大型轴承表面裂纹分析

合集下载

铁路货车轮对轴承裂损故障分析

铁路货车轮对轴承裂损故障分析

铁路货车轮对轴承裂损故障分析摘要:因为在新世纪发展背景下,铁路货车的提速工作已经基本完成,在铁路货车运营速度提升的过程当中,轮轴是重要的承重部件,所以面临着诸多影响因素,包括轮轴的加工工艺以及制造材料等,都是影响到轮轴质量的影响因素。

所以在铁路货车运行检修工作中,轮轴检修工作出现故障和问题的几率是比较大的,需要技术人员就相关故障分析及处理工作进行加强,从而提升铁路货车运行安全。

关键词:铁路货车;轴承裂缝;故障引言影响铁路货车轮轴质量的因素很多,不仅和轮轴的设计结构、材料选择、加工工艺等生产工艺相关,同时和轮轴的承受重量、使用条件、使用状态、使用时间甚至和使用环境有关。

但铁路货车轮轴的的重要性关乎着生产财产的安全,同时和人身财产息息相关,因此对于轮轴故障的检测和分析尤其重要。

其中铁路货车轮对和轴承是直接承受力和扭矩的关键部件,下面主要从轮对和轴承常见的故障进行分析。

1概述近年来,我国经济取得了大幅度的发展,铁路交通建设也有了跨越式的进步,在此同时,铁路货车车辆不断更新,高速重载战略不断前行,这些都对铁路车辆检修和车辆配件质量提升提出了更高的要求。

其中车辆滚动轴作为铁路车辆中最重要的组成结构之一,其质量高低与稳定性强弱都对货车运行安全有着决定性的影响。

在过去我国铁路货车多使用滑动轴承,随着科学技术和工业技术的发展,铁路滑动轴承更新为滚动轴承,列车的运行速度和承载量都有了大幅度提升,更重要的是大大降低了货运车辆安全事故发生率。

但必须承认的是,当前我国货车车辆滚动轴也极易发生各种各样的故障,因此了解和掌握滚动轴承产生故障的原因,及时找到最佳诊断方法从而以最快的速度解决货车运行过程中可能出现的安全事故,同时消除现场检修作业中的不稳定因素,是相关检修技术人员亟待研究的课题。

2铁路货车轮对轴承裂损故障分析2.1铁路货车的轮对简介以及使用铁路货车的车轮主要是通过一个车轴与左右两个的车轮相连接,构成牢固的结构,直接接触钢轨。

轴承损坏形式及原因分析

轴承损坏形式及原因分析
轴承损坏形式及原因分析
5、保持架的损坏
保持架的损坏,通常不易判断。若保持架坏了,轴承其它零件也 都坏掉了,这使得原因难以分析。造成架损坏主要原因有以下几种: 震动、转速太高磨损、卡死和歪斜等。
1)震动:当轴承处于震动状况下,轴承内部的力量可能导致保持 架出现疲劳裂痕,渐渐地,会使架破碎。
2)过高的转速:如果轴承以超出保持架材质所能承受的速度运转, 惯性力将使保持架破碎。
对策:油位应该略低于最下面一个滚动体的中心,轴承箱内润滑脂 填充约1/3至1/2空间。
3.油位太高或轴承箱润滑脂完全添满,这样会导致润滑剂充分搅拌而 产生高温或漏油。 对策:润滑脂添入箱内至1/2;若机油润滑,油位略低于最下方滚动 体的中心。
4.轴承间隙不适当,当有热流通过轴心时,导致内环过分膨胀。 对策:检查过热轴承的间隙是否是原始的设计范围,如果是,请改 用较大的间隙,改成C3或C3改成C4。
随着轴承不同程度的破坏,往往都是二次破坏的结果,要有效的 排除这些轴承问题,必须先观察这些轴承应用情况,然后再分析这 些损坏的原因。
轴承损坏形式及原因分析
一、轴承过热:
原因: 1. 润滑脂或机油失效或选用错误。相应的办法是:选择正确的润滑脂
或机油,检查润滑脂或机油的相容性。 2.油位太低,润滑剂从油封流失,轴承箱内润滑脂不足。
7.安装轴承前轴承箱内的碎片,异物没有清除干净。 对策:仔细清洗轴承箱和轴承本身。
8.(交叉定位) 同一轴上有两个定位轴承,而引起的不对正或由于轴热膨胀而导致 轴承内部间隙不足。 对策:调整轴承箱与端盖之间的调整垫片,使轴承箱与外环之间有 一定的间隙。
9. 轴肩摩擦到轴承密封盖,轴肩部直径不正确与保持架摩擦。 对策:重新加工轴肩,检查肩部直径及圆角。

裂纹原因分析报告

裂纹原因分析报告

裂纹原因分析报告1. 背景介绍裂纹是物体表面或内部出现的细微断裂,可能会导致物体的破坏或失效。

在工程领域中,对于裂纹的原因分析十分重要,以便采取适当的措施来预防和修复裂纹。

本文将通过一系列步骤,对裂纹的原因进行分析,并提供解决方案。

2. 数据收集在进行裂纹原因分析之前,需要收集相关的数据和信息。

这些数据可以包括物体的历史记录、使用环境、操作条件、材料特性等。

通过收集充分的数据,可以更好地理解裂纹形成的背景和条件。

3. 观察和检测观察和检测是裂纹原因分析的关键步骤之一。

需要对物体进行仔细的观察,并使用适当的检测工具来检测裂纹的形态和位置。

这可能包括使用显微镜、探伤仪器或其他非破坏性检测方法。

4. 裂纹形态分析在观察和检测的基础上,对裂纹的形态进行分析。

裂纹的形态可以提供有关裂纹的起源和扩展方式的重要线索。

需要注意裂纹的长度、深度、形状以及是否存在支裂纹等特征。

5. 材料分析裂纹的形成和扩展通常与材料的性质和特性有关。

在这一步骤中,需要对裂纹周围的材料进行分析。

可以对材料的组成、硬度、强度等进行测试,以确定是否存在材料缺陷或异常。

6. 应力分析裂纹的形成和扩展与物体所受的应力有关。

在这一步骤中,需要对物体受力情况进行分析。

可以使用有限元分析等方法,计算和模拟物体在不同应力条件下的行为,以确定裂纹可能的起因。

7. 环境分析物体所处的环境条件也可能对裂纹的形成起到一定的影响。

在环境分析中,需要考虑温度、湿度、腐蚀性物质等因素。

通过分析物体所处的环境条件,可以确定裂纹形成的环境因素。

8. 结果总结通过以上步骤的分析,可以得出裂纹形成的可能原因。

根据分析结果,可以制定相应的解决方案。

可能的解决方案包括材料更换、改变使用条件、增加支撑结构等。

9. 结论裂纹原因分析是预防和修复裂纹的重要步骤。

通过收集数据、观察和检测、裂纹形态分析、材料分析、应力分析和环境分析等步骤,可以找到裂纹形成的原因,并采取相应的措施来解决问题。

轴承套圈锻造折叠裂纹缺陷分析

轴承套圈锻造折叠裂纹缺陷分析
图 3
纹 的 周 围 有 严 重 的 氧 化 脱 碳 层
如 1 所示 ( 如 果 是 渗 碳 钢 制 套 圈 ,圳 脱碳 不 明 显 ) 。
( 2 )锻 造 折 叠 裂 纹 与金 属
流 线 办 阳一 致 折叠尾端 一 般 呈
小 酬 角 ,但 随 后 的 锻 造 变 形 又 会
1 8
2 . 轴承套 圈端面折叠 裂纹
( 1 ) 因 下 料 毛 刺 引起 的 轴 承 套 圈 端 面 折 叠 裂 纹 轴 承 钢






. f ’ .

金 属内 而
形 成 。折 叠 与原 材 料 和坯 料 的 形
棒 料 经 过 中频 感 应 加 热 后 ,送至
开 裂 或使 用 时 成 为疲 劳 源 。
( 2 )因扩 扎 / 『 当引起 f 承 套 圈端 面 折 叠 裂纹 轴 承:
在扩 扎 过 程 中 ,f J 】 F芯 轴 和 j 轮 运 转 速 度 不 协 调 ,导 致 端 i
两股 ( 或 多股 ) 金 流 ,锻 f
或 火 ,是 锻 造 加 工 过 程 中 最 常
边 产 生 多 余的 料 。
} — —

发现外圈沿圆周方向外径或内滚
道部 位 ( 见 图6 、 图7 ) 有 明显 的
折 叠 裂纹 。 内 圈沿 圆周 方 向内 径
等 有 火。
1 . 锻造折 叠缺 陷裂纹特征
( 1 )轴 承 粪 圈锻 造 折 叠 裂
2)。 下 料 毛 坯 经 压 平 镦 粗 、 f 中 压 及 扩 孔 等 锻 造 加 工工 序 ,毛 刺
纹特征

11种轴承损伤的典型案例,原因分析及解决方案

11种轴承损伤的典型案例,原因分析及解决方案

11种轴承损伤的典型案例,原因分析及解决方案轴承在各个领域各个行业应用都非常广泛,今天为大家带来轴承损伤的经典案例,希望大家能有所收获!高质量的轴承在正确的使用下,可以使用很长一段时间,如果过早的出现损伤,很可能是因为选型错误,使用不当或润滑不良造成的。

因此,在安装轴承时,我们需要记录机器种类,安装部位,使用条件及周围配合。

通过研究总结轴承损伤的类型,发生问题时的使用环境,以避免类似情况再次发生。

轴承损伤方式按下述图片分类,我们可以图片中显示的主要特征来判断轴承损伤形式。

裂纹缺陷,部分缺口有裂纹。

原因:主机的冲击负荷过大,主轴与轴承配合过盈量大;也有较大的剥离摩擦引起裂纹;安装时精度不良;使用不当(用铜锤、卡入大异物)和摩擦裂纹。

解决措施:应检查使用条件,同时设定适当过盈及检查材质,改善安装及使用方法,检查润滑剂以防止摩擦裂纹。

滚道表面金属剥离运转面剥离。

剥离后呈明显凹凸状。

原因:轴承滚动体和内、外圈滚道面上均承受周期性脉动载荷作用,产生周期变化的接触应力。

当应力循环次数达到一定数值后,在滚动体或内、外圈滚道工作面上就产生疲劳剥离。

如果轴承的负荷过大,会使这种疲劳加剧。

另外,轴承安装不正、轴弯曲也会产生滚道剥离现象。

解决措施:应重新研究使用条件和选择轴承及游隙,并检查轴和轴承箱的加工精度、安装方法、润滑剂及润滑方法。

烧伤轴承发热变色,进而烧伤不能旋转。

原因:一般是润滑不足,润滑油质量不符合要求或变质,以及轴承装配过紧等。

另外游隙过小和负荷过大(预压大),滚子偏斜。

解决措施:选择适当的游隙(或增大游隙),要检查润滑剂的种类,确保注入量,检查使用条件,以防定位误差,改善轴承组装方法。

保持架碎裂铆钉松动或断裂,滚动体破碎。

原因:力矩负荷过大,润滑不足,转速变动频繁、振动大,轴承在倾斜状态下安装,卡入异物。

解决措施:要查找使用条件和润滑状态是否适宜,注意轴承的使用,研究保持架的选择是否合适和轴承箱的刚性是否负荷要求。

轴承钢凸轮轴的裂纹分析及工艺改进

轴承钢凸轮轴的裂纹分析及工艺改进
由于生 产 的 GC r l 5轴 承钢 凸轮 轴与 其他 的 4 5钢 、 c f

毛坯 呈 网状且 存 在 带状 碳 化 物 , 需 采
取正 火 、 球 化 退 火

5 - - , 6h
5 3凸轮 轴是 在 同一 台淬 火机 床 上 进行 淬 火 , 使 用
同一套 淬火 剂 循 环 系统 , 介质的浓度为 3 ~4 , 这对 于 浓度 配 比偏低 、 冷 速 过快 的 GC r l 5高 淬透 性 轴 承钢来 说 , 虽未 在 凸轮 尖部产 生 淬火 崩裂 , 但此 时
4 结 语
图 1 2 球 化 退 火 工 艺 曲线
规定 时 间 保 温 后 ,
在空 气 中 冷 却 , 可
1 )原 始组 织 中的 粗 大 网状 和 带 状 碳 化 物 的 存 在带 来后 序 热处 理 后 磁痕 及 裂 纹 的危 害 , 通 过 正 火
和球 化退 火 可 以获得 理想 球化 组织 。
[ 2 ]蔡 查 敏 , 张 惠 娟 .G C r l 5轴 承 钢 过 热 “ 带状组 织” 的 分 析 [ J ] . 金属热处理 , i 9 9 8 ( 4 ) : 2 7 — 2 9 .
度提 高 。
3 . 3 热 处 理 改 进 由 于 金 相 分 析
9 2 O ~9 4 0℃
火, 不但 使 二次 淬火 马 氏体转 变 , 还 能 减少 一部 分磨
削 应力 , 进 一步 稳定 组织 及尺 寸 , 一般 情况 都 能避免 磨 削裂 纹 的产生 。
AQ2 5 1淬 火 剂 的 冷 却 速 度 介 于 油 和 水 之 间 。
新 技术 新 工艺
2 0 1 3年 第 1 O期

常见轴承失效案例分析

常见轴承失效案例分析
详细描述
润滑不良可能是由于润滑油选用不当、润滑油量不足、润滑油污染或润滑系统故障等原因造成的。当轴承缺乏良好的润滑时,金属与金属之间的直接接触会增加,导致摩擦和磨损迅速增加,进而引起轴承过热、运转困难或噪声等问题。
润滑不良导致的轴承失效
水分和杂质的侵入
水分和杂质侵入轴承会导致轴承生锈、运转不灵活和噪声等问题,严重影响轴承的使用寿命。
详细描述Βιβλιοθήκη 轴承材料的疲劳失效VS
磨损失效是指轴承在运转过程中,由于摩擦磨损导致材料逐渐损失的现象。
详细描述
磨损失效通常是由于润滑不良、异物进入、材料硬度过大或表面粗糙度不均匀等原因引起的。随着材料损失的增加,轴承的精度和性能会逐渐降低,最终可能导致轴承失效。为了减少磨损失效,需要定期维护和更换润滑油,保持轴承周围环境的清洁度,并选择合适的材料和表面处理技术。
总结词
轴承材料的磨损失效
总结词
腐蚀失效是指轴承材料受到化学腐蚀或电化学腐蚀而导致的性能下降或损坏的现象。
详细描述
腐蚀失效通常是由于轴承周围环境中的腐蚀性介质、潮湿空气、盐雾或酸碱溶液等引起的。腐蚀会导致轴承材料表面出现坑蚀、斑点或裂纹,严重时甚至可使轴承完全失效。为了防止腐蚀失效,需要选择耐腐蚀的材料和表面处理技术,同时保持轴承周围环境的干燥和清洁度,定期进行防锈处理和维护。
轴承结构的热设计不当
详细描述
总结词
总结词
轴承结构的刚度不足会影响其稳定性和使用寿命。
详细描述
轴承结构的刚度不足会导致轴承在运转过程中发生变形,影响其旋转精度和稳定性,从而降低其使用寿命。同时,刚度不足还可能导致轴承内部间隙增大,增加摩擦和磨损。
轴承结构的刚度不足
04
轴承使用环境失效案例

滚动轴承常见的失效形式及原因分析

滚动轴承常见的失效形式及原因分析

滚动轴承常见的失效形式及原因分析滚动轴承是一种用于支撑和减少摩擦的常用机械元件。

它们广泛应用于各种机械设备和领域,如汽车、风力发电、机械制造等。

然而,由于工作环境的恶劣条件或长期运行等原因,滚动轴承可能会出现各种故障和失效。

以下是滚动轴承常见的失效形式及其原因分析。

1.疲劳失效:疲劳失效是滚动轴承最常见的失效形式之一、它通常在长时间高速运转或载荷较大的情况下发生。

轴承在不断重复的载荷下产生微小的裂纹,最终导致轴承出现断裂。

这种失效通常与以下原因有关:-动载荷过大:轴承在长时间内承受过大的动载荷,超出了其额定负荷能力。

-轴承安装不当:安装不当会使轴向载荷分布不均匀,导致局部载荷过大。

-润滑不良:缺乏或过多的润滑剂都会导致轴承摩擦增加,使得轴承易于疲劳失效。

2.磨损失效:磨损是轴承常见的失效形式之一、它通常发生在轴承和周围部件之间的摩擦表面上。

常见的磨损形式包括:-磨粒磨损:当粉尘、金属碎屑等进入轴承内部时,会使滚动体、保持架等部件发生磨损。

-粘着磨损:当润滑不良时,摩擦表面出现直接接触,轴承可能会发生粘着磨损。

-磨料磨损:当轴承受污染物质时,如沙尘、水等,会导致轴承表面产生磨料磨损。

3.返现失效:轴承返现是指滚动体和滚道之间的剥离、严重滚道表面损伤或磨擦减小所引起的失效。

返现失效的原因主要有:-轴承清洗不当:清洗过程中使用的溶剂或清洁剂残留在轴承内部,导致润滑性能下降,滚动体容易返现。

-轴承热胀冷缩:当轴承受到温度变化时,轴承和轴承座之间的配合间隙有可能发生变化,导致轴承返现。

-润滑不良:缺乏或过多的润滑剂会导致轴承受到不均匀的载荷分布,容易引起轴承返现。

4.偏磨失效:偏磨是指轴承滚动体在滚道上发生偏磨,导致滚道表面形变或表面破坏。

-不均匀载荷:长期承受不均匀载荷会导致滚动体在滚道上的位置发生偏移,从而引起偏磨失效。

-润滑不良:过多或过少的润滑剂会导致轴承滚动体和滚道之间的摩擦增加,从而引起偏磨。

滚动轴承常见故障的原因分析

滚动轴承常见故障的原因分析

滚动轴承常见故障的原因分析滚动轴承是一种重要的机械传动元件,常见于各种机械设备中。

然而,滚动轴承也常遭遇各种故障,包括磨损、过热、锈蚀、裂纹、脱落等。

下面是一些常见滚动轴承故障的原因分析。

1.磨损:磨损是最常见的滚动轴承故障类型之一、磨损通常是由于轴承受到高负荷、不正确的润滑条件、使用不当或杂质进入轴承内部等原因引起的。

高负荷和不正确的润滑会导致轴承摩擦增加,从而加剧磨损。

轴承使用不当(如过载或不均匀受力)会导致轴承表面不均匀磨损,从而造成轴承缩短寿命。

2.过热:滚动轴承在工作过程中,可能会出现过热的情况。

过热通常是由于摩擦、润滑不良、过载、不正常工作条件等原因引起的。

摩擦产生的热量会导致轴承温度升高,如果润滑不良,会加剧摩擦和热量的产生,进而使得轴承过热。

过载和不正常工作条件也会导致摩擦增加,从而引起轴承过热。

过热会使轴承材料的硬度降低,使其承载能力下降,甚至引起轴承损坏。

3.锈蚀:滚动轴承通常需要在潮湿、有腐蚀性气体或液体的环境中工作。

如果轴承未正确防护或未适时更换润滑剂,就会容易受到腐蚀和锈蚀。

锈蚀会损坏轴承的表面,导致轴承的工作性能下降,甚至发生损坏。

4.裂纹:滚动轴承在使用中,可能会出现裂纹。

裂纹通常是由于载荷过大、冲击负荷、疲劳载荷、材料缺陷等原因引起的。

当轴承承受过大的载荷或冲击负荷时,可能会超过材料的强度极限,导致轴承表面出现裂纹。

疲劳载荷是由长时间的往复运动引起的,经过多次往复运动后,轴承表面产生裂纹,最终导致轴承损坏。

5.脱落:脱落通常是由于轴承的装配不当、润滑不良、轴承材料缺陷等原因引起的。

如果轴承装配不当,例如装配时用力过大,可能会导致轴承的外圈或内圈脱落。

润滑不良会导致轴承的表面磨损加剧,最终导致轴承脱落。

轴承材料缺陷也会影响轴承的使用寿命和可靠性。

以上是常见的滚动轴承故障原因分析,不同类型的滚动轴承可能存在不同的故障原因。

为了避免滚动轴承故障的发生,需要合理选择轴承型号、正确装配和润滑轴承、定期检查和维护轴承等。

轴承故障分析报告

轴承故障分析报告

轴承故障分析报告轴承的故障现象一般表现为两种,一是轴承安装部位温度过高,二是轴承运转中有噪音1.轴承温度过高在机构运转时,安装轴承的部位允许有一定的温度,当用手抚摸机构外壳时,应以不感觉烫手为正常,反之则表明轴承温度过高。

轴承温度过高的原因有:润滑油质量不符合要求或变质,润滑油粘度过高;机构装配过紧,间隙不足;轴承装配过紧;轴承座圈在轴上或壳内转动;负荷过大;轴承保持架或滚动体碎裂等。

2.轴承噪音。

滚动轴承在工作中允许有轻微的运转响声,如果响声过大或有不正常的噪音或撞击声,则表明轴承有故障滚动轴承产生噪音的原因比较复杂,其一是轴承内、外圈配合表面磨损。

由于这种磨损,破坏了轴承与壳体、轴承与轴的配合关系,导致轴线偏离了正确的位置,在轴在高速运动时产生异响。

当轴承疲劳时,其表面金属剥落,也会使轴承径向间隙增大产生异响。

此外,轴承润滑不足,形成干摩擦,以及轴承破碎等都会产生异常的声响。

轴承磨损松旷后,保持架松动损坏,也会产生异响轴承的损伤滚动轴承拆卸检查时,可根据轴承的损伤情况判断轴承的故障及损坏原因。

轴承的损伤滚动轴承拆卸检查时,可根据轴承的损伤情况判断轴承的故障及损坏原因1.滚道表面金属剥落轴承滚动体和内、外圈滚道面上均承受周期性脉动载荷的作用,从而产生周期变化的接触应力。

当应力循环次数达到一定数值后,在滚动体或内、外圈滚道工作面上就产生疲劳剥落。

如果轴承的负荷过大,会使这种疲劳加剧。

另外,轴承安装不正、轴弯曲,也会产生滚道剥落现象。

轴承滚道的疲劳剥落会降低轴的运转精度,使机构发生振动和噪声。

2轴承烧伤烧伤的轴承其滚道、滚动体上有回火色。

烧伤的原因一般是润滑不足、润滑油质量不符合要求或变质,以及轴承装配过紧等。

3.塑性变形轴承的滚道与滚子接触面上出现不均匀的凹坑说明轴承产生塑性变形。

其原因是轴承在很大的静载荷或冲击载荷作用下,工作表面的局部应力超过材料的屈服极限,这种情况一般发生在低速旋转的轴承上4.轴承座圈裂纹轴承座圈产生裂纹的原因可能是轴承配合过紧,轴承外国或内圈松动,轴承的包容件变形,安装轴承的表面加工不良等。

轴承常见损坏故障分析报告

轴承常见损坏故障分析报告

近期客户工厂,老是出现专机轴承异常损坏得情况,通过去客户出差考察,有以为问题点总结。

通过总结轴承损伤的类型,发生问题时的使用环境,以避免类似情况再次发生。

轴承损伤方式按下述图片分类,我们可以图片中显示的主要特征来判断轴承损伤形式。

1剥离现象:运转面剥离,剥离后呈明显凸凹状9 n# f2 o; n% u8 j) K3 g7 P原因:1)负荷过大使用不当2)安装不良3)轴或轴承箱精度不良4)游隙过小5)异物侵入6)发生生锈7)异常高温造成的硬度下降措施:1)重新研究使用条件2)重新选择轴承3)重新考虑游隙4)检查轴和轴承箱加工精度5)研究轴承周围设计6)检查安装时的方法7)检查润滑剂及润滑方法2烧伤现象:轴承发热变色,进而烧伤不能旋转原因:1)游隙过小(包括变形部分游隙过小)2)润滑不足或润滑剂不当3)负荷过大(预压过大)4)滚子偏斜措施:1)设定适当游隙(增大游隙)2)检查润滑剂种类确保注入量3)检查使用条件4)防止定位误差5)检查轴承周围设计(包括轴承受热)6)改善轴承组装方法3裂纹缺陷; `& i+ Z) t1 o) `4 y7 M2 h, \" x现象:部分缺口且有裂纹% ^2 E! x$ o8 Z3 e9 f1 Q原因:1)冲击负荷过大2)过盈过大3)有较大剥离4)摩擦裂纹5)安装侧精度不良(拐角圆过大)6)使用不良(用铜锤,卡入大异物)6 i; M/ I+ c( J+ x措施:1)检查使用条件2)设定适当过盈及检查材质3)改善安装及使用方法4)防止摩擦裂纹(检查润滑剂)5)检查轴承周围设计4保持架破损现象:铆钉松动或断裂,保持架破裂7 y% ?9 b% D- M7 i0 Q原因:1)力矩负荷过大2)高速旋转或转速变动频繁3)润滑不良4)卡入异物5)振动大6)安装不良(倾斜状态下安装)7)异常温升(树脂保持架)- _, u. M2 [! x1 D$ ~) u措施:1)检查使用条件2)检查润滑条件3)重新研究保持架的选择4)注意轴承使用5)研究轴和轴承箱刚性5擦伤卡伤3 k* q* }; e; t现象:表面粗糙,伴有微小溶敷;套圈档边与滚子端面的擦伤称作卡伤原因:1)润滑不良2)异物侵入3)轴承倾斜造成的滚子偏斜4)轴向负荷大造成的挡边面断油5)表面粗糙大6)滚动体滑动大措施:1)再研究润滑剂、润滑方法2)检查使用条件3)设定适宜的预压4)强化密封性能5)正常使用轴承6生锈腐蚀现象:表面局部或全部生锈,呈滚动体齿距状生锈原因:1)保管状态不良2)包装不当3)防锈剂不足4)水分、酸溶液等侵入5)直接用手拿轴承措施:1)防止保管中生锈2)强化密封性能3)定期检查润滑油4)注意轴承使用7磨蚀现象:配合面产生红锈色磨损粉粒原因:1)过盈量不够2)轴承摇动角小3)润滑不足(或处于无润滑状态)4)非稳定性负荷5)运输中振动措施:1)检查过盈及润滑剂涂布状态2)运输时内外圈分开包装,不可分开时则施加预压3)重新选择润滑剂4)重新选择轴承8磨损现象:表面磨损,造成尺寸变化,多伴有磨伤,磨痕原因:1)润滑剂混中入异物2)润滑不良3)滚子偏斜措施:1)检查润滑剂及润滑方法2)强化密封性能3)防止定位误差9电蚀: D6 W; w: c5 `现象:滚动面有喷火口状凹坑,进一步发展则呈波板状原因:滚动面通电措施:制作电流旁通阀;采取绝缘措施,避免电流通过轴承内部. l3 J/ C; s( K2 @+ q( r5 v10压痕碰伤现象:卡入固体异物或冲击造成的表面凹坑及安装是的擦伤3 G1 Z% O; a" s) b原因:1)固体异物侵入2)卡入剥离片3)安装不良造成的撞击,脱落4)在倾斜状态下安装措施:1)改善安装、使用方法2)防止异物混入3)若因金属片引起,则须检查其他部位' f/ K' @$ ^! _* _11蠕变& z: G+ n! o0 e0 y, ?1 z- l现象:内径面或外径打滑,造成镜面或变色,有时卡住原因:1)配合处过盈量不足2)套筒紧固不够3)异常温升4)负荷过大- D; H4 U" m( L; n措施:1)重新研究过盈量2)研究使用条件3)检查轴和轴承箱精度轴承在日常生活使用中,需要谨慎注意其使用,下面让我们看看我们需要注意的七大事项:1、收割机中的铆合件如动刀总成,铆钉一般都是冷挤制成,在铆合时不应加热,如加热会降低材质强度。

轴承损坏方式及分析

轴承损坏方式及分析

轴承损坏的形式轴承是精密的机械基础件。

由于科技进步的迅速发展,客户对轴承产品质量的要求越来越高。

制造厂提供符合标准、满足主机使用性能的高质量的产品固然重要,但正确使用轴承更为重要。

笔者在近儿年从事摩托车专用轴承的技术工作中,经常碰到这样的问题,即轴承经检测是合格的,但装机后轴承出现卡滞或使用时的早期止转失效。

主要表现转动卡滞感、工作面严重剥落,保持架严重磨损乃至扭曲与断裂。

经失效结果分析表明,属于轴承本身质量问题并不多,多数是由于安装使用不当所造成。

为此,笔者认为有必要就轴承常见的失效模式与机理作些肤浅的综述,以期起到一个抛砖引玉的作用。

一、轴承的失效机理1.接触疲劳失效接触疲劳失效系指轴承工作表面受到交变应力的作用而产生失效。

接触疲劳剥落发生在轴承工作表面,往往也伴随着疲劳裂纹,首先从接触表面以下最大交变切应力处产生,然后扩展到表面形成不同的剥落形状,如点状为点蚀或麻点剥落,剥落成小片状的称浅层剥落。

由于剥落面的逐渐扩大,而往往向深层扩展,形成深层剥落。

深层剥落是接触疲劳失效的疲劳源。

2.磨损失效磨损失效系指表面之间的相对滑动摩擦导致其工作表面金属不断磨损而产生的失效。

持续的磨损将引起轴承零件逐渐损坏,并最终导致轴承尺寸精度丧失及其它相关问题。

磨损可能影响到形状变化,配合间隙增大及工作表面形貌变化,可能影响到润滑剂或使其污染达到一定程度而造成润滑功能完全丧失,因而使轴承丧失旋转精度乃至不能正常运转。

磨损失效是各类轴承常见的失效模式之一,按磨损形式通常可分为最常见的磨粒磨损和粘着磨损。

磨粒磨损系指轴承工作表面之间挤入外来坚硬粒子或硬质异物或金属表面的磨屑且接触表面相对移动而引起的磨损,常在轴承工作表面造成犁沟状的擦伤。

硬质粒子或异物可能来自主机内部或来自主机系统其它相邻零件由润滑介质送进轴承内部。

粘着磨损系指山于摩擦表面的显微凸起或异物使摩擦面受力不均,在润滑条件严重恶化时,因局部摩擦生热,易造成摩擦面局部变形和摩擦显微焊合现象,严重时表面金属可能局部熔化,接触面上作用力将局部摩擦焊接点从基体上撕裂而增大塑性变形。

轴承损坏原因分析

轴承损坏原因分析
轴承损坏通常是由于长期使用、维护 不当、安装问题、润滑不良、过载或 冲击等多种因素共同作用的结果。
轴承损坏的常见类型
疲劳剥落
磨损
轴承在运转过程中,由于长期承受交变载 荷的作用,在轴承表面出现疲劳裂纹并逐 渐扩展,最终导致轴承表面剥落。
轴承在运行过程中,由于尘埃、金属颗粒 等杂质侵入,或者润滑不良,导致轴承表 面磨损,影响轴承的正常功能。
诊断性试验的局限性在于试验条件较 为复杂,需要专业的设备和操作人员。
诊断性试验能够较为准确地模拟轴承 的实际工况,提供较为准确的诊断结 果。
05
轴承损坏的修复与更换
修复方法的选择
根据损坏程度选择修复方法
对于轻微磨损或损伤,可以选择局部修复;对于严重磨损或损坏,需要更换轴 承或修复套圈。
根据轴承类型选择修复方法
油样分析
01
油样分析是通过分析轴承润滑油中的磨损颗粒来判断轴承是 否出现故障的方法。
02
油样分析能够提供轴承磨损的具体信息,如磨损部位、程度 等。
03
油样分析的局限性在于需要定期取样、分析,无法实时监测 轴承状态。
诊断性பைடு நூலகம்验
诊断性试验是通过模拟轴承在不同工 况下的运转情况来判断其是否正常的 方法。
正确的安装和拆卸方法
使用适当的安装工具
01
避免使用不合适的工具或蛮力安装,以免损坏轴承或相关部件。
确保轴承安装到位
02
确保轴承安装正确,无倾斜或偏心,以免在运行过程中产生额
外的载荷或摩擦。
使用正确的拆卸方法
03
使用适当的拆卸工具,按照正确的顺序逐步拆卸,避免损坏轴
承或相关部件。
保持适当的润滑
选择合适的润滑剂

轴承磨削烧伤与裂纹鉴别、原因分析及预防

轴承磨削烧伤与裂纹鉴别、原因分析及预防

轴承零件磨削烧伤和裂纹的鉴别、原因分析及预防一.概述轴承套圈在磨加工中,由于磨粒对工件的切削、刻划和摩擦作用,使金属表面产生塑性变形,由工件内部金属分子间相对位移产生内摩擦而发热;砂轮切削时,相对于工件的速度很高,与工件表面产生剧烈的外摩擦而发热,又因为每颗磨料的切削都是瞬间的,其热量生成也在瞬间,又不能及时传散,所以在磨削区域的瞬时温度较高,一般可达到500~1200℃,如果散热措施不好,很容易造成工件表面的烧伤,在工件的表层(一般有几十微米几百微米)出现变质层,破坏了工件表面的组织,甚至出现肉眼可见的严重的烧伤。

酸洗后烧伤呈黑色,这种烧伤产生的温度在回火温度以上到临界点Ac1之间,大约在200℃~740℃之间。

低于轴承钢的回火温度不会产生烧伤。

二次淬火烧伤又称“白烧伤”,冷酸洗后烧伤呈亮白色,这种烧伤产生的温度范围在钢的临界点Ac1以上。

磨削烧伤在金属表层会产生很大应力,因而在烧伤处有时会出现裂纹,这种裂纹成为磨削裂纹。

通常情况下,磨削裂纹非常细小,肉眼观察无法发现,必须采用专用仪器才能将其区分。

磨削烧伤对轴承寿命影响非常大,有数据表明,有烧伤的轴承工作寿命仅为几小时到几十小时,仅为设计寿命的10%左右。

所以鉴别烧伤和裂纹,并采取有效措施减少或避免磨削烧伤和裂纹就显得尤为重要。

1、磨削烧伤和磨削裂纹的几种鉴别方法1.1冷酸洗法鉴别磨削烧伤滚子磨削烧伤用冷酸洗法鉴别,见图1和图2。

由图1a)可见,滚子经冷酸洗后,外径有暗黑色宽带,这些宽带是由于工件在磨削时产生的高温回火烧伤,马氏体组织发生分解,析出碳化物,使金属表面不耐腐蚀。

图1b)是回火烧伤的金相图。

图2为滚子端面在磨削时产生的二次淬火烧伤(箭头所指的白亮区)。

这种烧伤温度已经超过钢的临界点Ac1,大约在800℃以上。

原来的马氏体组织被重新加热转变成奥氏体,随后快冷被淬火。

在白亮区边缘被黑色带包围,这层黑色区属于高温回火烧伤区。

a)滚子磨削高温回火烧伤b)套圈磨削高温烧伤组织图图1高温回火烧伤1.2用显组织和显微硬度鉴别磨削烧伤用显微组织鉴别磨削二次淬火烧伤见图3,。

45钢轴类零件断裂分析及预防

45钢轴类零件断裂分析及预防

eat TreatmentH热处理45安徽省宿州模具热处理研究中心 (234000) 赵昌胜安徽省煤田地质局水文勘探队机厂 (234000) 杨 峰 崔 晴45钢由于价格便宜,来源方便,加工性能好,淬火后具有较高的硬度,调质处理后具有良好的强韧性、高的强度和一定的耐磨性,被广泛地应用于中低档的轴类零件。

但是45钢轴在热处理过程中,由于材料本身的原因,热加工不当和热处理工艺安排不合理,往往容易产生热处理断裂或在工作中发生早期失效,造成产品报废,严重影响生产。

1. 柴油机曲轴热处理产生的裂纹及预防某柴油机厂生产一批柴油机曲轴,该工厂采用圆钢锻造,为了赶工期,采取的加工工序是:下料→锻造→粗加工→调质→精加工→检验入库。

该批曲轴在淬火后,一部分曲轴的曲拐处产生裂纹,造成了产品报废。

分析工序安排可看出,因为锻后没有进行退火或正火,钢材在锻造时产生的锻造应力没有很好地被消除,因此在热处理淬火时,淬火产生的应力和原来轴中存在的应力叠加,当叠加应力超过材料的强度极限时,45钢曲轴表面应力集中处即产生裂纹。

针对45钢锻造曲轴产生裂纹原因,对45钢锻造后的曲轴进行正火热处理,不仅消除了锻造产生的1. 喷砂清理采用手动压缩空气(0.5~0.6MPa)喷枪,经过压缩空气带动细石英砂向螺纹部表面喷射清理。

喷砂清理时注意,应及时转动齿轮,不得过度清理某处,以防其尺寸减小。

喷砂采用的压缩空气应经过滤,保证无油、无水。

此方法特点是清理效率较高,但现场粉尘较大,应安装除尘装置。

图5为齿轮喷砂清理示意。

2. 钢丝轮清理利用电动机带动钢丝轮传动机构,设计并制成合理的主动齿轮卡位机构,以利于对主动齿轮尾部螺纹等进行均匀、彻底、安全的清理。

此方法特点是清理干净,效率高。

图6为主动齿轮螺纹清理机示意。

图5 齿轮喷砂清理示意1.转台2.喷嘴3.枪体4.主动齿轮3.化学清理将涂覆涂料部位浸泡在温度为60~80℃的10%~15%NaOH溶液中2~3h,可使其残留的防渗涂层溶解。

滚动轴承常见故障及其原因分析

滚动轴承常见故障及其原因分析

滚动轴承常见故障及其原因分析
滚动轴承的常见故障可以分为以下几类:疲劳断裂、润滑不良、过度磨损和数值计算错误。

接下来我们逐一进行分析。

1. 疲劳断裂
疲劳断裂是滚动轴承最常见的故障之一。

其主要原因是轴承的
使用寿命已经达到,力学应力集中作用于轴承滚动路径的表面,导
致金属的疲劳断裂。

这种故障的表现是滚动轴承表面的小裂纹开始
出现,若不及时修理,则最终导致滚动轴承的失效。

2. 润滑不良
轴承在工作时需要充分的润滑,否则会产生润滑不良的故障。

这种情况通常出现在润滑脂或润滑油的添加不足或质量不好的情况下。

润滑不良会导致滚动轴承磨损加剧,最终导致滚珠或滚道表面
的磨损或划痕,加速滚动轴承的失效。

3. 过度磨损
过度磨损是因为轴承的质量不佳或使用条件恶劣而引起的。


这种情况下,滚动轴承的表面会磨损加剧,从而大大降低滚动轴承
的寿命。

过度磨损通常是由于轴承没有充分的润滑或者轴承的承载
力超过了轴承的设计载荷而导致的。

4. 数值计算错误
在轴承设计和模拟中,数值计算错误也是导致轴承故障的原因
之一。

在轴承设计和模拟时,如果使用的数值计算方法不正确,则
很容易导致轴承失效。

例如,当计算滚珠轴承的承载能力时,如果
数值计算方法不准确,则最终计算出的承载能力与实际承载能力不匹配,导致轴承失效。

综上所述,滚动轴承的故障主要表现为疲劳断裂、润滑不良、过度磨损和数值计算错误。

为了避免轴承故障的发生,在设计和选择轴承时,应选择适当的材料和润滑方式,并遵循正确的设计和模拟方法,以确保轴承稳定可靠的工作。

主轴表面开裂是什么原因?

主轴表面开裂是什么原因?

作者所在公司生产的一级公路运输车左右半轴总成,在喷砂处理后准备喷底漆时发现10件产品中有7件产品表面存在裂纹。

裂纹分为两种形态,一种裂纹位于轴本体并沿轴向扩展,另一种裂纹位于焊缝附近并沿焊缝熔合线扩展。

问题发生后,工厂高度重视,选取了一件轴本体开裂件(1#)和一件焊缝开裂件(2#)进行分析。

主轴所用材料为45CrNiMoVA,属碳含量较高,并含有较多合金元素的高强度合金钢。

该种材料淬硬倾向很大,热影响区冷裂倾向也很大,且焊接性差。

轴的加工流程为:棒材粗加工→主轴与滑块支座采用手工氩弧焊连接(焊缝为环形插接角焊缝)→焊接后立即进行退火处理→探伤→调质处理(硬度要求为33~38HRC)→校正→喷砂→精加工。

01宏观观察两件轴裂纹的宏观形貌如图1所示,对两件轴进行部分分解后,采用目视及体视显微镜对两件轴表面裂纹分别进行观察。

图1 两件轴分解的宏观形貌1#轴表面裂纹位于轴本体上并基本沿轴向扩展(尾部存在弧线拐弯),裂纹在深度方向上沿径向扩展,裂纹中部已经穿透了所取试样的厚度(厚约30mm),如图2所示。

图2 1#轴表面裂纹宏观形貌2#轴表面裂纹沿主轴一侧的焊缝熔合线扩展,所取试块焊缝熔合线位置均存在开裂现象(长约1/2周),进一步放大观察裂纹由多条断续微裂纹组成,如图3所示。

图3 2#轴熔合线裂纹宏观形貌剖面观察,主裂纹上存在明显分插裂纹;主轴焊缝底部熔合线也已开裂,从裂纹的走向判断,该裂纹起源于角焊缝底部应力集中区,剖面裂纹宏观形貌及走向如图4所示。

图4 2#轴裂纹剖面宏观形貌02断面宏观观察采用机械方法将两件轴上裂纹打开后进行观察,1#轴裂纹断面较平坦,断面呈黑色,局部呈红褐色,源区位于次表面,表面存在明显的剪切唇(剪切唇厚度较薄),如图5所示;2#裂纹断面凹凸不平,裂纹沿熔合线扩展,断面主要呈黑色,局部呈红褐色,源区位于表面,为多源起裂,如图6所示。

(a)(b)图5 1#轴断面宏观形貌(a)(b)图6 2#轴断面宏观形貌03断面微观观察将断面置于扫描电镜下进行微观形貌观察,两个轴断面的微观形貌相似,整个断面均附着一层较厚的氧化物,仅局部区域断面隐约可见沿晶形貌,如图7、图8所示。

轴承表面裂纹应力强度因子有限元分析

轴承表面裂纹应力强度因子有限元分析
制造 业信 总化
彷 一 , 壤 / AD C 建 C / AM/ E C P CA / AP
析裂纹 时 ,裂纹前沿单元 采 坐 标 下 施 加 在 内壁 节
用 sl 9 单 元 ,裂 纹前 沿单 od5 i
元 分 析 均 与 普 通 的三 维 力 学
点 上 , 中 为节 点 与 其 为 该 节 点 在 轴 和 Y
裂 纹最 深 处应 力 强度 因子最 大 ,表 明在 裂 纹在 最 深处 具
承 上半 圈 不 受力 , 了减 少 计算 量 只 对下 半 圈进 行 分 析 。 有 最大 的扩展 趋 势 ;当裂 纹 离表 面很 近 的 时候 应力 强 度 为 表 1 轴承外部 为了方便对实体模型划分 网格和创建 因 子变 化 不大 ,随着 裂纹 深度 的增加 裂 纹 应力 强度 因子
a r 标 复 成 半 謇 模 。 轴 是 对 裂 纹深 度 为 2 m 时 理 论计 算 结 果 和有 限元 计 算 结 下 制下 圈体型 对 承 果 比较 , 过 计算 比较理 论计 算 与有 限元分 析结 果 有 7 经 %
的 差距 , 结果 相 近 , 成差 距 的原 因为计 算 路径 不 同而 导 造
所 以用 公 式 编 辑 器 编 辑 正 弦 函数 = —三 F
、 +, / 】
图 9 裂纹 长度为 3 m 时裂纹对 应 圆弧角 的应力 强度 因子 a r
并 在 柱
5 结 论 由于采 用 的计 算 方法 和 计算 路 径选 择 不 同在计 算 应
机 械工程师 21 年第 3 l 5 02 期 1
! 接 叁 触对, 先建立14 / 模型, 在柱坐 1 然后
宽 / 度
迅 速增 加 , 且 裂纹 长 度越 长 这 个变 化 趋 势越 大 。图 1 并 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档