣112,0.6⋅,127⋯);无理数集合:( π2,0.101001000…);非负有理数集合( 3,0,10%,﹣(﹣5),0.6⋅,127⋯).故答案为:3,0,﹣|﹣12|,﹣(﹣5)…;10%,﹣112,0.6⋅,127⋯;π2,0.101001000…;3,0,10%,﹣(﹣5),0.6⋅,127⋯.【点评】本题考查了有理数的分类.认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.3.定义:若有理数a ,b 满足等式a +b =ab +2,则称a ,b 是“雉水有理数对”,记作(a ,b ).如:数对(2,0),(12,3)都是“雉水有理数对”.(1)数对(4,23) 是 (填“是”或“不是”)“雉水有理数对”;(2)若(m ,5)是“雉水有理数对”,求m 的值;(3)请写出一个符合条件的“锥水有理数对” (3,12) (注意:不能与题目中已有的“雉水有理数对”重复)【分析】(1)根据“雉水有理数对”的定义即可判断; (2)根据“雉水有理数对”的定义列方程即可解决问题;(3)根据“雉水有理数对”的定义,先确定a 的值,代入等式可得b 的值,写出即可. 【解答】解:(1)∵4+23=143,4×23+2=143, ∴4+23=4×23+2,∴数对(4,23) 是“雉水有理数对”;故答案为:是;(2)∵(m ,5)是“雉水有理数对”, ∴m +5=5m +2, m =34,(3)符合条件的“锥水有理数对”:(3,12).故答案为:(3,12).【点评】本题考查有理数的混合运算、“雉水有理数对”的定义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.4.在下列空格里打“√”,表示该数属于哪种类型的数:类型 数 有理数 正整数 负整数 正分数 负分数 非负数+3 √ √ . . . √ ﹣113√ . . . √ . 0 √ . . . . √ 0.5 √ . . √ . √ ﹣6√.√...【分析】依据有理数的分类,按整数、分数的关系分类可得:有理数包含正整数、0、负整数,正分数、负分数;按正数、负数与0的关系分类可得:有理数包含正整数、正分数、0、负整数、负分数. 【解答】解:+3属于有理数,正整数,非负数; ﹣113属于有理数,非负数;0属于有理数,非负数;0.5属于有理数,正分数,非负数; ﹣6属于有理数,负整数,非负数.【点评】本题主要考查了有理数的分类,解题时注意:非负数包括正数和0. 5.阅读理解把几个数用大括号围起来,中间用逗号断开,如:{3,4},{﹣3,6,8,18},我们称之为集合,其中大括号内的数称其为集合的元素.如果一个集合满足:只要其中有一个元素a ,使得﹣2a +4也是这个集合的元素,这样的集合我们称为条件集合,例如:集合{3,﹣2},因为﹣2×3+4=﹣2,﹣2恰好是这个集合的元素,所以{3,﹣2}是条件集合;例如:集合{﹣2,9,8},因为﹣2×(﹣2)+4=8,8恰好是这个集合的元素,所以{﹣2,9,8}是条件集合.(1)集合{﹣4,12} 是 条件集合;集合{12,−53,223} 是 条件集合(填“是”或“不是”)(2)若集合{8,10,n }和集合{﹣m }都是条件集合,求m ,n 的和.【分析】(1)依据一个集合满足:只要其中有一个元素a ,使得﹣2a +4也是这个集合的元素,这样的集合我们称为条件集合,即可得到结论;(2)分情况讨论:若n =﹣2×8+4,则n =﹣12;若n =﹣2×10+4,则n =﹣16;若﹣2n +4=8,则n =﹣2;若﹣2n +4=10,则n =﹣3;若﹣2n +4=n ,则n =43;若﹣m ×(﹣2)+4=﹣m ,则m =−43;据此可得m ,n 的和.【解答】解:(1)∵﹣4×(﹣2)+4=12, ∴集合{﹣4,12}是条件集合; ∵−53×(﹣2)+4=223, ∴集合{12,−53,223}是条件集合;故答案为:是,是;(2)∵集合{8,10,n }和集合{﹣m }都是条件集合, ∴若n =﹣2×8+4,则n =﹣12; 若n =﹣2×10+4,则n =﹣16; 若﹣2n +4=8,则n =﹣2; 若﹣2n +4=10,则n =﹣3; 若﹣2n +4=n ,则n =43;若﹣m ×(﹣2)+4=﹣m ,则m =−43;∴m ,n 的和为:﹣1313,﹣1713,﹣313,﹣413,0.【点评】本题主要考查了有理数的运算,解决问题的关键是依据条件集合的定义进行计算.如果一个集合满足:只要其中有一个元素a ,使得﹣2a +4也是这个集合的元素,这样的集合我们称为条件集合.6.给出下列各数:32,﹣(+6),﹣1.5,0,﹣|﹣3|,4,π,在这些数中,整数是 ﹣(+6),0,﹣|﹣3|,4, ,非负数是32,0,π, 4 ,互为相反数的是32,﹣1.5 ,绝对值最小的数是 0 分数是32,﹣1.5 ,无理数是 π .【分析】根据分母为1的是整数,可得整数集合; 根据大于或等于零的数是非负数,可得非负数集合;根据只有符号不同的两个数互为相反数,可得一个数的相反数; 根据绝对值的意义,可得答案;根据分母不为1的数是分数,可得分数集合; 根据无理数是无限不循环小数,可得答案. 【解答】解:整数是﹣(+6),0,﹣|﹣3|,4, 非负数是 32,0,4,π,互为相反数的是 32,﹣1.5,绝对值最小的数是 0分数是 32,﹣1.5,无理数是 π.【点评】本题考查了有理数,利用了整数的意义,非负数的意义,相反数的意义. 7.如图,每个椭圆表示一个数集,请在每个椭圆内填上6个数,其中三个写在重叠部分,【分析】根据负数与整数集合重叠部分为负整数,列举出几个即可;根据正数与分数集合重叠部分为正分数,列举出几个即可. 【解答】解:如图所示:【点评】此题考查了有理数,熟练掌握整数,分数与正、负数的定义是解本题的关键. 8.把下列各数填入相应的集合中:134,227,−13,0,(﹣2)2,﹣1.25,﹣12,﹣|﹣12|,﹣(﹣5).【分析】根据小于零的数是负数,小于零的分数是负分数,大于或等于零的整数是非负整数,可得答案. 【解答】解:负数集合:{﹣12,−13,﹣1.25,﹣|﹣12|}; 负分数集合:{−13,﹣1.25};非负整数集合:{0,(﹣2)2,﹣(﹣5)};故答案为:﹣12,−13,﹣1.25,﹣|﹣12|;−13,﹣1.25;0,(﹣2)2,﹣(﹣5).【点评】本题考查了有理数,小于零的数是负数,小于零的分数是负分数,大于或等于零的整数是非负整数.9.请写四句话,说明数“零”(0)的数学特性.(例:0是绝对值最小的数.例句除外) 【分析】根据题意可以写出零的数学特性,本题得以解决. 【解答】解:零既不是正数也不是负数; 零小于正数,大于负数; 零不能做分母; 零是最小的非负数.【点评】本题考查有理数,解题的关键是明确题意,可以仿照例句写出关于零的别的数学特性.10.请把下列各数填入相应的集合中12,5.2,0,2π,227,﹣22,−53,2005,﹣0.030030003…正数集合:{ 12,5.2,2π,227,2005, …};分数集合:{12,5.2,227,−53, …};非负整数集合:{ 0,2005, …};有理数集合:{12,5.2,0,227,﹣22,−53,2005, …}.【分析】根据正数的意义,分数包括分数、有限小数、无限循环小数,非负整数包括正整数和0,有理数是指有限小数和无限循环小数,根据以上内容判断即可. 【解答】解:正数集合:{12,5.2,2π,227,2005,…}分数集合:{12,5.2,227,−53,…}非负整数集合:{0,2005,…} 有理数集合{12,5.2,0,227,﹣22,−53,2005,…},故答案为:12,5.2,2π,227,2005,12,5.2,227,−53,0,2005,12,5.2,0,227,﹣22,−53,2005.【点评】本题考查了对分数,非负数,有理数,正数等知识点的应用,主要考查学生的理解能力和辨析能力,题目比较典型,但是一道比较容易出错的题目. 11.把下列各数填在相应的集合内:100,﹣99%,π,0,﹣2008,﹣2,5.2,116,6,−53,﹣0.3,1.020020002…【分析】根据有理数的分类,可得答案.【解答】解:.【点评】本题考查了有理数,熟记有理数的分类是解题关键.12.已知A 、B 、C 三个数集,每个数集中所包含的数都写在各自的大括号内,请把这些数填在如图所示圈内的相应位置.A ={﹣2,﹣3,﹣8,6,7}B ={﹣3,﹣5,1,2,6}C ={﹣1,﹣3,﹣8,2,5}.【分析】观察先找出三个数集相同的数,再找出每两个数集相同的数填入相应的公共部分. 【解答】解:通过观察A ,B ,C 三个数集都含有﹣3, A ,B 数集都含有6, A ,C 数集都含有﹣8, B ,C 数集都含有2, 如图:【点评】本意考查了有理数,利用了韦恩图法表示集合,注意各集合的公共元素.13.观察下列两个等式:2−13=2×13+1,5−23=5×23+1,给出定义如下:我们称使等式a ﹣b =ab +1的成立的一对有理数a ,b 为“共生有理数对”,记为(a ,b ),如:数对(2,13),(5,23),都是“共生有理数对”.(1)数对(﹣2,1),(3,12)中是“共生有理数对”的是 (3,12) ;(2)若(m ,n )是“共生有理数对”,则(﹣n ,﹣m ) 是 “共生有理数对”(填“是”或“不是”); (3)请再写出一对符合条件的“共生有理数对”为 (4,35)或(6,57) ;(注意:不能与题目中已有的“共生有理数对”重复)(4)若(a ,3)是“共生有理数对”,求a 的值. 【分析】(1)根据“共生有理数对”的定义即可判断; (2)根据“共生有理数对”的定义即可解决问题; (3)根据“共生有理数对”的定义即可判断;(4)根据“共生有理数对”的定义,构建方程即可解决问题. 【解答】解:(1)﹣2﹣1=﹣3,﹣2×1+1=1, ∴﹣2﹣1≠﹣2×1+1,∴(﹣2,1)不是“共生有理数对”, ∵3−12=52,3×12+1=52, ∴3−12=3×12+1,∴(3,12)是“共生有理数对”;(2)是.理由:﹣n ﹣(﹣m )=﹣n +m , ﹣n •(﹣m )+1=mn +1,∵(m ,n )是“共生有理数对”, ∴m ﹣n =mn +1, ∴﹣n +m =mn +1,∴(﹣n ,﹣m )是“共生有理数对”;(3)(4,35)或(6,57)等;(4)由题意得: a ﹣3=3a +1, 解得a =﹣2.故答案为:(3,12);是;(4,35)或(6,57).【点评】本题考查有理数的混合运算、“共生有理数对”的定义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.。

苏科版七年级上册数学第2章 有理数含答案

苏科版七年级上册数学第2章 有理数含答案

苏科版七年级上册数学第2章有理数含答案一、单选题(共15题,共计45分)1、在下列各数:3.1415926,,0.2,,,中无理数的个数有()A.2个B.3个C.4个D.5个2、下列四个数中,绝对值最小的数是A.-2B.0C.1D.73、在3.14,,,π,,0.1010010001…中,无理数有()A.1个B.2个C.3个D.4个4、下列各数中是无理数的是().A.3B.C.D.5、数轴上的点A到原点的距离是5,则点A表示的数为()A.-5B.5C.5或-5D.2.5或-2.56、一个有理数和它的相反数之积一定为()A.正数B.非正数C.负数D.非负数7、有理数在数轴上的位置如图所示,则下列结论中正确的是()A. B. C. D.8、地球上陆地的面积约为148 000 000平方千米,用科学记数法表示为()A.148×10 6平方千米B.14.8×10 7平方千米C.1.48×10 8平方千米D.1.48×10 9平方千米9、下列运算正确的是()A. B. C. D.10、计算:23=()A.5B.6C.8D.911、如图所示,a,b是有理数,则式子|a|+|b|+∣a+b∣+∣b-a∣化简的结果为()A.3a+bB.3a-bC.3b+aD.3b-a12、据统计,中国每年浪费的食物总量折合粮食约500亿kg,这个数据用科学记数法表示为()A. B. C. D.13、如图,O为原点,数轴上A,B,O,C四点,表示的数与点A所表示的数是互为相反数的点是()A.点BB.点OC.点AD.点C14、如图所示的数轴上,被叶子盖住的点表示的数可能是()A.﹣1.3B.1.3C.3.1D.2.315、下列算式中,计算结果是负数的是().A. B. C. D.二、填空题(共10题,共计30分)16、若=a +d +( b)+( c),则的值是________.17、点A,B,C,D在数轴上的位置如图所示,其中表示﹣2的相反数的点是________ .18、将按由小到大顺序排列是________19、小华的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作________万元.20、用“>”或“<”填空:﹣________﹣﹣|﹣π|________﹣3.14.21、若有理数a,b满足|a+3|+(b﹣2)2=0,则a b=________.22、请写出一个不同于的无理数,使它与的积为有理数,则这个无理数可以是________(写出一个即可).23、在0.6,﹣0.4,,﹣0.25,0,2,﹣中,整数有________ ,分数有________ .24、计算:|- |+ + +| -2|=________ .25、在学习了有理数的混合运算后,小明和小刚玩算“24点”游戏.游戏规则:从一副扑g牌(去掉大,小王)中任意抽取4张,根据牌面上的数字进行混合运算(每张牌必须用一次且只能用一次,可以加括号),使得运算结果为24或﹣24.其中红色扑g牌代表负数,黑色扑g代表正数,J,Q,K分别代表11,12,13.小明抽到的四张牌分别是黑桃1,黑桃3,梅花4,梅花6(都是黑色扑g牌).小明凑成的等式为6÷(1﹣3÷4)=24,小亮抽到的四张牌分别是黑桃7、黑桃3、梅花7、梅花3(都是黑色扑g牌):请写出小亮凑成的“24点”等式________.三、解答题(共5题,共计25分)26、计算:-32-(-2)3+|-1-0.5|×27、若a,b,c分别为三角形的三边,化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a+b|.28、把下列各数分别填入相应的集合里-4, , , 0, -3.14, 717, -(+5) +1.88,⑴正有理数集合:{________…}⑵负数集合:{________…}⑶整数集合:{________ …}⑷分数集合:{________…}29、在如图所示的5×5的正方形网格中,每个小正方形的边长均为1,按下列要求画图或解答;(1)画一条线段AB使它的另一端点B落在格点上(即小正方形的顶点),且AB=2;(2)以(1)中的AB为边画一个等腰△ABC,使点C落在格点上,且另两边的长都是无理数;(3)△ABC的周长为多少,面积为多少.30、把下列各数填入相应集合内:,,4, 1.101001000…,,π,0,3%,,-|-3|,整数集合:{ …}分数集合:{ …}无理数集合:{ …}正数集合:{…}参考答案一、单选题(共15题,共计45分)1、A2、B3、C4、B5、C6、B7、B9、A10、C11、D12、C13、A14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、28、30、。

七年级数学上册数学 2.2 有理数与无理数(五大题型)(解析版)

七年级数学上册数学 2.2 有理数与无理数(五大题型)(解析版)

2.2有理数与无理数分层练习考察题型一有理数的识别1.在5-,0,1.3 ,2.121121112⋯(每两个2之间多一个1),3.1415926中,有理数的个数有()A .5个B .4个C .3个D .2个【详解】解:在5-,0,1.3 ,2.121121112⋯(每两个2之间多一个1),3.1415926中,有理数有:5-,0,1.3,,3.1415926,共4个.故本题选:B .2.在0.010010001,0.3333⋯,227-,0,2π-,43%-,0.313113111⋯(每两个3之间依次多一个1)中,有理数有()A .4个B .5个C .6个D .7个【详解】解:在0.010010001,0.3333⋯,227-,0,2π-,43%-,0.313113111⋯(每两个3之间依次多一个1)中,有理数有:0.010010001,0.3333⋯,227-,0,43%-,共5个.故本题选:B .考察题型二有理数的分类1.在下列数π,1+,6.7,15-,0,722,1-,25%中,属于整数的有()A .2个B .3个C .4个D .5个【详解】解:在数π,1+,6.7,15-,0,722,1-,25%中,整数的有:1+,15-,0,1-,共4个.故本题选:C .2.在10.1-,25,3.14,2π, 1.53- ,2.4224222422224⋯中,正分数有()A .4个B .3个C .2个D .1个【详解】解:在10.1-,25,3.14,2π, 1.53- ,2.4224222422224⋯中,正分数有:25,3.14,共2个.故本题选:C .3.在数12-,π, 3.4-,0,3+,73-中,属于非负整数的个数是()A .4B .3C .2D .1【详解】解:12-、 3.4-、73-为负数,不属于非负整数;π不属于整数;0,3+属于非负整数.故本题选:C .4.下列各数:452,1,8.6,7,0,,4,101,0.05,9563---+--中,()A .只有1,7-,101+,9-是整数B .其中有三个数是正整数C .非负数有1,8.6,101+,0D .只有42,453--,0.05-是负分数【详解】解:由题意可知:A 、整数包括:1,7-,0,101+,9-,故本选项错误;B 、正整数包括:1和101+,故本选项错误;C 、非负数包括:1,8.6,101+,0,56,故本选项错误;D 、负分数包括:45-,243-,0.05-,故本选项正确.故本题选:D .5.把下列各数填入相应的集合中:6+,0.75,3-,0, 1.2-,8+,245,13-,9%,正分数集合:{}⋯;正整数集合:{}⋯;整数集合:{}⋯;有理数集合:{}⋯.【详解】解:正分数集合:{0.75,245,9%,}⋯;正整数集合:{6+,8+,}⋯;整数集合:{6+,3-,0,8+,}⋯;有理数集合:{6+,0.75,3-,0, 1.2-,8+,245,13-,9%,}⋯.6.把下列将数填入相应的集合中:23-,0.5,23-,28,0,4,135, 5.2-.【详解】解:如图所示:.7.将数分类:2-,0,0.1314-,11,227,143-,0.03,2%.正数:{};非负数:{};负分数:{};非负整数:{}.【详解】解:正数有:11,227,0.03,2%,非负数有:0,11,227,0.03,2%,负分数有:0.1314-,143-,非负整数有:0,11.8.把下列各数填在相应的集合内:3-,4,2-,15-,0.58-,0, 3.4- ,0.618,139,3.14.整数集合:{}⋯;分数集合:{}⋯;负有理数集合:{}⋯;非正整数集合:{}⋯.【详解】解:整数集合:{3-,4,2-,0}⋯;分数集合:1{5-,0.58-, 3.4- ,0.618,139,3.14}⋯;负有理数集合:{3-,2-,15-,0.58-, 3.4}-⋯;非正整数集合:{3-,2-,0}⋯.考察题型三有理数的概念辨析1.下列关于0的说法错误的是()A.任何情况下,0的实际意义就是什么都没有B.0是偶数,也是自然数C.0不是正数也不是负数D.0是整数也是有理数【详解】解:A、0的实际意义不是什么都没有,符合题意;B、0是偶数,也是自然数,不合题意;C、0不是正数也不是负数,不合题意;D、0是整数也是有理数,不合题意.故本题选:A.2.下面是关于0的一些说法:①0既不是正数也不是负数;②0是最小的自然数;③0是最小的正数;④0是最小的负数;⑤0既不是奇数又不是偶数.其中正确说法的个数是()个.A.0B.1C.2D.3【详解】解:①0是正数与负数的分界,所以0既不是正数也不是负数,故原说法正确;②0和正整数都是自然数,所以0是最小的自然数,故原说法正确;③0既不是正数也不是负数,故原说法错误;④0既不是正数也不是负数,故原说法错误;⑤整数按能否被2整除分为奇数与偶数,0属于偶数,故原说法错误;综上,①②正确.故本题选:C.3.下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数【详解】解:负整数和负分数统称负有理数,A正确,不合题意;整数分为正整数,0,负整数,B正确,不合题意;正有理数,0,负有理数组成全体有理数,C错误,符合题意;3.14是小数,也是分数,小数是分数的一种表达形式,D正确,不合题意.故本题选:C.4.下列说法正确的是()A.正整数、负整数统称为整数B.正分数、负分数统称为分数C.正数、0、负数统称为有理数D.整数、分数、小数都是有理数【详解】解:A.正整数、0、负整数统称为整数,故本选项错误;B.正分数、负分数统称为分数,故本选项正确;C.正有理数、0、负有理数统称为有理数,故本选项错误;D.无限不循环小数不是有理数,故本选项错误.故本题选:B.5.下列说法中正确的是()A.非负有理数就是正有理数B.有理数不是正数就是负数C.正整数和负整数统称为整数D.整数和分数统称为有理数【详解】解:A、非负有理数就是正有理数和0,故A选项不正确;B、0既不是正数也不是负数,是有理数,故B选项不正确;C、正整数、0、负整数统称为整数,故C选项不正确;D、整数和分数统称有理数,故D选项正确.故本题选:D.6.下列说法:(1) 3.56既是负数、分数,也是有理数;(2)正整数和负整数统称为整数;(3)0是非正数;(4)2023-既是负数,也是整数,但不是有理数;(5)自然数是整数.其中正确的个数是()A.1个B.2个C.3个D.4个【详解】解:(1)正确;(2)错误,还有0;(3)正确;(4)错误,2023-是有理数;(5)正确.正确的有3个,故本题选:C.7.下列说法中,正确的是()A.在有理数集合中,有最大的正数B.在有理数集合中,有最小的负数C.在负数集合中,有最大的负数D.在正整数集合中,有最小的正整数【详解】解:A、在有理数集合中,没有最大的正数,故A选项错误;B、在有理数集合中,没有最小的负数,故B选项错误;C、在负数集合中,没有最大的负数,故C选项错误;D、在正整数集合中,有最小的正整数1,故D选项正确.故本题选:D.8.下面说法中正确的有()A.非负数一定是正数B.有最小的正整数,有最小的正有理数C.a-一定是负数D.0既不是正数,也不是负数【详解】解: 非负数包括0和正数,A∴选项不合题意;∴选项不合题意;没有最小的正有理数,B若a是负数,则a∴选项不合题意;-是正数,C∴选项符合题意.既不是正数,也不是负数,D故本题选:D.9.下列说法正确的是()A.最小的正有理数是1B.最小的正整数是1C.0是最小的有理数D.有理数由正数和负数组成【详解】解:A.没有最小的有理数,故本选项不合题意;B.最小的正整数是1,故本选项符合题意;C.有最小的有理数,故本选项不合题意;D.有理数由正有理数,0,负有理数组成,故本选项不合题意.故本题选:B.10.有下列说法:①最小的自然数为1;②最大的负整数是1-;③没有最小的负数;④最小的整数是0;⑤最小非负整数为0,其中,正确的说法有()A.2个B.3个C.4个D.5个【详解】解:①最小的自然数为0,故①不正确;②最大的负整数是1-,故②正确;③没有最小的负数,故③正确;④没有最小的整数,故④不正确;⑤最小非负整数为0,故⑤正确;综上,正确的说法有3个.故本题选:B.考察题型四数感问题1.有两个正数a,b,且a b<,把大于等于a且小于等于b所有数记作[a,]b,例如大于等于1且小于等于4的所有数记作[1,4].如果m在[5,15]内,n在[20,30]内,那么nm的一切值中属于整数的有()A.1,2,3,4,5B.2,3,4,5,6C.2,3,4D.4,5,6【详解】m在[5,15]内,n在[20,30]内,515m∴,2030n,∴2030155nm,即463nm,∴nm的一切值中属于整数的有2,3,4,5,6.故本题选:B.2.设有三个互不相等的有理数,既可表示为1-,a b+,a的形式,又可表示为0,ba-,b的形式,则ab 的值为.【详解】解: 三个互不相等的有理数,既可表示为1-,a b +,a 的形式,又可表示为0,b a,b 的形式,∴这两个数组的数分别对应相等,a b ∴+与a 中有一个是0,b a-与b 中有一个是1-,若0a =,则b a无意义,0a ∴≠,0a b +=,∴a b =-,即1b a =-,b a-1=,∴1b =-,1a =,ab ∴的值为1-.故本题答案为:1-.考察题型五无理数的识别1.在数2021-,0.777⋯⋯,2π,833-,3.1415926,3π-中,无理数的个数是()A .2个B .3个C .4个D .5个【详解】解:在数2021-,0.777⋯⋯,2π,833-,3.1415926,3π-中,无理数有:2π,3π-,共2个.故本题选:A .2.下列八个数:8-,2.7,2-,2π,0.6 ,0,132,0.8080080008⋯⋯(每两个8之间逐次增加一个0),无理数的个数有()A .0个B .1个C .2个D .3个【详解】解:在实数8-,2.7,2-,2π,0.6 ,0,132,0.8080080008⋯⋯(每两个8之间逐次增加一个0)中,无理数有:2π,0.8080080008⋯⋯(每两个8之间逐次增加一个0),共2个.故本题选:C .3.介于3和π之间的一个无理数是()A .32π+B .3.15C .3.1D .0.15π-【详解】解:介于3和π之间的一个无理数是32π+.故本题选:A .4.(1)请你写出一个比1大且比2小的无理数,该无理数可以是;(2)两个无理数,它们的和为1,这两个无理数可以是.【详解】解:(1)无理数为:2π-,故本题答案为:2π-(答案不唯一);(2)(1)1ππ+-=,故本题答案为:π,1π-(答案不唯一).1.循环小数0.15可化分数为.【详解】解:设0.15x ⋅⋅=,则10015.15x ⋅⋅=,15.15150.15⋅⋅⋅⋅∴=+,10015x x ∴=+,解得:533x =.故本题答案为:533.2.已知有A ,B ,C 三个数集,每个数集中所包含的数都写在各自的大括号内,{2A =-,3-,8-,6,7},{3B =-,5-,1,2,6},{1C =-,3-,8-,2,5},请把这些数填在图中相应的位置.【详解】解:如图所示:.3.10个互不相等的有理数,每9个的和都是“分母为22的既约真分数(分子与分母无公约数的真分数)”,则这10个有理数的和为()A.12B.1118C.76D.59【详解】解:由题意可得:这10个有理数,每9个相加,一共得出另外10个数,原10个有理数互不相等,∴它们相加后得出的另外10个数也是互不相等的,而这10个数根据题意都是分母22的既约真分数,而满足这个条件的真分数恰好正好有10个,∴这10项分别是:1/22,3/22,5/22,7/22,9/22,13/22,15/22,17/22,19/22,21/22, 它们每一个都是原来10个有理数其中9个相加的和,∴如果再把这10个以22为分母的真分数相加,得出来的结果必然是原来的10个有理数之和的9倍.∴10个真分数相加得出结果为5,故所求的10个有理数之和为5/9.故本题选:D.。

七年级数学上册2.2有理数与无理数教案(新版)苏科版 (2)

七年级数学上册2.2有理数与无理数教案(新版)苏科版 (2)

有理数与无理数第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。

2、了解我国书法发展的历史。

3、掌握基本笔画的书写特点。

重点:基本笔画的书写。

难点:运笔的技法。

教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。

2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。

二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。

换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。

三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。

2、教师边书写边讲解。

3、学生练习,教师指导。

(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。

在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。

5、学生练习,教师指导。

(发现问题及时指正)四、作业:完成一张基本笔画的练习。

板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。

这是书写的起步,让学生了解书写工具及保养的基本常识。

基本笔画书写是整个字书写的基础,必须认真书写。

课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。

总第(2)课时课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。

2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。

重点:正确书写6个字。

难点:注意字的结构和笔画的书写。

教学过程:一、小结课堂内容,评价上次作业。

二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。

2、书写方法是:写一个字看一眼黑板。

七年级数学苏科版上册随堂测试第2单元《 2.2 有理数与无理数》 练习试题试卷 含答案

七年级数学苏科版上册随堂测试第2单元《 2.2 有理数与无理数》 练习试题试卷 含答案

随堂测试2.2有理数与无理数一.选择题(每小题2分共40分)1.在31,7p ,0,0.6四个数中,有理数有()A .1个B .2个C .3个D .4个2.34可以填入下列哪些数集中?正确的是()①正数集②有理数集③整数集④分数集.A .①②③B .①③④C .②③④D .①②④3.下列说法正确的是()A .0不是正数,不是负数,也不是整数B .正整数与负整数包括所有的整数C .–0.6是分数,负数,也是有理数D .没有最小的有理数,也没有最小的自然数4.下列说法错误的是()A .整数和分数统称有理数B .正分数和负分数统称分数C .正数和负数统称有理数D .正整数、负整数和零统称整数5.下列说法中,正确的个数有()①-3.14既是负数,又是小数,也是有理数;②-25既是负数,又是整数,但不是自然数;③0既不是正数也不是负数,但是整数;④0是非负数.A .1个B .2个C .3个D .4个6.下列各组量中,具有相反意义的量的是()A.向东行4km 与向南行4km B.队伍前进与队伍后退C.6个小孩与5个大人 D.增长3%与减少2%7.下列数中,既是分数又是负数的数是()A.-7 B.12 C.-13 D.-58.下列说法正确的是()A.有理数是指整数、分数、正有理数、零、负有理数这五类数B.一个有理数不是正数就是负数C.一个有理数不是整数就是分数D.以上说法都正确9.若a <b <0<c <d ,则以下四个结论中,正确的是()A.a +b +c +d 一定是正数 B.c +d -a -b 可能是负数C.d -c -a -b 一定是正数 D.c -d -a -b 一定是正数10.学校、小明家、书店依次坐落在一条南北走向的大街上,学校在小明家南边20m 处,书店在小明家北边100m 处.小明同学从家里出发向北走了50m ,接着又向北走了-70m ,此时小明的位置在()A.家B.学校C.书店D.不在上述地方11.千岛湖是“黄山—千岛湖—杭州”这一国际黄金旅游线路上的一颗璀璨明珠.千岛湖是世界上岛屿最多的湖泊,共有1078个大小岛,平均水深达34m .其中1078个,34m 分别属于()A.计数、排序B.计数、测量C.排序、测量D.测量、排序12.妈妈的1万元存款到期了,按规定她可以得到3.25%的利息,但同时必须向国家缴5%的利息税(利息税=利息×5%),妈妈缴税的金额是()A.500元B.325元C.16.25元D.11元13.将1017,1219,1523,2033,3049这五个数按从大到小的顺序排列,那么排在中间的一个数应是()A.1523B.3049C.2033D.121914.一个纸环链,纸环按红、黄、绿、蓝、紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是() A.2020 B.202021C.2022 D.202315.汽车每小时行驶40km ,行驶100km 要用()A .25h B .2h C .214h D .2.5h 16.在校园十佳小歌手比赛中,8位评委给某选手所评分数如下表:评委12345678得分(分)9.09.19.69.59.39.49.89.2计分方法是去掉一个最高分,去掉一个最低分,其余分数的平均数作为该选手的最后得分,则该选手的最后得分是()A .9.45分B .9.36分C .9.35分D .9.28分17.一组数1,1,2,x ,5,y ,…满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y 表示的数为()A .8B .9C .13D .1518.下列对“0”的说法中,不正确的是()A .0既不是正数,也不是负数B .0是最小的整数C .0是有理数D .0是非负数19.在数4.19,-56,-1,120%,29,0,-313,0.97中,非负数有()A .3个B .4个C .5个D .6个20.一种零件的直径尺寸在图纸上是30±0.03(单位:mm),它表示这种零件的标准尺寸是30mm ,加工要求尺寸最大不超过()A .0.03mm B .-0.03mm C .30.03mm D .29.97mm二.填空题(每小题2分共20分)21.甲、乙、丙三筐青菜的质量分别是102kg ,97kg ,99kg.如果以100kg 为基准,并记为0,那么甲、乙、丙三筐青菜的质量分别表示为___________.22.给出下列说法:①0是正数;②0是整数;③0是自然数;④0是最小的自然数;⑤0是最小的正数;⑥0是最小的非负数;⑦0是偶数;⑧0就表示没有.其中正确的说法有___个.23.在某地区,高度每升高100m ,气温就下降0.8℃.若在该地区的山脚测得气温为15℃,在山顶测得气温为-5℃,那么从山顶到山脚的高度是______m.24.在时钟上,把时针从钟面数字“12”按顺时针方向拨到“6”,记做拨+12周.那么把时针从“12”开始,拨-14周后,该时针所指的钟面数字是____.25.学习了有理数的相关内容后,张老师提出了这样一个问题:“在8,-0.5,+,0,-3.7这五个有理数中,非负数有哪几个?”同学们经过思考后,小明举手回答说:“其中的非负数只有8和+这两个.”你认为小明的回答是否正确:______(填“正确”或“不正确”),理由是______:.26.已知下列各数:-3.14,24,+27,-7,,-0.01,0,其中正数为,非正数为,整数有个.27.纸店有三种纸,甲种纸4角买11张,乙种纸5角买13张,丙种纸7角买17张,则三种纸中最贵的是_______种纸.28.人民公园的侧门口有9级台阶,小聪一步只能上1级台阶或2级台阶.小聪发现当台阶数分别为1级、2级、3级、4级、5级、6级、7级……逐渐增加时,上台阶的不同方法的种数依次为1,2,3,5,8,13,21……这就是著名的斐波那契数列.那么小聪上这9级台阶共有____种不同方法.29.小颖中午放学回家自己煮面条吃,有下面几道工序:①洗锅盛水2min ;②洗菜3min ;③准备面条及佐料2min ;④用锅把水烧开7min ;⑤用烧开的水煮面条和菜3min.以上各道工序,除④外,一次只能进行一道工序,小颖要将面条煮好,至少要用____min.30.有两个自然数,它们的积为12,则这两个自然数的和为____________________.三.解答题(共40分)31.(7分)把下列各数填入相应的括号内:-20,7,-725,0,334,-2.75,0.01,+67,-47,227,2π.正数:{};负数:{};分数:{};负分数:{};整数:{};非负数:{};有理数:{}32..(6分)请把下列小数转化为分数:(1)0.7.(2)0.125.(3)0.565656…·33.(6分)一商店将进价不同的两双鞋均按198元的价格售出,其中一双盈利20%,另一双亏损20%.问:该商店在这次买卖中是赚了还是亏了?为什么?34.(6分)在一次体操比赛中,十名裁判为某体操运动员打分.小明在观看比赛时为了更快更准地计算某运动员的得分,设定一个标准分为9.7分,超出记为正,不足记为负.十名裁判打出分数的超出和不足分数如下:-0.3,-0.1,0,+0.2,+0.2,0,+0.1,-0.2,+0.2,+0.2.在计算最后得分时去掉一个最高分和一个最低分,其余分数的平均分为该运动员的得分,则该运动员的最后得分是多少?35.(9分)下表是某河流一周内水位变化的情况(其中正号表示水位比前一天上升,负号表示水位比前一天下降,单位:m).(1)说出表中“-0.25”的实际意义.(2)这一周内,河水的水位是星期五最高吗?(3)如果星期三河水的水位为12.43m ,那么星期六河水的水位是多少?36.(7分)一根木棒长27m ,第一次截去一半,第二次截去剩下的13,第三次截去剩下的14,第四次截去剩下的15,第五次截去剩下的16,问:剩下的木棒有多长?星期一二三四五六日水位变化+0.5+0.41-0.25+0.100-0.13-0.2参考答案一.选择题(每小题2分共40分)1.C 2.B 3.C 4.C 5.D 6.D 7.C 8.C 9.C 10.B 11.B 12.C 13.B 14.D.15.D 16.C 17.A 18.B 19.C 20.C 二.填空题(每小题2分共20分)21.2,-3,-1.22._5个.23.2500m.24.__9__.25.不正确__、非负数包括0和正数.26.24,+27,-3.14,-7,-0.01,03.27.丙.28._55__.29.__12__30.13或8或7.三.解答题(共40分)31.,3340.01,+67,227,2π,20,-725,-2.75,-47,725,334,-2.75,0.01,-47,227,725,-2.75,-47,整数:{-20,7,0,+67,…};,0,334,0.01,+67,227,2π,20,7,-725,0,334,-2.75,0.01,+67,-47,227,32..(1)0.7=710.(2)0.125=1251000=18.(3)∵0.565656…·×100=56.565656…·,∴0.565656…·×100-0.565656…·=56,∴(100-1)×0.565656…·=56,∴0.565656…·=5699.33.第一双鞋的成本为:198÷(1+20%)=165(元);第二双鞋的成本为:198÷(1-20%)=247.5(元).∵165+247.5>198+198,∴这次买卖亏了.34.由题意得:去掉一个最高分+0.2,一个最低分-0.3,则剩余8个数的平均数为(-0.1+0+0.2+0.2+0+0.1-0.2+0.2)÷8=0.4÷8=0.05,故该运动员的最后得分为9.7+0.05=9.75(分)35.(1)“-0.25”表示水位比前一天(星期二)下降0.25m.(2)不是.星期二水位最高.(3)星期六河水的水位是:12.43+0.10+0-0.13=12.40(m).36.第一次截去一半后剩下:27第二次截去剩下的13后剩下:27第三次截去剩下的14后剩下:27……第五次截去剩下的16后剩下:2727×12×23×34×45×56=27×16=92(m).。

22 有理数与无理数(解析版)

22 有理数与无理数(解析版)

2021-2022学年七年级数学上册同步课堂专练(苏科版)2.2有理数与无理数一、单选题1.22,0.323272π-其中,无理数的个数是( ). A .2B .3C .4D .5【答案】A【详解】解:在22,0.323272π-中,=-0是整数,227是分数, 5=-是整数,0.10100100001是有限小数,2π是无理数,0.3232-是无限小数,故无理数的个数是2π,共2个, 故选:A .2.在实数23,2n ,3.14159260.3,0.212112111…(每两个2之间多一个1)中,无理数有( )A .2个B .3个C .4个D .5个【答案】A【详解】,∴无理数有0.212112111…(每两个2之间多一个1)共2个,故选A .3.在下列各数中,负分数有( )1-, 3.141559-,2,13-,13,0,12,5%-,34A .1个B .2个C .3个D .4个 【答案】C【详解】解:负分数有: 3.141559-,13-,5%-,共3个, 故选:C .4.在实数:3.14π227-,0.1116,1.4141141114⋅⋅⋅(每两个4之间依次多一个1)中,其中无理数的个数是( )A .2个B .3个C .4个D .5个 【答案】B【详解】,∴π,1.4141141114⋅⋅⋅(每两个4之间依次多一个1),共3个, 故选B .5.下列各数中,是无理数的为( )A .0B .3.14C .-πD .711【答案】C【详解】A 、0是整数,属于有理数,故本选项不合题意;B 、3.14是有限小数,属于有理数,故本选项不合题意;C 、-π是无理数,故本选项符合题意;D 、711是分数,属于有理数,故本选项不合题意. 故选:C .6.下面结论错误的是( )A .零是整数B .零不是整数C .零是自然数D .零是有理数 【答案】B【详解】解:A 、零是整数,所以A 选项的说法是正确的;B 、零不是整数,所以B 选项的说法是错误的;C 、零是自然数,所以C 选项的说法是正确的;D 、零是有理数,所以D 选项的说法是正确的.故选:B .7.在实数,0,1,37π,0.80108 ) A .1个B .2个C .3个D .4个 【答案】B【详解】0.31无限循环小数,是有理数,0是有理数3π是无限不循环小数,是无理数,0.80108有限小数,是有理数,2=整数,是有理数,综上,无理数只有2个,3π 故选择:B .8.在3.125 78227,3π1,0.808 008 000 8…中,无理数的个数是( ) A .1个B .2个C .3个D .4个 【答案】D【详解】3π1,0.808 008 000 8∴,共有四个故选:D .第II 卷(非选择题)二、填空题9.下列各数:﹣1,2π,1.01001…(每两个1之间依次多一个0),0,227,3.14,其中有理数有_____个. 【答案】4.【详解】 解:在所列实数中,有理数有﹣1、0、227、3.14, 故答案为:4.10.把下列各数分别填在相应的大括号里.13,3.1415,﹣31,﹣21%,13,0,﹣0.216,﹣2020 整数:{ …};正整数:{ …};负分数:{ …};负整数:{ …}.【答案】13,﹣31,0,﹣2020;13;﹣21%,﹣0.216;﹣31,﹣2020【详解】由题知:整数:{13,﹣31,0,﹣2020…};正整数:{13…};负分数:{﹣21%,﹣0.216…};负整数:{﹣31,﹣2020…}.故填:13,﹣31,0,﹣2020;13;﹣21%,﹣0.216;﹣31,﹣2020.11.在27,﹣2π+3.140 属于有理数的有: ;属于无理数的有: .【答案】27,+3.14,02π 【详解】解:属于有理数的有:27,+3.14,0属于无理数的有:﹣2π故答案为:27,+3.14,02π 12.把下列各数分别填入相应的集合里.4224,,0,, 3.14,2006,(5), 1.8837-----++ (1)负数集合∴ {_____________ };(2)整数集合∴{ _____________ };(3)分数集合∴{_____________ } 【答案】)44,, 3.14,3(5----+- 4,0,2006,(5)--+ 422,, 3.14, 1.8837---+ 【详解】解:根据有理数的分类得,(1)负数集合:{4-,4||3--, 3.14-,(5)-+,}⋯; (2)整数集合:{4-,0,2006,(5)-+,}⋯;(3)分数集合:22{7,4||3--, 3.14-, 1.88+,}⋯. 故答案为:)44,, 3.14,3(5----+-;4,0,2006,(5)--+;422,, 3.14, 1.8837---+. 三、解答题13.把下列各数填在相应的大括号里:3--, 45-, 8.9,56, 3.2-,()2--, 28, 0.非负整数集合:{ …}; 负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …}【答案】见解析【详解】非负整数集合:{()2--,28, 0 }; 负整数集合:{3--};正分数集合:{8.9,56}; 负分数集合:{45-, 3.2-}. 14.把下列各数填在相应的表示集合的括号内()1221,,3,0,,0.3,1.7,237------- (1)整数:{} (2)非负整数:{} (3)非正数:{} (4)有理数:{}【答案】(1)()1,3,0,2-----;(2)()0,2--;(3)11,,3,0,0.33-----;(4)()1221,,3,0,,0.3,1.7,237------- 【详解】解:(1)整数:(){}1,3,0,2-----; (2)非负整数:(){}0,2--;(3)非正数:11,,3,0,0.33⎧⎫-----⎨⎬⎩⎭; (4)有理数:()1221,,3,0,,0.3,1.7,237⎧⎫-------⎨⎬⎩⎭. 15.把下列各数分别填入相应的集合中 0, -54,3.14, -|-2|, 2π , 0.130********…, 0.13 (1)整数集合:{________________________…} (2)分数集合:{________________________…} (3)负有理数集合:{____________________…} (4)无理数集合:{______________________…}【答案】0,2--;54-,3.14,0.13;54-,2--;2π , 0.130********… 【详解】 22--=-,(1)整数集合:{0,2--,…} (2)分数集合:{54-,3.14,0.13,…} (3)负有理数集合:{54-,2--,…} (4)无理数集合:{2π , 0.130********…,…} 故答案为:0,2--;54-,3.14,0.13;54-,2--;2π , 0.130********….。

初中数学苏科版七年级上册第二章 有理数2.2有理数与无理数-章节测试习题(2)

初中数学苏科版七年级上册第二章 有理数2.2有理数与无理数-章节测试习题(2)

章节测试题1.【答题】在下列数﹣,+1,6.7,﹣15,0,,﹣1,25%中,属于整数的有()A. 2个B. 3个C. 4个D. 5个【答案】C【分析】根据有理数的概念和分类判断即可.【解答】根据整数的概念可得:题中整数有:+1,-14,0,-5共计4个.选C.2.【答题】在,,,,,中,非正数有()A. 1个B. 2个C. 3个D. 4个【答案】D【分析】根据有理数的概念和分类判断即可.【解答】非正数包括负数和0,=2;;;=-;=-16其中,非正数由4个.选D.3.【答题】下列四个数中,正整数是()A. ﹣2B. ﹣1C. 0D. 1【答案】D【分析】根据有理数的概念和分类判断即可.【解答】-2.-1是负整数;0是整数,既不是正整数,也不是负整数;1是正整数.选D.4.【答题】在数下列各数:+3.+(﹣2.1).﹣.﹣π.0.﹣0.1010010001….﹣|﹣9|中,负有理数有()个.A. 1个B. 2个C. 3个D. 4个【答案】C【分析】根据有理数的概念和分类判断即可.【解答】在+3.+(−2.1).−.−π.0.−0.1010010001….−|−9|中,负有理数有+(−2.1).−.−|−9|,∴只有3个.选C.5.【答题】下列说法错误的是()A. 正整数和正分数统称正有理数B. 两个无理数相乘的结果可能等于零C. 正整数,0,负整数统称为整数D. 3. 1415926是小数,也是分数【答案】B【分析】根据有理数的概念和分类判断即可.【解答】A. 正整数和正分数统称正有理数B. 改为“两个无理数相乘的结果一定不等于零”C. 正整数,0,负整数统称为整数D. 3. 1415926是小数,也是分数选B.6.【答题】下列说法正确的是()A. 有理数分为正数和负数B. 有理数的相反数一定比0小C. 绝对值相等的两个数不一定相等D. 有理数的绝对值一定比0大【答案】C【分析】根据有理数的概念和分类判断即可.【解答】A. 有理数分为正数. 零. 负数,故A不符合题意;B. 负数的相反数大于零,故B不符合题意;C. 互为相反数的绝对值相等,故C符合题意;D. 绝对值是非负数,故D不符合题意;故选: C.7.【答题】下列说法中正确的是()A. 0是最小的有理数B. 0的相反数. 绝对值. 倒数都是0C. 0不是正数也不是负数D. 0不是整数也不是分数【答案】C【分析】根据有理数的概念和分类判断即可.【解答】0不是最小的有理数;0的相反数和绝对值都是本身,0没有倒数;0既不是正数,也不是负数;0是整数,但不是分数.8.【答题】下列说法中,正确的是()A. 整数和分数统称为有理数B. 正分数、0、负分数统称为分数C. 正整数、负整数、正分数、负分数统称为有理数D. 0不是有理数【答案】A【分析】根据有理数的概念和分类判断即可.【解答】A、整数和分数统称有理数,故选项正确;B、正分数和负分数统称分数,故选项错误;C、正整数、负整数、正分数、负分数,0称为有理数,故选项错误;D、0是有理数,故选项错误.故选: A.9.【答题】在有理数(﹣1)2、﹣(﹣)、﹣|﹣2|、(﹣2)3、﹣22中负数有()个.A. 4B. 3C. 2D. 1【答案】B【分析】根据负数的概念判断即可.【解答】解:有理数其中负数有3个,故选B.10.【答题】下列各数:(-3)2,0,,,(-1)2009,-22,-(-8),中,负数有()A. 2个B. 3个C. 4个D. 5个【答案】C【分析】根据负数的概念判断即可.【解答】(−3)²=9,=−14,(-1)2009=−1,-22=−4,−(−8)=8,=,则所给数据中负数有:,(-1)2009,-22,,共4个.选C.11.【答题】在数0,2,-3,-1.2中,属于负整数的是()A. -3B. -1.2C. 0D. 2【答案】A【分析】根据有理数的概念和分类判断即可.【解答】在数0,2,-3,-1.2中,属于负整数的是-3。

苏科版数学七年级上册第二章有理数有理数比大小(习题)

苏科版数学七年级上册第二章有理数有理数比大小(习题)

1.3.4 有理数加减混合运算【夯实基础】1.把(−2)−(+3)−(−5)+(−4)+(+3)统一成几个有理数相加的形式,正确的为( )A.(−2)+(+3)+(−5)+(−4)+(+3)B. (−2)+(−3)+(+5)+(−4)+(+3)C. (+2)+(+3)+(+5)+(+4)+(+3)D. (−2)−(+3)−(−5)+(−4)+(+3)2.下列各式不成立的是( )A.20+(−9)−7+(−10)=20−9−7−10B.−1+3+(−2)−11=−1+3−2−11C.−3.1+(−4.9)+(−2.6)−4=−3.1−4.9−2.6−4D.−7−(−18)+(−21)−34=−7−(18−21)−343.张大叔家共有十块麦田,今年的收成与去年相比(增产为正,减产为负)情况如下(单位:千克):+32,+17,−39,−11,+15,−13,+8,+3,+11,−21.则今年小麦的总产量与去年相比( ).A.增产2千克B.减产2千克C.增产12千克D.减产12千克4.把(+6)−(−10)+(−3)−(+2)写成省略括号和加号的形式为__________________.5.小食堂会计某天办理了以下业务:支出150元,收入300元,支出210元,收入150元,支出65元,收入80元,问食堂这一天共收入____元.6.计算(1) (2)(3) (4)(+9)−(+10)+(−2)−(−8)+3−−−−+−(7)9(3)(5)−+−+4.2 5.78.410−++−14562312(5)|−0.75|+(−3)−(−0.25)+|−18|+78 (6)−478−(−512)+(−412)−318(7)−156+(−523)+2434+312 (8)634+313−514−312+123【能力提升】7.计算(1)1−2−3+4+5−6−7+8+⋯+97−98−99+100(2)12+16+112+120+130+142+156+1728.当a=23,b=−45,c=−34时,分别求下列式子的值:(1)a+b−c;(2)a−b+c;(3)a−b−c.9.若a、b、c是有理数,|a|=3,|b|=10,|c|=5,且a、b异号,b、c同号,求a−b−(−c)的值.【思维挑战】10.有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,-1,8,这称为第一次操作;第二次同样的操作后也可产生一个新数串:3,3,6,3,9,-10,-1,9,8;继续依次操作下去.问:(1)第一次操作后,增加的所有新数之和是多少?(2)第二次操作后所得的新数串比第一次操作后所得的数串增加的所有新数之和是多少?(3)猜想:第一百次操作后得到的新数串比第九十九次操作所得的数串增加的所有新数之和是多少?。

苏科版数学七年级上册2.2《有理数与无理数》教学设计

苏科版数学七年级上册2.2《有理数与无理数》教学设计

苏科版数学七年级上册2.2《有理数与无理数》教学设计一. 教材分析《有理数与无理数》是苏科版数学七年级上册第2章第2节的内容。

这一节主要介绍了有理数和无理数的概念,以及它们的特点。

教材通过实例和问题,引导学生理解和掌握有理数和无理数的概念,以及它们在实际问题中的应用。

二. 学情分析七年级的学生已经学习了实数的概念,对数的运算也有了一定的了解。

但是,对于有理数和无理数的概念,以及它们的特点,可能还比较陌生。

因此,在教学过程中,需要通过实例和问题,引导学生理解和掌握有理数和无理数的概念,以及它们的特点。

三. 教学目标1.理解有理数和无理数的概念,以及它们的特点。

2.掌握有理数和无理数的运算方法。

3.能够应用有理数和无理数的概念和运算方法,解决实际问题。

四. 教学重难点1.有理数和无理数的概念。

2.有理数和无理数的运算方法。

五. 教学方法采用问题驱动的教学方法,通过实例和问题,引导学生理解和掌握有理数和无理数的概念,以及它们的特点。

在教学过程中,注重学生的参与和思考,鼓励学生提出问题和解决问题。

六. 教学准备1.教材和教案。

2.课件和教学辅助材料。

3.练习题和测试题。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考实数的分类。

例如,问学生:“你们知道吗,有些数可以表示成两个整数的比,而有些数却不能。

你们能找出这样的数吗?”让学生列举一些例子,从而引出有理数和无理数的概念。

2.呈现(15分钟)通过PPT或者黑板,呈现有理数和无理数的定义和特点。

有理数是可以表示成两个整数比的数,无理数则不能。

有理数包括整数、分数和小数,而无理数则是无限不循环的小数。

3.操练(15分钟)让学生通过实际的例子,理解和掌握有理数和无理数的概念。

可以让学生做一些练习题,例如判断一个数是有理数还是无理数,或者将一个无理数近似为有理数。

4.巩固(10分钟)通过一些练习题,巩固学生对有理数和无理数的理解和掌握。

可以让学生做一些有关有理数和无理数的运算题,例如加减乘除等。

最新苏科版七年级数学上册《有理数和无理数》同步练习题及答案(精品试卷).docx

最新苏科版七年级数学上册《有理数和无理数》同步练习题及答案(精品试卷).docx

§2.2 有理数与无理数一、选择1.π是 ( )A .整数B .分数C .有理数D .无理数2.在数0,13,2π,-(-14),223,0.3,0.141 041 004…(相邻两个1,4之间的0的个数逐次加1),227中,有理数的个数为 ( )A .3B .4C .5D .63.下列语句正确的是 ( )A .0是最小的数B .最大的负数是-1C .比0大的数是正数D .最小的自然数是14.下列各数中无理数的个数是 ( )227,0.123 456 789 101 1…,0,2π.A .1B .2C .3D .45.下列说法中,正确的是 ( )A .有理数就是正数和负数的统称B .零不是自然数,但是正数C .一个有理数不是整数就是分数D .正分数、零、负分数统称分数6.在2π,3.14,0,0.313 113 111.…,0.43五个数中分数有( )个.A .1B .2C .3D .4二、填空7.最小的正整数是 ,最大的负整数是 ,最小的非负整数是 .8.有理数中,是整数而不是正数的数是 ;是整数而不是负数的数是 .9.若一个正方形的面积为5,则其边长可能是数.10.给出下列数:-18,227,3.141 6,0,2 001,-35π,-0.14,95%,其中负数有,整数有,负分数有.11.有六个数:0.123,-1.5,3.141 6,227,-2π,0.102 002 000 2…,若其中无理数的个数为x,整数的个数为y,非负数的个数为z,则x + y + z= .12.观察下面依次排列的一列数,根据你发现的规律在各列的后面填上三个数.(1) 1,-2,4,-8,16,-32.,,…(2) 4,3,2,1,0,-1,-2.,,…(3) 1,2,-3,4,5,-6,7,8,-9,,,…三、解答13.有一面积为5π的圆的半径为x,x是有理数吗? 说说你的理由.14.把下列各数填在相应的大括号内:3 5,0,3π,314,-23,227,49,-0.55,8,1.121 221 222 1…(两个1之间依次多一个2),0.211 1,201,999.正数集合:{ …};负数集合:{ …};有理数集合:{ …};无理数集合:{ …}.15.已知有A,B,C三个数集,每个数集中所包含的数都写在各自的大括号内,A={-2,-3,-8,6,7},B={-3,-5,1,2,6},C={-1,-3,-8,2,5},请把这些数填在图中相应的位置.16.“十一”黄金周期间,某市在7天中外出旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数).(1) 若9月30日外出旅游人数约为0.5万人,求10月2日外出旅游的人数.(2) 请判断七天内外出旅游人数最多的是哪天? 最少的是哪天? 它们相差多少万人?(3) 如果最多一天有出游人数3万人,问9月30日出去旅游的人数有多少?17.某原料仓库一天的原料进出记录如下表(运进用正数表示,运出用负数表示):(1) 这天仓库的原料比原来增加了还是减少了? 请说明理由;(2) 根据实际情况,现有两种方案:方案一:运进每吨原料费用5元,运出每吨原料费用8元;方案二:不管运进还是运出费用都是每吨原料6元;从节约运费的角度考虑,选用哪一种方案比较合适.(3) 在(2)的条件下,设运进原料共a吨,运出原料共b吨,a,b之间满足怎样的关系时,两种方案的运费相同.18.试验与探究:我们知道分数13写为小数即0.3,反之,无限循环小数0.3写成分数即13.一般地,任何一个无限循环小数都可以写成分数形式.现在就以0.7为例进行讨论:设0.7=x,由0 7=0.7777…,可知,10x-x=7.77…-o.777…=7,即10x-x=7,解方程得x=79,于是得0.7=79.请仿照上述例题完成下列各题:(1) 请你把无限循环小数0.5写成分数,即0.5= …(2) 你能化无限循环小数0.73为分数吗? 请仿照上述例子求解之.参考答案1.D 2.D 3.C 4.B 5.C 6.B 7.1 -1 0 8.0和负整数0和正整数9.无理10.-1835π--0.14 -18 0 2001 -0.14 11.612.(1) 64 -128 256 (2) -3 -4 -5 (3)10 11 -12 13.x不是有理数,因为x2=5,x既不是整数,也不是分数,而是无限不循环小数.14.正数集合:{35,3π,314,227,49,8,1.121 221 222 1…(两个1之间依次多一个2),0.211,201,999,…};负数集合:{-23,一0.55,…};有理数集合:{35,0.314,-23,227,49,-0.55,8,0.2111,201,999,…};无理数集合:{3,1,121 221 222 1…(两个1之间依次多一个2)…}. 15.如图所示.16.(1) 2.9万 (2) 10月3日,10月7日,相差2.2万人 (3) 0.2万17.(1) -6+4-3+6-10=-9 答:仓库的原料比原来减少9吨. (2)方案一:(4+6)×5+(6+3+10)×8=202. 方案二:(6+4+3+6+10)×6=174. 因为174<202,所以选方案二运费少. (3)根据题意得:5a+8b=6(a + b) a=2b 答:当a=2b 时,两种方案运费相同.18.(1)59 (2)7399。

苏科版七年级上册数学2.2有理数与无理数

苏科版七年级上册数学2.2有理数与无理数

2.2有理数与无理数1. 0是 ( )A .最小的正数B .最大的负数C .最小的有理数D .整数 2.下列说法正确的是( )A. 0.555…是分数B. -5是负分数C.3.8不是分数D.自然数一定是正数 3.下列说法:①有限小数是有理数;②无限小数都是无理数;③无理数都是无限小数;④有理数是有限小数中错误的个数是 ( ) A.1 B.2 C.3 D.4 4.下列说法正确的是( )A.整数包括正整数和负整数B.零是整数,但不是正数,也不是负数C.分数包括正分数、负分数和零D.有理数不是正数就是负数 5.以下各正方形的边长是无理数的是( )A.面积为25的正方形B.面积为16的正方形C.面积为3的正方形D.面积为1.44的正方形 6.在下列各数中:0,-3.14,722,0.101 001 0001…,3π,有理数有( ) A.1个 B.2个 C.3个 D.4个7.整数和分数统称为__________数,无限不循环小数是___________数.8.在-2,+3.5,0,-32,-0.7,11,-5π,-0.23 223 2223…,-••31.0中,负分数是__________.9.写出一个比-3大的无理数是___________.10.如图,两个圈分别表示负数集合、整数集合,请从-1,5,-80%,-7,0,-0.2,72,-10这些数中,选择适当的数填在这两个圈的重叠部分为__________.11.有6个数:0.123,-1.5,3.1416,722,π-,0.102 002 0002,若其中无理数的个数是x ,整数的个数是y ,非负数的个数是z ,则x+y+z=_________. 12.我们知道,无限循环小数都可以转化成分数.如:0.333…转化为分数时,可设0.333…=x , 则x x 1013.0+=,解得31=x ,即0.333…=31.仿此方法,将0.454545…化为分数得_____.13.将下列各数分类:5.1,-3.14, ,0,0.222…,1.696696669,1.696696669…,0.5, -0.210有理数有________________________________; 无理数有________________________________.14.将下列各数填入相应的括号内:11.将下列各数填入相应的括号内:-6,9.3, 17 ,42,0,-0.33,0.333…,1.41421356,-2 ,3.3030030003…,-3.1415926,2π,0.58588588858888….正数集合{ …} 负数集合{ …} 有理数数集合{ …} 无理数数集合{ …} 15.把下列各数填在相应的大括号中-311,-10%,722,0.3,π,0,-1.7,21,-2,1.01001,1.2020020002…,+6 有理数集合{ …} 无理数集合{ …} 正数集合{ …} 负数集合{ …} 整数集合{ …} 分数集合{ …} 非负有理数集合{ …} 16.漠漠做数学:假设抽到牌的点数为x ,漠漠猜中的结果为y ,则y 等于 ( ) A.2 B.3 C.6 D.x+2参考答案 1.D 2.A 3.B 4.B 5.C 6.C7.有理数,无理数 8.-2,-32,-0.7,-9.-0.23 2232223… 10.-7,-10 11.6 12.45/9913.有理数有5.1,-3.14,0,0.222…,1.696696669,0.5, -0.210无理数有 ,1.696696669…14.正数集合{ 9.3, 17,42 ,0.333…,1.41421356, 3.3030030003…,2π ,0.58588588858888…. …}负数集合{ -6,-0.33,-2 , -3.1415926 …}有理数数集合{ -6,9.3, 17,42,0,-0.33,0.333…,1.41421356,-2 ,-3.1415926, …}无理数数集合{ 3.3030030003…,2π,0.58588588858888…. …} 15.-311,-10%,722,0.3,π,0,-1.7,21,-2,1.01001,1.2020020002…,+6有理数集合{15.-311,-10%,722,0.3,0,-1.7,21,-2,1.01001,+6 …}••31.0无理数集合{ π, 1.2020020002… …} 正数集合{722,0.3,π, 21,1.01001,1.2020020002…,+6 …} 负数集合{-311,-10%, -1.7 , -2 …}整数集合{0, 21, -2, +6 …}分数集合{ -311,-10%,722,0.3,-1.7, -2,1.01001 …}非负有理数集合{ 15. 722,0.3,0,21,1.01001,+6 …} 16.2初中数学试卷灿若寒星 制作。

2.2 有理数与无理数 课件(苏科版七年级上)

2.2 有理数与无理数 课件(苏科版七年级上)

0.555555555555555… -0.177777777777… 0.18181818181818…
思考:是不是任意的无限循环小数都可以化 为分数呢?
阅读:P17:读一读
有限小数、无限循环小数都可以化成分数,因 此它们都是 有理数
将两个边长为1的小正方形,沿图中的线剪开, 重新拼成一个大正方形,它的面积为2.
n0
的数叫
有理数

把下列各数表示成小数,你发现了什么? 3 , 4/5, 5/9, -8/45, 2/11

4/5= 0.8 5/9= 0.555555555555555… -8/45= -0.177777777777… 2/11= 0.18181818181818…

0.8
有限小数 无限循环小数 无限循环小数 无限循环小数
随堂练习

哪些是有理数?哪些是无理数?
0.351
2 3
4. 96
π 3
..
3.14159…
-5.232323…
0.1234567891011…(由相继的正整数组成)

判断对错

(1)有限小数是有理数;
(2)无限小数都是无理数; (3)无理数都是无限小数; (4)有理数是有限小数.
(√)
( ╳) (√) ( ╳)



P17
练一练:
2、下面两个圈中分别表示正数集合和整数集合, 请在每个圈中填6个数,其中3个数既是正数又 是整数,这3个数应填在哪?你能说出着两个圈 的重叠部分表示什么数的集合吗?
作业:
1、P17:习题1 2、补充习题 3、预习2.3
如果设大正方形的边长 为a,那么a 2.

七年级上数学:有理数和无理数(提优练习有答案)

七年级上数学:有理数和无理数(提优练习有答案)

2.2有理数与无理数1.下列各数:…(每相邻两个1之间0的个数一次加1),,其中有理数有 ( )A.3个 B.4个 C.5个 D.6个2.(2020独家原创试题)将分数化为小数是,则小数点后第2 020位上的数是 ( )A.8 B .7 C.1 D.23.写出5个数同时满足以下三个条件:(1)其中3个数属于非正数集合;(2)其中3个数属于非负数集合;(3)5个数都属于整数集合.4.在 (每相邻的两个1之间依次多一个3)中,无理数的个数是 ( )A.1 B.2 C.3 D.45.(2020江苏徐州期中,4,★☆☆)在这5个数中,无理数有 ( )A.0个 B.1个 C.2个 D.3个6.(2020江苏南京鼓楼期中,12,,★☆☆)写出一个负有理数_____________ 7.(2020江苏南京雨花台期中,10,★☆☆)下列各数:其中是无理数的是_________(填写序号).8.&(2020江苏镇江句容月考,22,★☆☆)把下列各数填在相应的括号内.(每相邻两个l之间0的个数依次加l).①自然数集合:{ …};②整数集合:{ …};③非正数集合:{ …};④正分数集合:{ …};⑤正有理数集合:{ …};⑥无理数集合’:{ …}.9.(2018辽宁锦州中考,1,★☆☆)下列各数为无理数的是 ( )10.(2015江苏扬州中考,1,★☆☆)0是 ( )A.有理数 B .无理数 C.正数 D.负数11.(2017江苏盐城中考,7,★☆☆)请写出一个无理数_______________ 12.500多年前.数学各学派的学者都认为世界上的数只有整数和分数,直到有一天,大数学家毕达哥拉斯的一个名叫希帕索斯的学生.在研究1和2的比例中项(如果l:X=X:2,那么X叫1和2的比例中项)时,怎么也想不出这个比例中项值.后来,他画出了一个边长为1的正方形,设该正方形的对角线长为x,由毕达哥拉斯定理得,他想省代表对角线的长,而,那么x必定是确定的数,这时他又为自己提出了几个问题:(1)x是整数吗?为什么?(2)x可能是分数吗?如果是,请找出来;如果不是,请说明理由.13.无限循环小数如何化为分数呢?请你仔细阅读下列资料:由于小数部分位数是无限的,所以不可能写成十分之几、百分之几、干分之几等等的数.转化时需要先去掉无限循环小数的“无限小数部分”.一般是用扩倍的方法,把无限循环小数扩大十倍、一百倍、一千倍、…,使扩大后的无限循环小数与原无限循环小数的“无限小数部分”完全相同,然后这两个数相减,这样“大尾巴”就减掉了.例题:例如把化为分数(如图2—2—1①②所示).。

七年级数学上册 2.2 有理数与无理数 多重符号怎样化简?素材 苏科版(2021年整理)

七年级数学上册 2.2 有理数与无理数 多重符号怎样化简?素材 苏科版(2021年整理)

七年级数学上册 2.2 有理数与无理数多重符号怎样化简?素材(新版)苏科版
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册2.2 有理数与无理数多重符号怎样化简?素材(新版)苏科版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册2.2 有理数与无理数多重符号怎样化简?素材(新版)苏科版的全部内容。

多重符号怎样化简?
难易度:★★★★
关键词:多重符号化简
答案:
化简的规律是:有偶数个负号,结果为正;有奇数个负号,结果为负.
【举一反三】
典例:化简下列各数中的符号
(1)—(-8);
(2)+(—6);
(3)—[—(-2)]
思路导引:化简时只看负号的个数即可,有偶数个负号,结果为正;有奇数个负号,结果为负.
标准答案
(1)—(-8)=8
(2)+(—6)=—6
(3)—[—(-2)]=—2。

有理数与无理数 苏科版七年级数学上册培优训练(含答案)

有理数与无理数  苏科版七年级数学上册培优训练(含答案)

2.2有理数与无理数一、选择题1.在下列各数0.51525354…、0、、、6.1、、中,无理数的个数是()A. 4 B. 3 C. 2 D. 12.在;;25;0;;;;中,非负数有A. 2 个B. 3 个C. 4 个D. 5 个3.下列各数:,,,0,4,中,整数有A. 2个B. 3个C. 4个D. 5个4.下面的说法中,正确的个数是是整数;是负分数;不是正数;自然数一定是非负数;负数一定是负有理数.A. 1个B. 2个C. 3个D. 4个5.在,,4,,0,中,表示有理数的有A. 3个B. 4个C. 5个D. 6个6.下列各数:,,,0,,,11,,其中负分数有A. 1个B. 2个C. 3个D. 4个二、填空题7.请写出一个比1大比2小的无理数:________。

8.若、都是无理数,且,则、的值可以是________(填上一组满足条件的值即可).9.把下列各数分别填入相应的集合里:+(-2),0,﹣0.314,(两个1间的0的个数依次多1个)﹣(﹣11),,,,正有理数集合:…},无理数集合:…},整数集合:…},分数集合:…}.10.在﹣2、,4.121121112、π﹣3.14,、0.5中,是无理数的.11.把下列各数的序号填在相应的数集内:,,,,,,,,.正整数集合_____正分数集合_____负数集合_____.12.有两个三位数相乘所得乘法算式:,其中,并且B,C,D,E,F,G这六个字母恰好代表化成小数后循环节中的六个数字顺序不一定相同,则______ .三、解答题13.观察下列两个等式:2﹣=2×+1,5﹣=5×+1,给出定义如下:我们称使等式a ﹣b=ab+1的成立的一对有理数a,b为“共生有理数对”,记为(a,b),如:数对(2,),(5,),都是“共生有理数对”.(1)数对(﹣2,1),(3,)中是“共生有理数对”的是;(2)若(m,n)是“共生有理数对”,则(﹣n,﹣m)“共生有理数对”(填“是”或“不是”);(3)请再写出一对符合条件的“共生有理数对”为;(注意:不能与题目中已有的“共生有理数对”重复)(4)若(a,3)是“共生有理数对”,求a的值.14.把下列各数填到相应的集合中:,49,﹣6,3.1415,﹣10,0.62,﹣,18,0,﹣2.3,7,﹣3.2(1)整数集合:}(2)负分数集合:}(3)非负数集合:}.15.观察下列两个等式:,,给出定义如下:我们称使等式成立的一对有理数a,b为“椒江有理数对”,记为,如:数对,都是“椒江有理数对”.数对,中是“椒江有理数对”的是______;若是“椒江有理数对”,求a的值;若是“椒江有理数对”,则______“椒江有理数对”填“是”、“不是”或“不确定”;请再写出一对符合条件的“椒江有理数对”______.注意:不能与题目中已有的“椒江有理数对”重复16.阅读理解把几个数用大括号围起来,中间用逗号断开,如:,6,8,,我们称之为集合,其中大括号内的数称其为集合的元素.如果一个集合满足:只要其中有一个元素a,使得也是这个集合的元素,这样的集合我们称为条件集合,例如:集合,因为,恰好是这个集合的元素,所以是条件集合;例如:集合9,,因为,8恰好是这个集合的元素,所以9,是条件集合.集合______条件集合;集合______条件集合填“是”或“不是”若集合10,和集合都是条件集合,求m,n的和.17.按要求分别写出一个大于9且小于10的无理数:用含的式子表示用无限不循环小数的形式表示.18.无限循环小数如何化为分数呢请你仔细阅读下列资料:由于小数部分位数是无限的,所以不可能写成十分之几、百分之几、千分之几等等的数转化时需要先去掉无限循环小数的“无限小数部分”一般是用扩倍的方法,把无限循环小数扩大十倍、一百倍、一千倍、,使扩大后的无限循环小数与原无限循环小数的“无限小数部分”完全相同,然后这两个数相减,这样“大尾巴”就减掉了例题:例如把和化为分数如图所示.请用以上方法解决下列问题:把化为分数把化为分数.参考答案一、选择题1.在下列各数0.51525354…、0、、、6.1、、中,无理数的个数是()A. 4 B. 3 C. 2 D. 1答案:【答案】C【考点】无理数的认识解:在0.51525354…、0、、、6.1、,无理数的为:0.51525354…、共2个.故答案为:C.【分析】根据无理数定义判定即可.2.在;;25;0;;;;中,非负数有A. 2 个B. 3 个C. 4 个D. 5 个D解析:【答案】D【解析】解:在;;25;0;;;;中,非负数有;;25;0;;一共5个.故选:D.根据正数和负数的定义,理解非负数就是正数和0解答即可.考查了有理数,解题关键是理解“正”和“负”的定义.强调数0既不是正数,也不是负数,0是正数与负数的分界.3.下列各数:,,,0,4,中,整数有A. 2个B. 3个C. 4个D. 5个B解析:【答案】B【解析】解:是整数,是负分数不是整数,是分数不是整数,0是整数,4是整数,是负分数不是整数,所以整数有3个.故选:B.按照有理数的分类填写:有理数.认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.4.下面的说法中,正确的个数是是整数;是负分数;不是正数;自然数一定是非负数;负数一定是负有理数.A. 1个B. 2个C. 3个D. 4个C解析:【答案】C【解析】【分析】本题考查了有理数,熟记有理数的意义是解题关键.根据有理数的意义,可得答案.【解答】解:是整数,故正确;是负分数,故正确;是正数,故错误;自然数一定是非负数,故正确;负分数一定是负有理数,故错误;故选C.5.在,,4,,0,中,表示有理数的有A. 3个B. 4个C. 5个D. 6个C解析:【答案】C【解析】【分析】此题考查了有理数的概念,要掌握:整数和分数统称有理数,其中不是有理数.能准确的判断出什么是有理数,知道是无限不循环小数,是无理数.先根据有理数的概念判断出有理数,再计算个数.【解答】解:在,,4,,0,.中,表示有理数的有:,4,,0,.共有5个,故选C.6.下列各数:,,,0,,,11,,其中负分数有A. 1个B. 2个C. 3个D. 4个B解析:【答案】B【解析】解:,是负分数,有2个,故选:B.小数就是负数,从中找出负分数即可,,是负分数,有2个.考查有理数的意义,掌握有理数的分类,理解有理数的意义和形式正确判断的前提.二、填空题7.请写出一个比1大比2小的无理数:________。

有理数与无理数(解析版)七年级数学上册同步教与学全指导(学习导航+教学过程+课时训练)(苏科版)

有理数与无理数(解析版)七年级数学上册同步教与学全指导(学习导航+教学过程+课时训练)(苏科版)

一、有理数1、我们把能够写成分数形式mn(m,n是整数,n≠0)的数叫做有理数.(1)有限小数和循环小数都可以化为分数,他们都是有理数.(2)所有整数都可以写成分母是1的分数,因此可以理解为整数和分数统称为有理数.(3)整数和分数统称有理数.(有理数也叫可比数)(4)整数:正整数、零和负整数统称为整数。

(5)自然数:正整数和零。

(6)分数:正分数和负分数统称为分数。

注意:有限小数和无限循环小数都可以化为分数,它们都是有理数。

例:0.333 ……可以化为3例题11.下列各数中是有理数的是()A.2B.32C.13D.π【答案】C 【分析】根据无理数的定义2与32开方开不尽,是无理数,π是无限不循环小数,是无理数,得到答案.【详解】解:A、2开方开不尽,是无理数,不符合题意;B、32开方开不尽,是无理数,不符合题意;C、13-是负分数,是有理数,符合题意;D、π是无限不循环小数,是无理数,不符合题意;故选:C.二、有理数分类1、有理数:整数与分数统称为有理数。

整数包括三类:正整数、零、负整数。

分数包括两类:正分数和负分数。

2、注意:小学学过的零表示没有,而引入负数后,就不能把“零”完全当作没有了,如0℃就是一个特定的温度;现在我们学过的数,除和与有关的数外,其他的数都是有理数;引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大到整数。

3、按整数、分数的关系分类:4、按正数、负数、零的关系分类:5、有理数都可以写成分数的形式,整数也可以看作是分母为1的数.6、分数与有限小数、无限循环小数可以互化,所以有限小数和无限循环小数可看作分数,但无限不循环小数不是分数,例如.7、正数和零统称为非负数;负数和零统称为非正数;正整数、0、负整数统称整数.例题22.下列说法错误的是()A.最小自然数是0B.最大的负整数是1-C.没有最小的负数D.最小的整数是0【答案】Dπ310.393==,1890.189999==.混循环小数)如果小数点后面的开头几位不循环,到后面的某一位才开始循环,这样的小数叫做混循环小数.例如:0.12、0.3456456…)混循环小数化为分数的方法是:分子是不循环部分和一个循环节的数字组成的数减去不循环部分的数字组成的数所得的差,分母就是按一个循环节的位数写几个面按不循环部分的位数添写几个0组成的数.9181010.918990110-=,239230.239900-=351350.3513599900-=11000|,,1.2312--,3216,0.303003000…(两个3.14,2+3根据无限不循环小数是无理数即可解答.3.14,2+3)表示的数一定是负数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新苏科版七年级数学上册同步练习 :2.2 有理数与无理数
姓名_____________班级____________学号____________分数_____________
1.选择题.
(1)下列一组数:8,-2.6,-312,223
,-5.7中负分数有( ) A .1个 B .2个 C .3个 D .4个
(2)课堂上老师要求就数“0”发表自己的意见,四位同学共说了下列四句话:①0是整数,但不是自然数; ②0既不是正数,也不是负数;③0不是整数,是自然数;④0没有实际意义.其中正确的个数是 ( ) A .4 B .3 C .2 D .1
(3)下列说法中正确的是( )
A .有最小的正数
B .有最大的负数
C .有最小的整数
D .有最小的正整数
(4)气象部门测定,高度每增加1千米,气温大约下降5℃.现在地面气温是15℃,那么4千米高空的气温是 ( )
A . 5℃
B . 0℃
C . -15℃
D . -5℃.
2.判断题;
(1)有理数可分为正有理数和负有理数两类. ( )
(2)有限小数都是有理数,无限小数都是无理数. ( )
(3)有理数包括正有理数、零和负有理数.( )
(4)无理数是无限不循环小数,有理数是无限循环小数 ( )
(5)不循环小数是无理数. ( )
(6)面积为0.9的正方形的边长是有理数. ( )
(7)分数中有有理数,也有无理数,如1117
就是无理数. ( )
3.若一个正方形的面积为5,则其边长可能是 数.
4.右表是2010年3月23日无锡市的天气预报,
请你根据表中的信息填空:
当天的最高温度是_________,当天的最大风力是__________.
5.把下列各数填在相应的括号内
-7,3.5, 3.1415926, 0,1713 ,0.03%,-314
,10,-3π,1.010010001…(相邻两个1之间0的个数逐次加1),0.5·7·
,1.121 221 222.
自然数集合{ … } ;正分数集合 { … }; 负数集合 { … };无理数集合 { … } ; 有理数集合{ … } .
6.写出一个大于1且小于4的无理数 .
7.在37,2π,34,5.6,2.1,0.121,0.34,π101
,21中有 个有理数. 8.有一面积为5π的圆的半径为x .,x 是有理数吗?说说你的理由.
9.如图,在下面三个部分分别填上至少三个满足条件的数:
10.在下列每一个圈里,至少填入三个适当的数.
★11.数学兴趣小组测量校园周长,测得的数据是2503m ,2498m ,2502m ,2497m .
(1)求这4次测量的平均值.
(2)以“平均值”为基准,用正、负数表示出每一次测量的数值与平均值的差.
(3)请你想一想你还有什么更好的求上述四个数的平均值的方法,把你的想法能与我们分享
吗?。

相关文档
最新文档